CN108015763A - A kind of redundancy mechanical arm paths planning method of anti-noise jamming - Google Patents
A kind of redundancy mechanical arm paths planning method of anti-noise jamming Download PDFInfo
- Publication number
- CN108015763A CN108015763A CN201711147249.5A CN201711147249A CN108015763A CN 108015763 A CN108015763 A CN 108015763A CN 201711147249 A CN201711147249 A CN 201711147249A CN 108015763 A CN108015763 A CN 108015763A
- Authority
- CN
- China
- Prior art keywords
- mrow
- time
- manipulator
- varying
- redundant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 121
- 239000011159 matrix material Substances 0.000 claims abstract description 58
- 230000001537 neural effect Effects 0.000 claims abstract description 30
- 238000013461 design Methods 0.000 claims abstract description 28
- 238000005457 optimization Methods 0.000 claims abstract description 15
- 239000013598 vector Substances 0.000 claims description 18
- 238000003062 neural network model Methods 0.000 claims description 14
- 230000004913 activation Effects 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 6
- 230000000306 recurrent effect Effects 0.000 claims description 6
- 238000007405 data analysis Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000009897 systematic effect Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract description 5
- 238000013528 artificial neural network Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 4
- 108010001267 Protein Subunits Proteins 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开了一种抗噪声干扰的冗余度机械臂路径规划方法及系统,所述方法包括:1)根据实际冗余度机械臂参数指标建立时变二次规划模型,并引入冗余度机械臂的性能指标;2)使用拉格朗日乘数法,对时变二次规划模型进行最优值优化;3)根据优化公式设计一个标准矩阵等式;4)根据实际物理模型系统及标准矩阵等式,设计出系统的偏差函数方程;5)根据偏差函数方程及幂型变参递归神经动力学方法设计一种抗噪声干扰的冗余度机械臂路径规划方法,该方法所求得到的网络状态解即为最优解。本发明在外界噪声环境的干扰下,冗余度机械臂的实际运动路径也能够与期望路径重合,大大提高了计算速度,具有精度高、收敛快、实时性强、鲁棒性好等特点。
The invention discloses a redundant manipulator path planning method and system for anti-noise interference. The method includes: 1) establishing a time-varying quadratic programming model according to the actual redundant manipulator parameter index, and introducing redundancy The performance index of the manipulator; 2) Use the Lagrange multiplier method to optimize the optimal value of the time-varying quadratic programming model; 3) Design a standard matrix equation according to the optimization formula; 4) According to the actual physical model system and Standard matrix equation, design the deviation function equation of the system; 5) design a kind of anti-noise interference redundant mechanical arm path planning method according to the deviation function equation and power type variable parameter recursive neural dynamics method, the method obtained The network state solution of is the optimal solution. Under the interference of the external noise environment, the actual movement path of the redundant mechanical arm can also coincide with the expected path, which greatly improves the calculation speed, and has the characteristics of high precision, fast convergence, strong real-time performance, and good robustness.
Description
技术领域technical field
本发明涉及一种机械臂路径规划方法,尤其涉及一种抗噪声干扰的冗余度机械臂路径规划方法。The invention relates to a path planning method of a manipulator, in particular to a path planning method of a redundant manipulator with anti-noise interference.
背景技术Background technique
所谓噪声干扰,就是在机械设备执行操作任务时,周边负载设备的开关机、发电机、无线电通讯等对正在执行操作任务的机械造成的各种各样变化负责的干扰。噪声干扰往往会对精密器械或计算机设备造成故障,还可能造成程序与档案的执行错误等。因此,在考虑一个复杂的机械系统的路径规划及操作时,把噪声项造成的影响考虑进去是非常必要的。The so-called noise interference is the interference caused by the various changes caused by the machinery that is performing the operation task, such as the switch machine, generator, and radio communication of the surrounding load equipment when the mechanical equipment performs the operation task. Noise interference often causes malfunctions of precision instruments or computer equipment, and may also cause errors in the execution of programs and files. Therefore, it is necessary to take into account the influence of the noise term when considering the path planning and operation of a complex mechanical system.
所谓冗余度,就是从安全角度考虑多余的一个量,这个量就是为了保障仪器、设备或某项工作在非正常情况下也能正常运转。目前大多现代产品和工程设计中都应用了冗余度这个思想和理论。冗余度机械臂指机械臂自由度的数量多于完成任务时所必须的自由度的数量,由于具有更多的自由度,冗余度机械臂在完成末端执行器的各种任务时,还可以同时完成诸如障碍物躲避、关节角极限约束、机械臂奇异等额外工作。传统用于解决冗余度机械臂逆运动学问题的方法是基于伪逆的方法,该方法计算量大、实时性差、问题约束单一,在实际的机械臂应用与操作中受到极大制约。近年来,基于二次规划问题的用于解决冗余度机械臂运动规划的方案被提出,并得到了一定的发展。这其中又分为数值方法求解器和神经网络求解器。相较于传统的数值方法求解器,最近新兴出现的神经网络求解器由于其实时性能好、效率高等特点,越来越受到人们追捧。The so-called redundancy refers to an extra amount considered from a safety point of view. This amount is to ensure that instruments, equipment, or certain tasks can operate normally under abnormal conditions. At present, the idea and theory of redundancy are applied in most modern products and engineering designs. The redundant manipulator means that the number of degrees of freedom of the manipulator is more than the number of degrees of freedom necessary to complete the task. Due to more degrees of freedom, the redundant manipulator can also complete various tasks of the end effector. Additional work such as obstacle avoidance, joint angle limit constraints, and robotic arm singularity can be done at the same time. The traditional method used to solve the inverse kinematics problem of redundant manipulators is based on the pseudo-inverse method. This method has a large amount of calculation, poor real-time performance, and single problem constraints, which are greatly restricted in the actual application and operation of manipulators. In recent years, a scheme based on the quadratic programming problem to solve the motion planning of redundant manipulators has been proposed and developed to a certain extent. These are divided into numerical method solvers and neural network solvers. Compared with traditional numerical method solvers, recently emerging neural network solvers are more and more popular due to their good real-time performance and high efficiency.
而在现有技术中,最接近于解决二次规划问题的方法是离散数值方法,但在面对庞大且复杂的数据时,这样一种方法显然是效率不足且不稳定的。于是,一种基于梯度下降的神经网络模型被提出,并用于求解二次规划问题。然而,这样一种基于梯度下降的神经网络并不能很好地解决二次规划问题,因为实际情况往往与事件相关,这样必然会导致实验产生一些无法估计的剩余误差,且这些误差无法收敛到零。这就意味着,我们在处理二次规划问题时,需要更快的收敛速度和更高的收敛精度。在这样一个背景下,张神经网络被提出并得到了很好的发展。张神经网络是一种用于解决机械臂路径规划的传统方法,这样一种神经网络模型能够解决时变条件下的二次规划问题。通过衍生出的时间系数,张神经网络可以得到二次规划问题的最有化解。然而,在计算数据变得庞大,尤其是要考虑复杂的噪声干扰时,我们往往需要更多的时间去计算结果,这对于实践操作是不利的。In the existing technology, the closest method to solve the quadratic programming problem is the discrete numerical method, but when faced with huge and complex data, such a method is obviously inefficient and unstable. Therefore, a neural network model based on gradient descent is proposed and used to solve quadratic programming problems. However, such a neural network based on gradient descent cannot solve the quadratic programming problem very well, because the actual situation is often related to events, which will inevitably lead to some unestimable residual errors in the experiment, and these errors cannot converge to zero. . This means that we need faster convergence speed and higher convergence accuracy when dealing with quadratic programming problems. In such a background, Zhang Neural Network was proposed and developed well. Zhang neural network is a traditional method for solving the path planning of manipulators. Such a neural network model can solve the quadratic programming problem under time-varying conditions. Through the derived time coefficients, the Zhang neural network can obtain the most effective solution to the quadratic programming problem. However, when the calculation data becomes huge, especially when complex noise interference is to be considered, we often need more time to calculate the results, which is not good for practical operation.
由于传统的梯度神经网络和张神经网络等固定参数递归神经网络方法要求收敛参数(实际电路系统中为电感参数值或电容参数的倒数值)需要被设定得尽可能的大,以得到更快的收敛性能。当神经网络应用在实际的系统中时,这样一种要求是不实且难以满足的。除此之外,在实际系统中,电感参数值和电容参数值的倒数通常是时变的,特别是大型的电力电子系统,交流电机控制系统,电力网络系统等,系统参数设定为固定值是不合理的。Due to the fixed parameter recursive neural network methods such as traditional gradient neural network and Zhang neural network, the convergence parameter (in the actual circuit system, the value of the inductance parameter or the reciprocal value of the capacitance parameter) needs to be set as large as possible to obtain faster convergence performance. Such a requirement is unrealistic and difficult to satisfy when neural networks are applied in practical systems. In addition, in the actual system, the reciprocal of the inductance parameter value and the capacitance parameter value is usually time-varying, especially in large-scale power electronic systems, AC motor control systems, power network systems, etc., the system parameters are set to fixed values is unreasonable.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种抗噪声干扰的冗余度机械臂路径规划方法,该方法能够在外界噪声环境的干扰下,使冗余度机械臂的实际运动路径也能够与期望路径重合,大大提高了计算速度,具有精度高、收敛快、实时性强、鲁棒性好等特点。The purpose of the present invention is to overcome the deficiencies of the prior art, and provide a redundant manipulator path planning method that is resistant to noise interference. The method can make the actual movement path of the redundant manipulator also It can coincide with the expected path, greatly improving the calculation speed, and has the characteristics of high precision, fast convergence, strong real-time performance, and good robustness.
本发明的另一目的在于提供一种抗噪声干扰的冗余度机械臂路径规划系统。Another object of the present invention is to provide a redundant robotic arm path planning system that is resistant to noise interference.
本发明的目的可以通过采取如下技术方案达到:The purpose of the present invention can be achieved by taking the following technical solutions:
一种抗噪声干扰的冗余度机械臂路径规划方法,所述方法包括:A method for path planning of redundant manipulators against noise interference, the method comprising:
1)根据实际冗余度机械臂参数指标建立时变二次规划模型,并引入冗余度机械臂的性能指标系数向量;1) Establish a time-varying quadratic programming model according to the actual redundant manipulator parameter index, and introduce the performance index coefficient vector of the redundant manipulator;
2)使用拉格朗日乘数法,对时变二次规划模型进行最优值优化;2) Use the Lagrange multiplier method to optimize the optimal value of the time-varying quadratic programming model;
3)根据优化公式设计出一个标准矩阵等式;3) Design a standard matrix equation according to the optimization formula;
4)根据实际物理模型系统及标准矩阵等式,设计出系统的偏差函数方程;4) According to the actual physical model system and the standard matrix equation, the deviation function equation of the system is designed;
5)根据偏差函数方程及幂型变参递归神经动力学方法设计一种抗噪声干扰的冗余度机械臂路径规划方法,该方法所求得到的网络状态解即为最优解。5) According to the deviation function equation and the power-type variable parameter recursive neural dynamics method, a redundant manipulator path planning method with anti-noise interference is designed. The network state solution obtained by this method is the optimal solution.
进一步的,所述的根据实际冗余度机械臂参数指标建立时变二次规划模型,并引入冗余度机械臂的性能指标系数向量,具体包括:Further, the time-varying quadratic programming model is established according to the actual redundant manipulator parameter index, and the performance index coefficient vector of the redundant manipulator is introduced, specifically including:
将实际冗余度机械臂参数指标公式化、模型化,可以得到如下的冗余度机械臂运动学方程表达式:By formulating and modeling the parameter index of the actual redundant manipulator, the following kinematic equation expression of the redundant manipulator can be obtained:
f(θ(t))=r(t) (1)f(θ(t))=r(t) (1)
其中θ(t)为冗余度机械臂的机械关节角度;r(t)为冗余度机械臂的期望末端轨迹;f(·)为表示冗余度机械臂关节角度的非线性方程;对方程两端同时求导可得到如下冗余度机械臂速度层上的逆运动学方程表达式:Where θ(t) is the mechanical joint angle of the redundant manipulator; r(t) is the expected end trajectory of the redundant manipulator; f( ) is a nonlinear equation representing the joint angle of the redundant manipulator; Simultaneously deriving both ends of the equation can obtain the following expression of the inverse kinematics equation on the velocity layer of the redundant manipulator:
其中为冗余度机械臂的雅克比矩阵,n表示机械臂自由度的数量,m表示机械臂末端轨迹的空间维数;分别为冗余度机械臂的关节角度和末端轨迹关于时间的导数;根据上述物理模型,可以建立如下的时变二次规划模型:in is the Jacobian matrix of the redundant manipulator, n represents the number of degrees of freedom of the manipulator, and m represents the spatial dimension of the end trajectory of the manipulator; are the joint angles of the redundant manipulator and the derivatives of the terminal trajectory with respect to time; according to the above physical model, the following time-varying quadratic programming model can be established:
subject to J(θ(t))x(t)=B(t) (4)subject to J(θ(t))x(t)=B(t) (4)
其中Q(t)=I(t)为单位矩阵;J(θ(t))为冗余度机械臂的雅克比矩阵;P(t)为性能指标系数向量;in Q(t)=I(t) is the identity matrix; J(θ(t)) is the Jacobian matrix of the redundant mechanical arm; P(t) is the performance index coefficient vector;
引入冗余度机械臂的性能指标系数向量P(t),其具体设计公式为:其中表示关节偏移响应系数,θ(t),θ(0)分别表示冗余度机械臂运动过程中的关节状态和初始关节状态。The performance index coefficient vector P(t) of the redundant manipulator is introduced, and its specific design formula is: in Represents the joint offset response coefficient, θ(t), θ(0) represent the joint state and initial joint state during the movement of the redundant manipulator, respectively.
进一步的,所述的使用拉格朗日乘数法,对时变二次规划模型进行最优值优化,具体包括:Further, the Lagrange multiplier method is used to optimize the optimal value of the time-varying quadratic programming model, which specifically includes:
为了获取关于时变二次规划问题的关于最优解及拉格朗日乘数的偏导数信息,对时变二次规划问题(3)(4)使用拉格朗日乘数法可得到下式:In order to obtain the partial derivative information about the optimal solution and the Lagrange multiplier for the time-varying quadratic programming problem, the Lagrange multiplier method can be used for the time-varying quadratic programming problem (3)(4) to get the following Mode:
其中为拉格朗日乘数;由拉格朗日定理可知,如果和存在且连续,那么下式两式成立,即in is the Lagrangian multiplier; from the Lagrangian theorem, if and exists and is continuous, then the following two formulas are established, that is
其中时变参数矩阵及向量Q(t),P(t),J(t),B(t)由实际物理模型系统传感器获取信号及系统预期运行状态信号等所构成;时变参数矩阵及向量Q(t),P(t),J(t),B(t),以及它们的时间导数 是已知的或者能够在一定精确度要求范围内被估计出来;存在时变二次规划问题(3)(4)关于最优解及关于拉格朗日乘数的偏导数信息,且可以使用拉格朗日乘数法将上述信息表示为优化公式(6)(7)。The time-varying parameter matrix and vectors Q(t), P(t), J(t), and B(t) are composed of the actual physical model system sensor acquisition signal and the system's expected operating status signal; the time-varying parameter matrix and vector Q(t), P(t), J(t), B(t), and their time derivatives is known or can be estimated within a certain range of accuracy requirements; there is a time-varying quadratic programming problem (3) (4) about the optimal solution and about the partial derivative information of the Lagrange multiplier, and can be used The Lagrangian multiplier method expresses the above information as optimization formulas (6)(7).
进一步的,所述的根据优化公式设计出一个标准矩阵等式,具体包括:Further, the described design of a standard matrix equation according to the optimization formula specifically includes:
根据优化公式(6)(7)可以设计出一个如下的关于时变二次规划问题(3)(4)的标准矩阵等式:According to the optimization formula (6) (7), the following standard matrix equations for the time-varying quadratic programming problem (3) (4) can be designed:
W(t)Y(t)=G(t) (8)W(t)Y(t)=G(t) (8)
其中in
时变系数矩阵和向量W(t),Y(t),G(t)在实数域上均连续且光滑。The time-varying coefficient matrix and vectors W(t), Y(t), G(t) are continuous and smooth in the real number domain.
进一步的,所述的根据实际物理模型系统及标准矩阵等式,设计出系统的偏差函数方程,具体包括:Further, according to the actual physical model system and the standard matrix equation, the deviation function equation of the system is designed, which specifically includes:
根据得到的实际物理模型系统或数值求解系统的光滑时变二次规划问题的矩阵等式(8),设计可得系统的偏差函数方程;为了得到时变二次规划问题(3)(4)的最优解,定义一个矩阵形式的偏差函数方程如下:According to the matrix equation (8) of the smooth time-varying quadratic programming problem of the obtained actual physical model system or numerical solution system, the deviation function equation of the available system is designed; in order to obtain the time-varying quadratic programming problem (3) (4) The optimal solution of , define a matrix-form deviation function equation as follows:
当偏差函数方程ε(t)收敛到零时,时变二次规划问题(3)(4)的最优解x*(t)能够被获得。When the deviation function equation ε(t) converges to zero, the optimal solution x * (t) of the time-varying quadratic programming problem (3)(4) can be obtained.
进一步的,根据偏差函数方程及幂型变参递归神经动力学方法建立一个含噪声的幂型变参递归神经网络模型,该模型输出的网络状态解即为最优解,具体包括:Further, a noise-containing power-type variable-parameter recursive neural network model is established according to the deviation function equation and the power-type variable-parameter recursive neural dynamics method. The network state solution output by the model is the optimal solution, including:
时变参数矩阵中的数据能够输入到处理单元中;通过所获得的时变参数矩阵及其导数信息,结合实数域幂型变参递归神经动力学方法并利用单调递增奇激活函数,可以建立一个含噪声的幂型变参递归神经网络模型;根据幂型变参递归神经动力学方法,偏差函数方程ε(t)的时间导数需要为负定;不同于固定参数递归神经动力学方法,幂型变参递归神经动力学方法中决定收敛性能的设计参数是时变的,该时变参数定义如下:The data in the time-varying parameter matrix can be input into the processing unit; through the obtained time-varying parameter matrix and its derivative information, combined with the power-type variable parameter recursive neural dynamics method in the real number field and using the monotonically increasing odd activation function, a Power-type variable parameter recursive neural network model with noise; according to the power-type variable parameter recursive neural dynamics method, the time derivative of the deviation function equation ε(t) needs to be negative definite; different from the fixed parameter recursive neural dynamics method, the power-type The design parameters that determine the convergence performance in the variable parameter recursive neural dynamics method are time-varying, and the time-varying parameters are defined as follows:
其中γ>0为人为设计的常系数参数,Φ(·)为单调递增奇激活阵列。Among them, γ>0 is an artificially designed constant coefficient parameter, and Φ(·) is a monotonically increasing odd activation array.
将偏差函数方程及其导数信息代入设计公式(8),则实数域幂型变参递归神经网络模型能够用如下的隐式动力学方程式表达Substituting the deviation function equation and its derivative information into the design formula (8), the power-type variable parameter recursive neural network model in the real number field can be expressed by the following implicit dynamic equation
其中为偏导数信息。in is partial derivative information.
如果存在噪声干扰和硬件运行误差,则可以得到如下的含噪声幂型变参递归神经网络模型:If there are noise interference and hardware operation errors, the following noise-containing power variable parameter recurrent neural network model can be obtained:
其中ΔD(t)为系数矩阵的噪声项;ΔK(t)为硬件运行时的误差项。Among them, ΔD(t) is the noise term of the coefficient matrix; ΔK(t) is the error term when the hardware is running.
根据对的定义,可知According to definition, we know
Y(t):=[xT(t),λT(t)]T Y(t):=[x T (t),λ T (t)] T
=[x1(t),x2(t),…,xn(t),λ1(t),λ2(t),…,λm(t)]T (13)=[x 1 (t), x 2 (t), . . . , x n (t), λ 1 (t), λ 2 (t), . . . , λ m (t)] T (13)
其中Y(t)具有初始值 where Y(t) has initial value
根据隐式动力学方程(12),可以得到实数域抗噪声干扰的冗余度机械臂路径规划方法及网络实现;网络的输出结果即为实数域时变二次规划问题(3)(4)的最优解。According to the implicit dynamic equation (12), the redundant manipulator path planning method and network implementation for anti-noise interference in the real number domain can be obtained; the output of the network is the time-varying quadratic programming problem in the real number domain (3)(4) the optimal solution of .
基于抗噪声干扰的冗余度机械臂路径规划方法求解得到的网络状态解即为该实际物理系统或数值求解系统的时变二次规划问题(3)(4)的最优解;将处理器所得到的求解器最优解输出,完成具有实数域光滑时变二次规划问题形式的实际物理系统或数值求解系统的最优解求解,所求得的网络状态解即为所求受噪声干扰的冗余度机械臂运动规划的最优解。The network state solution obtained by the redundant manipulator path planning method based on anti-noise interference is the optimal solution of the time-varying quadratic programming problem (3) (4) of the actual physical system or numerical solution system; The output of the optimal solution of the solver is obtained, and the optimal solution of the actual physical system or numerical solution system in the form of a smooth time-varying quadratic programming problem in the real number field is completed, and the obtained network state solution is the obtained noise interference The optimal solution for redundant manipulator motion planning.
本发明的另一目的可以采取如下技术方案达到:Another object of the present invention can take following technical scheme to reach:
外界环境输入模块,用于对外界环境输入的数据的获取及分析,上述数据构成了时变参数矩阵内容的基础。The external environment input module is used for acquiring and analyzing data input from the external environment, and the above data constitute the basis of the content of the time-varying parameter matrix.
输入接口电路模块,用于外部设定数据以及作为处理器间的接口通道,根据传感器的不同可由不同接口的电路与协议实现。The input interface circuit module is used for external setting data and as an interface channel between processors, and can be realized by circuits and protocols of different interfaces according to different sensors.
处理器模块,用于对外部输入数据的处理,求取基于幂型变参递归神经动力学方法所设计用于受噪声干扰的冗余度机械臂运动路径规划方法的最优解。The processor module is used to process external input data, and obtain the optimal solution of the redundant manipulator motion path planning method designed based on the power-type variable parameter recursive neural dynamics method for noise interference.
输出接口模块,用于抗噪声干扰的冗余度机械臂运动路径规划方法所求解的数据同系统最优理论解请求端的接口,其中该接口可以为电路接口也可以为程序的返回值,根据设计系统的不同而不同。The output interface module is used for the interface between the data solved by the redundant manipulator motion path planning method for anti-noise interference and the system optimal theoretical solution request end, where the interface can be a circuit interface or a return value of a program, according to the design It varies from system to system.
输出环境模块,用于实现基于幂型变参递归神经动力学方法的用于受噪声干扰的冗余度机械臂运动路径规划方法的目的。The output environment module is used to realize the purpose of the redundant manipulator motion path planning method disturbed by noise based on the power type variable parameter recursive neural dynamics method.
进一步的,所述外界环境输入模块,具体包括:Further, the external environment input module specifically includes:
外部传感器数据采集子单元,通过传感器收集系统的动态参数,如位移、速度、加速度、角速度等物理量;The external sensor data acquisition sub-unit collects the dynamic parameters of the system through sensors, such as displacement, velocity, acceleration, angular velocity and other physical quantities;
预期目标实现状态的数据分析子单元,通过分析已知的或采集得到的各物理量,进行系统的理论分析。The data analysis sub-unit of the expected goal realization state conducts systematic theoretical analysis by analyzing known or collected physical quantities.
进一步的,所述的处理器模块,具体包括:Further, the processor module specifically includes:
时变参数矩阵子单元,用于完成对外部输入数据的矩阵化或矢量化;The time-varying parameter matrix subunit is used to complete the matrix or vectorization of external input data;
抗噪声干扰的冗余度机械臂路径规划方法子单元,抗噪声干扰的冗余度机械臂运动路径规划方法为系统的核心部分,通过预先对系统的数据进行建模、公式化、分析及设计构型,其中包括数学建模得到的系统模型,从而设计偏差函数方程,并利用基于幂型变参递归神经动力学方法设计用于受噪声干扰的冗余度机械臂运动路径规划方法。Anti-noise interference redundant manipulator path planning method sub-unit, anti-noise interference redundant manipulator movement path planning method is the core part of the system, through modeling, formulation, analysis and design of the system data in advance Type, including the system model obtained by mathematical modeling, so as to design the deviation function equation, and use the power-type variable parameter recursive neural dynamics method to design a redundant manipulator motion path planning method for noise interference.
进一步的,所述的输出环境模块,具体包括:Further, the described output environment module specifically includes:
最优解请求端子单元,用于为需要获取实际物理系统或数值求解系统的实数域光滑时变二次规划问题最优解的请求端,该端口在需要得到求解参数时向求解系统发出指令请求,并接受求解结果;The optimal solution request terminal unit is used to obtain the optimal solution of the real number field smooth time-varying quadratic programming problem of the actual physical system or numerical solution system. This port sends an instruction request to the solution system when the solution parameters need to be obtained. , and accept the solution result;
冗余度机械臂路径规划端子单元,用于将最优解请求端输出的参数转化为相关数据,最终输入到机械臂控制程序中对机械臂进行路径规划与控制。The redundant manipulator path planning terminal unit is used to convert the parameters output by the optimal solution request end into relevant data, and finally input it into the manipulator control program for path planning and control of the manipulator.
本发明对于现有技术具有如下的有益效果:The present invention has following beneficial effect to prior art:
本发明基于幂型变参递归神经动力学模型方法,不同于传统的固定参数递归神经动力学方法,本发明所述的用于受噪声干扰的冗余度机械臂的运动路径规划方法具有全局收敛特性,且偏差能以超指数的速度收敛到零,大大提高了计算速度,具有精度高、收敛快、实时性强、鲁棒性好等特点。该方法采用普遍存在的隐动力学模型进行描述,可分别从方法和系统两个层面上充分利用各时变参数的导数信息,可快速、准确、实时地逼近问题的最优解;能够很好地解决冗余度机械臂运动规划等一系列相关问题。The present invention is based on a power-type variable parameter recursive neural dynamics model method, which is different from the traditional fixed parameter recursive neural dynamics method. The motion path planning method for redundant mechanical arms disturbed by noise has global convergence characteristics, and the deviation can converge to zero at a super-exponential speed, which greatly improves the calculation speed, and has the characteristics of high precision, fast convergence, strong real-time performance, and good robustness. The method is described by the ubiquitous implicit dynamic model, which can make full use of the derivative information of each time-varying parameter from the two levels of method and system, and can approach the optimal solution of the problem quickly, accurately and in real time; It solves a series of related problems such as motion planning of redundant manipulators.
附图说明Description of drawings
图1为本发明实施例1的抗噪声干扰的冗余度机械臂运动路径规划方法的流程图。FIG. 1 is a flow chart of a redundant robotic arm movement path planning method for anti-noise interference according to Embodiment 1 of the present invention.
图2为本发明的抗噪声干扰的冗余度机械臂运动路径规划系统的实现框架图。FIG. 2 is a frame diagram of the implementation of the noise-resistant redundant robotic arm motion path planning system of the present invention.
图3为本发明的受噪声干扰的冗余度机械臂执行运动路径规划任务时轨迹图。Fig. 3 is a trajectory diagram when the redundant mechanical arm disturbed by noise of the present invention performs a motion path planning task.
图4为本发明的受噪声干扰的冗余度机械臂执行运动路径规划任务时的实际路径与期望路径的曲线图。FIG. 4 is a graph of the actual path and the expected path when the noise-disturbed redundant manipulator of the present invention performs a motion path planning task.
图5为本发明的受噪声干扰的冗余度机械臂执行运动路径规划任务时X轴、Y轴、Z轴方向上的误差曲线图。Fig. 5 is an error graph in the X-axis, Y-axis, and Z-axis directions when the noise-disturbed redundant robotic arm of the present invention performs a motion path planning task.
图6为本发明的受噪声干扰的冗余度机械臂执行运动路径规划任务时的范数误差曲线图。FIG. 6 is a curve diagram of norm error when the noise-disturbed redundant manipulator of the present invention performs a motion path planning task.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below in conjunction with the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例1:Example 1:
如图1所示,本实施例提供了一种抗噪声干扰的冗余度机械臂路径规划方法,该方法包括如下步骤:As shown in FIG. 1, the present embodiment provides a method for path planning of a redundant manipulator with anti-noise interference, and the method includes the following steps:
S1、根据实际冗余度机械臂参数指标建立时变二次规划模型,并引入冗余度机械臂的性能指标系数向量;S1. Establish a time-varying quadratic programming model according to the actual redundant manipulator parameter index, and introduce the performance index coefficient vector of the redundant manipulator;
S11、建立时变二次规划模型:S11. Establish a time-varying quadratic programming model:
将实际冗余度机械臂参数指标公式化、模型化,可以得到如下的冗余度机械臂运动学方程表达式:By formulating and modeling the parameter index of the actual redundant manipulator, the following kinematic equation expression of the redundant manipulator can be obtained:
f(θ(t))=r(t) (1)f(θ(t))=r(t) (1)
其中θ(t)为冗余度机械臂的机械关节角度;r(t)为冗余度机械臂的期望末端轨迹;f(·)为表示冗余度机械臂关节角度的非线性方程;对方程两端同时求导可得到如下冗余度机械臂速度层上的逆运动学方程表达式:Where θ(t) is the mechanical joint angle of the redundant manipulator; r(t) is the expected end trajectory of the redundant manipulator; f( ) is a nonlinear equation representing the joint angle of the redundant manipulator; Simultaneously deriving both ends of the equation can obtain the following expression of the inverse kinematics equation on the velocity layer of the redundant manipulator:
其中为冗余度机械臂的雅克比矩阵,n表示机械臂自由度的数量,m表示机械臂末端轨迹的空间维数;分别为冗余度机械臂的关节角度和末端轨迹关于时间的导数;根据上述物理模型,可以建立如下的时变二次规划模型:in is the Jacobian matrix of the redundant manipulator, n represents the number of degrees of freedom of the manipulator, and m represents the spatial dimension of the end trajectory of the manipulator; are the joint angles of the redundant manipulator and the derivatives of the terminal trajectory with respect to time; according to the above physical model, the following time-varying quadratic programming model can be established:
subject to J(θ(t))x(t)=B(t) (4)subject to J(θ(t))x(t)=B(t) (4)
其中Q(t)=I(t)为单位矩阵;J(θ(t))为冗余度机械臂的雅克比矩阵;P(t)为性能指标系数向量;in Q(t)=I(t) is the identity matrix; J(θ(t)) is the Jacobian matrix of the redundant mechanical arm; P(t) is the performance index coefficient vector;
S12、引入冗余度机械臂的性能指标系数向量P(t),其具体设计公式为:其中表示关节偏移响应系数,θ(t),θ(0)分别表示冗余度机械臂运动过程中的关节状态和初始关节状态。S12. The performance index coefficient vector P(t) of the redundant mechanical arm is introduced, and its specific design formula is: in Represents the joint offset response coefficient, θ(t), θ(0) represent the joint state and initial joint state during the movement of the redundant manipulator, respectively.
S2、使用拉格朗日乘数法,对时变二次规划模型进行最优值优化;S2. Using the Lagrange multiplier method to optimize the optimal value of the time-varying quadratic programming model;
为了获取关于时变二次规划问题的关于最优解及拉格朗日乘数的偏导数信息,对时变二次规划问题(3)(4)使用拉格朗日乘数法可得到下式:In order to obtain the partial derivative information about the optimal solution and the Lagrange multiplier for the time-varying quadratic programming problem, the Lagrange multiplier method can be used for the time-varying quadratic programming problem (3)(4) to get the following Mode:
其中为拉格朗日乘数;由拉格朗日定理可知,如果和存在且连续,那么下式两式成立,即in is the Lagrangian multiplier; from the Lagrangian theorem, if and exists and is continuous, then the following two formulas are established, that is
其中时变参数矩阵及向量Q(t),P(t),J(t),B(t)由实际物理模型系统传感器获取信号及系统预期运行状态信号等所构成;时变参数矩阵及向量Q(t),P(t),A(t),B(t),以及它们的时间导数 是已知的或者能够在一定精确度要求范围内被估计出来;存在时变二次规划问题(3)(4)关于最优解及关于拉格朗日乘数的偏导数信息,且可以使用拉格朗日乘数法将上述信息表示为优化公式(6)(7)。The time-varying parameter matrix and vectors Q(t), P(t), J(t), and B(t) are composed of the actual physical model system sensor acquisition signal and the system's expected operating status signal; the time-varying parameter matrix and vector Q(t), P(t), A(t), B(t), and their time derivatives is known or can be estimated within a certain range of accuracy requirements; there is a time-varying quadratic programming problem (3) (4) about the optimal solution and about the partial derivative information of the Lagrange multiplier, and can be used The Lagrangian multiplier method expresses the above information as optimization formulas (6)(7).
S3、根据优化公式设计出一个标准矩阵等式;S3, designing a standard matrix equation according to the optimization formula;
根据优化公式(6)(7)可以设计出一个如下的关于时变二次规划问题(3)(4)的标准矩阵等式:According to the optimization formula (6) (7), the following standard matrix equations for the time-varying quadratic programming problem (3) (4) can be designed:
W(t)Y(t)=G(t) (8)W(t)Y(t)=G(t) (8)
其中in
时变系数矩阵和向量W(t),Y(t),G(t)在实数域上均连续且光滑。The time-varying coefficient matrix and vectors W(t), Y(t), G(t) are continuous and smooth in the real number domain.
S4、根据实际物理模型系统及标准矩阵等式,设计出系统的偏差函数方程;S4. According to the actual physical model system and the standard matrix equation, the deviation function equation of the system is designed;
根据得到的实际物理模型系统或数值求解系统的光滑时变二次规划问题的矩阵等式(8),设计可得系统的偏差函数方程;为了得到时变二次规划问题(3)(4)的最优解,定义一个矩阵形式的偏差函数方程如下:According to the matrix equation (8) of the smooth time-varying quadratic programming problem of the obtained actual physical model system or numerical solution system, the deviation function equation of the available system is designed; in order to obtain the time-varying quadratic programming problem (3)(4) The optimal solution of , define a matrix-form deviation function equation as follows:
当偏差函数方程ε(t)收敛到零时,时变二次规划问题(3)(4)的最优解x*(t)能够被获得。When the deviation function equation ε(t) converges to zero, the optimal solution x * (t) of the time-varying quadratic programming problem (3)(4) can be obtained.
S5、根据偏差函数方程及幂型变参递归神经动力学方法设计一种抗噪声干扰的冗余度机械臂路径规划方法,该方法所求得到的网络状态解即为最优解;S5. According to the deviation function equation and the power-type variable parameter recursive neural dynamics method, a redundant manipulator path planning method for anti-noise interference is designed, and the network state solution obtained by this method is the optimal solution;
时变参数矩阵中的数据能够输入到处理单元中;通过所获得的时变参数矩阵及其导数信息,结合实数域幂型变参递归神经动力学方法并利用单调递增奇激活函数,可以建立一个含噪声的幂型变参递归神经网络模型;根据幂型变参递归神经动力学方法,偏差函数方程ε(t)的时间导数需要为负定;不同于固定参数递归神经动力学方法,幂型变参递归神经动力学方法中决定收敛性能的设计参数是时变的,该时变参数定义如下:The data in the time-varying parameter matrix can be input into the processing unit; through the obtained time-varying parameter matrix and its derivative information, combined with the power-type variable parameter recursive neural dynamics method in the real number field and using the monotonically increasing odd activation function, a Power-type variable parameter recursive neural network model with noise; according to the power-type variable parameter recursive neural dynamics method, the time derivative of the deviation function equation ε(t) needs to be negative definite; different from the fixed parameter recursive neural dynamics method, the power-type The design parameters that determine the convergence performance in the variable parameter recursive neural dynamics method are time-varying, and the time-varying parameters are defined as follows:
其中γ>0为人为设计的常系数参数,Φ(·)为单调递增奇激活阵列。Among them, γ>0 is an artificially designed constant coefficient parameter, and Φ(·) is a monotonically increasing odd activation array.
将偏差函数方程及其导数信息代入设计公式(8),则实数域幂型变参递归神经网络模型能够用如下的隐式动力学方程式表达Substituting the deviation function equation and its derivative information into the design formula (8), the power-type variable parameter recursive neural network model in the real number field can be expressed by the following implicit dynamic equation
其中为偏导数信息。in is partial derivative information.
如果存在噪声干扰和硬件运行误差,则可以得到如下的含噪声幂型变参递归神经网络模型:If there are noise interference and hardware operation errors, the following noise-containing power variable parameter recurrent neural network model can be obtained:
其中ΔD(t)为系数矩阵的噪声项;ΔK(t)为硬件运行时的误差项。Among them, ΔD(t) is the noise term of the coefficient matrix; ΔK(t) is the error term when the hardware is running.
根据对的定义,可知According to definition, we know
Y(t):=[xT(t),λT(t)]T Y(t):=[x T (t),λ T (t)] T
=[x1(t),x2(t),…,xn(t),λ1(t),λ2(t),…,λm(t)]T (13)=[x 1 (t), x 2 (t), . . . , x n (t), λ 1 (t), λ 2 (t), . . . , λ m (t)] T (13)
其中Y(t)具有初始值 where Y(t) has initial value
根据隐式动力学方程(12),可以得到实数域抗噪声干扰的冗余度机械臂路径规划方法及网络实现;网络的输出结果即为实数域时变二次规划问题(3)(4)的最优解。According to the implicit dynamic equation (12), the redundant manipulator path planning method and network implementation for anti-noise interference in the real number domain can be obtained; the output of the network is the time-varying quadratic programming problem in the real number domain (3)(4) optimal solution of .
基于抗噪声干扰的冗余度机械臂路径规划方法求解得到的网络状态解即为该实际物理系统或数值求解系统的时变二次规划问题(3)(4)的最优解;将处理器所得到的求解器最优解输出,完成具有实数域光滑时变二次规划问题形式的实际物理系统或数值求解系统的最优解求解,所求得的网络状态解即为所求受噪声干扰的冗余度机械臂运动规划的最优解。The network state solution obtained by the redundant manipulator path planning method based on anti-noise interference is the optimal solution of the time-varying quadratic programming problem (3) (4) of the actual physical system or numerical solution system; The output of the optimal solution of the solver is obtained, and the optimal solution of the actual physical system or numerical solution system in the form of a smooth time-varying quadratic programming problem in the real number field is completed, and the obtained network state solution is the obtained noise interference The optimal solution for redundant manipulator motion planning.
实施例2:Example 2:
如图2所示,本实施例提供了一种抗噪声干扰的冗余度机械臂路径规划系统,其各个模块的具体用途如下:As shown in Figure 2, this embodiment provides a redundant robotic arm path planning system that is resistant to noise interference, and the specific purposes of each module are as follows:
外界环境输入模块,用于对外界环境输入的数据的获取及分析。The external environment input module is used for acquiring and analyzing data input from the external environment.
输入接口电路模块,用于外部设定数据以及作为处理器间的接口通道,根据传感器的不同可由不同接口的电路与协议实现。The input interface circuit module is used for external setting data and as an interface channel between processors, and can be realized by circuits and protocols of different interfaces according to different sensors.
处理器模块,用于对外部输入数据的处理,即求取基于幂型变参递归神经动力学方法所设计的抗噪声干扰的冗余度机械臂运动路径规划方法的最优解。The processor module is used to process the external input data, that is, to obtain the optimal solution of the noise-resistant redundant manipulator motion path planning method designed based on the power-type variable parameter recursive neural dynamics method.
输出接口模块,用于抗噪声干扰的冗余度机械臂运动路径规划方法所求解的数据同系统最优理论解请求端的接口,其中该接口可以为电路接口也可以为程序的返回值,根据设计系统的不同而不同。The output interface module is used for the interface between the data solved by the redundant manipulator motion path planning method for anti-noise interference and the system optimal theoretical solution request end, where the interface can be a circuit interface or a return value of a program, according to the design It varies from system to system.
输出环境模块,用于实现基于幂型变参递归神经动力学方法的抗噪声干扰的冗余度机械臂运动路径规划方法。The output environment module is used to realize the redundant manipulator motion path planning method based on the power-type variable parameter recursive neural dynamics method for anti-noise interference.
外界环境输入模块,具体包括:External environment input module, specifically including:
外部传感器数据采集子单元,通过传感器收集系统的动态参数,如位移、速度、加速度、角速度等物理量;The external sensor data acquisition sub-unit collects the dynamic parameters of the system through sensors, such as displacement, velocity, acceleration, angular velocity and other physical quantities;
预期目标实现状态的数据分析子单元,通过分析已知的或采集得到的各物理量,进行系统的理论分析。The data analysis sub-unit of the expected goal realization state conducts systematic theoretical analysis by analyzing known or collected physical quantities.
处理器模块,具体包括:Processor modules, specifically:
时变参数矩阵子单元,用于完成对外部输入数据的矩阵化或矢量化;The time-varying parameter matrix subunit is used to complete the matrix or vectorization of external input data;
抗噪声干扰的冗余度机械臂路径规划方法子单元,抗噪声干扰的冗余度机械臂运动路径规划方法为系统的核心部分,通过预先对系统的数据进行建模、公式化、分析及设计构型,其中包括数学建模得到的系统模型,从而设计偏差函数方程,并利用基于幂型变参递归神经动力学方法设计用于受噪声干扰的冗余度机械臂运动路径规划方法。Anti-noise interference redundant manipulator path planning method sub-unit, anti-noise interference redundant manipulator movement path planning method is the core part of the system, through modeling, formulation, analysis and design of the system data in advance Type, including the system model obtained by mathematical modeling, so as to design the deviation function equation, and use the power-type variable parameter recursive neural dynamics method to design a redundant manipulator motion path planning method for noise interference.
输出环境模块,具体包括:Output environment modules, specifically including:
最优解请求端子单元,用于为需要获取实际物理系统或数值求解系统的实数域光滑时变二次规划问题最优解的请求端,该端口在需要得到求解参数时向求解系统发出指令请求,并接受求解结果;The optimal solution request terminal unit is used to obtain the optimal solution of the real number field smooth time-varying quadratic programming problem of the actual physical system or numerical solution system. This port sends an instruction request to the solution system when the solution parameters need to be obtained. , and accept the solution result;
冗余度机械臂路径规划端子单元,用于将最优解请求端输出的参数转化为相关诗句,最终输入到机械臂控制程序中对机械臂进行路径规划与控制。The path planning terminal unit of the redundant manipulator is used to convert the parameters output by the optimal solution request end into relevant verses, and finally input them into the manipulator control program to plan and control the manipulator path.
实施例3:Example 3:
本实施例的MATLAB仿真实验建立在Kinova-JACO2轻量型仿生机械臂的基础上。该型机械臂总重4.4kg,最大控制距离为77cm。The MATLAB simulation experiment of this embodiment is based on the Kinova-JACO 2 lightweight bionic manipulator. The total weight of this type of robotic arm is 4.4kg, and the maximum control distance is 77cm.
该型冗余度机械臂共包含6个自由度,也就是θ(t)含有6个元素;机械臂末端的空间维数为3个,即包括X轴、Y轴、Z轴三个方向;其雅克比矩阵为冗余度机械臂的起始关节角度被设定为θ(0)=[1.675,2.843,-3.216,4.187,-1.710,-2.650];任务执行周期t被设定为8s;参数γ被设定为80。在本实例中,为了展现本发明提出的用于冗余度机械臂运动规划的变参神经求解器的优越性,该Kinova-JACO2轻量型仿生冗余度机械臂的期望轨迹被设定为一个复杂蝴蝶形状,该蝴蝶形状轨迹的参数直径为45cm。根据如上所设定的Kinova-JACO2冗余度机械臂物理模型,在速度层上求解,可以建立如下的时变二次规划模型:This type of redundant robotic arm contains a total of 6 degrees of freedom, that is, θ(t) contains 6 elements; the spatial dimension at the end of the robotic arm is 3, including three directions: X axis, Y axis, and Z axis; Its Jacobian matrix is The initial joint angle of the redundant manipulator is set as θ(0)=[1.675,2.843,-3.216,4.187,-1.710,-2.650]; the task execution cycle t is set to 8s; the parameter γ is set to Set at 80. In this example, in order to demonstrate the superiority of the variable parameter neural solver proposed by the present invention for the motion planning of the redundant manipulator, the expected trajectory of the Kinova-JACO 2 lightweight bionic redundant manipulator is set It is a complex butterfly shape, and the parameter diameter of the butterfly shape track is 45cm. According to the Kinova-JACO 2 redundant manipulator physical model set above, the following time-varying quadratic programming model can be established by solving it on the velocity layer:
其中,I(t)为单位矩阵; 而分别为:Among them, I(t) is the identity matrix; and They are:
根据前文所述的步骤和方法,可以设计得到如下的矩阵等式,即According to the steps and methods mentioned above, the following matrix equation can be designed, namely
W(t)Y(t)=G(t) (16)W(t)Y(t)=G(t) (16)
其中in
为得到上述用于求解冗余度机械臂运动路径的时变二次规划模型的最优解,一个矩阵形式的偏差函数方程被定义如下In order to obtain the optimal solution of the above-mentioned time-varying quadratic programming model for solving the motion path of redundant manipulators, a matrix-form deviation function equation is defined as follows
ε(t)=W(t)Y(t)-G(t) (17)ε(t)=W(t)Y(t)-G(t) (17)
根据幂型变参递归神经动力学方法,一种幂型的时变参数在本发明中被设计并使用,其设计公式如下According to the power-type variable parameter recursive neural dynamics method, a power-type time-varying parameter is designed and used in the present invention, and its design formula is as follows
其中,参数γ被设定为80。Among them, the parameter γ is set to 80.
由偏差函数方程及其导数信息,可以将实数域幂型变参递归神经网络模型用如下的隐式动力学方程式表达According to the deviation function equation and its derivative information, the power-type variable parameter recurrent neural network model in the real number field can be expressed by the following implicit dynamic equation
其中为偏导数信息;ΔD(t)为系数矩阵的噪声项;ΔK(t)为硬件运行时的误差项。为了更好地模拟冗余度机械臂实际操作时受到的噪声干扰,在本实例中,噪声项ΔD(t)及误差项ΔK(t)由一系列复杂的正弦、余弦函数所组成,其具体表达式如下所示:in is the partial derivative information; ΔD(t) is the noise term of the coefficient matrix; ΔK(t) is the error term when the hardware is running. In order to better simulate the noise interference encountered by the redundant manipulator during actual operation, in this example, the noise term ΔD(t) and the error term ΔK(t) are composed of a series of complex sine and cosine functions. The expression looks like this:
根据对Y(t)的定义,可知According to the definition of Y(t), we know that
Y(t):=[xT(t),λT(t)]T Y(t):=[x T (t),λ T (t)] T
=[x1(t),x2(t),…,xn(t),λ1(t),λ2(t),…,λm(t)]T (20)=[x 1 (t), x 2 (t), ..., x n (t), λ 1 (t), λ 2 (t), ..., λ m (t)] T (20)
其中Y(t)具有初始值Y(0)=Y0。where Y(t) has an initial value Y(0)=Y 0 .
根据上述所示的隐式动力学方程,可以得到实数域抗噪声干扰的冗余度机械臂路径规划方法及网络实现;网络的输出结果即为实数域时变二次规划问题的最优解。将处理器所得到的求解器最优解输出,完成具有实数域光滑时变二次规划问题形式的实际物理系统或数值求解系统的最优解求解。所求得的网络状态解即为本仿真实例所求受噪声干扰的冗余度机械臂系统运动规划的最优解。According to the implicit dynamic equation shown above, the redundant manipulator path planning method and network implementation for anti-noise interference in the real number domain can be obtained; the output result of the network is the optimal solution of the time-varying quadratic programming problem in the real number domain. Output the optimal solution of the solver obtained by the processor, and complete the optimal solution of the actual physical system or numerical solution system in the form of a smooth time-varying quadratic programming problem in the real number field. The obtained network state solution is the optimal solution for the motion planning of the redundant manipulator system disturbed by noise in this simulation example.
该仿真实施例的具体实验结果如图3(a)(b)、图4(a)(b)、图5(a)(b)及图6(a)(b)所示。其中图3(a)(b)为分别应用了本发明所述的新型方法和传统方法的情况下,受噪声干扰的冗余度机械臂执行运动路径规划任务时的轨迹图。图4(a)(b)为分别应用了本发明所述的新型方法和传统方法的情况下,受噪声干扰的冗余度机械臂执行运动路径规划任务时的实际路径与期望路径的曲线图。图5(a)(b)为分别应用了本发明所述的新型方法和传统方法的情况下,受噪声干扰的冗余度机械臂执行运动路径规划任务时X轴、Y轴、Z轴方向上的误差曲线图。图6(a)(b)为分别应用了本发明所述的新型方法和传统方法的情况下,受噪声干扰的冗余度机械臂执行运动路径规划任务时的范数误差曲线图,该范数误差||e(t)||2定义为冗余度机械臂在执行路径规划任务时X轴、Y轴、Z轴三个方向上误差之和的2‐范数。The specific experimental results of this simulation embodiment are shown in FIG. 3(a)(b), FIG. 4(a)(b), FIG. 5(a)(b) and FIG. 6(a)(b). Fig. 3(a)(b) is the trajectory diagram when the redundant mechanical arm disturbed by noise performs the motion path planning task when the novel method and the traditional method described in the present invention are respectively applied. Fig. 4 (a) (b) is the curve diagram of the actual path and the expected path when the redundant mechanical arm disturbed by the noise performs the motion path planning task under the situation of respectively applying the novel method and the traditional method described in the present invention . Fig. 5(a)(b) shows the directions of X-axis, Y-axis and Z-axis when the redundant mechanical arm interfered with by the noise performs the task of motion path planning when the novel method and the traditional method according to the present invention are respectively applied. The error graph above. Fig. 6 (a) (b) is the normal error curve graph when the redundant mechanical arm disturbed by the noise performs the motion path planning task when the new method and the traditional method described in the present invention are respectively applied. The numerical error ||e(t)|| 2 is defined as the 2-norm of the sum of the errors in the X-axis, Y-axis, and Z-axis directions when the redundant manipulator performs path planning tasks.
由图3、4可知,在应用本发明所述的抗噪声干扰的冗余度机械臂运动路径规划方法进行机械臂路径规划时,实际运动路径能与期望路径相重合,即路径偏差能够快速地收敛到零;而在应用传统方法进行机械臂路径规划时,实际运动路径与期望路径之间总存在较大偏差,在实际的冗余度机械臂操作中难以满足精确度要求。As can be seen from Figures 3 and 4, when the noise-resistant redundant manipulator motion path planning method of the present invention is used to plan the path of the manipulator, the actual motion path can coincide with the expected path, that is, the path deviation can be quickly reduced. Converge to zero; and when using the traditional method for manipulator path planning, there is always a large deviation between the actual motion path and the expected path, and it is difficult to meet the accuracy requirements in the actual redundant manipulator operation.
由图5可知,在应用本发明所述的抗噪声干扰的冗余度机械臂运动路径规划方法进行机械臂路径规划时,其X轴、Y轴、Z轴三个方向上的误差均能够以很快的速度收敛到零,即能够很好地消除机械臂的实际运动路径与期望路径之间的偏差;而在应用传统方法进行机械臂路径规划时,其在X轴、Y轴、Z轴三个方向上的实际运动路径与期望能够路径之间总存在较大偏差,在实际的冗余度机械臂操作中难以满足精确度要求。As can be seen from Fig. 5, when applying the anti-noise interference redundant mechanical arm motion path planning method of the present invention to plan the mechanical arm path, the errors in the three directions of the X axis, the Y axis, and the Z axis can all be reduced by The fast speed converges to zero, that is, it can well eliminate the deviation between the actual motion path of the manipulator and the expected path; and when the traditional method is used for the path planning of the manipulator, it is difficult to achieve the same speed in the X-axis, Y-axis, and Z-axis. There is always a large deviation between the actual motion path and the expected path in the three directions, and it is difficult to meet the accuracy requirements in the actual redundant manipulator operation.
由图6可知,在应用本发明所述的抗噪声干扰的冗余度机械臂运动路径规划方法进行机械臂路径规划时,其范数误差能够以很快的速度收敛到零;而在应用传统方法进行机械臂路径规划时,其范数误差总是存在,即机械臂执行路径规划任务时总存在一定误差,难以满足精度要求。As can be seen from Fig. 6, when applying the redundant manipulator motion path planning method for anti-noise interference of the present invention to plan the manipulator path, its norm error can converge to zero at a very fast speed; Methods When the path planning of the manipulator is performed, the norm error always exists, that is, there is always a certain error when the manipulator performs the path planning task, and it is difficult to meet the accuracy requirements.
上述仿真实施例的实验结果很好地展示出了本发明所述的抗噪声干扰的冗余度机械臂运动路径规划方法的优越性。The experimental results of the above-mentioned simulation embodiment well demonstrate the superiority of the noise-resistant redundant manipulator motion path planning method of the present invention.
以上所述,仅为本发明专利优选的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。The above is only a preferred embodiment of the patent of the present invention, but the scope of protection of the patent of the present invention is not limited thereto. Anyone familiar with the technical field within the scope disclosed by the patent of the present invention, according to the scope of the patent of the present invention Equivalent replacements or changes to the technical solutions and their inventive concepts all fall within the scope of protection of the invention patent.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711147249.5A CN108015763B (en) | 2017-11-17 | 2017-11-17 | An anti-noise interference redundant manipulator path planning method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711147249.5A CN108015763B (en) | 2017-11-17 | 2017-11-17 | An anti-noise interference redundant manipulator path planning method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108015763A true CN108015763A (en) | 2018-05-11 |
CN108015763B CN108015763B (en) | 2020-09-22 |
Family
ID=62080699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711147249.5A Active CN108015763B (en) | 2017-11-17 | 2017-11-17 | An anti-noise interference redundant manipulator path planning method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108015763B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108908341A (en) * | 2018-08-03 | 2018-11-30 | 浙江工业大学 | Redundant robot's repetitive motion planning method based on secondary radical final state attracting performance index |
CN109033021A (en) * | 2018-07-20 | 2018-12-18 | 华南理工大学 | A kind of linear equation solver design method for joining convergence neural network based on change |
CN109015657A (en) * | 2018-09-07 | 2018-12-18 | 浙江科技学院 | A kind of final state network optimized approach towards redundant mechanical arm repeating motion planning |
CN109129487A (en) * | 2018-09-26 | 2019-01-04 | 华南理工大学 | Repetitive motion planning method for redundant manipulator based on Taylor's type discrete periodic rhythm and pace of moving things neural network under periodic noise |
CN109129486A (en) * | 2018-09-26 | 2019-01-04 | 华南理工大学 | A kind of repetitive motion planning method for redundant manipulator inhibiting periodic noise |
CN109514563A (en) * | 2019-01-08 | 2019-03-26 | 华侨大学 | A motion planning method for redundant manipulator with adaptive noise immunity |
CN109635474A (en) * | 2018-12-19 | 2019-04-16 | 杭州电子科技大学 | Improve the method that additivity cost function versatility is constructed in mechanical arm grasping behavior |
CN109623826A (en) * | 2019-01-04 | 2019-04-16 | 广西科技大学 | A kind of error-tolerance type redundant manipulator motion planning method of no velocity jump |
CN109648567A (en) * | 2019-01-25 | 2019-04-19 | 华侨大学 | A high-precision planning method for redundant manipulators with noise-tolerant characteristics |
CN110076770A (en) * | 2019-03-28 | 2019-08-02 | 陕西理工大学 | A kind of autokinesis method for redundant mechanical arm |
CN110103225A (en) * | 2019-06-04 | 2019-08-09 | 兰州大学 | A kind of the mechanical arm repeating motion control method and device of data-driven |
CN111716357A (en) * | 2020-06-18 | 2020-09-29 | 南京邮电大学 | A Trajectory Generation and Modulation Method Based on Dynamic Neural Network |
CN111975768A (en) * | 2020-07-08 | 2020-11-24 | 华南理工大学 | A motion planning method for robotic arm based on solid parameter neural network |
CN112567301A (en) * | 2018-07-12 | 2021-03-26 | 阿韦瓦软件有限责任公司 | Processing optimization server and system |
CN112706163A (en) * | 2020-12-10 | 2021-04-27 | 中山大学 | Mechanical arm motion control method, device, equipment and medium |
CN112894812A (en) * | 2021-01-21 | 2021-06-04 | 中山大学 | Visual servo trajectory tracking control method and system for mechanical arm |
CN115107032A (en) * | 2022-07-15 | 2022-09-27 | 海南大学 | A Motion Planning Method for Mobile Manipulators Based on Pseudo-inverse and Adaptive Anti-noise |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130297069A1 (en) * | 2012-05-01 | 2013-11-07 | Canon Kabushiki Kaisha | Control apparatus, control method and storage medium |
CN106426164A (en) * | 2016-09-27 | 2017-02-22 | 华南理工大学 | Redundancy dual-mechanical-arm multi-index coordinate exercise planning method |
CN106737670A (en) * | 2016-12-15 | 2017-05-31 | 华侨大学 | A kind of repetitive motion planning method for redundant manipulator with noiseproof feature |
CN106985138A (en) * | 2017-03-13 | 2017-07-28 | 浙江工业大学 | Attract the redundant mechanical arm method for planning track of optimizing index based on final state |
-
2017
- 2017-11-17 CN CN201711147249.5A patent/CN108015763B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130297069A1 (en) * | 2012-05-01 | 2013-11-07 | Canon Kabushiki Kaisha | Control apparatus, control method and storage medium |
CN106426164A (en) * | 2016-09-27 | 2017-02-22 | 华南理工大学 | Redundancy dual-mechanical-arm multi-index coordinate exercise planning method |
CN106737670A (en) * | 2016-12-15 | 2017-05-31 | 华侨大学 | A kind of repetitive motion planning method for redundant manipulator with noiseproof feature |
CN106985138A (en) * | 2017-03-13 | 2017-07-28 | 浙江工业大学 | Attract the redundant mechanical arm method for planning track of optimizing index based on final state |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112567301A (en) * | 2018-07-12 | 2021-03-26 | 阿韦瓦软件有限责任公司 | Processing optimization server and system |
CN109033021A (en) * | 2018-07-20 | 2018-12-18 | 华南理工大学 | A kind of linear equation solver design method for joining convergence neural network based on change |
CN109033021B (en) * | 2018-07-20 | 2021-07-20 | 华南理工大学 | A Design Method of Linear Equation Solver Based on Variable-parameter Convergent Neural Network |
CN108908341B (en) * | 2018-08-03 | 2021-01-01 | 浙江工业大学 | Secondary root type final state attraction redundant robot repetitive motion planning method |
CN108908341A (en) * | 2018-08-03 | 2018-11-30 | 浙江工业大学 | Redundant robot's repetitive motion planning method based on secondary radical final state attracting performance index |
CN109015657A (en) * | 2018-09-07 | 2018-12-18 | 浙江科技学院 | A kind of final state network optimized approach towards redundant mechanical arm repeating motion planning |
CN109015657B (en) * | 2018-09-07 | 2021-12-10 | 浙江科技学院 | Final state network optimization method for redundant mechanical arm repetitive motion planning |
CN109129487A (en) * | 2018-09-26 | 2019-01-04 | 华南理工大学 | Repetitive motion planning method for redundant manipulator based on Taylor's type discrete periodic rhythm and pace of moving things neural network under periodic noise |
CN109129486A (en) * | 2018-09-26 | 2019-01-04 | 华南理工大学 | A kind of repetitive motion planning method for redundant manipulator inhibiting periodic noise |
CN109129486B (en) * | 2018-09-26 | 2021-04-30 | 华南理工大学 | Redundant manipulator repetitive motion planning method for suppressing periodic noise |
CN109635474B (en) * | 2018-12-19 | 2023-04-28 | 杭州电子科技大学 | A method to improve the generality of constructing additive cost functions in the grasping behavior of manipulators |
CN109635474A (en) * | 2018-12-19 | 2019-04-16 | 杭州电子科技大学 | Improve the method that additivity cost function versatility is constructed in mechanical arm grasping behavior |
CN109623826A (en) * | 2019-01-04 | 2019-04-16 | 广西科技大学 | A kind of error-tolerance type redundant manipulator motion planning method of no velocity jump |
CN109623826B (en) * | 2019-01-04 | 2021-07-16 | 广西科技大学 | A fault-tolerant redundant manipulator motion planning method without speed jump |
CN109514563A (en) * | 2019-01-08 | 2019-03-26 | 华侨大学 | A motion planning method for redundant manipulator with adaptive noise immunity |
CN109514563B (en) * | 2019-01-08 | 2021-08-31 | 华侨大学 | An adaptive anti-noise motion planning method for redundant manipulators |
CN109648567A (en) * | 2019-01-25 | 2019-04-19 | 华侨大学 | A high-precision planning method for redundant manipulators with noise-tolerant characteristics |
CN109648567B (en) * | 2019-01-25 | 2021-08-03 | 华侨大学 | A redundant manipulator planning method with noise tolerance |
CN110076770A (en) * | 2019-03-28 | 2019-08-02 | 陕西理工大学 | A kind of autokinesis method for redundant mechanical arm |
CN110076770B (en) * | 2019-03-28 | 2022-12-06 | 陕西理工大学 | A Self-Motion Method for Redundant Manipulator |
CN110103225B (en) * | 2019-06-04 | 2023-04-11 | 兰州大学 | Data-driven method and device for controlling repeated motion of mechanical arm |
CN110103225A (en) * | 2019-06-04 | 2019-08-09 | 兰州大学 | A kind of the mechanical arm repeating motion control method and device of data-driven |
CN111716357A (en) * | 2020-06-18 | 2020-09-29 | 南京邮电大学 | A Trajectory Generation and Modulation Method Based on Dynamic Neural Network |
CN111975768A (en) * | 2020-07-08 | 2020-11-24 | 华南理工大学 | A motion planning method for robotic arm based on solid parameter neural network |
CN111975768B (en) * | 2020-07-08 | 2022-03-25 | 华南理工大学 | Mechanical arm motion planning method based on fixed parameter neural network |
CN112706163A (en) * | 2020-12-10 | 2021-04-27 | 中山大学 | Mechanical arm motion control method, device, equipment and medium |
CN112706163B (en) * | 2020-12-10 | 2022-03-04 | 中山大学 | A method, device, equipment and medium for motion control of a robotic arm |
CN112894812A (en) * | 2021-01-21 | 2021-06-04 | 中山大学 | Visual servo trajectory tracking control method and system for mechanical arm |
CN115107032A (en) * | 2022-07-15 | 2022-09-27 | 海南大学 | A Motion Planning Method for Mobile Manipulators Based on Pseudo-inverse and Adaptive Anti-noise |
CN115107032B (en) * | 2022-07-15 | 2024-04-05 | 海南大学 | A pseudo-inverse and adaptive noise-resistant motion planning method for mobile manipulators |
Also Published As
Publication number | Publication date |
---|---|
CN108015763B (en) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108015763B (en) | An anti-noise interference redundant manipulator path planning method | |
CN107984472B (en) | A Design Method of Variable-parameter Neural Solver for Motion Planning of Redundant Manipulators | |
CN109358506B (en) | An Adaptive Fuzzy Teleoperation Control Method Based on Disturbance Observer | |
Xie et al. | An acceleration-level data-driven repetitive motion planning scheme for kinematic control of robots with unknown structure | |
CN102848391A (en) | Four-channel bilateral teleoperation control system based on actual force feedback | |
CN105904461B (en) | A kind of adaptive remote operating control method of neutral net based on RBF | |
Razi et al. | Analysis of coupled stability in multilateral dual-user teleoperation systems | |
CN115157238B (en) | A dynamic modeling and trajectory tracking method for multi-degree-of-freedom robots | |
CN113814983B (en) | A control method and system for a multi-single-arm manipulator system | |
CN114942593A (en) | An adaptive sliding mode control method for manipulator based on disturbance observer compensation | |
Li et al. | Adaptive hybrid impedance control of robot manipulators with robustness against environment's uncertainties | |
CN107160401A (en) | A kind of method for solving redundancy mechanical arm joint angle offset problem | |
CN106406097A (en) | Distributed adaptive coordinated control method for multi-manipulator systems | |
CN115157250A (en) | A dynamic parameter identification method for a seven-degree-of-freedom manipulator | |
CN117901104A (en) | Feature active learning-feedback digital twin method for robot arm performance monitoring and error compensation | |
CN111890363A (en) | A Motion Planning Method of Robot Arm Based on Fast Adaptive Gradient Neural Network Algorithm | |
CN114619446B (en) | Trajectory tracking control method and system based on dual observers | |
Raouf et al. | Workspace trajectory tracking control for two-flexible-link manipulator through output redefinition | |
CN118769255A (en) | Robot dynamics parameter identification method and system based on physical consistency constraints and load-related friction model | |
Wang et al. | Repetitive Control Scheme of Robotic Manipulators Based on Improved B‐Spline Function | |
CN117301067A (en) | A redundant robot control method | |
Jing et al. | Robust adaptive control for bilateral teleoperation systems with guaranteed parameter estimation | |
Kovács et al. | Stability case study of the ACROBOTER underactuated service robot | |
CN116175585A (en) | UDE control method for multi-joint mechanical arm with input saturation and output constraint | |
CN110000780B (en) | A Runge-Kutta Periodic Rhythm Neural Network Method Resistant to Periodic Noise |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |