CN108011703A - A kind of parallel interface sequential control method and device - Google Patents
A kind of parallel interface sequential control method and device Download PDFInfo
- Publication number
- CN108011703A CN108011703A CN201610962540.7A CN201610962540A CN108011703A CN 108011703 A CN108011703 A CN 108011703A CN 201610962540 A CN201610962540 A CN 201610962540A CN 108011703 A CN108011703 A CN 108011703A
- Authority
- CN
- China
- Prior art keywords
- rate
- module
- data communication
- adaptive
- mclk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000003044 adaptive effect Effects 0.000 claims abstract description 134
- 238000012545 processing Methods 0.000 claims abstract description 59
- 238000004891 communication Methods 0.000 claims description 225
- 230000006978 adaptation Effects 0.000 claims description 140
- 238000001514 detection method Methods 0.000 claims description 58
- 238000009825 accumulation Methods 0.000 claims description 18
- 230000006641 stabilisation Effects 0.000 claims description 10
- 238000011105 stabilization Methods 0.000 claims description 10
- 230000006870 function Effects 0.000 description 30
- 238000010586 diagram Methods 0.000 description 20
- 230000005540 biological transmission Effects 0.000 description 9
- 238000004590 computer program Methods 0.000 description 7
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1469—Two-way operation using the same type of signal, i.e. duplex using time-sharing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Communication Control (AREA)
Abstract
本发明实施例公开了一种并行接口时序控制方法和装置,其中,所述并行接口时序控制装置包括:寄存器配置模块、速率自适应模块、接口时序控制模块及数据与时序处理模块,用于实现并行接口速率自适应配置。
The embodiment of the present invention discloses a parallel interface timing control method and device, wherein the parallel interface timing control device includes: a register configuration module, a rate self-adaptation module, an interface timing control module, and a data and timing processing module, for realizing Parallel interface rate adaptive configuration.
Description
技术领域technical field
本发明涉及通信领域,尤其涉及一种并行接口时序控制方法和装置。The invention relates to the communication field, in particular to a method and device for controlling the sequence of a parallel interface.
背景技术Background technique
JESD207是射频前端集成电路(RFIC,Radio Front end Integrated Circuit)和基带集成电路(BBIC,Baseband Integrated Circuit)之间的射频前端—基带数字并行(RBDP,Radio front end-Baseband Digital Parallel)接口主要用来传输RFIC和BBIC的数字波形数据,该接口支持时分双工(TDD,Time Division Duplex)和频分双工模式(FDD,Frequency Division Duplex)的单天线和双天线数据的收发,图1为JESD207数据接口连接图,其中MCLK为RFIC发送给BBIC的数据的随路时钟,FCLK为BBIC发送给RFIC的数据的随路时钟,TXNRX是数据方向指示信号,ENABLE信号为数据突发传输的开始与结束指示,DIQ[11:0]和DIQ[9:0]信号为数据的双向传输总线,分别支持12bit和10bit数据格式的传输,可根据需要进行选择,所有数据均采用双倍数据速率(DDR,Double Data Rate)。JESD207 is the radio front end-Baseband Digital Parallel (RBDP, Radio front end-Baseband Digital Parallel) interface between the RF front-end integrated circuit (RFIC, Radio Front end Integrated Circuit) and the baseband integrated circuit (BBIC, Baseband Integrated Circuit). Transmit digital waveform data of RFIC and BBIC. This interface supports single-antenna and dual-antenna data transmission and reception in time division duplex (TDD, Time Division Duplex) and frequency division duplex mode (FDD, Frequency Division Duplex). Figure 1 shows JESD207 data Interface connection diagram, where MCLK is the channel-associated clock of data sent from RFIC to BBIC, FCLK is the channel-associated clock of data sent from BBIC to RFIC, TXNRX is the data direction indication signal, and ENABLE signal is the start and end indication of data burst transmission , DIQ[11:0] and DIQ[9:0] signals are two-way data transmission buses, which support the transmission of 12bit and 10bit data formats respectively, and can be selected according to needs. All data adopt double data rate (DDR, Double Data Rate).
JESD207数据接口具有占用管脚资源少,接口速率低,设计难度小等特点,虽然对于BBIC接口层面FCLK可以视作MCLK同源时钟,可以不关心该时钟的频率,只需将接收到的MCLK进行延时后输出即可,但对于BBIC接口的后级电路,仍需要具体的MCLK时钟周期信息来了解数据通信速率,从而提供与BBIC接口的后级电路匹配的数据通信速率以保证RFIC与BBIC之间数据能够正确收发,因此当遇到测试时需要更换不同的RFIC的情况时,就需要针对每一块RFIC的需求对接口速率进行配置,从而带来测试的不便。The JESD207 data interface has the characteristics of occupying less pin resources, low interface rate, and low design difficulty. Although FCLK can be regarded as the MCLK homologous clock for the BBIC interface level, you don’t need to care about the frequency of the clock, you only need to perform the received MCLK It can be output after a delay, but for the post-stage circuit of the BBIC interface, specific MCLK clock cycle information is still needed to understand the data communication rate, so as to provide a data communication rate that matches the post-stage circuit of the BBIC interface to ensure the communication between RFIC and BBIC Therefore, when it is necessary to replace different RFICs during testing, it is necessary to configure the interface rate according to the requirements of each RFIC, which brings inconvenience to testing.
发明内容Contents of the invention
为解决现有存在的技术问题,本发明实施例期望提供一种并行接口时序控制方法和装置,实现并行接口速率自适应配置。In order to solve the existing technical problems, the embodiments of the present invention expect to provide a parallel interface timing control method and device, so as to realize the self-adaptive configuration of the parallel interface rate.
为达到上述目的,本发明实施例的技术方案是这样实现的:In order to achieve the above object, the technical solution of the embodiment of the present invention is achieved in this way:
第一方面,本发明实施例提供了一种并行接口时序控制装置,所述并行接口时序控制装置包括:寄存器配置模块、速率自适应模块、接口时序控制模块及数据与时序处理模块,其中,In the first aspect, an embodiment of the present invention provides a parallel interface timing control device, the parallel interface timing control device includes: a register configuration module, a rate adaptive module, an interface timing control module, and a data and timing processing module, wherein,
所述寄存器配置模块,用于获取系统的配置信息;The register configuration module is used to obtain configuration information of the system;
所述速率自适应模块,用于当检测所述寄存器配置模块中的第一配置信息有效时,通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给所述寄存器配置模块;The rate adaptation module is used to generate an updated data communication rate and an adaptive flag through the period information of the MCLK sent by the opposite end when detecting that the first configuration information in the register configuration module is valid, and transfer the updated The data communication rate and the self-adaptation flag are sent to the register configuration module;
所述寄存器配置模块,还用于根据所述自适应标志配置当前的数据通信速率;The register configuration module is also configured to configure the current data communication rate according to the adaptive flag;
所述接口时序控制模块,用于根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;The interface timing control module is configured to generate interface timing according to the second configuration information and MCLK information in the register configuration module;
所述数据与时序处理模块,用于根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据。The data and timing processing module is used to transmit data according to the interface timing, and process data according to the number of channels in the register configuration module and the current data communication rate.
上述实施例中,所述配置信息包括:接口模块使能,通道数量,默认数据通信速率,TDD模式子帧类型,自适应功能使能,自适应成功检测次数,自适应失败检测次数;其中,自适应功能使能对应第一配置信息,TDD模式子帧类型对应第二配置信息。In the above embodiment, the configuration information includes: interface module enablement, number of channels, default data communication rate, TDD mode subframe type, adaptive function enablement, number of times of successful self-adaptation detection, times of self-adaptation failure detection; wherein, The adaptive function enabling corresponds to the first configuration information, and the TDD mode subframe type corresponds to the second configuration information.
上述实施例中,所述自适应标志包括:自适应成功标志和自适应失败标志。In the above embodiment, the adaptive flag includes: an adaptive success flag and an adaptive failure flag.
上述实施例中,所述速率自适应模块包括:MCLK周期检测子模块、MCLK时钟稳定度检测子模块、速率自适应失效检测子模块和速率自适应信息更新子模块;其中,In the above embodiment, the rate adaptation module includes: an MCLK cycle detection submodule, an MCLK clock stability detection submodule, a rate adaptation failure detection submodule, and a rate adaptation information update submodule; wherein,
所述MCLK周期检测子模块,用于通过工作时钟获取MCLK的周期信息,将所述MCLK的周期信息实时发送给所述MCLK时钟稳定度检测子模块和速率自适应信息更新子模块;The MCLK cycle detection submodule is used to obtain the cycle information of the MCLK through the working clock, and send the cycle information of the MCLK to the MCLK clock stability detection submodule and the rate adaptive information update submodule in real time;
所述MCLK时钟稳定度检测子模块,用于当检测连续两次的MCLK的周期信息一致次数满足预设的自适应成功数值时,触发所述速率自适应信息更新子模块产生更新的数据通信速率,并将所述更新的数据通信速率发送给所述寄存器配置模块;The MCLK clock stability detection sub-module is used to trigger the rate adaptive information update sub-module to generate an updated data communication rate when detecting that the cycle information consistency times of two consecutive MCLKs meet the preset adaptive success value , and sending the updated data communication rate to the register configuration module;
所述MCLK时钟稳定度检测子模块,还用于当检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,触发所述速率自适应信息更新子模块关闭自适应功能。The MCLK clock stability detection sub-module is also used to trigger the rate self-adaptation information update sub-module to turn off the self-adaptation function when it is detected that the times of inconsistency of cycle information of two consecutive MCLKs meet the self-adaptation failure value.
进一步地,所述MCLK时钟稳定度检测子模块,具体用于,Further, the MCLK clock stability detection submodule is specifically used for,
当检测连续两次的MCLK的周期信息一致时,内部的时钟稳定计数器执行一次累加计数,得到一个第一累加计数值;When the period information of two consecutive MCLKs is detected to be consistent, the internal clock stabilization counter performs an accumulation count to obtain a first accumulation count value;
以及,当所述第一累加计数值达到预先配置的自适应成功数值时,产生一个速率自适应成功标志;And, when the first accumulated count value reaches a pre-configured adaptive success value, generate a rate adaptive success flag;
以及,将所述速率自适应成功标志发送给所述速率自适应信息更新子模块和寄存器配置模块;And, sending the rate adaptation success flag to the rate adaptation information update submodule and register configuration module;
所述速率自适应信息更新子模块,用于当检测到所述速率自适应成功标志时,将MCLK的周期信息转化为数据通信速率;The rate adaptation information update submodule is used to convert the period information of MCLK into a data communication rate when the rate adaptation success flag is detected;
以及,将MCLK的周期信息转化的数据通信速率作为更新的数据通信速率发送给所述寄存器配置模块。And, sending the data communication rate converted from the period information of MCLK to the register configuration module as the updated data communication rate.
进一步地,所述MCLK时钟稳定度检测子模块,还用于,Further, the MCLK clock stability detection submodule is also used for,
当检测连续两次的MCLK的周期信息不一致时,内部的时钟稳定计数器执行一次累加计数清零,产生一个MCLK变动标志;When the cycle information of two consecutive MCLKs is detected to be inconsistent, the internal clock stabilization counter executes a cumulative counting reset to generate an MCLK change flag;
以及,将所述MCLK变动标志发送给所述速率自适应失效检测子模块;And, sending the MCLK change flag to the rate adaptive failure detection submodule;
所述速率自适应失效检测子模块,用于检测到MCLK变动标志时,其内部的时钟变化计数器进行一次累加计数操作,得到一个第二累计计数值;The rate adaptive failure detection submodule is used to detect the MCLK change flag, and its internal clock change counter performs an accumulation count operation to obtain a second accumulation count value;
以及,当所述第二累加计数值达到预先配置的自适应失败数值时,产生一个速率自适应失败标志;And, when the second accumulated count value reaches a pre-configured adaptive failure value, generating a rate adaptive failure flag;
以及,将所述速率自适应失败标志发送给所述速率自适应信息更新子模块和寄存器配置模块;And, sending the rate adaptation failure flag to the rate adaptation information update submodule and register configuration module;
所述速率自适应信息更新子模块,还用于当检测到速率自适应失败标志时,关闭速率自适应功能。The rate adaptation information updating sub-module is further configured to disable the rate adaptation function when a rate adaptation failure flag is detected.
上述实施例中,所述寄存器配置模块,还用于,In the above embodiment, the register configuration module is also used to:
根据自适应成功标志配置当前的数据通信速率为所述更新的数据通信速率;Configure the current data communication rate as the updated data communication rate according to the adaptive success flag;
以及,根据自适应失败标志配置当前的数据通信速率配置为系统发送给所述寄存器配置模块的默认数据通信速率。And, configure the current data communication rate according to the self-adaptation failure flag as the default data communication rate sent by the system to the register configuration module.
上述实施例中,所述接口时序控制模块,具体用于,In the above embodiment, the interface timing control module is specifically used for:
当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为上行数据通信时,用于生成与上行数据通信对应的接口时序;When the data communication type in the TDD mode subframe type in the register configuration module is uplink data communication, it is used to generate an interface sequence corresponding to uplink data communication;
当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为下行数据通信时,用于生成与下行数据通信对应的接口时序,以及根据MCLK信息延时生成与MCLK时序相同的FCLK时序。When the data communication type in the TDD mode subframe type in the register configuration module is downlink data communication, it is used to generate the interface timing corresponding to the downlink data communication, and generate the same FCLK timing as the MCLK timing according to the MCLK information delay .
上述实施例中,所述数据与时序处理模块,具体用于,In the above embodiment, the data and timing processing module is specifically used for:
当数据通信类型为上行数据通信时,按照上行数据通信对应的接口时序接收所述接口时序控制模块传输的上行数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率将所述上行数据发送给BBIC的后级电路;When the data communication type is uplink data communication, receive the uplink data transmitted by the interface timing control module according to the interface timing corresponding to the uplink data communication, and transfer the uplink data according to the number of channels in the register configuration module and the current data communication rate The data is sent to the post-stage circuit of BBIC;
以及,当数据通信类型为下行数据通信时,按照下行数据通信对应的接口时序接收BBIC的后级电路传输的下行数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率将所述下行数据发送给所述接口时序控制模块。And, when the data communication type is downlink data communication, receive the downlink data transmitted by the subsequent circuit of the BBIC according to the interface timing corresponding to the downlink data communication, and set the said register configuration module according to the number of channels and the current data communication rate. The downlink data is sent to the interface timing control module.
第二方面,本发明实施例提供了一种并行接口时序控制方法,所述方法用于并行接口时序控制装置,所述并行接口时序控制装置包括:寄存器配置模块、速率自适应模块、接口时序控制模块及数据与时序处理模块,所述方法包括:In the second aspect, an embodiment of the present invention provides a parallel interface timing control method, the method is used in a parallel interface timing control device, and the parallel interface timing control device includes: a register configuration module, a rate adaptive module, an interface timing control module and data and timing processing module, the method includes:
所述寄存器配置模块获取系统的配置信息;The register configuration module acquires configuration information of the system;
当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块;When the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module generates an updated data communication rate and an adaptive flag through the period information of the MCLK sent by the opposite end, and sends The updated data communication rate and adaptive flag are sent to the register configuration module;
所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率;The register configuration module configures the current data communication rate according to the adaptive flag;
所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;The interface timing control module generates interface timing according to the second configuration information and MCLK information in the register configuration module;
所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据。The data and timing processing module transmits data according to the interface timing, and processes data according to the number of channels in the register configuration module and the current data communication rate.
上述实施例中,所述配置信息包括:接口模块使能,通道数量,默认数据通信速率,时分双工TDD模式子帧类型,自适应功能使能,自适应成功检测次数,自适应失败检测次数;其中,自适应功能使能对应第一配置信息,TDD模式子帧类型对应第二配置信息。In the above embodiment, the configuration information includes: interface module enablement, number of channels, default data communication rate, time division duplex TDD mode subframe type, adaptive function enablement, number of times of successful self-adaptation detection, times of self-adaptive failure detection ; Wherein, the adaptive function enabling corresponds to the first configuration information, and the TDD mode subframe type corresponds to the second configuration information.
上述实施例中,所述自适应标志包括:自适应成功标志和自适应失败标志。In the above embodiment, the adaptive flag includes: an adaptive success flag and an adaptive failure flag.
上述实施例中,所述当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块,具体包括:In the above embodiment, when the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module generates an updated data communication rate through the period information of the MCLK sent by the opposite end and adaptive flags, and send the updated data communication rate and adaptive flags to the register configuration module, specifically including:
所述速率自适应模块通过工作时钟获取MCLK的周期信息;The rate adaptation module obtains the cycle information of MCLK through the working clock;
当所述速率自适应模块检测连续两次的MCLK的周期信息一致次数满足预设的自适应成功数值时,产生更新的数据通信速率,并将所述更新的数据通信速率发送给所述寄存器配置模块;When the rate adaptation module detects that the cycle information consistency times of two consecutive MCLKs meet the preset adaptive success value, an updated data communication rate is generated, and the updated data communication rate is sent to the register configuration module;
当所述速率自适应模块检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,关闭自适应功能。When the rate adaptation module detects that the number of inconsistencies in the cycle information of two consecutive MCLKs satisfies the adaptive failure value, the adaptive function is turned off.
进一步地,所述当所述速率自适应模块检测连续两次的MCLK的周期信息一致次数满足预设的自适应成功数值时,产生更新的数据通信速率,并将所述更新的数据通信速率发送给所述寄存器配置模块,具体包括:Further, when the rate adaptation module detects that the number of times the cycle information of the MCLK is consistent twice in a row satisfies the preset adaptive success value, an updated data communication rate is generated and the updated data communication rate is sent to Configure the module for the register, specifically including:
当所述速率自适应模块检测连续两次的MCLK的周期信息一致时,所述速率自适应模块内部的时钟稳定计数器执行一次累加计数,所述速率自适应模块得到一个第一累加计数值;When the rate adaptation module detects that the cycle information of two consecutive MCLKs is consistent, the internal clock stabilization counter of the rate adaptation module performs an accumulation count, and the rate adaptation module obtains a first accumulation count value;
当所述第一累加计数值达到所述速率自适应模块预先配置的自适应成功数值时,所述速率自适应模块产生一个速率自适应成功标志;When the first accumulated count value reaches the adaptive success value preconfigured by the rate adaptive module, the rate adaptive module generates a rate adaptive success flag;
当所述速率自适应模块检测到所述速率自适应成功标志时,所述速率自适应模块将MCLK的周期信息转化为数据通信速率;When the rate adaptation module detects the rate adaptation success flag, the rate adaptation module converts the period information of MCLK into a data communication rate;
所述速率自适应模块将MCLK的周期信息转化的数据通信速率作为更新的数据通信速率发送给所述寄存器配置模块。The rate adaptation module sends the data communication rate converted from the period information of MCLK to the register configuration module as an updated data communication rate.
进一步地,当所述MCLK时钟稳定度检测子模块检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,触发所述速率自适应信息更新子模块关闭自适应功能,具体包括:Further, when the MCLK clock stability detection submodule detects that the cycle information inconsistency of two consecutive MCLKs meets the adaptive failure value, trigger the rate adaptive information update submodule to turn off the adaptive function, specifically including:
当所述速率自适应模块检测连续两次的MCLK的周期信息不一致时,所述速率自适应模块内部的时钟稳定计数器执行一次累加计数清零,所述速率自适应模块产生一个MCLK变动标志;When the rate adaptation module detects that the period information of two consecutive MCLKs is inconsistent, the internal clock stabilization counter of the rate adaptation module executes an accumulated count clearing, and the rate adaptation module generates an MCLK change flag;
所述速率自适应模块检测到所述MCLK变动标志时,所述速率自适应模块中的时钟变化计数器进行一次累加计数操作,所述速率自适应模块得到一个第二累计计数值;When the rate adaptation module detects the MCLK change flag, the clock change counter in the rate adaptation module performs an accumulation count operation, and the rate adaptation module obtains a second accumulation count value;
当所述第二累加计数值达到所述速率自适应模块预先配置的自适应失败数值时,所述速率自适应模块产生一个速率自适应失败标志;When the second accumulated count value reaches the adaptive failure value preconfigured by the rate adaptive module, the rate adaptive module generates a rate adaptive failure flag;
所述速率自适应模块将所述速率自适应失败标志发送给所述寄存器配置模块;The rate adaptation module sends the rate adaptation failure flag to the register configuration module;
当所述速率自适应模块检测到所述速率自适应失败标志时,所述速率自适应模块关闭速率自适应功能。When the rate adaptation module detects the rate adaptation failure flag, the rate adaptation module disables the rate adaptation function.
上述实施例中,所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率,具体包括:In the above embodiment, the register configuration module configures the current data communication rate according to the adaptive flag, specifically including:
所述寄存器配置模块根据自适应成功标志配置当前的数据通信速率为所述更新的数据通信速率;The register configuration module configures the current data communication rate as the updated data communication rate according to the adaptive success flag;
所述寄存器配置模块根据自适应失败标志配置当前的数据通信速率配置为系统发送给所述寄存器配置模块的默认数据通信速率。The register configuration module configures the current data communication rate as the default data communication rate sent by the system to the register configuration module according to the self-adaptation failure flag.
上述实施例中,所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序,具体包括:In the above embodiment, the interface timing control module generates interface timing according to the second configuration information and MCLK information in the register configuration module, specifically including:
当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为上行数据通信时,所述接口时序控制模块生成与上行数据通信对应的接口时序;When the data communication type in the TDD mode subframe type in the register configuration module is uplink data communication, the interface timing control module generates an interface timing corresponding to uplink data communication;
当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为下行数据通信时,所述接口时序控制模块生成与下行数据通信对应的接口时序,以及所述接口时序控制模块根据MCLK信息延时生成与MCLK时序相同的FCLK时序。When the data communication type in the TDD mode subframe type in the register configuration module is downlink data communication, the interface timing control module generates interface timing corresponding to downlink data communication, and the interface timing control module according to the MCLK information The delay generates the same FCLK timing as the MCLK timing.
上述实施例中,所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据,具体包括:In the above embodiment, the data and timing processing module transmits data according to the interface timing, and processes data according to the number of channels in the register configuration module and the current data communication rate, specifically including:
当数据通信类型为上行数据通信时,所述数据与时序处理模块按照上行数据通信对应的接口时序接收所述接口时序控制模块传输的上行数据,所述数据与时序处理模块根据所述寄存器配置模块中的通道数量及当前的数据通信速率将所述上行数据发送给BBIC的后级电路;When the data communication type is uplink data communication, the data and timing processing module receives the uplink data transmitted by the interface timing control module according to the interface timing corresponding to the uplink data communication, and the data and timing processing module configures the module according to the register The number of channels in and the current data communication rate send the uplink data to the subsequent circuit of the BBIC;
当数据通信类型为下行数据通信时,所述数据与时序处理模块按照下行数据通信对应的接口时序接收BBIC的后级电路传输的下行数据,所述数据与时序处理模块根据所述寄存器配置模块中的通道数量及当前的数据通信速率将所述下行数据发送给所述接口时序控制模块。When the data communication type is downlink data communication, the data and timing processing module receives the downlink data transmitted by the subsequent circuit of the BBIC according to the interface timing corresponding to the downlink data communication, and the data and timing processing module according to the register configuration module The number of channels and the current data communication rate send the downlink data to the interface timing control module.
本发明实施例提供了一种并行接口时序控制方法和装置,所述方法用于并行接口时序控制装置,所述并行接口时序控制装置包括:寄存器配置模块、速率自适应模块、接口时序控制模块及数据与时序处理模块,所述方法包括:所述寄存器配置模块获取系统的配置信息;当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块;所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率;所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块当前的数据通信速率处理数据,从而实现并行接口速率自适应配置。Embodiments of the present invention provide a parallel interface timing control method and device, the method is used in a parallel interface timing control device, and the parallel interface timing control device includes: a register configuration module, a rate adaptive module, an interface timing control module and A data and timing processing module, the method includes: the register configuration module acquires system configuration information; when the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module The cycle information of the MCLK sent by the opposite end generates an updated data communication rate and an adaptive sign, and sends the updated data communication rate and the adaptive sign to the register configuration module; the register configuration module is based on the adaptive sign Configure the current data communication rate; the interface timing control module generates interface timing according to the second configuration information and MCLK information in the register configuration module; the data and timing processing module transmits data according to the interface timing, according to the The register configures the current data communication rate of the module to process data, so as to realize the self-adaptive configuration of the parallel interface rate.
附图说明Description of drawings
图1为本发明实施例提供的JESD207数据接口连接图;Fig. 1 is the JESD207 data interface connection figure that the embodiment of the present invention provides;
图2为本发明实施例提供的一种并行接口时序控制装置与射频前端集成电路之间通信交互示意图;FIG. 2 is a schematic diagram of communication interaction between a parallel interface timing control device and a radio frequency front-end integrated circuit provided by an embodiment of the present invention;
图3为本发明实施例提供的JESD207数据发送开始时序图;Fig. 3 is the JESD207 data transmission start sequence diagram that the embodiment of the present invention provides;
图4为本发明实施例提供的JESD207数据发送结束时序图;Fig. 4 is the JESD207 data sending end sequence diagram provided by the embodiment of the present invention;
图5为本发明实施例提供的JESD207数据接收开始时序图;Fig. 5 is the JESD207 data receiving start sequence diagram that the embodiment of the present invention provides;
图6为本发明实施例提供的JESD207数据接收结束时序图;FIG. 6 is a sequence diagram of the end of JESD207 data reception provided by an embodiment of the present invention;
图7为本发明实施例提供的一种并行接口时序控制电路的具体结构示意图;FIG. 7 is a schematic structural diagram of a parallel interface timing control circuit provided by an embodiment of the present invention;
图8为本发明实施例提供的一种并行接口时序控制装置的结构框图;FIG. 8 is a structural block diagram of a parallel interface timing control device provided by an embodiment of the present invention;
图9为本发明实施例提供的一种速率自适应模块的结构框图;FIG. 9 is a structural block diagram of a rate adaptation module provided by an embodiment of the present invention;
图10为本发明实施例提供的一种并行接口时序控制方法的流程图;FIG. 10 is a flow chart of a parallel interface timing control method provided by an embodiment of the present invention;
图11为本发明实施例提供的一种自适应模块生成更新的数据通信速率的流程图;Fig. 11 is a flow chart of generating an updated data communication rate by an adaptive module provided by an embodiment of the present invention;
图12为本发明实施例提供的一种数据与时序处理模块处理数据的流程图。FIG. 12 is a flow chart of data processing by a data and timing processing module provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对发明实施例中的技术方案进行清楚、完整地描述。The following will clearly and completely describe the technical solutions in the embodiments of the invention with reference to the drawings in the embodiments of the invention.
参见图2,其示出了本发明实施例提供的一种并行接口时序控制装置与RFIC之间通信交互示意图,可以理解的,该示意图仅用于说明本发明实施例的技术方案,并不对本发明实施例进行任何的具体限定,从图中可以看出,所述并行接口时序控制装置位于BBIC侧,所述并行接口时序控制装置对应图1中BBIC中的与RBDP相关电路。Referring to Fig. 2, it shows a schematic diagram of communication interaction between a parallel interface timing control device and RFIC provided by an embodiment of the present invention. The embodiment of the invention makes any specific limitations. It can be seen from the figure that the parallel interface timing control device is located on the BBIC side, and the parallel interface timing control device corresponds to the RBDP-related circuit in the BBIC in FIG. 1 .
图3和图4展示了JESD207进行数据发送操作的时序,图5和图6展示了JESD207进行数据接收操作的时序。由上述的时序图可以看出JESD207接口数据的接收或发送使用成对的ENABLE信号作为开始和结束的指示,TXNRX信号来指示数据的传输方向,高电平表示发送,低电平表示低接收,对于发送数据,RFIC使用FCLK进行采样,对于接收数据,BBIC使用MCLK进行采样。Figure 3 and Figure 4 show the timing of JESD207's data transmission operation, and Figure 5 and Figure 6 show the timing of JESD207's data receiving operation. From the above timing diagram, it can be seen that the reception or transmission of JESD207 interface data uses a pair of ENABLE signals as an indication of the start and end, and the TXNRX signal indicates the direction of data transmission. High level indicates transmission, and low level indicates low reception. For sending data, RFIC uses FCLK for sampling, and for receiving data, BBIC uses MCLK for sampling.
基于上述示意图,本发明实施例提供了一种并行接口时序控制方法,所述并行接口时序控制方法用于并行接口时序控制装置,图7为一种并行接口时序控制电路的具体结构示意图,本发明实施例的基本思想是:所述寄存器配置模块获取系统的配置信息;当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块;所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率;所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块当前的数据通信速率处理数据,从而实现并行接口速率自适应配置。Based on the above schematic diagram, an embodiment of the present invention provides a parallel interface timing control method. The parallel interface timing control method is used in a parallel interface timing control device. FIG. 7 is a specific structural schematic diagram of a parallel interface timing control circuit. The present invention The basic idea of the embodiment is: the register configuration module obtains the configuration information of the system; when the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module sends The cycle information of the MCLK generates the updated data communication rate and the adaptive sign, and sends the updated data communication rate and the adaptive sign to the register configuration module; the register configuration module configures the current data according to the adaptive sign Communication rate; the interface timing control module generates interface timing according to the second configuration information and MCLK information in the register configuration module; the data and timing processing module transmits data according to the interface timing, and according to the current configuration of the register configuration module Process data at the data communication rate, thereby realizing the adaptive configuration of the parallel interface rate.
实施例一Embodiment one
参见图8,其示出了本发明实施例提供的一种并行接口时序控制装置80的结构,所述并行接口时序控制装置80包括:寄存器配置模块801、速率自适应模块802、接口时序控制模块803及数据与时序处理模块804,其中,Referring to FIG. 8 , it shows the structure of a parallel interface timing control device 80 provided by an embodiment of the present invention. The parallel interface timing control device 80 includes: a register configuration module 801, a rate adaptation module 802, and an interface timing control module. 803 and data and timing processing module 804, wherein,
所述寄存器配置模块801,用于获取系统的配置信息;The register configuration module 801 is configured to acquire system configuration information;
所述速率自适应模块802,用于当检测所述寄存器配置模块中的第一配置信息有效时,通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块;The rate adaptation module 802 is configured to generate an updated data communication rate and an adaptive flag through the period information of the MCLK sent by the opposite end when detecting that the first configuration information in the register configuration module is valid, and set the The updated data communication rate and adaptive flag are sent to the register configuration module;
所述寄存器配置模块801,还用于根据所述自适应标志配置当前的数据通信速率;The register configuration module 801 is also configured to configure the current data communication rate according to the adaptive flag;
所述接口时序控制模块803,用于根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;The interface timing control module 803 is configured to generate interface timing according to the second configuration information and MCLK information in the register configuration module;
所述数据与时序处理模块804,用于根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据。The data and timing processing module 804 is configured to transmit data according to the interface timing, and process data according to the number of channels in the register configuration module and the current data communication rate.
对于所述寄存器配置模块801,所述配置信息包括:接口模块使能,通道数量,默认数据通信速率,TDD模式子帧类型,自适应功能使能,自适应成功检测次数,自适应失败检测次数;For the register configuration module 801, the configuration information includes: interface module enablement, number of channels, default data communication rate, TDD mode subframe type, adaptive function enabling, adaptive success detection times, adaptive failure detection times ;
其中,自适应功能使能对应第一配置信息,所述第一配置信息有效具体指寄存器配置模块中的自适应功能使能有效,比如:自适应功能使能高电平时有效;TDD模式子帧类型对应第二配置信息。Wherein, enabling the adaptive function corresponds to the first configuration information, and the validity of the first configuration information specifically refers to enabling the adaptive function in the register configuration module to be valid, for example: the adaptive function is enabled when the high level is valid; TDD mode subframe The type corresponds to the second configuration information.
对于所述速率自适应模块802,所述对端发送的MCLK的周期信息具体指RFIC发送的MCLK的周期信息;For the rate adaptation module 802, the period information of the MCLK sent by the peer specifically refers to the period information of the MCLK sent by the RFIC;
所述自适应标志包括:自适应成功标志和自适应失败标志。The adaptive flags include: an adaptive success flag and an adaptive failure flag.
所述速率自适应模块802的结构框图如图9所示,所述速率自适应模块802包括:MCLK周期检测子模块8021、MCLK时钟稳定度检测子模块8022、速率自适应失效检测子模块8023和速率自适应信息更新子模块8024;The block diagram of the rate adaptation module 802 is shown in Figure 9, the rate adaptation module 802 includes: MCLK period detection sub-module 8021, MCLK clock stability detection sub-module 8022, rate adaptation failure detection sub-module 8023 and Rate adaptive information update sub-module 8024;
对于所述速率自适应模块检测802,其中,For the rate adaptation module detection 802, wherein,
所述MCLK周期检测子模块8021,用于通过工作时钟获取MCLK的周期信息,将所述MCLK的周期信息实时发送给所述MCLK时钟稳定度检测子模块8022和速率自适应信息更新子模块8024;所述工作时钟不小于2倍的MCLK时钟频率且为MCLK时钟频率的整数倍;The MCLK cycle detection sub-module 8021 is used to obtain the cycle information of the MCLK through the working clock, and send the cycle information of the MCLK to the MCLK clock stability detection sub-module 8022 and the rate adaptive information update sub-module 8024 in real time; The working clock is not less than 2 times the MCLK clock frequency and is an integer multiple of the MCLK clock frequency;
MCLK时钟稳定度检测子模块8022,用于当检测连续两次的MCLK的周期信息一致次数满足预设的自适应成功数值时,触发所述速率自适应信息更新子模块8024产生更新的数据通信速率发送给所述寄存器配置模块801;The MCLK clock stability detection sub-module 8022 is used to trigger the rate self-adaptation information update sub-module 8024 to generate an updated data communication rate when detecting that the cycle information of two consecutive MCLKs meets the preset adaptive success value. Send to the register configuration module 801;
以及,用于当检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,触发所述速率自适应信息更新子模块8024关闭自适应功能;其中,And, it is used to trigger the rate adaptation information update submodule 8024 to turn off the adaptation function when detecting that the number of times of inconsistency of the cycle information of two consecutive MCLKs meets the adaptive failure value; wherein,
所述MCLK时钟稳定度检测子模块8022,具体用于,The MCLK clock stability detection submodule 8022 is specifically used for,
检测连续两次的MCLK的周期信息一致时,内部的时钟稳定计数器执行一次累加计数,得到一个第一累加计数值;When the period information of two consecutive MCLKs is detected to be consistent, the internal clock stabilization counter performs an accumulation count to obtain a first accumulation count value;
以及,当所述第一累加计数值达到预先配置的自适应成功数值时,产生一个速率自适应成功标志;And, when the first accumulated count value reaches a pre-configured adaptive success value, generate a rate adaptive success flag;
以及,将所述速率自适应成功标志发送给所述速率自适应信息更新子模块8024和寄存器配置模块801。And, send the rate adaptation success flag to the rate adaptation information update submodule 8024 and the register configuration module 801 .
所述速率自适应信息更新子模块8024,用于当检测到速率自适应成功标志时,将MCLK的周期信息转化为数据通信速率;The rate adaptation information update sub-module 8024 is used to convert the period information of MCLK into a data communication rate when the rate adaptation success flag is detected;
以及,将MCLK的周期信息转化的数据通信速率作为更新的数据通信速率发送给所述寄存器配置模块801。And, send the data communication rate converted from the period information of MCLK to the register configuration module 801 as an updated data communication rate.
需要说明的是,检测连续两次的MCLK的周期信息一致时,上述MCLK时钟稳定度检测子模块8022和速率自适应信息更新子模块8024用于实现产生更新的数据通信速率,并发送给所述寄存器配置模块801的具体过程。It should be noted that when it is detected that the period information of two consecutive MCLKs is consistent, the above-mentioned MCLK clock stability detection submodule 8022 and the rate adaptation information update submodule 8024 are used to generate an updated data communication rate and send it to the The specific process of the register configuration module 801.
MCLK时钟稳定度检测子模块8022,还用于当检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,触发所述速率自适应信息更新子模块8024关闭自适应功能;其中,The MCLK clock stability detection sub-module 8022 is also used to trigger the rate self-adaptation information update sub-module 8024 to turn off the self-adaptation function when detecting that the cycle information inconsistencies of two consecutive MCLKs meet the self-adaptation failure value;
MCLK时钟稳定度检测子模块8022,还具体用于,The MCLK clock stability detection sub-module 8022 is also specifically used for,
当检测连续两次的MCLK的周期信息不一致时,内部的时钟稳定计数器执行一次累加计数清零,产生一个MCLK变动标志;When the cycle information of two consecutive MCLKs is detected to be inconsistent, the internal clock stabilization counter executes a cumulative counting reset to generate an MCLK change flag;
以及,将所述MCLK变动标志发送给所述速率自适应失效检测子模块8023。And, send the MCLK change flag to the rate adaptation failure detection submodule 8023 .
所述速率自适应失效检测子模块8023,用于检测到MCLK变动标志时,其内部的时钟变化计数器进行一次累加计数操作,得到一个第二累计计数值;The rate adaptive failure detection sub-module 8023 is used to detect the MCLK change flag, and its internal clock change counter performs an accumulative counting operation to obtain a second accumulative count value;
以及,当所述第二累加计数值达到预先配置的自适应失败数值时,产生一个速率自适应失败标志;And, when the second accumulated count value reaches a pre-configured adaptive failure value, generating a rate adaptive failure flag;
以及,将所述速率自适应失败标志发送给所述速率自适应信息更新子模块8024和寄存器配置模块801。And, send the rate adaptation failure flag to the rate adaptation information update submodule 8024 and the register configuration module 801 .
所述速率自适应信息更新子模块8024,还用于当检测到速率自适应失败标志时,关闭速率自适应功能。The rate adaptation information update sub-module 8024 is also configured to disable the rate adaptation function when a rate adaptation failure flag is detected.
需要说明的是,当检测连续两次的MCLK的周期信息不一致时,上述MCLK时钟稳定度检测子模块8022、速率自适应失效检测子模块8023和速率自适应信息更新子模块8024用于实现关闭自适应功能的具体过程。It should be noted that when the period information of two consecutive MCLKs is detected to be inconsistent, the above-mentioned MCLK clock stability detection submodule 8022, the rate adaptation failure detection submodule 8023 and the rate adaptation information update submodule 8024 are used to realize the automatic shutdown The specific process of adaptation function.
所述寄存器配置模块801,还具体用于,The register configuration module 801 is also specifically configured to:
根据自适应成功标志配置当前的数据通信速率为所述更新的数据通信速率;Configure the current data communication rate as the updated data communication rate according to the adaptive success flag;
根据自适应失败标志配置当前的数据通信速率配置为系统发送给所述寄存器配置模块的默认数据通信速率。Configuring the current data communication rate according to the self-adaptation failure flag is configured as a default data communication rate sent by the system to the register configuration module.
对于所述接口时序控制模块803,所述通信类型包括:上行通信和下行通信;For the interface timing control module 803, the communication type includes: uplink communication and downlink communication;
所述接口时序,具体指符合JESD207协议要求的接口时序;The interface timing specifically refers to the interface timing that meets the requirements of the JESD207 protocol;
进一步地,所述接口时序控制模块803,具体用于,Further, the interface timing control module 803 is specifically used to:
当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为上行数据通信时,用于生成与上行数据通信对应的接口时序;When the data communication type in the TDD mode subframe type in the register configuration module is uplink data communication, it is used to generate an interface sequence corresponding to uplink data communication;
当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为下行数据通信时,用于生成与下行数据通信对应的接口时序,以及根据MCLK信息延时生成与MCLK时序相同的FCLK时序。When the data communication type in the TDD mode subframe type in the register configuration module is downlink data communication, it is used to generate the interface timing corresponding to the downlink data communication, and generate the same FCLK timing as the MCLK timing according to the MCLK information delay .
所述数据与时序处理模块804,具体用于,The data and timing processing module 804 is specifically used to:
当数据通信类型为上行数据通信时,按照上行数据通信对应的接口时序接收所述接口时序控制模块803传输的上行数据,根据所述寄存器配置模块801中的通道数量及当前的数据通信速率将所述上行数据发送给BBIC的后级电路;When the data communication type is uplink data communication, the uplink data transmitted by the interface timing control module 803 is received according to the interface timing corresponding to the uplink data communication, and the uplink data transmitted by the interface timing control module 803 is received according to the number of channels in the register configuration module 801 and the current data communication rate. The above-mentioned uplink data is sent to the post-stage circuit of BBIC;
具体地,所述接口时序控制模块803发送给所述数据与时序处理模块804的数据,具体指所述接口时序控制模块803按照上行数据通信对应TXNRX、ENABLE时序信号及MCLK时序接收对端通过DIQ接口发送的DDR的数据,所述接口时序控制模块803将DDR的数据转化为单倍数据速率(SDR,Single Data Rate)的数据发送给所述数据与时序处理模块804进行数据处理,所述数据与时序处理模块804最后按照上行数据通信对应TXNRX、ENABLE时序信号及MCLK时序经处理后的SDR的数据发送给BBIC的后级电路;Specifically, the data sent by the interface timing control module 803 to the data and timing processing module 804 specifically refers to that the interface timing control module 803 receives the corresponding TXNRX, ENABLE timing signals, and MCLK timing signals from the peer through DIQ according to the uplink data communication. The data of the DDR sent by the interface, the interface timing control module 803 converts the data of the DDR into data of a single data rate (SDR, Single Data Rate) and sends it to the data and timing processing module 804 for data processing, and the data The timing processing module 804 finally sends the processed SDR data to the subsequent circuit of the BBIC according to the uplink data communication corresponding to the TXNRX, ENABLE timing signals and the MCLK timing;
以及,当数据通信类型为下行数据通信时,按照下行数据通信对应的接口时序接收BBIC的后级电路传输的下行数据,根据所述寄存器配置模块801中的通道数量及当前的数据通信速率将所述下行数据发送给所述接口时序控制模块803;And, when the data communication type is downlink data communication, receive the downlink data transmitted by the subsequent circuit of the BBIC according to the interface timing corresponding to the downlink data communication, and set the channel number and the current data communication rate according to the number of channels in the register configuration module 801 The downlink data is sent to the interface timing control module 803;
具体地,所述BBIC的后级电路发送给所述数据与时序处理模块804的数据为SDR的数据,具体指所述BBIC的后级电路按照下行数据通信对应TXNRX、ENABLE时序信号及MCLK时序将SDR数据发送给所述数据与时序处理模块804,经过所述数据与时序处理模块804处理后的SDR的数据最终经过所述接口时序控制模块803转为DDR的数据,所述DDR的数据由所述接口时序控制模块803经过DIQ接口按照下行数据通信对应TXNRX、ENABLE时序信号及FCLK发送给对端。Specifically, the data sent by the post-stage circuit of the BBIC to the data and timing processing module 804 is SDR data, which specifically refers to that the post-stage circuit of the BBIC sends the corresponding TXNRX, ENABLE timing signals and MCLK timing according to the downlink data communication. The SDR data is sent to the data and timing processing module 804, and the data of the SDR processed by the data and timing processing module 804 is finally converted into DDR data through the interface timing control module 803, and the data of the DDR is determined by the The interface timing control module 803 sends the TXNRX, ENABLE timing signals and FCLK corresponding to the downlink data communication to the opposite end through the DIQ interface.
此外,本实施例还针对MCLK频繁抖动导致数据通信速率信息的频繁更新的问题,采用速率自适应模块802产生速率自适应失效标志关闭速率自适应功能;具体地,当MCLK时钟稳定度检测子模块8022检测MCLK频繁抖动次数满足预先配置的关闭速率自适应抖动次数时,产生一个速率自适应失效标志发送给所述寄存器配置模块801和速率自适应信息更新子模块8024,所述速率自适应信息更新子模块8024检测到所述速率自适应失效标志后关闭速率自适应功能。In addition, this embodiment also aims at the problem of frequent update of data communication rate information caused by frequent jitter of MCLK, adopting the rate adaptation module 802 to generate a rate adaptation failure flag to disable the rate adaptation function; specifically, when the MCLK clock stability detection submodule When 8022 detects that the frequency of MCLK frequent jitter meets the pre-configured number of rate adaptive jitter off, a rate adaptive failure flag is generated and sent to the register configuration module 801 and the rate adaptive information update submodule 8024, and the rate adaptive information update The sub-module 8024 disables the rate adaptation function after detecting the rate adaptation failure flag.
本实施例提供了一种并行接口时序控制装置,所述寄存器配置模块801,用于获取系统的配置信息,所述速率自适应模块802,用于当检测所述寄存器配置模块中的第一配置信息有效时,通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块,所述寄存器配置模块801,用于根据所述自适应标志配置当前的数据通信速率,所述接口时序控制模块803,用于根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序,所述数据与时序处理模块804,用于根据所述接口时序传输数据,根据所述寄存器配置模块当前的数据通信速率处理数据,从而实现并行接口速率自适应配置。This embodiment provides a parallel interface timing control device, the register configuration module 801 is used to acquire system configuration information, and the rate adaptation module 802 is used to detect the first configuration in the register configuration module When the information is valid, an updated data communication rate and an adaptive sign are generated through the period information of the MCLK sent by the opposite end, and the updated data communication rate and the adaptive sign are sent to the register configuration module, the register configuration module 801, It is used to configure the current data communication rate according to the adaptive flag, and the interface timing control module 803 is used to generate interface timing according to the second configuration information and MCLK information in the register configuration module, and the data and timing processing Module 804, configured to transmit data according to the interface timing, and process data according to the current data communication rate of the register configuration module, so as to realize adaptive configuration of parallel interface rate.
实施例二Embodiment two
参见图10,其示出了本发明实施例提供的一种并行接口时序控制方法,该方法用于并行接口时序控制装置,所述并行接口时序控制装置包括:寄存器配置模块、速率自适应模块、接口时序控制模块及数据与时序处理模块,所述方法包括:Referring to FIG. 10 , it shows a parallel interface timing control method provided by an embodiment of the present invention, the method is used in a parallel interface timing control device, and the parallel interface timing control device includes: a register configuration module, a rate adaptive module, interface timing control module and data and timing processing module, the method includes:
S1001:所述寄存器配置模块获取系统的配置信息;S1001: The register configuration module acquires system configuration information;
S1002:当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给所述寄存器配置模块;S1002: When the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module generates an updated data communication rate and an adaptation flag through the cycle information of MCLK sent by the opposite end, and sending the updated data communication rate and adaptive flag to the register configuration module;
S1003:所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率;S1003: The register configuration module configures the current data communication rate according to the adaptive flag;
S1004:所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;S1004: The interface timing control module generates interface timing according to the second configuration information and MCLK information in the register configuration module;
S1005:所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据。S1005: The data and timing processing module transmits data according to the interface timing, and processes data according to the number of channels in the register configuration module and the current data communication rate.
对于步骤S1001,所述配置信息包括:接口模块使能,通道数量,默认数据通信速率,TDD模式子帧类型,自适应功能使能,自适应成功检测次数,自适应失败检测次数;For step S1001, the configuration information includes: interface module enablement, channel number, default data communication rate, TDD mode subframe type, adaptive function enablement, number of times of successful self-adaptation detection, times of self-adaptation failure detection;
其中,自适应功能使能对应第一配置信息,所述第一配置信息有效具体指寄存器配置模块中的自适应功能使能有效,比如:自适应功能使能高电平时有效;TDD模式子帧类型对应第二配置信息。Wherein, enabling the adaptive function corresponds to the first configuration information, and the validity of the first configuration information specifically refers to enabling the adaptive function in the register configuration module to be valid, for example: the adaptive function is enabled when the high level is valid; TDD mode subframe The type corresponds to the second configuration information.
对于步骤S1002,所述速率自适应模块包括:MCLK周期检测子模块、MCLK时钟稳定度检测子模块、速率自适应失效检测子模块和速率自适应信息更新子模块;For step S1002, the rate adaptation module includes: an MCLK period detection submodule, an MCLK clock stability detection submodule, a rate adaptation failure detection submodule, and a rate adaptation information update submodule;
所述对端发送的MCLK的周期信息具体指RFIC发送的MCLK的周期信息;The period information of the MCLK sent by the opposite end specifically refers to the period information of the MCLK sent by the RFIC;
所述自适应标志包括:自适应成功标志和自适应失败标志。The adaptive flags include: an adaptive success flag and an adaptive failure flag.
对于步骤S1002,图11为自适应模块生成更新的数据通信速率的流程图,当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块,具体包括:For step S1002, FIG. 11 is a flow chart of generating an updated data communication rate for the adaptive module. When the rate adaptive module detects that the first configuration information in the register configuration module is valid, the rate adaptive module passes the The period information of the MCLK sent by the terminal generates an updated data communication rate and an adaptive sign, and sends the updated data communication rate and the adaptive sign to the register configuration module, specifically including:
S10021:所述速率自适应模块通过工作时钟获取MCLK的周期信息;所述工作时钟不小于2倍的MCLK时钟频率且为MCLK时钟频率的整数倍;S10021: The rate adaptation module obtains the period information of MCLK through the working clock; the working clock is not less than twice the MCLK clock frequency and is an integer multiple of the MCLK clock frequency;
S10022:当所述速率自适应模块检测连续两次的MCLK的周期信息一致次数满足预设的自适应成功数值时,执行步骤S10023至步骤S10027;当所述MCLK时钟稳定度检测子模块检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,执行步骤S10028至步骤S100212;S10022: When the rate adaptation module detects that the cycle information of MCLK twice in a row matches the preset adaptive success value, perform steps S10023 to S10027; when the MCLK clock stability detection sub-module detects two consecutive When the number of cycle information inconsistencies of the second MCLK meets the self-adaptation failure value, execute step S10028 to step S100212;
S10023:所述速率自适应模块内部的时钟稳定计数器执行一次累加计数,所述速率自适应模块得到一个第一累加计数值;S10023: The clock stabilization counter inside the rate adaptation module performs an accumulation count, and the rate adaptation module obtains a first accumulation count value;
S10024:当所述第一累加计数值达到所述速率自适应模块预先配置的自适应成功数值时,所述速率自适应模块产生一个速率自适应成功标志;S10024: When the first accumulated count value reaches the adaptive success value preconfigured by the rate adaptive module, the rate adaptive module generates a rate adaptive success flag;
S10025:所述速率自适应模块将所述速率自适应成功标志发送给寄存器配置模块;S10025: The rate adaptation module sends the rate adaptation success flag to the register configuration module;
S10026:当所述速率自适应模块检测到速率自适应成功标志时,所述速率自适应模块将MCLK的周期信息转化为数据通信速率;S10026: When the rate adaptation module detects a rate adaptation success flag, the rate adaptation module converts the period information of MCLK into a data communication rate;
S10027:所述速率自适应模块将MCLK的周期信息转化的数据通信速率作为更新的数据通信速率发送给所述寄存器配置模块;S10027: The rate adaptation module sends the data communication rate converted from the period information of MCLK to the register configuration module as an updated data communication rate;
需要说明的是,步骤S10023至步骤S10027是针对当所述速率自适应模块检测连续两次的MCLK的周期信息一致次数满足预设的自适应成功数值时,产生更新的数据通信速率发送给所述寄存器配置模块的具体实现过程。It should be noted that steps S10023 to S10027 are aimed at generating an updated data communication rate and sending it to the The specific implementation process of the register configuration module.
S10028:所述速率自适应模块内部的时钟稳定计数器执行一次累加计数清零,所述速率自适应模块产生一个MCLK变动标志;S10028: The clock stabilization counter inside the rate adaptation module clears the accumulative count once, and the rate adaptation module generates an MCLK change flag;
S10029:所述速率自适应模块检测到所述MCLK变动标志时,所述速率自适应模块中的时钟变化计数器进行一次累加计数操作,所述速率自适应模块得到一个第二累计计数值;S10029: When the rate adaptation module detects the MCLK change flag, the clock change counter in the rate adaptation module performs an accumulative counting operation, and the rate adaptation module obtains a second accumulative count value;
S100210:当所述第二累加计数值达到所述速率自适应模块预先配置的自适应失败数值时,所述速率自适应模块产生一个速率自适应失败标志;S100210: When the second accumulated count value reaches the adaptive failure value preconfigured by the rate adaptive module, the rate adaptive module generates a rate adaptive failure flag;
S100211:所述速率自适应模块将所述速率自适应失败标志发送给所述寄存器配置模块;S100211: The rate adaptation module sends the rate adaptation failure flag to the register configuration module;
S100212:当所述速率自适应模块检测到所述速率自适应失败标志时,所述速率自适应模块关闭速率自适应功能。S100212: When the rate adaptation module detects the rate adaptation failure flag, the rate adaptation module disables a rate adaptation function.
需要说明的是,步骤S10028至步骤S100212是针对当所述速率自适应模块检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,关闭自适应功能的具体实现过程。It should be noted that, step S10028 to step S100212 are specific implementation processes for disabling the adaptive function when the rate adaptive module detects that the number of times of inconsistency of cycle information of the MCLK twice in a row satisfies the adaptive failure value.
对于步骤S1003,所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率,具体包括:For step S1003, the register configuration module configures the current data communication rate according to the adaptive flag, specifically including:
所述寄存器配置模块根据自适应成功标志配置当前的数据通信速率为所述更新的数据通信速率;The register configuration module configures the current data communication rate as the updated data communication rate according to the adaptive success flag;
所述寄存器配置模块根据自适应失败标志配置当前的数据通信速率配置为系统发送给所述寄存器配置模块的默认数据通信速率。The register configuration module configures the current data communication rate as the default data communication rate sent by the system to the register configuration module according to the self-adaptation failure flag.
对于步骤S1004,所述通信类型包括:上行通信和下行通信;For step S1004, the communication type includes: uplink communication and downlink communication;
所述接口时序,具体指符合JESD207协议要求的接口时序;The interface timing specifically refers to the interface timing that meets the requirements of the JESD207 protocol;
进一步地,所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序,具体包括:Further, the interface timing control module generates interface timing according to the second configuration information and MCLK information in the register configuration module, specifically including:
当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为上行数据通信时,所述接口时序控制模块生成与上行数据通信对应的接口时序;When the data communication type in the TDD mode subframe type in the register configuration module is uplink data communication, the interface timing control module generates an interface timing corresponding to uplink data communication;
当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为下行数据通信时,所述接口时序控制模块生成与下行数据通信对应的接口时序,以及所述接口时序控制模块根据MCLK信息延时生成与MCLK时序相同的FCLK时序。When the data communication type in the TDD mode subframe type in the register configuration module is downlink data communication, the interface timing control module generates interface timing corresponding to downlink data communication, and the interface timing control module according to the MCLK information The delay generates the same FCLK timing as the MCLK timing.
对于步骤S1005,所述数据包括上行接收数据和下行发送数据;For step S1005, the data includes uplink received data and downlink sent data;
对于步骤S1005,图12为数据与时序处理模块处理数据的流程图,所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据,具体包括:For step S1005, FIG. 12 is a flow chart of data processing by the data and timing processing module. The data and timing processing module transmits data according to the interface timing, and processes according to the number of channels in the register configuration module and the current data communication rate. Data, specifically:
S10051:当数据通信类型为上行数据通信时,所述数据与时序处理模块按照上行数据通信对应的接口时序接收所述接口时序控制模块传输的上行数据,所述数据与时序处理模块根据所述寄存器配置模块中的通道数量及当前的数据通信速率将所述上行数据发送给BBIC的后级电路;S10051: When the data communication type is uplink data communication, the data and timing processing module receives the uplink data transmitted by the interface timing control module according to the interface timing corresponding to the uplink data communication, and the data and timing processing module receives the uplink data according to the register The number of channels in the configuration module and the current data communication rate send the uplink data to the subsequent circuit of the BBIC;
S10052:当数据通信类型为下行数据通信时,所述数据与时序处理模块按照下行数据通信对应的接口时序接收BBIC的后级电路传输的下行数据,所述数据与时序处理模块根据所述寄存器配置模块中的通道数量及当前的数据通信速率将所述下行数据发送给所述接口时序控制模块。S10052: When the data communication type is downlink data communication, the data and timing processing module receives the downlink data transmitted by the subsequent circuit of the BBIC according to the interface timing corresponding to the downlink data communication, and the data and timing processing module configures according to the register The number of channels in the module and the current data communication rate send the downlink data to the interface timing control module.
具体地,对于步骤S10051,具体地,所述接口时序控制模块发送给所述数据与时序处理模块的数据,具体指所述接口时序控制模块按照上行数据通信对应TXNRX、ENABLE时序信号及MCLK时序接收对端通过DIQ接口发送的DDR的数据,所述接口时序控制模块将DDR的数据转化为SDR的数据发送给所述数据与时序处理模块进行数据处理,所述数据与时序处理模块最后按照上行数据通信对应TXNRX、ENABLE时序信号及MCLK时序经处理后的SDR的数据发送给BBIC的后级电路;Specifically, for step S10051, specifically, the data sent by the interface timing control module to the data and timing processing module specifically refers to that the interface timing control module receives the corresponding TXNRX, ENABLE timing signal and MCLK timing according to the uplink data communication. The DDR data sent by the opposite end through the DIQ interface, the interface timing control module converts the DDR data into SDR data and sends it to the data and timing processing module for data processing, and the data and timing processing module finally follows the uplink data The communication corresponds to the TXNRX, ENABLE timing signal and the processed SDR data of the MCLK timing and sends it to the subsequent circuit of the BBIC;
具体地,对于步骤S10052,所述BBIC的后级电路发送给所述数据与时序处理模块的数据为SDR的数据,具体指所述BBIC的后级电路按照下行数据通信对应TXNRX、ENABLE时序信号及MCLK时序将SDR数据发送给所述数据与时序处理模块,经过所述数据与时序处理模块处理后的SDR的数据最终经过所述接口时序控制模块转为DDR的数据,所述DDR的数据由所述接口时序控制模块经过DIQ接口按照下行数据通信对应TXNRX、ENABLE时序信号及FCLK发送给对端。Specifically, for step S10052, the data sent by the subsequent stage circuit of the BBIC to the data and timing processing module is SDR data, specifically referring to that the subsequent stage circuit of the BBIC corresponds to TXNRX, ENABLE timing signals and MCLK timing sends SDR data to the data and timing processing module, and the data of the SDR processed by the data and timing processing module is finally converted into DDR data through the interface timing control module, and the data of the DDR is determined by the DDR. The interface timing control module sends the corresponding TXNRX, ENABLE timing signals and FCLK to the opposite end through the DIQ interface according to the downlink data communication.
此外,本实施例还针对MCLK频繁抖动导致数据通信速率信息频繁更新的问题,采用速率自适应模块产生速率自适应失效标志关闭速率自适应功能;具体地,当MCLK时钟稳定度检测子模块检测MCLK频繁抖动次数满足预先配置的关闭速率自适应抖动次数时,产生一个速率自适应失效标志发送给寄存器配置模块和速率自适应信息更新子模块,速率自适应信息更新子模块检测到速率自适应失效标志后关闭速率自适应功能。In addition, this embodiment also aims at the problem of frequent update of data communication rate information caused by frequent jitter of MCLK, and adopts the rate adaptive module to generate a rate adaptive failure flag to disable the rate adaptive function; specifically, when the MCLK clock stability detection sub-module detects the MCLK When the number of frequent jitters meets the pre-configured number of rate-adaptive jitters off, a rate-adaptive failure flag is generated and sent to the register configuration module and the rate-adaptive information update sub-module, and the rate-adaptive information update sub-module detects the rate-adaptive failure flag Then turn off the rate adaptation function.
本实施例提供了一种并行接口时序控制方法,所述寄存器配置模块获取系统的配置信息,当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块,所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率,所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息选择通信类型及通信类型所需的时序信号,所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块当前的数据通信速率处理数据,从而实现并行接口速率自适应配置。This embodiment provides a timing control method for a parallel interface. The register configuration module acquires configuration information of the system. When the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate automatically Adaptation module generates updated data communication rate and self-adaptation sign by the period information of MCLK sent by opposite end, and sends the data communication rate and self-adaptation sign of described update to register configuration module, and described register configuration module is according to described self-adaptation The adaptation flag configures the current data communication rate, the interface timing control module selects the communication type and the timing signal required by the communication type according to the second configuration information in the register configuration module, and the data and timing processing module selects the communication type according to the interface The data is transmitted in time sequence, and the data is processed according to the current data communication rate of the register configuration module, so as to realize the self-adaptive configuration of the parallel interface rate.
本领域内的技术人员应该明白,本发明的实施例可提供方法、系统、或者计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、获结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含由计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present invention may provide methods, systems, or computer program products. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) having computer-usable program code embodied therein.
本发明时参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现程序图和/或方框图中每一流程和/获方框、以及流程图和/或方框图中的流程和/或的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或者其他可编程数据处理设备的处理器易产生一个机器,是的通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或者多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It should be understood that each flow and/or block in the program diagram and/or block diagram, and the flow and/or combinations in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions can be provided to the processor of a general-purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine, yes, generated by the instructions executed by the processor of the computer or other programmable data processing device Means for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可以存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算及可读存储器中的指令产生包括指令装置的制造品。该指令装置实现在流程图中一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in computer readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computing and readable memory produce an article of manufacture comprising instruction means. The instruction means implements the functions specified in one or more procedures in the flowchart and/or one or more blocks in the block diagram.
这些计算机程序指令也可装载在计算机或其他可编程处理设备上,使得在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable processing equipment, so that the instructions executed on the computer or other programmable equipment are used to implement a process or multiple processes in the flowchart and/or a block in the block diagram or Steps for functions specified in multiple boxes.
以上,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。The above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention.
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610962540.7A CN108011703B (en) | 2016-10-28 | 2016-10-28 | Parallel interface time sequence control method and device |
PCT/CN2017/085924 WO2018076682A1 (en) | 2016-10-28 | 2017-05-25 | Parallel interface time sequence control method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610962540.7A CN108011703B (en) | 2016-10-28 | 2016-10-28 | Parallel interface time sequence control method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108011703A true CN108011703A (en) | 2018-05-08 |
CN108011703B CN108011703B (en) | 2020-05-26 |
Family
ID=62024296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610962540.7A Active CN108011703B (en) | 2016-10-28 | 2016-10-28 | Parallel interface time sequence control method and device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108011703B (en) |
WO (1) | WO2018076682A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108882287A (en) * | 2018-06-07 | 2018-11-23 | 烽火通信科技股份有限公司 | A kind of control method and system of the shake of CPRI data transmission delay |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1567754A (en) * | 2003-06-24 | 2005-01-19 | 华为技术有限公司 | Apparatus and method for implementing automatic detection of communication interface time sequence |
US7684477B1 (en) * | 2005-12-20 | 2010-03-23 | Altera Corporation | Multi-protocol low latency automatic speed negotiation architecture for an embedded high speed serial interface in a programmable logic device |
CN102447525A (en) * | 2010-10-13 | 2012-05-09 | 大唐移动通信设备有限公司 | Method and device for rate self-adaption between RRU and BBU |
CN103516815A (en) * | 2012-06-21 | 2014-01-15 | 中兴通讯股份有限公司 | Parallel interface sequential control device |
CN103582026A (en) * | 2012-07-19 | 2014-02-12 | 中兴通讯股份有限公司 | CPRI adaptive configuration method and CPRI adaptive configuration device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004042077A1 (en) * | 2004-08-31 | 2006-03-30 | Texas Instruments Deutschland Gmbh | Integrated circuit for use with an external Hall sensor, and Hall sensor module |
-
2016
- 2016-10-28 CN CN201610962540.7A patent/CN108011703B/en active Active
-
2017
- 2017-05-25 WO PCT/CN2017/085924 patent/WO2018076682A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1567754A (en) * | 2003-06-24 | 2005-01-19 | 华为技术有限公司 | Apparatus and method for implementing automatic detection of communication interface time sequence |
US7684477B1 (en) * | 2005-12-20 | 2010-03-23 | Altera Corporation | Multi-protocol low latency automatic speed negotiation architecture for an embedded high speed serial interface in a programmable logic device |
CN102447525A (en) * | 2010-10-13 | 2012-05-09 | 大唐移动通信设备有限公司 | Method and device for rate self-adaption between RRU and BBU |
CN103516815A (en) * | 2012-06-21 | 2014-01-15 | 中兴通讯股份有限公司 | Parallel interface sequential control device |
CN103582026A (en) * | 2012-07-19 | 2014-02-12 | 中兴通讯股份有限公司 | CPRI adaptive configuration method and CPRI adaptive configuration device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108882287A (en) * | 2018-06-07 | 2018-11-23 | 烽火通信科技股份有限公司 | A kind of control method and system of the shake of CPRI data transmission delay |
CN108882287B (en) * | 2018-06-07 | 2021-08-17 | 烽火通信科技股份有限公司 | Method and system for controlling time delay jitter of CPRI data transmission |
Also Published As
Publication number | Publication date |
---|---|
WO2018076682A1 (en) | 2018-05-03 |
CN108011703B (en) | 2020-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104765706B (en) | The deflection of long range MIPI D PHY serial links based on digital calibration is eliminated | |
CN105281870B (en) | Method and apparatus for baud rate Timed Recovery | |
US10396921B2 (en) | Multi-lane synchronization method, synchronization apparatus and system, and computer storage medium | |
EP2544378A2 (en) | Method and system for 60 GHz chipset RF control interface (RF module control interface) | |
US9026832B2 (en) | Method, system and device for removing media access control addresses | |
US10484164B2 (en) | Clock and data recovery for pulse based multi-wire link | |
JP2015018564A5 (en) | ||
US10721055B2 (en) | Communication device | |
US10778281B2 (en) | Method and device for controlling frequency hopping, transmitter and receiver | |
EP3816807A1 (en) | Serial communication apparatus and serial communication method | |
US9722590B1 (en) | Skew adjustment circuit, semiconductor device, and skew calibration method | |
US9990330B2 (en) | Simultaneous edge toggling immunity circuit for multi-mode bus | |
CN105190586A (en) | Systems and methods for serial communication | |
JP2016515321A (en) | Method and apparatus for data assisted timing recovery in 10GBASE-T system | |
CN105577138A (en) | Self-adaptive dynamic impedance matching method | |
CN111491378B (en) | Method for transmitting downlink control channel, terminal equipment and network equipment | |
CN108011703A (en) | A kind of parallel interface sequential control method and device | |
CN107452324B (en) | It is a kind of to upgrade multiple anti-interference optimization methods of reception card and display screen control system | |
CN107733457B (en) | Radio frequency front-end chip and radio frequency signal processing method | |
US20200097434A1 (en) | Enhanced high data rate technique for i3c | |
CN115460049A (en) | Equalizing method and device of equalizer, electronic equipment and storage medium | |
CN104378130A (en) | Receiving terminal for unmanned aerial vehicle land-to-air wideband communication system | |
CN207369020U (en) | A kind of radio frequency front end chip | |
US20180070312A1 (en) | Wireless communication method and system | |
TWI251989B (en) | Frequency burst detector and related detection method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |