CN108011164A - Substrate integrates artificial surface phasmon waveguide - Google Patents
Substrate integrates artificial surface phasmon waveguide Download PDFInfo
- Publication number
- CN108011164A CN108011164A CN201711451380.0A CN201711451380A CN108011164A CN 108011164 A CN108011164 A CN 108011164A CN 201711451380 A CN201711451380 A CN 201711451380A CN 108011164 A CN108011164 A CN 108011164A
- Authority
- CN
- China
- Prior art keywords
- waveguide
- substrate
- artificial surface
- substrate integrated
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 39
- 230000005540 biological transmission Effects 0.000 claims abstract description 16
- 230000010354 integration Effects 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 abstract description 5
- 230000000630 rising effect Effects 0.000 abstract description 4
- 230000009466 transformation Effects 0.000 abstract description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
基片集成人工表面等离激元波导,涉及等离激元波导。设有基片集成波导和金属开槽,所述金属开槽设在基片集成波导,金属开槽为周期性金属开槽,所述金属开槽分布在基片集成波导的单面或呈对称、反对称、偏移对称等方式分布于基片集成波导的双面,用于传输具有极强局域场束缚性能的微波与太赫兹人工表面等离激元。具有带通特性,且具有较为陡峭的上升沿以及下降沿,可以通过改变开槽的有效长度和基片集成波导的宽度调节通带范围。通过尺度变换,放大、缩小单元及枝节结构尺寸,能够用于微波、毫米波或太赫兹波段的人工表面等离激元电磁波的传输。
The substrate integrated artificial surface plasmon waveguide relates to the plasmon waveguide. There are substrate integrated waveguides and metal slots, the metal slots are set on the substrate integrated waveguide, the metal slots are periodic metal slots, and the metal slots are distributed on one side of the substrate integrated waveguide or symmetrically , antisymmetric, offset symmetric, etc. are distributed on both sides of the substrate integrated waveguide, and are used to transmit microwave and terahertz artificial surface plasmons with strong local field confinement performance. It has band-pass characteristics and has relatively steep rising and falling edges, and the pass-band range can be adjusted by changing the effective length of the slot and the width of the substrate integrated waveguide. Through scale transformation, the size of the unit and the branch structure is enlarged and reduced, and it can be used for the transmission of artificial surface plasmon electromagnetic waves in the microwave, millimeter wave or terahertz bands.
Description
技术领域technical field
本发明涉及等离激元波导,尤其是涉及基片集成人工表面等离激元波导。The invention relates to a plasmon waveguide, in particular to a substrate-integrated artificial surface plasmon waveguide.
背景技术Background technique
随着信息技术的发展,对通信系统的容量要求越来越高,同时由于在高频微波频段有着极为丰富的频谱资源,现代通信系统正在朝高频微波特别是毫米波频段发展。微带电路具有体积小,结构紧凑,重量轻,造价低等优点,广泛用于微波电路中。但是在较高频尤其是毫米波频段,微带电路的电磁波泄漏和辐射比较严重,电路的传输损耗大。而金属波导虽然在高频段具有低插损,低辐射,高品质因数等优点,但是其体积过大,加工困难,造价昂贵。2002年,吴柯等人在IEEE Microwave&Wireless Components Letters发表论文《Integrated microstrip and rectangular waveguide in planar form》提出了一种新的平面型波导——基片集成波导(Substrate Integrated Waveguide,SIW)的概念,其结构是由上下两层金属、中间填充的介质以及左右两排金属通孔构成,是介于微带与介质填充波导之间的一种传输线。SIW可实现高性能微波毫米波平面电路,两排金属过孔相当于矩形波导的金属壁,电磁波被束缚在上下金属面和两侧金属柱构成的封闭空间内。电磁波在其中传播的主模是TE10模,其场分布与矩形波导极为类似,基片集成波导相当于平面化了的矩形波导,相较而言灵活性及可集成性得到了极大的提高,与此同时,基片集成波导的平面特性使得它可以与微带线或带状线等平面传输线相互过渡转换,有益于设备的小型化与集成化。为了在微波与太赫兹等较低频段实现类似于表面等离激元在光波段或红外波段对场的强束缚性能,人们提出了人工表面等离激元(Spoof Surface Plasmon Polaritons,SSPPs)的概念。2013年Xiaopeng Shen,Tie Jun Cui等人在Applied Physics Letters的论文《Planar plasmonic metamaterial on a thin film with nearly zero thickness》研究了周期性开槽的极薄的金属薄膜传输线能够导引人工表面等离激元,实现了人工表面等离激元波导由立体结构向平面结构的转变。具有平面结构的人工表面等离激元波导,由于在微波与太赫兹集成电路与系统的小型化应用中具有重要应用,因此研究扁平化且高传输效率的人工表面等离激元波导具有十分重要的现实意义。With the development of information technology, the capacity requirements of communication systems are getting higher and higher. At the same time, due to the extremely rich spectrum resources in high-frequency microwave frequency bands, modern communication systems are developing towards high-frequency microwaves, especially millimeter-wave frequency bands. Microstrip circuits have the advantages of small size, compact structure, light weight, and low cost, and are widely used in microwave circuits. However, at higher frequencies, especially in the millimeter wave frequency band, the electromagnetic wave leakage and radiation of the microstrip circuit are relatively serious, and the transmission loss of the circuit is large. Although the metal waveguide has the advantages of low insertion loss, low radiation, and high quality factor in the high-frequency band, its volume is too large, processing is difficult, and the cost is expensive. In 2002, Wu Ke and others published the paper "Integrated microstrip and rectangular waveguide in planar form" in IEEE Microwave & Wireless Components Letters, and proposed a new planar waveguide - the concept of Substrate Integrated Waveguide (SIW). The structure is composed of upper and lower layers of metal, a medium filled in the middle, and two rows of metal through holes on the left and right. It is a transmission line between the microstrip and the dielectric filled waveguide. SIW can realize high-performance microwave and millimeter-wave planar circuits. The two rows of metal vias are equivalent to the metal walls of the rectangular waveguide. The electromagnetic waves are bound in the closed space formed by the upper and lower metal surfaces and the metal columns on both sides. The main mode in which the electromagnetic wave propagates is the TE10 mode, and its field distribution is very similar to that of a rectangular waveguide. The substrate-integrated waveguide is equivalent to a planarized rectangular waveguide, and its flexibility and integrability have been greatly improved in comparison. At the same time, the planar nature of the substrate-integrated waveguide enables it to transition with planar transmission lines such as microstrip lines or striplines, which is beneficial to the miniaturization and integration of equipment. In order to achieve the strong confinement properties of surface plasmons in the optical or infrared bands in lower frequency bands such as microwave and terahertz, the concept of artificial surface plasmon polaritons (Spoof Surface Plasmon Polaritons, SSPPs) was proposed. . In 2013, Xiaopeng Shen, Tie Jun Cui et al. published the paper "Planar plasmonic metamaterial on a thin film with nearly zero thickness" in Applied Physics Letters, which researched that a periodically slotted ultra-thin metal film transmission line can guide artificial surface plasmons The element realizes the transformation of the artificial surface plasmon waveguide from a three-dimensional structure to a planar structure. Artificial surface plasmon waveguides with planar structures have important applications in the miniaturization of microwave and terahertz integrated circuits and systems, so it is very important to study artificial surface plasmon waveguides with flat and high transmission efficiency. practical significance.
发明内容Contents of the invention
本发明的目的在于为了在微波与太赫兹波段实现兼具传输特性优和束缚性能强的人工表面等离激元波导,提供基片集成人工表面等离激元波导。The purpose of the present invention is to provide a substrate-integrated artificial surface plasmon waveguide in order to realize an artificial surface plasmon waveguide with excellent transmission characteristics and strong binding performance in the microwave and terahertz bands.
本发明设有基片集成波导和金属开槽,所述金属开槽设在基片集成波导,金属开槽为周期性金属开槽,所述金属开槽分布在基片集成波导的单面或呈对称、反对称、偏移对称等方式分布于基片集成波导的双面,用于传输具有极强局域场束缚性能的微波与太赫兹人工表面等离激元。The present invention is provided with a substrate integrated waveguide and metal slots, the metal slots are arranged on the substrate integrated waveguide, the metal slots are periodic metal slots, and the metal slots are distributed on one side of the substrate integrated waveguide or They are distributed on both sides of the substrate integrated waveguide in the form of symmetry, antisymmetry, offset symmetry, etc., and are used to transmit microwaves and terahertz artificial surface plasmons with strong local field confinement performance.
所述金属开槽的形状可为矩形、折弯形、T形、L形、螺旋形等。结构本身具有带通特性,且具有较为陡峭的上升沿以及下降沿,可以通过改变开槽的有效长度和基片集成波导的宽度调节通带范围。The shape of the metal slot can be rectangular, bent, T-shaped, L-shaped, spiral, etc. The structure itself has a band-pass characteristic, and has relatively steep rising and falling edges, and the pass-band range can be adjusted by changing the effective length of the slot and the width of the substrate-integrated waveguide.
本发明通过尺度变换,放大、缩小单元及枝节结构尺寸,能够用于微波、毫米波或太赫兹波段的人工表面等离激元电磁波的传输。The invention enlarges and reduces the unit and branch structure size through scale transformation, and can be used for the transmission of artificial surface plasmon electromagnetic waves in microwave, millimeter wave or terahertz wave bands.
本发明的有益效果为:The beneficial effects of the present invention are:
1)本发明通过基片集成波导上周期性开槽传输表面等离激元,其色散曲线的渐近频率较低、对电磁场束缚性能较强,同时降低了在高频段的电磁波辐射现象。1) The present invention transmits surface plasmons through periodic grooves on the substrate integrated waveguide, the asymptotic frequency of its dispersion curve is low, the performance of binding electromagnetic fields is strong, and the phenomenon of electromagnetic wave radiation in the high frequency band is reduced at the same time.
2)本发明可以采用柔性基板,通过弯曲变形,能够用于共形传输微波与太赫兹人工表面等离激元电磁波。2) The present invention can adopt a flexible substrate, which can be used for conformal transmission of microwaves and terahertz artificial surface plasmon electromagnetic waves through bending deformation.
3)本发明具有带通特性,且具有较为陡峭的上升沿以及下降沿,可以通过控制金属薄膜开槽的有效长度和基片集成波导的宽度来调节通带范围。3) The present invention has a band-pass characteristic, and has relatively steep rising and falling edges, and the pass-band range can be adjusted by controlling the effective length of the metal film slot and the width of the substrate integrated waveguide.
4)本发明的传输特性主要取决于金属开槽的有效长度和基片集成波导的宽度,人工设计方便、灵活,通过尺度变换,放大、缩小单元及枝节结构尺寸,能够用于微波、毫米波、或太赫兹波段的人工表面等离激元电磁波的传输。4) The transmission characteristics of the present invention mainly depend on the effective length of the metal slot and the width of the substrate integrated waveguide. The manual design is convenient and flexible. Through scale transformation, the size of the unit and the branch structure is enlarged and reduced, and it can be used for microwave and millimeter waves. , or the transmission of artificial surface plasmon electromagnetic waves in the terahertz band.
5)本发明属于扁平化结构,由于基片集成波导与微带线存在完美匹配,可用于设计各种微波毫米波甚至太赫兹滤波器、功分器、耦合器、天线、放大器、混频器等无源及有源电路、器件甚至组件或系统。5) The present invention belongs to a flat structure. Since the substrate integrated waveguide is perfectly matched with the microstrip line, it can be used to design various microwave and millimeter wave or even terahertz filters, power splitters, couplers, antennas, amplifiers, and mixers. Such as passive and active circuits, devices and even components or systems.
附图说明Description of drawings
图1是本发明实施例的结构示意图。Fig. 1 is a schematic structural diagram of an embodiment of the present invention.
图2是本发明实施例的色散曲线图。Fig. 2 is a dispersion curve diagram of an embodiment of the present invention.
图3是基于本发明实施例的带通滤波器结构示意图。Fig. 3 is a schematic structural diagram of a band-pass filter based on an embodiment of the present invention.
图4是基于本发明实施例的带通滤波器的S参数。Fig. 4 is the S parameter of the bandpass filter based on the embodiment of the present invention.
具体实施方式Detailed ways
以下实施例将结合附图对本发明作进一步的说明。The following embodiments will further illustrate the present invention in conjunction with the accompanying drawings.
实施例1Example 1
为双面矩形开槽的基片集成人工表面等离激元波导,如图1所示,实施例1设有基片集成波导1和金属开槽2,所述金属开槽2设在基片集成波导1,金属开槽2为周期性金属开槽,所述金属开槽2分布在基片集成波导1的单面或呈对称、反对称、偏移对称等方式分布于基片集成波导1的双面,用于传输具有极强局域场束缚性能的微波与太赫兹人工表面等离激元,其介质基板的材料选取Rogers RT5880,介电常数为2.2,厚度为0.508mm,传输损耗角为0.0009;金属薄膜传输线以及金属通孔的材料选取为铜。波导的单元结构尺寸选取为a=12mm,d=2.5mm,h从5mm增加到8mm,仿真分析得到色散曲线如图2所示,所有色散曲线均偏离光线,随着开槽高度h的增加,渐进频率减小。利用基片集成波导具有高通特性和人工表面等离激元波导具有低通特性,其下、上限截止频率分别由基片集成波导的宽度a和开槽高度h决定,可以通过调节a和h的大小设计出满足特定带宽要求的带通滤波器。It is a substrate-integrated artificial surface plasmon waveguide with double-sided rectangular slots, as shown in Figure 1, embodiment 1 is provided with a substrate-integrated waveguide 1 and a metal slot 2, and the metal slot 2 is set on the substrate The integrated waveguide 1, the metal slot 2 is a periodic metal slot, and the metal slot 2 is distributed on one side of the substrate integrated waveguide 1 or distributed on the substrate integrated waveguide 1 in a manner of symmetry, antisymmetry, offset symmetry, etc. Double-sided, used to transmit microwave and terahertz artificial surface plasmons with strong local field confinement properties, the material of the dielectric substrate is Rogers RT5880, the dielectric constant is 2.2, the thickness is 0.508mm, and the transmission loss angle is 0.0009; the material of the metal film transmission line and the metal via is selected as copper. The size of the unit structure of the waveguide is selected as a=12mm, d=2.5mm, and h increases from 5mm to 8mm. The dispersion curve obtained by simulation analysis is shown in Figure 2. All dispersion curves deviate from the light. With the increase of the slot height h, Gradual frequency decrease. Taking advantage of the high-pass characteristics of the substrate-integrated waveguide and the low-pass characteristic of the artificial surface plasmon waveguide, the lower and upper cut-off frequencies are determined by the width a of the substrate-integrated waveguide and the slot height h, respectively, and can be adjusted by adjusting a and h Size Design a bandpass filter to meet a specific bandwidth requirement.
实施例2Example 2
为应用实施例1设计的带通滤波器,如图3所示。滤波器分为三部分,左右两端为微带传输线,中间则是带有双面矩形金属开槽的基片集成人工表面波导。该滤波器为对称结构,两端为馈电端,w0=1.6mm,保证了50Ω的端口阻抗。采用锥形渐变过渡结构将电磁波由微带线转换到基片集成波导,wtra=3.5mm,实现了和基片集成波导的阻抗匹配。为了实现波矢匹配,金属开槽高度呈梯度渐变增加的分布。其他主要参数如下:a=12mm,d=2.5mm,h=8mm。由图4的仿真结果可见,该滤波器的带通范围为8.5GHz至12.3GHz,并且具有较为陡峭的上升沿以及下降沿。The band-pass filter designed for the application of Embodiment 1 is shown in FIG. 3 . The filter is divided into three parts, the left and right ends are microstrip transmission lines, and the middle is a substrate-integrated artificial surface waveguide with double-sided rectangular metal slots. The filter has a symmetrical structure, both ends are feed terminals, w 0 =1.6mm, which ensures a port impedance of 50Ω. The tapered transition structure is used to convert the electromagnetic wave from the microstrip line to the substrate integrated waveguide, w tra =3.5mm, and the impedance matching with the substrate integrated waveguide is realized. In order to achieve wave vector matching, the height of metal slots is distributed in a gradually increasing manner. Other main parameters are as follows: a=12mm, d=2.5mm, h=8mm. It can be seen from the simulation results in Fig. 4 that the bandpass range of the filter is from 8.5GHz to 12.3GHz, and it has relatively steep rising and falling edges.
本发明公开一种基片集成人工表面等离激元波导,所述人工表面等离激元波导是由基片集成波导以及其上的周期性金属开槽构成。所述金属开槽可分布在基片集成波导的单面或呈对称、反对称、偏移对称等方式分布于基片集成波导的双面,用于传输具有极强局域场束缚性能的微波与太赫兹人工表面等离激元。金属开槽形状为矩形,也可以采用折弯形,T形,L形,螺旋形等形状。本发明结构本身具有带通特性,可以通过改变开槽的有效长度和基片集成波导的宽度调节通带范围。本发明采用平面型结构,尺寸小、传输效率高,是一种极具潜力的新型人工表面等离激元波导,在微波毫米波及太赫兹电路、器件与系统中具有重要应用前景。The invention discloses a substrate-integrated artificial surface plasmon waveguide. The artificial surface plasmon waveguide is composed of a substrate-integrated waveguide and periodic metal slots thereon. The metal slots can be distributed on one side of the substrate-integrated waveguide or distributed on both sides of the substrate-integrated waveguide in the form of symmetry, anti-symmetry, offset symmetry, etc., and are used to transmit microwaves with strong local field confinement performance. Artificial Surface Plasmons with Terahertz. The shape of the metal groove is rectangular, and it can also be bent, T-shaped, L-shaped, spiral and other shapes. The structure of the invention has a band-pass characteristic, and the range of the pass-band can be adjusted by changing the effective length of the slot and the width of the substrate integrated waveguide. The invention adopts planar structure, small size and high transmission efficiency. It is a new artificial surface plasmon waveguide with great potential, and has important application prospects in microwave, millimeter wave and terahertz circuits, devices and systems.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711451380.0A CN108011164A (en) | 2017-12-27 | 2017-12-27 | Substrate integrates artificial surface phasmon waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711451380.0A CN108011164A (en) | 2017-12-27 | 2017-12-27 | Substrate integrates artificial surface phasmon waveguide |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108011164A true CN108011164A (en) | 2018-05-08 |
Family
ID=62061995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711451380.0A Pending CN108011164A (en) | 2017-12-27 | 2017-12-27 | Substrate integrates artificial surface phasmon waveguide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108011164A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108761955A (en) * | 2018-06-01 | 2018-11-06 | 航天恒星科技有限公司 | The broad band laser phased array system of wide scope scanning |
CN110364793A (en) * | 2019-06-13 | 2019-10-22 | 中国人民解放军国防科技大学 | Hybrid SIW and SLSP structure broadband cavity filter |
CN110581333A (en) * | 2019-09-26 | 2019-12-17 | 厦门大学 | Artificial surface plasmon transmission line based on fractal branch structure and its application |
CN110838610A (en) * | 2018-08-17 | 2020-02-25 | 中国电子科技集团公司第五十五研究所 | One-dimensional filter array dielectric waveguide band-pass filter and design method thereof |
CN110931929A (en) * | 2020-01-15 | 2020-03-27 | 盛纬伦(深圳)通信技术有限公司 | Millimeter wave ridge waveguide transmission line |
CN111224223A (en) * | 2020-03-20 | 2020-06-02 | Oppo广东移动通信有限公司 | Sensors and Electronics |
CN111463579A (en) * | 2020-03-30 | 2020-07-28 | 深圳市信维通信股份有限公司 | Leaky-wave antenna based on substrate integrated waveguide |
CN111463578A (en) * | 2020-03-30 | 2020-07-28 | 深圳市信维通信股份有限公司 | Substrate integrated waveguide leaky-wave antenna |
CN112290180A (en) * | 2020-11-06 | 2021-01-29 | 上海交通大学 | A ridged half-mode substrate integrated waveguide transmission line |
CN113036334A (en) * | 2021-03-24 | 2021-06-25 | 南通大学 | Bandwidth-controllable millimeter wave filter based on plasmon |
CN114725634A (en) * | 2022-04-29 | 2022-07-08 | 厦门大学 | SIW adjustable ultra-wideband filter with SSPP material |
CN115911795A (en) * | 2022-10-28 | 2023-04-04 | 厦门大学 | Substrate integrated artificial surface plasmon multi-passband filter |
CN116207467A (en) * | 2022-11-18 | 2023-06-02 | 中国船舶集团有限公司第七二四研究所 | Harmonic suppression microstrip transmission line based on artificial surface plasmon |
CN116345090A (en) * | 2023-03-21 | 2023-06-27 | 山东大学 | Narrowband hybrid filter based on dielectric integrated waveguide and improved artificial surface plasmon and working method thereof |
CN116937091A (en) * | 2023-09-19 | 2023-10-24 | 中国计量大学 | Reconfigurable band-pass filter of SSPP and SIW hybrid circuit |
CN118352792A (en) * | 2024-05-07 | 2024-07-16 | 中国人民解放军国防科技大学 | A terahertz filtering antenna unit, a waveguide filter and a slot antenna |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104767009A (en) * | 2015-02-16 | 2015-07-08 | 东南大学 | A waveguide integrated artificial surface plasmon device and a filter integrated waveguide substrate |
CN106450626A (en) * | 2016-11-25 | 2017-02-22 | 厦门大学 | Artificial surface plasmon waveguide based on helical branch structure |
CN207834545U (en) * | 2017-12-27 | 2018-09-07 | 厦门大学 | A kind of integrated artificial surface phasmon waveguide of substrate |
-
2017
- 2017-12-27 CN CN201711451380.0A patent/CN108011164A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104767009A (en) * | 2015-02-16 | 2015-07-08 | 东南大学 | A waveguide integrated artificial surface plasmon device and a filter integrated waveguide substrate |
CN106450626A (en) * | 2016-11-25 | 2017-02-22 | 厦门大学 | Artificial surface plasmon waveguide based on helical branch structure |
CN207834545U (en) * | 2017-12-27 | 2018-09-07 | 厦门大学 | A kind of integrated artificial surface phasmon waveguide of substrate |
Non-Patent Citations (4)
Title |
---|
JIA YUAN YIN等: "Endfire Radiations of Spoof Surface Plasmon Polaritons", IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, pages 597 - 600 * |
JUN JUN XU等: "Decoupling from Spoof Surface Plasmon Polaritons waveguide by Periodic Reversal of Cross-linking architecture", 2016 10TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS, pages 403 - 405 * |
KARTHIK RUDRAMUNI等: "Compact bandpass filter based on hybrid spoof surface plasmon and substrate integrated waveguidi transmission line", 《2017 IEEE ELECTRICAL DESIGN OF ADVANCED PACKAGING AND SYSTEMS SYMPOSIUM》 * |
KARTHIK RUDRAMUNI等: "Compact bandpass filter based on hybrid spoof surface plasmon and substrate integrated waveguidi transmission line", 《2017 IEEE ELECTRICAL DESIGN OF ADVANCED PACKAGING AND SYSTEMS SYMPOSIUM》, 16 December 2017 (2017-12-16), pages 1 - 3, XP033308326, DOI: 10.1109/EDAPS.2017.8277014 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108761955B (en) * | 2018-06-01 | 2021-08-10 | 航天恒星科技有限公司 | Wide-range scanning broadband laser phased array system |
CN108761955A (en) * | 2018-06-01 | 2018-11-06 | 航天恒星科技有限公司 | The broad band laser phased array system of wide scope scanning |
CN110838610A (en) * | 2018-08-17 | 2020-02-25 | 中国电子科技集团公司第五十五研究所 | One-dimensional filter array dielectric waveguide band-pass filter and design method thereof |
CN110838610B (en) * | 2018-08-17 | 2022-04-08 | 中国电子科技集团公司第五十五研究所 | One-dimensional filter array dielectric waveguide band-pass filter and design method thereof |
CN110364793A (en) * | 2019-06-13 | 2019-10-22 | 中国人民解放军国防科技大学 | Hybrid SIW and SLSP structure broadband cavity filter |
CN110581333A (en) * | 2019-09-26 | 2019-12-17 | 厦门大学 | Artificial surface plasmon transmission line based on fractal branch structure and its application |
CN110581333B (en) * | 2019-09-26 | 2024-03-12 | 厦门大学 | Artificial surface plasmon transmission line based on fractal branch structure and application |
CN110931929A (en) * | 2020-01-15 | 2020-03-27 | 盛纬伦(深圳)通信技术有限公司 | Millimeter wave ridge waveguide transmission line |
CN111224223A (en) * | 2020-03-20 | 2020-06-02 | Oppo广东移动通信有限公司 | Sensors and Electronics |
CN111224223B (en) * | 2020-03-20 | 2021-05-11 | Oppo广东移动通信有限公司 | Sensors and Electronics |
CN111463579A (en) * | 2020-03-30 | 2020-07-28 | 深圳市信维通信股份有限公司 | Leaky-wave antenna based on substrate integrated waveguide |
CN111463578A (en) * | 2020-03-30 | 2020-07-28 | 深圳市信维通信股份有限公司 | Substrate integrated waveguide leaky-wave antenna |
CN112290180A (en) * | 2020-11-06 | 2021-01-29 | 上海交通大学 | A ridged half-mode substrate integrated waveguide transmission line |
CN113036334A (en) * | 2021-03-24 | 2021-06-25 | 南通大学 | Bandwidth-controllable millimeter wave filter based on plasmon |
CN114725634B (en) * | 2022-04-29 | 2023-02-14 | 厦门大学 | SIW adjustable ultra-wideband filter with SSPP material |
CN114725634A (en) * | 2022-04-29 | 2022-07-08 | 厦门大学 | SIW adjustable ultra-wideband filter with SSPP material |
CN115911795A (en) * | 2022-10-28 | 2023-04-04 | 厦门大学 | Substrate integrated artificial surface plasmon multi-passband filter |
CN116207467A (en) * | 2022-11-18 | 2023-06-02 | 中国船舶集团有限公司第七二四研究所 | Harmonic suppression microstrip transmission line based on artificial surface plasmon |
CN116207467B (en) * | 2022-11-18 | 2024-12-06 | 中国船舶集团有限公司第七二四研究所 | A harmonic suppression microstrip transmission line based on artificial surface plasmons |
CN116345090A (en) * | 2023-03-21 | 2023-06-27 | 山东大学 | Narrowband hybrid filter based on dielectric integrated waveguide and improved artificial surface plasmon and working method thereof |
CN116345090B (en) * | 2023-03-21 | 2024-03-29 | 山东大学 | Narrowband hybrid filter based on dielectric integrated waveguide and improved artificial surface plasmon and working method thereof |
CN116937091A (en) * | 2023-09-19 | 2023-10-24 | 中国计量大学 | Reconfigurable band-pass filter of SSPP and SIW hybrid circuit |
CN116937091B (en) * | 2023-09-19 | 2023-12-08 | 中国计量大学 | A reconfigurable bandpass filter for SSPP and SIW hybrid circuit |
CN118352792A (en) * | 2024-05-07 | 2024-07-16 | 中国人民解放军国防科技大学 | A terahertz filtering antenna unit, a waveguide filter and a slot antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108011164A (en) | Substrate integrates artificial surface phasmon waveguide | |
CN104485495B (en) | A kind of two waveband bandstop filter based on artificial surface phasmon | |
Wu et al. | Dynamically tunable filtering attenuator based on graphene integrated microstrip resonators | |
Chen et al. | Controlling Gigahertz and Terahertz Surface Electromagnetic Waves with<? format?> Metamaterial Resonators | |
CN109301416B (en) | Suspended Substrate Integrated Waveguide Transmission Line | |
CN104810579A (en) | Tunable bandstop filter based on artificial surface plasmon | |
CN105789802B (en) | A kind of ultra wide band balun based on novel interconnection architecture | |
Zhao et al. | Tri-band band-pass filter based on multi-mode spoof surface plasmon polaritons | |
CN106374175B (en) | Mixed type channel-splitting filter based on artificial surface phasmon and substrate integration wave-guide | |
CN209747698U (en) | A New SIGW Power Divider | |
Chen et al. | A high efficiency band-pass filter based on CPW and quasi-spoof surface plasmon polaritons | |
CN114335955B (en) | Unequal-division band-pass filtering power divider based on HMSIW-SSPP mixed mode | |
Lin et al. | Design and analysis of super-wide bandpass filters using a novel compact meta-structure | |
Wang et al. | Electric split-ring resonator based on double-sided parallel-strip line | |
CN106450608A (en) | Open-circuit branch loaded semi-module substrate integrated waveguide band-pass filter | |
Shome et al. | A quintuple mode resonator based bandpass filter for ultra-wideband applications | |
CN207834545U (en) | A kind of integrated artificial surface phasmon waveguide of substrate | |
Du et al. | Differential signal propagation in spoof plasmonic structure and its application in microwave filtering balun | |
CN110739998B (en) | Mode Division Multiplexing Circuit Based on Artificial Surface Plasmon | |
Aziz et al. | A novel plasmonic waveguide for the dual-band transmission of spoof surface plasmon polaritons | |
Zhang et al. | Narrowband SIW-SSPP hybrid bandpass filter with compact profile at Ka-band | |
CN210640347U (en) | Artificial surface plasmon transmission line based on fractal branch structure | |
Jidi et al. | An ultra-thin and compact band-pass filter based on spoof surface plasmon polaritons | |
CN110011007B (en) | Band elimination filter based on artificial surface plasmon transmission line | |
Shen et al. | Integrated mode composite transmission line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180508 |