[go: up one dir, main page]

CN107992110B - Magnetic suspension control moment gyro frame angular rate servo system based on harmonic reducer - Google Patents

Magnetic suspension control moment gyro frame angular rate servo system based on harmonic reducer Download PDF

Info

Publication number
CN107992110B
CN107992110B CN201810046791.XA CN201810046791A CN107992110B CN 107992110 B CN107992110 B CN 107992110B CN 201810046791 A CN201810046791 A CN 201810046791A CN 107992110 B CN107992110 B CN 107992110B
Authority
CN
China
Prior art keywords
torque
control
harmonic reducer
controller
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810046791.XA
Other languages
Chinese (zh)
Other versions
CN107992110A (en
Inventor
李海涛
侯林
韩邦成
郑世强
汤继强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201810046791.XA priority Critical patent/CN107992110B/en
Publication of CN107992110A publication Critical patent/CN107992110A/en
Application granted granted Critical
Publication of CN107992110B publication Critical patent/CN107992110B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/62Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover characterised by the use of electric means, e.g. use of a tachometric dynamo, use of a transducer converting an electric value into a displacement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明提出了一种基于谐波减速器的磁悬浮控制力矩陀螺框架角速率伺服系统,包括控制器、功放、力矩电机、电机端线性霍尔传感器、谐波减速器、负载、负载端旋转变压器、级联扩张状态观测器。其中,控制器控制输出和负载端角位置作为级联扩张状态观测器的输入信号,经级联扩张状态观测器产生附加的控制信息补偿到控制器中;力矩电机端安装线性霍尔传感器并通过解算获得准确的力矩电机转子位置信息,力矩电机固连谐波减速器的输入端,谐波减速器输出力矩作用于负载,在负载端安装旋转变压器测量负载端角位置。本发明提出的磁悬浮控制力矩陀螺框架伺服系统,可以实现高精度框架角速率伺服控制。

Figure 201810046791

The invention proposes a magnetic levitation control torque gyro frame angular rate servo system based on a harmonic reducer, including a controller, a power amplifier, a torque motor, a linear Hall sensor at the motor end, a harmonic reducer, a load, a load-side rotary transformer, Cascading expansion state observers. Among them, the control output of the controller and the angular position of the load end are used as the input signals of the cascade expansion state observer, and additional control information is generated by the cascade expansion state observer to compensate the controller; the torque motor end is installed with a linear Hall sensor and passed through the expansion state observer. Solve to obtain accurate torque motor rotor position information, torque motor is fixedly connected to the input end of the harmonic reducer, the output torque of the harmonic reducer acts on the load, and a resolver is installed at the load end to measure the angular position of the load end. The magnetic suspension control torque gyro frame servo system proposed by the present invention can realize high-precision frame angular rate servo control.

Figure 201810046791

Description

一种基于谐波减速器的磁悬浮控制力矩陀螺框架角速率伺服 系统A Magnetic Levitation Control Torque Gyro Frame Angular Rate Servo Based on Harmonic Reducer system

技术领域technical field

本发明属于基于谐波减速器的磁悬浮控制力矩陀螺角速率伺服控制领域,具体涉及一种采用基于级联扩张状态观测器的复合控制算法的磁悬浮控制力矩陀螺高精度框架角速率伺服系统,有利于提高整体系统的角速率伺服控制精度。The invention belongs to the field of magnetic suspension control torque gyro angular rate servo control based on harmonic reducers, and in particular relates to a magnetic suspension control torque gyro high-precision frame angular rate servo system using a composite control algorithm based on cascaded expansion state observers, which is beneficial to Improve the angular rate servo control accuracy of the overall system.

背景技术Background technique

对磁悬浮控制力矩陀螺框架伺服系统,如果采用直接驱动方式,力矩电机的体积和重量也会相应的增大,为减小框架系统的体积和重量,一般采用加入传动机构对电机力矩进行放大。谐波减速器具有传动比大、精度高、体积小、重量轻等优点,是控制力矩陀螺框架传动机构的最优选择之一,但是谐波减速器的非线性特性如非线性扭转刚度、非线性摩擦、回差等严重影响着框架系统的角速率精度。For the magnetic suspension control torque gyro frame servo system, if the direct drive method is adopted, the volume and weight of the torque motor will also increase accordingly. In order to reduce the volume and weight of the frame system, a transmission mechanism is generally used to amplify the motor torque. The harmonic reducer has the advantages of large transmission ratio, high precision, small size and light weight, and is one of the best choices for controlling the torque gyro frame transmission mechanism. However, the nonlinear characteristics of the harmonic reducer such as nonlinear torsional stiffness, non-linear Linear friction, backlash, etc. seriously affect the angular rate accuracy of the frame system.

为解决谐波减速器非线性特性导致框架系统角速率精度降低的问题,在中国专利一种基于谐波减速器的磁悬浮控制力矩陀螺框架系统(专利号:ZL201310435526.8)中,力矩电机的输出轴与谐波减速器的输入端固连,谐波减速器作为力矩放大装置,输出力矩作用于负载,其中传感器的种类和安装位置通常采用“力矩电机端和负载端都安装光电码盘,分别测量电机端角位置和负载端角速率”的结构,在控制算法上采用基于谐波减速器扭转刚度迟滞模型与补偿的算法来抑制磁悬浮控制力矩陀螺框架伺服系统中谐波减速器固有的迟滞特性对系统精度的影响,但是使用光电码盘作为传感器会降低整个框架系统的环境适应能力以及使用寿命,而且控制算法中迟滞模型的参数一般很难被准确识别;为解决谐波减速器非线性特性导致框架系统角速率精度降低的问题,现有的传感器的种类和安装位置通常还采用“仅负载端安装旋转变压器测量负载端角位置进行控制器算法设计”的结构,在控制算法上采用扩张状态观测器结合控制器对谐波减速器非线性传输力矩进行估计和补偿,但是仅负载端安装旋转变压器无法获得力矩电机转子位置信息,且控制算法存在当系统阶数较高时,扩张状态观测器的参数较多不易调整的问题。In order to solve the problem that the non-linear characteristics of the harmonic reducer lead to the reduction of the angular rate accuracy of the frame system, in the Chinese patent a magnetic suspension control torque gyro frame system based on the harmonic reducer (patent number: ZL201310435526.8), the output of the torque motor The shaft is fixedly connected with the input end of the harmonic reducer. The harmonic reducer is used as a torque amplifying device, and the output torque acts on the load. The type and installation position of the sensor usually adopt the "photoelectric code disk installed on the torque motor end and the load end, respectively." The structure of measuring the angular position of the motor end and the angular rate of the load end", the control algorithm based on the torsional stiffness hysteresis model and compensation of the harmonic reducer is used to suppress the inherent hysteresis characteristics of the harmonic reducer in the magnetic suspension control torque gyro frame servo system Influence on the accuracy of the system, but using the photoelectric encoder as a sensor will reduce the environmental adaptability and service life of the entire frame system, and the parameters of the hysteresis model in the control algorithm are generally difficult to accurately identify; in order to solve the nonlinear characteristics of the harmonic reducer The problem that leads to the reduction of the angular rate accuracy of the frame system, the type and installation position of the existing sensors usually adopt the structure of "only install the resolver at the load end to measure the angular position of the load end to design the controller algorithm", and the expansion state is adopted in the control algorithm. The observer combines the controller to estimate and compensate the nonlinear transmission torque of the harmonic reducer, but the rotor position information of the torque motor cannot be obtained only by installing the resolver at the load end, and the control algorithm exists when the system order is high, the state observer can be expanded. The parameters are more difficult to adjust.

发明内容SUMMARY OF THE INVENTION

本发明要解决的技术问题是:克服现有的基于谐波减速器的磁悬浮控制力矩陀螺角速率伺服系统输出速率精度不高的问题,提供了一种提高框架系统输出角速率精度的结构方案和控制算法。The technical problem to be solved by the present invention is: to overcome the problem that the output rate accuracy of the existing magnetic suspension control torque gyro angular rate servo system based on the harmonic reducer is not high, and to provide a structural scheme for improving the output angular rate accuracy of the frame system; control algorithm.

本发明解决上述技术问题采用的技术方案为:一种基于谐波减速器的磁悬浮控制力矩陀螺框架角速率伺服系统,包括控制器、功放、力矩电机、线性霍尔传感器、转子位置解算模块、谐波减速器、磁悬浮控制力矩陀螺框架系统负载、旋转变压器、角位置解算模块、级联扩张状态观测器;其中,控制器采用基于状态反馈与扰动补偿相结合的复合控制算法产生控制信号,经功放输出实际控制电流给力矩电机,力矩电机端安装的线性霍尔传感器用来测量力矩电机转子位置相关信息,经转子位置解算模块获得力矩电机转子位置,力矩电机的输出轴与谐波减速器的输入端固连,谐波减速器作为力矩放大装置,输出力矩作用于磁悬浮控制力矩陀螺框架系统负载,负载端的旋转变压器经角位置解算模块获得负载端角位置,负载端角位置与控制器控制输出一起作为级联扩张状态观测器的输入信息,级联扩张状态观测器产生附加控制量,与姿态控制计算机给定的磁悬浮控制力矩陀螺框架角速率伺服系统的角速率指令、力矩电机转子位置以及负载端角位置一起作为控制器的输入信息。The technical solution adopted by the present invention to solve the above technical problems is: a magnetic suspension control torque gyro frame angular rate servo system based on a harmonic reducer, comprising a controller, a power amplifier, a torque motor, a linear Hall sensor, a rotor position calculation module, Harmonic reducer, magnetic levitation control torque gyro frame system load, resolver, angular position solution module, cascade expansion state observer; among them, the controller uses a composite control algorithm based on state feedback and disturbance compensation to generate control signals, The actual control current is output to the torque motor through the power amplifier. The linear Hall sensor installed at the torque motor end is used to measure the relevant information of the rotor position of the torque motor. The rotor position of the torque motor is obtained through the rotor position calculation module. The output shaft of the torque motor is decelerated by harmonics. The input end of the inverter is fixedly connected, and the harmonic reducer is used as a torque amplifying device. The output torque acts on the load of the magnetic suspension control torque gyro frame system. The resolver at the load end obtains the angular position of the load end through the angular position calculation module. The output of the controller control is used as the input information of the cascade expansion state observer. The cascade expansion state observer generates additional control variables, which are combined with the angular rate command of the magnetic suspension control torque gyro frame angular rate servo system and the torque motor rotor given by the attitude control computer. The position and the angular position of the load end are taken together as input to the controller.

其中,所述的复合控制算法步骤如下:Wherein, the described composite control algorithm steps are as follows:

步骤1:构建系统数学模型Step 1: Build the System Mathematical Model

将基于谐波减速器的系统动力学模型状态变量取为:The state variables of the system dynamics model based on the harmonic reducer are taken as:

X=[x1 x2 x3 x4]T=[θl ωl Δθ ωm]T,控制输入取为u=Tm,状态空间方程为:X=[x 1 x 2 x 3 x 4 ] T =[θ l ω l Δθ ω m ] T , the control input is taken as u=T m , and the state space equation is:

Figure BDA0001551117880000021
Figure BDA0001551117880000021

其中,θl是负载端角位置,ωl是负载端角位置微分后得到的负载端角速率,ωm是力矩电机转子位置θm微分后得到的电机端角速率,n是谐波减速器的减速比,Δθ=θm/n-θl是谐波减速器的扭转角;Tm是电机的电磁力矩,Tf是干扰力矩;Jm、Jl分别是电机和负载的转动惯量;Bm、Bl分别为电机和负载的阻尼系数;Kh是谐波减速器扭转刚度中的线性时不变部分,ΔKh是谐波减速器扭转刚度中的非线性时变部分。Among them, θ l is the angular position of the load end, ω l is the angular velocity of the load end obtained by differentiating the angular position of the load end, ω m is the angular velocity of the motor end obtained by differentiating the rotor position of the torque motor θ m , and n is the harmonic reducer Δθ=θ m /n-θ l is the torsion angle of the harmonic reducer; T m is the electromagnetic torque of the motor, T f is the disturbance torque; J m and J l are the moment of inertia of the motor and the load, respectively; B m and B l are the damping coefficients of the motor and the load, respectively; K h is the linear time-invariant part of the torsional stiffness of the harmonic reducer, and ΔK h is the nonlinear time-varying part of the torsional stiffness of the harmonic reducer.

对系统数学模型进行坐标变换如下:The coordinate transformation of the mathematical model of the system is as follows:

Figure BDA0001551117880000031
Figure BDA0001551117880000031

状态空间表达式为:The state space expression is:

Figure BDA0001551117880000032
Figure BDA0001551117880000032

其中,in,

Figure BDA0001551117880000033
Figure BDA0001551117880000033

步骤2:级联扩张状态观测器设计Step 2: Cascade Extended State Observer Design

将级联扩张状态观测器的状态变量定义为z=[z1,z2,z3,z4,z5,z6,z7,z8]T,其中,z1估计v1,z2估计v2,z4估计v3,z6估计v4,z8估计f',z3、z5、z7为级联扩张状态观测器的中间变量。Define the state variables of the cascaded dilated state observers as z = [z 1 , z 2 , z 3 , z 4 , z 5 , z 6 , z 7 , z 8 ] T , where z 1 estimates v 1 , z 2 estimates v 2 , z 4 estimates v 3 , z 6 estimates v 4 , z 8 estimates f', and z 3 , z 5 , and z 7 are intermediate variables of the cascaded extended state observer.

级联扩张状态观测器的状态方程为:The state equation of the cascade expansion state observer is:

Figure BDA0001551117880000034
Figure BDA0001551117880000034

其中,in,

Figure BDA0001551117880000041
Figure BDA0001551117880000041

β1、β2为级联扩张状态观测器的两个设计参数。级联扩张状态观测器通过以上状态方程产生附加控制量

Figure BDA0001551117880000042
补偿到控制器(1)中的控制律中。β 1 , β 2 are two design parameters of the cascade expansion state observer. The cascade expansion state observer produces additional control variables through the above state equation
Figure BDA0001551117880000042
Compensated into the control law in the controller (1).

采用四个具有同一参数的二阶扩张状态观测器级联形式,观测器需要配置的参数只有两个,即:β1和β2,可以很好的解决观测器参数难配置的问题。Using the cascaded form of four second-order extended state observers with the same parameters, the observer needs to configure only two parameters, namely: β 1 and β 2 , which can solve the problem that the observer parameters are difficult to configure.

步骤3:复合控制算法设计Step 3: Composite Control Algorithm Design

在控制器(1)中采用如下控制律:The following control law is adopted in the controller (1):

Figure BDA0001551117880000043
Figure BDA0001551117880000043

其中,ωlref为角速率指令,θlref为经角速率指令积分后得到的参考转子位置信息,v1=θl为负载端角位置,v2=ωl为负载端角速率,z4、z6、z8为级联扩张状态观测器产生的附加控制量;k1、k2、k3、k4为控制器的4个设计参数,b为框架系统参数,u为控制器控制输出。Among them, ω lref is the angular rate command, θ lref is the reference rotor position information obtained by integrating the angular rate command, v 1l is the angular position of the load end, v 2l is the angular velocity of the load end, z 4 , z 6 , z 8 are the additional control variables generated by the cascade expansion state observer; k 1 , k 2 , k 3 , and k 4 are the four design parameters of the controller, b is the frame system parameter, and u is the control output of the controller .

步骤4:复合控制算法的参数设计Step 4: Parameter design of composite control algorithm

整个控制算法需要配置的参数有六个,即:控制器参数k1、k2、k3、k4以及级联扩张状态观测器两个参数β1、β2。其中,控制器参数k1、k2、k3、k4按照传统的极点配置方式进行,而级联扩张状态观测器的两个参数β1、β2根据特定系统的扰动情况进行设计:There are six parameters that need to be configured in the whole control algorithm, namely: controller parameters k 1 , k 2 , k 3 , k 4 and two parameters β 1 and β 2 of the cascade expansion state observer. Among them, the controller parameters k 1 , k 2 , k 3 , and k 4 are performed according to the traditional pole configuration, while the two parameters β 1 and β 2 of the cascaded extended state observer are designed according to the disturbance of the specific system:

Figure BDA0001551117880000044
Figure BDA0001551117880000044

其中,ζ为系统阻尼比,ωf为磁悬浮控制力矩陀螺磁悬浮转子的转动频率。Among them, ζ is the damping ratio of the system, and ω f is the rotational frequency of the magnetic suspension control torque gyro magnetic suspension rotor.

本发明的基本原理是:本发明在力矩电机端安装体积小重量轻的线性霍尔传感器,通过转子位置解算模块获得准确的力矩电机转子位置,力矩电机固连谐波减速器,谐波减速器输出力矩作用于负载,在负载端安装旋转变压器,通过角位置解算模块测量负载端角位置;采用基于级联扩张状态观测器的复合控制算法,级联扩张状态观测器对系统状态以及扰动进行估计并产生附加的控制信息补偿到控制器中,从而对系统扰动进行了抑制,实现高精度框架角速率输出。The basic principle of the present invention is: the present invention installs a small-sized and light-weight linear Hall sensor on the torque motor end, obtains the accurate torque motor rotor position through the rotor position calculation module, the torque motor is fixedly connected to the harmonic reducer, and the harmonic deceleration The output torque of the sensor acts on the load, a resolver is installed at the load end, and the angular position of the load end is measured by the angular position calculation module; a composite control algorithm based on the cascaded expansion state observer is adopted, and the cascaded expansion state observer is used for the system state and disturbance. The estimation is performed and additional control information is generated to compensate the controller, thereby suppressing the system disturbance and realizing the high-precision frame angular rate output.

本发明与现有技术相比的优点在于:The advantages of the present invention compared with the prior art are:

1、与现有的磁悬浮控制力矩陀螺框架伺服系统相比,本发明采用体积小重量轻的线性霍尔传感器测量电机端角位置,采用可靠性高的旋转变压器测量负载端角位置,不仅可以克服现有系统中力矩电机转子位置信息以及负载端角位置信息不能同时精确测量的问题,还可以提升整个框架伺服系统的环境适应能力。1. Compared with the existing magnetic levitation control torque gyro frame servo system, the present invention adopts a small and lightweight linear Hall sensor to measure the angular position of the motor end, and adopts a highly reliable resolver to measure the angular position of the load end, which can not only overcome the The problem that the rotor position information of the torque motor and the angular position information of the load end cannot be accurately measured at the same time in the existing system can also improve the environmental adaptability of the entire frame servo system.

2、采用基于级联扩张状态观测器的复合控制算法,将四个具有同一参数的二阶扩张状态观测器进行级联,观测器需要配置的参数只有两个,即:β1和β2,可以很好的解决现有控制器设计中采用建立补偿模型、控制器结合扩张状态观测器等方法中存在的参数较多不易调节的问题。通过对控制参数进行设计,提高了系统整体的抗干扰能力,系统输出角速率精度有所提高。2. Using a composite control algorithm based on cascaded extended state observers, four second-order extended state observers with the same parameters are cascaded. The observer needs to configure only two parameters, namely: β 1 and β 2 , It can well solve the problem that there are many parameters that are difficult to adjust in the existing controller design methods such as establishing a compensation model and combining the controller with an expanded state observer. By designing the control parameters, the overall anti-interference ability of the system is improved, and the output angular rate accuracy of the system is improved.

附图说明Description of drawings

图1为框架角速率伺服控制系统控制图;Fig. 1 is the frame angular rate servo control system control diagram;

图2为基于谐波减速器的框架系统示意图;Figure 2 is a schematic diagram of a frame system based on a harmonic reducer;

图3为线性霍尔传感器输出信号;Figure 3 is the output signal of the linear Hall sensor;

图4为基于线性霍尔传感器的转子位置解算模块;Fig. 4 is the rotor position calculation module based on linear Hall sensor;

图5为级联扩张状态观测器结构图。FIG. 5 is a structural diagram of the cascade expansion state observer.

图中附图标记含义为:1为控制器,2为功放,3为力矩电机,4为线性霍尔传感器,5为转子位置解算模块,6为谐波减速器,7为磁悬浮控制力矩陀螺框架系统负载,8为旋转变压器,9为角位置解算模块,10为级联扩张状态观测器。The meanings of the reference symbols in the figure are: 1 is the controller, 2 is the power amplifier, 3 is the torque motor, 4 is the linear Hall sensor, 5 is the rotor position calculation module, 6 is the harmonic reducer, and 7 is the magnetic suspension control torque gyro The frame system load, 8 is the resolver, 9 is the angular position solution module, and 10 is the cascade expansion state observer.

具体实施方式Detailed ways

下面结合附图以及具体实施方式进一步说明本发明。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.

如图1所示,一种基于谐波减速器的磁悬浮控制力矩陀螺框架角速率伺服系统,包括控制器1、功放2、力矩电机3、线性霍尔传感器4、转子位置解算模块5、谐波减速器6、磁悬浮控制力矩陀螺框架系统负载7、旋转变压器8、角位置解算模块9、级联扩张状态观测器10;其中,控制器1采用基于状态反馈与扰动补偿相结合的复合控制算法产生控制信号,经功放2输出实际控制电流给力矩电机3,力矩电机端安装的线性霍尔传感器4用来测量力矩电机转子位置相关信息,经转子位置解算模块5获得力矩电机转子位置,力矩电机3的输出轴与谐波减速器6的输入端固连,谐波减速器6作为力矩放大装置,输出力矩作用于磁悬浮控制力矩陀螺框架系统负载7,负载端的旋转变压器8经角位置解算模块9获得负载端角位置,负载端角位置与控制器控制输出一起作为级联扩张状态观测器10的输入信息,级联扩张状态观测器10产生附加控制量,与姿态控制计算机给定的磁悬浮控制力矩陀螺框架角速率伺服系统的角速率指令、力矩电机转子位置以及负载端角位置一起作为控制器1的输入信息。As shown in Figure 1, a magnetic levitation control torque gyro frame angular rate servo system based on harmonic reducer includes a controller 1, a power amplifier 2, a torque motor 3, a linear Hall sensor 4, a rotor position calculation module 5, a harmonic Wave reducer 6, magnetic levitation control torque gyro frame system load 7, resolver 8, angular position calculation module 9, cascade expansion state observer 10; wherein, the controller 1 adopts a composite control based on the combination of state feedback and disturbance compensation The algorithm generates a control signal, and outputs the actual control current to the torque motor 3 through the power amplifier 2. The linear Hall sensor 4 installed at the torque motor end is used to measure the information related to the rotor position of the torque motor, and the rotor position of the torque motor is obtained through the rotor position calculation module 5. The output shaft of the torque motor 3 is fixedly connected with the input end of the harmonic reducer 6. The harmonic reducer 6 is used as a torque amplifying device, and the output torque acts on the magnetic suspension control torque gyro frame system load 7. The resolver 8 at the load end is solved by the angular position. The calculation module 9 obtains the angular position of the load end, and the angular position of the load end together with the control output of the controller is used as the input information of the cascade expansion state observer 10, and the cascade expansion state observer 10 generates an additional control quantity, which is the same as that given by the attitude control computer. The angular rate command of the magnetic suspension control torque gyro frame angular rate servo system, the rotor position of the torque motor and the angular position of the load end are used as the input information of the controller 1 together.

图2为图1中力矩电机3、线性霍尔传感器4、谐波减速器6、磁悬浮控制力矩陀螺框架系统负载7、旋转变压器8的机械连接示意图。线性霍尔传感器安装在力矩电机端,力矩电机固连谐波减速器的输入端,谐波减速器连接磁悬浮控制力矩陀螺框架系统负载,负载端安装旋转变压器。FIG. 2 is a schematic diagram of the mechanical connection of the torque motor 3 , the linear Hall sensor 4 , the harmonic reducer 6 , the magnetic suspension control torque gyro frame system load 7 , and the resolver 8 in FIG. 1 . The linear Hall sensor is installed on the torque motor end, the torque motor is fixedly connected to the input end of the harmonic reducer, the harmonic reducer is connected to the load of the magnetic levitation control torque gyro frame system, and a resolver is installed at the load end.

图1中力矩电机转子位置的获取过程如下:The acquisition process of the rotor position of the torque motor in Figure 1 is as follows:

步骤1:线性霍尔传感器获取力矩电机转子位置相关信号。2个电角度互差90°的线性霍尔传感器(线性霍尔传感器A和线性霍尔传感器B)安装至电机一端,当电机旋转时,两个线性霍尔传感器的输出信号理论上为两条互差90°转子位置电角度的正弦信号Vsin和余弦信号Vcos,如图3所示。Step 1: The linear Hall sensor obtains the signal related to the rotor position of the torque motor. Two linear hall sensors (linear hall sensor A and linear hall sensor B) with an electrical angle difference of 90° are installed on one end of the motor. When the motor rotates, the output signals of the two linear hall sensors are theoretically two The sine signal V sin and the cosine signal V cos of the rotor position electrical angle different from each other by 90° are shown in FIG. 3 .

步骤2:经力矩电机转子位置解算模块5获取力矩电机转子位置

Figure BDA0001551117880000061
如图4所示,线性霍尔传感器A和线性霍尔传感器B的信号经过信号调理电路,经过AD转换(数字/模拟转换)之后经计算得到当前的力矩电机转子位置
Figure BDA0001551117880000062
(电角度)。当前力矩电机转子位置
Figure BDA0001551117880000063
(电角度)计算公式可表示为:Step 2: Obtain the rotor position of the torque motor through the torque motor rotor position calculation module 5
Figure BDA0001551117880000061
As shown in Figure 4, the signals of the linear Hall sensor A and the linear Hall sensor B pass through the signal conditioning circuit, and after AD conversion (digital/analog conversion), the current torque motor rotor position is obtained by calculation
Figure BDA0001551117880000062
(electrical angle). Current torque motor rotor position
Figure BDA0001551117880000063
The (electrical angle) calculation formula can be expressed as:

Figure BDA0001551117880000064
Figure BDA0001551117880000064

采用复合控制算法步骤如下:The steps of the composite control algorithm are as follows:

步骤1:构建系统数学模型Step 1: Build the System Mathematical Model

将基于谐波减速器的系统动力学模型状态变量取为:The state variables of the system dynamics model based on the harmonic reducer are taken as:

X=[x1 x2 x3 x4]T=[θl ωl Δθ ωm]TX=[x 1 x 2 x 3 x 4 ] T =[θ l ω l Δθ ω m ] T ,

控制输入取为u=Tm,状态空间方程为:The control input is taken as u=T m , and the state space equation is:

Figure BDA0001551117880000071
Figure BDA0001551117880000071

其中,θl是负载端角位置,ωl是负载端角位置微分后得到的负载端角速率,ωm是力矩电机转子位置θm微分后得到的电机端角速率,n是谐波减速器的减速比,Δθ=θm/n-θl是谐波减速器的扭转角;Tm是电机的电磁力矩,Tf是干扰力矩;Jm、Jl分别是电机和负载的转动惯量;Bm、Bl分别为电机和负载的阻尼系数;

Figure BDA0001551117880000072
是谐波减速器扭转刚度中的线性时不变部分,ΔKh是谐波减速器扭转刚度中的非线性时变部分。Among them, θ l is the angular position of the load end, ω l is the angular velocity of the load end obtained by differentiating the angular position of the load end, ω m is the angular velocity of the motor end obtained by differentiating the rotor position of the torque motor θ m , and n is the harmonic reducer Δθ=θ m /n-θ l is the torsion angle of the harmonic reducer; T m is the electromagnetic torque of the motor, T f is the disturbance torque; J m and J l are the moment of inertia of the motor and the load, respectively; B m and B l are the damping coefficients of the motor and the load, respectively;
Figure BDA0001551117880000072
is the linear time-invariant part of the torsional stiffness of the harmonic reducer, and ΔK h is the nonlinear time-varying part of the torsional stiffness of the harmonic reducer.

对系统数学模型进行坐标变换如下:The coordinate transformation of the mathematical model of the system is as follows:

Figure BDA0001551117880000073
Figure BDA0001551117880000073

状态空间表达式为:The state space expression is:

Figure BDA0001551117880000074
Figure BDA0001551117880000074

其中,in,

Figure BDA0001551117880000075
Figure BDA0001551117880000075

步骤2:级联扩张状态观测器设计Step 2: Cascade Extended State Observer Design

将级联扩张状态观测器的状态变量定义为z=[z1,z2,z3,z4,z5,z6,z7,z8]T,其中,z1估计v1,z2估计v2,z4估计v3,z6估计v4,z8估计f',z3、z5、z7为级联扩张状态观测器的中间变量。Define the state variables of the cascaded dilated state observers as z = [z 1 , z 2 , z 3 , z 4 , z 5 , z 6 , z 7 , z 8 ] T , where z 1 estimates v 1 , z 2 estimates v 2 , z 4 estimates v 3 , z 6 estimates v 4 , z 8 estimates f', and z 3 , z 5 , and z 7 are intermediate variables of the cascaded extended state observer.

级联扩张状态观测器的状态方程为:The state equation of the cascade expansion state observer is:

Figure BDA0001551117880000081
Figure BDA0001551117880000081

其中,in,

Figure BDA0001551117880000082
Figure BDA0001551117880000082

β1、β2为级联扩张状态观测器的两个设计参数。级联扩张状态观测器的结构如图5所示,级联扩张状态观测器通过以上状态方程产生附加控制量

Figure BDA0001551117880000083
补偿到控制器(1)中的控制律中。β 1 , β 2 are two design parameters of the cascade expansion state observer. The structure of the cascade expansion state observer is shown in Figure 5. The cascade expansion state observer generates additional control variables through the above state equation
Figure BDA0001551117880000083
Compensated into the control law in the controller (1).

采用四个具有同一参数的二阶扩张状态观测器级联形式,观测器需要配置的参数只有两个,即:β1和β2,可以很好的解决观测器参数难配置的问题。Using the cascaded form of four second-order extended state observers with the same parameters, the observer needs to configure only two parameters, namely: β 1 and β 2 , which can solve the problem that the observer parameters are difficult to configure.

步骤3:复合控制算法设计Step 3: Composite Control Algorithm Design

在控制器(1)中采用如下控制律:The following control law is adopted in the controller (1):

Figure BDA0001551117880000084
Figure BDA0001551117880000084

其中,ωlref为角速率指令,θlref为经角速率指令积分后得到的参考转子位置信息,v1=θl为负载端角位置,v2=ωl为负载端角速率,z4、z6、z8为级联扩张状态观测器产生的附加控制量;k1、k2、k3、k4为控制器的4个设计参数,b为框架系统参数,u为控制器控制输出。Among them, ω lref is the angular rate command, θ lref is the reference rotor position information obtained by integrating the angular rate command, v 1l is the angular position of the load end, v 2l is the angular velocity of the load end, z 4 , z 6 , z 8 are the additional control variables generated by the cascade expansion state observer; k 1 , k 2 , k 3 , and k 4 are the four design parameters of the controller, b is the frame system parameter, and u is the control output of the controller .

步骤4:复合控制算法的参数设计Step 4: Parameter design of composite control algorithm

整个控制算法需要配置的参数有六个,即:控制器参数k1、k2、k3、k4以及级联扩张状态观测器两个参数β1、β2。其中,控制器参数k1、k2、k3、k4按照传统的极点配置方式进行,而级联扩张状态观测器的两个参数β1、β2根据特定系统的扰动情况进行设计:There are six parameters that need to be configured in the whole control algorithm, namely: controller parameters k 1 , k 2 , k 3 , k 4 and two parameters β 1 and β 2 of the cascade expansion state observer. Among them, the controller parameters k 1 , k 2 , k 3 , and k 4 are performed according to the traditional pole configuration, while the two parameters β 1 and β 2 of the cascaded extended state observer are designed according to the disturbance of the specific system:

Figure BDA0001551117880000091
Figure BDA0001551117880000091

其中,ζ为系统阻尼比,ωf为磁悬浮控制力矩陀螺磁悬浮转子的转动频率。Among them, ζ is the damping ratio of the system, and ω f is the rotational frequency of the magnetic suspension control torque gyro magnetic suspension rotor.

通过采用上述控制算法,可以提高框架系统的速率伺服精度。By adopting the above control algorithm, the rate servo precision of the frame system can be improved.

以角动量为200Nms的基于谐波减速器的磁悬浮控制力矩陀螺框架角速率伺服系统为例,角速率带宽为10Hz。系统参数如表1所示。Taking the angular rate servo system of magnetic levitation control torque gyro frame based on harmonic reducer with angular momentum of 200Nms as an example, the angular rate bandwidth is 10Hz. The system parameters are shown in Table 1.

表1系统参数Table 1 System parameters

Figure BDA0001551117880000092
Figure BDA0001551117880000092

控制器参数k1、k2、k3、k4按照传统的极点配置方式配置为:The controller parameters k 1 , k 2 , k 3 , and k 4 are configured as:

k1=1.56×107,k2=9.92×105,k3=2.37×104,k4=251.33。k 1 =1.56×10 7 , k 2 =9.92×10 5 , k 3 =2.37×10 4 , k 4 =251.33.

磁悬浮控制力矩陀螺磁悬浮转子的转动频率为200Hz,即ωf=2×π×200(rad/s),系统阻尼比为ζ=0.707,因此级联扩张状态观测器的两个参数β1、β2配置为:The rotation frequency of the magnetic suspension control torque gyro magnetic suspension rotor is 200Hz, that is, ω f =2×π×200(rad/s), and the system damping ratio is ζ=0.707. Therefore, the two parameters β 1 , β of the cascade expansion state observer 2 is configured as:

Figure BDA0001551117880000094
Figure BDA0001551117880000094

Figure BDA0001551117880000095
Figure BDA0001551117880000095

经仿真验证,在角速率指令为5°/s时,本发明中的系统输出角速率速率波动仅为0.01°/s,和中国专利一种基于谐波减速器的双框架控制力矩陀螺框架伺服系统(专利号:ZL201310435526.8)相比,本发明中的系统输出角速率精度提升了11.3%。It has been verified by simulation that when the angular rate command is 5°/s, the system output angular rate rate fluctuation in the present invention is only 0.01°/s, and the Chinese patent a dual-frame control torque gyro frame servo based on harmonic reducer. Compared with the system (patent number: ZL201310435526.8), the system output angular rate accuracy in the present invention is improved by 11.3%.

Claims (1)

1.一种基于谐波减速器的磁悬浮控制力矩陀螺框架角速率伺服系统,其特征在于:包括控制器(1)、功放(2)、力矩电机(3)、线性霍尔传感器(4)、转子位置解算模块(5)、谐波减速器(6)、磁悬浮控制力矩陀螺框架系统负载(7)、旋转变压器(8)、角位置解算模块(9)、级联扩张状态观测器(10);其中,控制器(1)采用基于状态反馈与扰动补偿相结合的复合控制算法产生控制信号,经功放(2)输出实际控制电流给力矩电机(3),力矩电机端安装的线性霍尔传感器(4)用来测量力矩电机转子位置相关信息,经转子位置解算模块(5)获得力矩电机转子位置,力矩电机(3)的输出轴与谐波减速器(6)的输入端固连,谐波减速器(6)作为力矩放大装置,输出力矩作用于磁悬浮控制力矩陀螺框架系统负载(7),负载端的旋转变压器(8)经角位置解算模块(9)获得负载端角位置,负载端角位置与控制器控制输出一起作为级联扩张状态观测器(10)的输入信息,级联扩张状态观测器(10)产生附加控制量,与姿态控制计算机给定的磁悬浮控制力矩陀螺框架角速率伺服系统的角速率指令、力矩电机转子位置以及负载端角位置一起作为控制器(1)的输入信息;1. a magnetic levitation control torque gyro frame angular rate servo system based on harmonic reducer, is characterized in that: comprise controller (1), power amplifier (2), torque motor (3), linear Hall sensor (4), Rotor position calculation module (5), harmonic reducer (6), magnetic suspension control torque gyro frame system load (7), resolver (8), angular position calculation module (9), cascade expansion state observer ( 10); wherein, the controller (1) uses a composite control algorithm based on the combination of state feedback and disturbance compensation to generate a control signal, and outputs the actual control current to the torque motor (3) through the power amplifier (2), and the linear torque motor installed at the end of the torque motor is used. The sensor (4) is used to measure the information related to the rotor position of the torque motor, and the rotor position of the torque motor is obtained through the rotor position calculation module (5). The output shaft of the torque motor (3) is fixed to the input end of the harmonic reducer (6). The harmonic reducer (6) acts as a torque amplifying device, and the output torque acts on the magnetic suspension control torque gyro frame system load (7), and the resolver (8) at the load end obtains the angular position of the load end through the angular position calculation module (9). , the angular position of the load end and the control output of the controller are used as the input information of the cascade expansion state observer (10), and the cascade expansion state observer (10) generates an additional control amount, which is related to the magnetic suspension control torque gyro given by the attitude control computer. The angular rate command of the frame angular rate servo system, the rotor position of the torque motor and the angular position of the load end are taken together as the input information of the controller (1); 所述的复合控制算法步骤如下:The described composite control algorithm steps are as follows: 步骤1:构建系统数学模型Step 1: Build the System Mathematical Model 将基于谐波减速器的系统动力学模型状态变量取为:The state variables of the system dynamics model based on the harmonic reducer are taken as: X=[x1 x2 x3 x4]T=[θl ωl Δθ ωm]T,控制输入取为u=Tm,状态空间方程为:X=[x 1 x 2 x 3 x 4 ] T =[θ l ω l Δθ ω m ] T , the control input is taken as u=T m , and the state space equation is:
Figure FDA0002551573990000011
Figure FDA0002551573990000011
其中,θl是负载端角位置,ωl是负载端角位置微分后得到的负载端角速率,ωm是力矩电机转子位置θm微分后得到的电机端角速率,n是谐波减速器的减速比,Δθ=θm/n-θl是谐波减速器的扭转角;Tm是电机的电磁力矩,Tf是干扰力矩;Jm、Jl分别是电机和负载的转动惯量;Bm、Bl分别为电机和负载的阻尼系数;
Figure FDA0002551573990000012
是谐波减速器扭转刚度中的线性时不变部分,ΔKh是谐波减速器扭转刚度中的非线性时变部分;
Among them, θ l is the angular position of the load end, ω l is the angular velocity of the load end obtained by differentiating the angular position of the load end, ω m is the angular velocity of the motor end obtained by differentiating the rotor position of the torque motor θ m , and n is the harmonic reducer Δθ=θ m /n-θ l is the torsion angle of the harmonic reducer; T m is the electromagnetic torque of the motor, T f is the disturbance torque; J m and J l are the moment of inertia of the motor and the load, respectively; B m and B l are the damping coefficients of the motor and the load, respectively;
Figure FDA0002551573990000012
is the linear time-invariant part of the torsional stiffness of the harmonic reducer, and ΔK h is the nonlinear time-varying part of the torsional stiffness of the harmonic reducer;
对系统数学模型进行坐标变换如下:The coordinate transformation of the mathematical model of the system is as follows: v1=x1,v2=x2
Figure FDA0002551573990000021
v 1 =x 1 , v 2 =x 2 ,
Figure FDA0002551573990000021
状态空间表达式为:The state space expression is:
Figure FDA0002551573990000022
Figure FDA0002551573990000022
其中,in,
Figure FDA0002551573990000023
Figure FDA0002551573990000023
步骤2:级联扩张状态观测器设计Step 2: Cascade Extended State Observer Design 将级联扩张状态观测器的状态变量定义为z=[z1,z2,z3,z4,z5,z6,z7,z8]T,其中,z1估计v1,z2估计v2,z4估计v3,z6估计v4,z8估计f',z3、z5、z7为级联扩张状态观测器的中间变量;Define the state variables of the cascaded dilated state observers as z = [z 1 , z 2 , z 3 , z 4 , z 5 , z 6 , z 7 , z 8 ] T , where z 1 estimates v 1 , z 2 estimates v 2 , z 4 estimates v 3 , z 6 estimates v 4 , z 8 estimates f', and z 3 , z 5 , and z 7 are intermediate variables of the cascade expansion state observer; 级联扩张状态观测器的状态方程为:The state equation of the cascade expansion state observer is:
Figure FDA0002551573990000024
Figure FDA0002551573990000024
其中,in,
Figure FDA0002551573990000031
Figure FDA0002551573990000031
β1、β2为级联扩张状态观测器的两个设计参数,级联扩张状态观测器通过以上状态方程产生附加控制量
Figure FDA0002551573990000032
补偿到控制器(1)中的控制律中;
β 1 , β 2 are the two design parameters of the cascade expansion state observer, and the cascade expansion state observer generates additional control variables through the above state equation
Figure FDA0002551573990000032
compensated into the control law in the controller (1);
采用四个具有同一参数的二阶扩张状态观测器级联形式,观测器需要配置的参数只有两个,即:β1和β2,可以很好的解决观测器参数难配置的问题;Using the cascaded form of four second-order extended state observers with the same parameters, the observer needs to be configured with only two parameters, namely: β 1 and β 2 , which can solve the problem that the observer parameters are difficult to configure; 步骤3:复合控制算法设计Step 3: Composite Control Algorithm Design 在控制器(1)中采用如下控制律:The following control law is adopted in the controller (1):
Figure FDA0002551573990000033
Figure FDA0002551573990000033
其中,ωlref为角速率指令,θlref为经角速率指令积分后得到的参考转子位置信息,v1=θl为负载端角位置,v2=ωl为负载端角速率,z4、z6、z8为级联扩张状态观测器产生的附加控制量;k1、k2、k3、k4为控制器的4个设计参数,b为框架系统参数,u为控制器控制输出;Among them, ω lref is the angular rate command, θ lref is the reference rotor position information obtained by integrating the angular rate command, v 1l is the angular position of the load end, v 2l is the angular velocity of the load end, z 4 , z 6 , z 8 are the additional control variables generated by the cascade expansion state observer; k 1 , k 2 , k 3 , and k 4 are the four design parameters of the controller, b is the frame system parameter, and u is the control output of the controller ; 步骤4:复合控制算法的参数设计Step 4: Parameter design of composite control algorithm 整个控制算法需要配置的参数有六个,即:控制器参数k1、k2、k3、k4以及级联扩张状态观测器两个参数β1、β2,其中,控制器参数k1、k2、k3、k4按照传统的极点配置方式进行,而级联扩张状态观测器的两个参数β1、β2根据特定系统的扰动情况进行设计:There are six parameters that need to be configured in the whole control algorithm, namely: controller parameters k 1 , k 2 , k 3 , k 4 and two parameters β 1 , β 2 of the cascade expansion state observer, among which, the controller parameter k 1 , k 2 , k 3 , and k 4 are performed according to the traditional pole configuration, while the two parameters β 1 , β 2 of the cascade extended state observer are designed according to the disturbance of the specific system:
Figure FDA0002551573990000034
Figure FDA0002551573990000034
其中,ζ为系统阻尼比,ωf为磁悬浮控制力矩陀螺磁悬浮转子的转动频率。Among them, ζ is the damping ratio of the system, and ω f is the rotational frequency of the magnetic suspension control torque gyro magnetic suspension rotor.
CN201810046791.XA 2018-01-18 2018-01-18 Magnetic suspension control moment gyro frame angular rate servo system based on harmonic reducer Active CN107992110B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810046791.XA CN107992110B (en) 2018-01-18 2018-01-18 Magnetic suspension control moment gyro frame angular rate servo system based on harmonic reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810046791.XA CN107992110B (en) 2018-01-18 2018-01-18 Magnetic suspension control moment gyro frame angular rate servo system based on harmonic reducer

Publications (2)

Publication Number Publication Date
CN107992110A CN107992110A (en) 2018-05-04
CN107992110B true CN107992110B (en) 2020-09-08

Family

ID=62040183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810046791.XA Active CN107992110B (en) 2018-01-18 2018-01-18 Magnetic suspension control moment gyro frame angular rate servo system based on harmonic reducer

Country Status (1)

Country Link
CN (1) CN107992110B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108536185B (en) * 2018-05-09 2020-09-08 北京航空航天大学 A parameter optimization method of double-frame magnetic levitation CMG frame system based on descending cascade expansion state observer
CN109032156B (en) * 2018-07-03 2020-08-25 北京航空航天大学 Suspended load quad-rotor unmanned aerial vehicle hovering control method based on state observation
CN109116721B (en) * 2018-08-23 2021-10-19 广东工业大学 A control method for transforming a time-varying system into a stationary system
CN109062274B (en) * 2018-09-03 2021-09-10 河南工业大学 Magnetic bearing vibration torque suppression method based on complex variable finite dimension repeated control
CN110412867B (en) * 2019-05-17 2020-08-11 北京航空航天大学 High-precision angular rate control method for magnetically suspended control moment gyroscope frame system
CN110657809A (en) * 2019-09-12 2020-01-07 中国人民解放军战略支援部队航天工程大学 Hall sensor installation method for magnetically suspended control sensitive gyroscope
CN111572818B (en) * 2020-05-21 2021-11-19 北京航空航天大学 Magnetic suspension control moment gyroscope frame rate servo system and control method
CN114185370A (en) * 2020-08-24 2022-03-15 广东博智林机器人有限公司 Servo system and rotating speed compensation method thereof
CN112859613B (en) * 2021-01-22 2022-05-13 北京航空航天大学 High-precision control method of control moment gyro frame system based on harmonic reducer
CN113794422B (en) * 2021-09-22 2024-05-28 北京理工大学 Nonlinear transmission moment model modeling method and gear wave disturbance moment suppression method
CN114321319B (en) * 2021-12-27 2024-07-16 北京航空航天大学杭州创新研究院 Harmonic reducer output moment strong disturbance rejection control method based on phase optimization
CN114415521B (en) * 2022-03-25 2022-07-05 北京航空航天大学 An anti-interference control method of a frame system driven by a harmonic reducer
CN115694286B (en) * 2022-10-19 2024-10-01 南京航空航天大学 Bearing-free permanent magnet motor radial displacement pulsation suppression method
CN115566937B (en) * 2022-11-11 2023-02-28 天津飞旋科技股份有限公司 Device and method for measuring position of rotor of bearingless magnetic suspension motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412484A (en) * 2013-07-18 2013-11-27 北京控制工程研究所 Moment control gyro frame disturbance moment restraining method
CN104052363A (en) * 2013-03-15 2014-09-17 德克萨斯仪器股份有限公司 Automated Motor Control
CN104166372A (en) * 2014-07-31 2014-11-26 西安交通大学苏州研究院 Anti-disturbance controller with double position loop feedback for feeding system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052363A (en) * 2013-03-15 2014-09-17 德克萨斯仪器股份有限公司 Automated Motor Control
CN103412484A (en) * 2013-07-18 2013-11-27 北京控制工程研究所 Moment control gyro frame disturbance moment restraining method
CN104166372A (en) * 2014-07-31 2014-11-26 西安交通大学苏州研究院 Anti-disturbance controller with double position loop feedback for feeding system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Precise Control for Gimbal System of Double Gimbal Control Moment Gyro Based on Cascade Extended State Observer;Haitao Li et al.;《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》;20170630;第64卷(第6期);第4653-4661页 *
基于扩张状态观测器的DGMSCMG框架伺服系统振动抑制方法;李海涛 等;《航空学报》;20100630;第31卷(第6期);第1213-1219页 *

Also Published As

Publication number Publication date
CN107992110A (en) 2018-05-04

Similar Documents

Publication Publication Date Title
CN107992110B (en) Magnetic suspension control moment gyro frame angular rate servo system based on harmonic reducer
CN101763038B (en) Method for controlling structural modal vibration of dual-frame magnetic levitation control moment gyroscope
CN110518846B (en) Inertia identification-based active disturbance rejection sliding mode speed control method for multi-motor servo system
CN102506860B (en) Inertial stabilization device based on acceleration feedback and feedforward and control method thereof
CN108319148B (en) A low-speed and high-precision control method for controlling torque gyro frame servo system
CN101709975B (en) Estimation and compensation method for unbalanced moment of aerial remote sensing inertially stabilized platform
CN100391793C (en) A Servo Control System of Magnetic Suspension Control Moment Gyro Frame with Accurate Friction Compensation
CN109873586B (en) A method and system for mechanical parameter identification of motor based on high-order sliding mode observer
CN108762096A (en) A kind of control-moment gyro frame system Disturbance Rejection method cascading extended state observer based on Discrete Nonlinear
CN103529858A (en) Position closed-loop system-based minimum phase difference tracking method
CN105373143B (en) Large astronomical telescope high-precision control system and method for inhibiting wind load disturbance
CN107612445B (en) Control method of follow-up speed regulation system with load acceleration feedback
CN108279571B (en) A Model Parameter Identification Method for a Limited Rotation-Angle Electromechanical Servo System
CN112859942B (en) High-precision position identification method for gyro frame servo system
CN102323825B (en) A Torque Compensation Control Method of DGMSCMG System During Spacecraft Maneuvering
CN108646571A (en) A kind of gyro frame servo system high precision position discrimination method
CN101145027A (en) A high-precision magnetic levitation control moment gyro frame servo control system
CN111572818A (en) A magnetic suspension control torque gyro frame rate servo system and control method
CN101571705A (en) Position servo system and method
CN108681239B (en) Decoupling servo control loop system and method for two-axis integrated gyro accelerometer
CN103532442B (en) Permanent-magnetic electric machine with bearing suspension system optimizes the building method of automatic disturbance rejection controller
CN111947959A (en) An electrical inertia simulation method
JP2000299970A (en) Actuator device
CN112859613B (en) High-precision control method of control moment gyro frame system based on harmonic reducer
CN108828952A (en) Steering engine Electric Loading System intelligent control method based on CMAC Neural Network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant