CN107985440A - The control system and its control method of intelligent vehicle, intelligent semitrailer - Google Patents
The control system and its control method of intelligent vehicle, intelligent semitrailer Download PDFInfo
- Publication number
- CN107985440A CN107985440A CN201711440153.8A CN201711440153A CN107985440A CN 107985440 A CN107985440 A CN 107985440A CN 201711440153 A CN201711440153 A CN 201711440153A CN 107985440 A CN107985440 A CN 107985440A
- Authority
- CN
- China
- Prior art keywords
- semi
- trailer body
- trailer
- information
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D59/00—Trailers with driven ground wheels or the like
- B62D59/04—Trailers with driven ground wheels or the like driven from propulsion unit on trailer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D53/00—Tractor-trailer combinations; Road trains
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D53/00—Tractor-trailer combinations; Road trains
- B62D53/04—Tractor-trailer combinations; Road trains comprising a vehicle carrying an essential part of the other vehicle's load by having supporting means for the front or rear part of the other vehicle
- B62D53/06—Semi-trailers
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Regulating Braking Force (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
本发明公开一种智能半挂车的控制系统,包括:分布式地与所述半挂车本体的至少一个车轮驱动轴上的一一对应设置地机电能量转换模块,具有驱动状态和发电状态两种工作模式;储能模块,与机电能量转换模块连接;传感器模块,用于侦测半挂车本体的运行参数信息;控制模块,根据传感器模块获得的半挂车本体的运行参数信息,控制储能模块的充电与放电状态之间的切换,以及控制机电能量转换模块对应的在驱动状态与发电状态之间的切换。本发明还提供一种智能车辆以及智能半挂车的控制系统的控制方法。本发明通过提前预知智能半挂车的行驶状态及路况环境信息,实现能量优化分配,有效提高智能半挂车能量利用率。
The invention discloses a control system for an intelligent semi-trailer, which includes: an electromechanical energy conversion module arranged in a one-to-one correspondence with at least one wheel drive shaft of the semi-trailer body in a distributed manner, and has two working states: driving state and power generation state mode; the energy storage module is connected with the electromechanical energy conversion module; the sensor module is used to detect the operating parameter information of the semi-trailer body; the control module controls the charging of the energy storage module according to the operating parameter information of the semi-trailer body obtained by the sensor module Switching between the discharging state and controlling the switching between the driving state and the generating state corresponding to the electromechanical energy conversion module. The invention also provides a control method for the control system of the intelligent vehicle and the intelligent semi-trailer. The present invention realizes energy optimization distribution by predicting the driving state and road condition environment information of the intelligent semi-trailer in advance, and effectively improves the energy utilization rate of the intelligent semi-trailer.
Description
技术领域technical field
本发明涉及智能车辆领域,尤其涉及智能车辆、智能半挂车的控制系统及其控制方法。The invention relates to the field of intelligent vehicles, in particular to a control system and a control method for an intelligent vehicle and an intelligent semi-trailer.
背景技术Background technique
目前,在交通运输中,为了增强牵引车头的作业能力,通常会采用半挂车本体结构,即在运输过程中,将半挂车本体挂接在牵引车头上,利用半挂车本体的货箱完成货物运输。At present, in transportation, in order to enhance the working ability of the tractor head, a semi-trailer body structure is usually used, that is, during the transportation process, the semi-trailer body is mounted on the tractor head, and the cargo box of the semi-trailer body is used to complete the cargo transportation. .
然而,在现有技术中,由于半挂式大型货车的半挂车本体部分没有动力,并且通常无法对货运车的半挂车本体部分实现智能控制半挂车本体以及感应监测车辆运行的外部环境。在行驶过程中,货运车遇到急转弯、爬坡等情况时,货运车容易因为半挂车本体较长,刹车减速不易控制,容易出现翻车、追尾或者占用其他车辆的车道,造成交通事故的问题;同时,在现有技术中,货运车无法将运行过程中产生的机械能、动能等形式的能量有效地转换成电能,降低了车辆的性能和能量利用率。However, in the prior art, since the semi-trailer body part of a large semi-trailer truck has no power, it is usually impossible to intelligently control the semi-trailer body part of the truck body and sense the external environment in which the vehicle operates. During the driving process, when the freight vehicle encounters sharp turns, climbing, etc., the freight vehicle is prone to rollover, rear-end collision or occupying the lane of other vehicles, resulting in traffic accidents At the same time, in the prior art, the freight car cannot effectively convert the energy in the form of mechanical energy and kinetic energy generated during operation into electric energy, which reduces the performance and energy utilization of the vehicle.
发明内容Contents of the invention
本发明的主要目的是提供一种智能车辆、智能半挂车的控制系统及其控制方法,旨在解决优化智能半挂车的结构以及能量利用率的问题。The main purpose of the present invention is to provide an intelligent vehicle, a control system of an intelligent semi-trailer and a control method thereof, aiming at solving the problems of optimizing the structure and energy utilization rate of the intelligent semi-trailer.
为实现上述目的,本发明一种智能半挂车的控制系统,所述智能半挂车包括半挂车本体,设置于半挂车本上的至少一个车轮以及与所述车轮一一对应的车轮驱动轴,智能半挂车的控制系统包括:分布式地与所述半挂车本体的车轮驱动轴一一对应设置地至少一个机电能量转换模块,其中,所述机电能量转换模块在驱动状态下对所述车轮驱动轴进行驱动输出,所述机电能量转换模块在发电状态下,受所述车轮驱动轴的带动,将车轮驱动轴的机械能转换为电能;储能模块,与所述机电能量转换模块电连接,用于向所述机电能量转换模块输出电能以及接收所述机电能量转换模块在发电状态下输出的电能并储存;传感器模块,用于侦测所述半挂车本体的运行参数信息;控制模块,与所述传感器模块、储能模块以及所述机电能量转换模块连接,用于根据所述传感器模块获得的所述半挂车本体的运行参数信息,发送相应的指令至所述机电能量转换模块,以控制所述储能模块的充电与放电状态之间的切换以及控制所述机电能量转换模块对应的在驱动状态与发电状态之间的切换。In order to achieve the above object, the present invention provides a control system for an intelligent semi-trailer. The intelligent semi-trailer includes a semi-trailer body, at least one wheel arranged on the semi-trailer book and a wheel drive shaft corresponding to the wheels one by one. The control system of the semi-trailer includes: at least one electromechanical energy conversion module arranged in a distributed one-to-one correspondence with the wheel drive shaft of the semi-trailer body, wherein the electromechanical energy conversion module controls the wheel drive shaft in the driving state. For driving output, the electromechanical energy conversion module is driven by the wheel drive shaft to convert the mechanical energy of the wheel drive shaft into electrical energy in the power generation state; the energy storage module is electrically connected to the electromechanical energy conversion module for Output electric energy to the electromechanical energy conversion module and receive and store the electric energy output by the electromechanical energy conversion module in the power generation state; the sensor module is used to detect the operating parameter information of the semi-trailer body; the control module is connected with the The sensor module, the energy storage module and the electromechanical energy conversion module are connected, and are used to send corresponding instructions to the electromechanical energy conversion module according to the operating parameter information of the semi-trailer body obtained by the sensor module, so as to control the Switching between the charging and discharging states of the energy storage module and controlling the corresponding switching between the driving state and the generating state of the electromechanical energy conversion module.
优选地,所述传感器模块包括以下传感器中的至少一个:环境感知传感器、刹车片温度传感器、高度仪、气压计、车载雷达测速仪、距离传感器、加速度传感器、GPS定位器、车轮转速传感器以及制动踏板行程传感器。Preferably, the sensor module includes at least one of the following sensors: environmental perception sensor, brake pad temperature sensor, altimeter, barometer, vehicle radar speedometer, distance sensor, acceleration sensor, GPS locator, wheel speed sensor and brake Pedal travel sensor.
本发明还提供一种用于上述任一项所述智能半挂车的控制系统的控制方法,包括步骤:获取所述传感器模块获得的所述半挂车本体的运行参数信息;根据所述传感器模块获得的所述半挂车本体的运行参数信息,判断所述半挂车本体状态是处于预设的能量回收状态或者是预设的驱动状态;在所述半挂车本体处于预设的能量回收状态时,所述控制模块控制储能模块切换为充电状态,以及控制所述机电能量转换模块切换为发电状态;在所述半挂车本体处于预设的驱动状态时,所述控制模块控制储能模块切换为放电状态,以及控制所述机电能量转换模块切换为驱动状态。The present invention also provides a control method for the control system of the intelligent semi-trailer described in any one of the above, including the steps of: obtaining the operating parameter information of the semi-trailer body obtained by the sensor module; According to the operating parameter information of the semi-trailer body, it is judged whether the state of the semi-trailer body is in the preset energy recovery state or the preset driving state; when the semi-trailer body is in the preset energy recovery state, the The control module controls the energy storage module to switch to the charging state, and controls the electromechanical energy conversion module to switch to the power generation state; when the semi-trailer body is in the preset driving state, the control module controls the energy storage module to switch to the discharging state. state, and controlling the electromechanical energy conversion module to switch to a driving state.
优选地,所述半挂车本体的运行参数信息包括以下参数信息中的至少一个:所述半挂车本体与预设道路参照物之间的距离信息、所述半挂车本体与前车或者后车之间的实时距离信息、所述半挂车本体的行驶车速信息、当前道路弯曲度信息、当前道路坡度信息、当前车辆高度信息、所述半挂车本体的加速度信息、公路限速标志信息、刹车片的温度信息、以及交通灯的颜色信息;Preferably, the operating parameter information of the semi-trailer body includes at least one of the following parameter information: distance information between the semi-trailer body and a preset road reference object, distance information between the semi-trailer body and the vehicle in front or behind. The real-time distance information between the semi-trailer body, the driving speed information of the semi-trailer body, the current road curvature information, the current road slope information, the current vehicle height information, the acceleration information of the semi-trailer body, the highway speed limit sign information, and the brake pad information. Temperature information, and color information of traffic lights;
所述预设的能量回收状态包括以下条件中的至少一种:刹车状态,当前道路坡度信息为下坡、所述道路弯曲度大于预设的曲率、所述半挂车本体的当前行驶车速大于预设的车速或者大于公路限速标志的限定车速值、所述半挂车本体与道路参照物之间的距离小于预设的距离值、所述半挂车本体与前车或者后车之间的距离小于预设的距离值;所述刹车温度大于预设的温度值、所述交通灯的颜色信息为红色且所述半挂车本体与所述交通灯的距离小于预设的距离值;The preset energy recovery state includes at least one of the following conditions: braking state, the current road gradient information is downhill, the curvature of the road is greater than the preset curvature, and the current driving speed of the semi-trailer body is greater than the preset The set vehicle speed is greater than the limited speed value of the road speed limit sign, the distance between the semi-trailer body and the road reference object is less than the preset distance value, and the distance between the semi-trailer body and the front or rear vehicle is less than A preset distance value; the brake temperature is greater than the preset temperature value, the color information of the traffic light is red, and the distance between the semi-trailer body and the traffic light is smaller than the preset distance value;
所述预设的驱动状态包括以下条件中的至少一种:所述半挂车本体为起步状态,当前道路坡度信息为上坡,所述半挂车本体的加速度为正值,所述道路弯曲度小于预设的曲率、所述半挂车本体的当前行驶车速小于预设的车速或者小于公路限速标志的限定车速值、所述半挂车本体与道路参照物之间的距离大于预设的距离值、所述半挂车本体与前车或者后车之间的距离大于预设的距离值;所述交通灯的颜色信息为绿色且所述半挂车本体与所述交通灯的距离大于预设的距离值。The preset driving state includes at least one of the following conditions: the semi-trailer body is in a starting state, the current road gradient information is uphill, the acceleration of the semi-trailer body is a positive value, and the road curvature is less than The preset curvature, the current driving speed of the semi-trailer body is less than the preset speed or the limited speed value of the road speed limit sign, the distance between the semi-trailer body and the road reference object is greater than the preset distance value, The distance between the semi-trailer body and the vehicle in front or behind is greater than a preset distance value; the color information of the traffic light is green and the distance between the semi-trailer body and the traffic light is greater than a preset distance value .
优选地,还包括步骤:根据所述传感器模块获得的所述半挂车本体的位置信息以及当前道路坡度信息,或者根据获得的所述挂车车体的当前车辆高度信息,判断所述半挂车本体是否处于上坡状态;在所述半挂车本体处于上坡状态时,根据所述当前道路坡度信息以及当前车辆高度信息计算所述半挂车本体上坡时的势能变化是否大于预设阈值;在所述半挂车本体上坡时的势能变化大于预设阈值时,确定所述储能模块的放电比例,为所述半挂车本体后续在下坡时所述储能模块的充电做准备。Preferably, it further includes the step of: judging whether the semi-trailer body is In the uphill state; when the semi-trailer body is in the uphill state, calculate whether the potential energy change of the semi-trailer body when going uphill is greater than a preset threshold according to the current road gradient information and current vehicle height information; When the potential energy change of the semi-trailer body when going uphill is greater than the preset threshold, the discharge ratio of the energy storage module is determined to prepare for the subsequent charging of the energy storage module when the semi-trailer body is going downhill.
优选地,还包括步骤:根据所述传感器模块获得的所述半挂车本体的位置信息以及当前道路坡度信息,或者根据获得的所述挂车车体的当前车辆高度信息,判断所述半挂车本体是否处于下坡状态;在所述半挂车本体处于下坡状态时,获取所述传感器模块获得的所述当前道路坡度信息和所述刹车片的温度信息,以及所述储能模块的剩余电量,确定半挂车本体的原车刹车方式与所述机电能量转换模块切换至充电状态的减速方式之间交替使用的间隔。Preferably, it further includes the step of: judging whether the semi-trailer body is is in a downhill state; when the semi-trailer body is in a downhill state, obtain the current road gradient information obtained by the sensor module and the temperature information of the brake pads, as well as the remaining power of the energy storage module, and determine The interval used alternately between the original vehicle braking mode of the semi-trailer body and the deceleration mode in which the electromechanical energy conversion module switches to the charging state.
优选地,所述根据所述传感器模块获得的所述半挂车本体的位置信息、当前道路坡度信息以及当前车辆高度信息,判断所述半挂车本体是否处于下坡状态的步骤之后,还包括:在所述半挂车本体处于下坡状态时,判断所述刹车片的温度是否大于预设温度以及储能模块的剩余电量是否小于预设电量;在所述刹车片的温度大于预设温度以及储能模块的剩余电量小于预设电量时,控制所述机电能量转换模块切换为充电状态;在所述刹车片的温度小于预设温度以及所述储能模块的剩余电量大于预设定量,控制所述半挂车本体启用原车刹车。Preferably, after the step of judging whether the semi-trailer body is in a downhill state according to the position information of the semi-trailer body obtained by the sensor module, the current road gradient information and the current vehicle height information, it further includes: When the semi-trailer body is in a downhill state, it is judged whether the temperature of the brake pad is greater than the preset temperature and whether the remaining power of the energy storage module is less than the preset power; When the remaining power of the module is less than the preset power, control the electromechanical energy conversion module to switch to the charging state; when the temperature of the brake pad is lower than the preset temperature and the remaining power of the energy storage module is greater than the preset amount, control the The semi-trailer body activates the original vehicle brake.
优选地,所述半挂车上还设有通信模块,用于与外部监控中心或者周围车辆之间通信连接,所述控制方法还包括:根据通信模块获取到的路况信息以及所述传感器模块获取的所述半挂车车体的运行参数信息,对所述半挂车本体在接下来的预设时间内的行驶状态以及路况环境信息进行预测,并根据所述预测结果对所述半挂车本体在接下来的预设时间内的能量回收状态或者预设的驱动状态进行控制。Preferably, the semi-trailer is also provided with a communication module for communicating with an external monitoring center or surrounding vehicles, and the control method further includes: according to the road condition information obtained by the communication module and the information obtained by the sensor module The operating parameter information of the semi-trailer body predicts the driving state and road condition environment information of the semi-trailer body in the next preset time, and predicts the semi-trailer body in the next preset time according to the prediction result. Control the energy recovery state or the preset driving state within a preset time.
优选地,所述控制方法还包括:根据所述半挂车本体的当前行驶速度和质量,计算所述半挂车本体的当前动能;根据所述半挂车本体的动能以及预设的条件,确定所述机电能量转换模块处于发电状态时的发电功率;或者还包括步骤:根据所述传感器模块获得的当前道路弯曲度信息、和/或所述智能半挂车所对应的牵引车发送的方向盘的转动角度信息以及转向灯信息,确定所述半挂车车体的转弯方向与速度;根据确定的所述半挂车车体的转弯方向与速度,控制不同的所述车轮的车轮驱动轴对应的所述机电能量转换模块的驱动输出功率。Preferably, the control method further includes: calculating the current kinetic energy of the semi-trailer body according to the current driving speed and mass of the semi-trailer body; determining the The power generated by the electromechanical energy conversion module when it is in the power generation state; or it also includes the step of: according to the current road curvature information obtained by the sensor module, and/or the steering wheel rotation angle information sent by the tractor corresponding to the smart semi-trailer And turn signal information, determine the turning direction and speed of the semi-trailer body; according to the determined turning direction and speed of the semi-trailer body, control the electromechanical energy conversion corresponding to the wheel drive shaft of the different wheels The drive output power of the module.
本发明还提供一种智能车辆,包括牵引车头以及半挂车,所述半挂车包括车体以及如上述任一项所述的智能半挂车的控制系统。The present invention also provides an intelligent vehicle, which includes a tractor head and a semi-trailer, and the semi-trailer includes a vehicle body and the control system of the intelligent semi-trailer according to any one of the above.
在本发明提供的智能半挂车的控制系统和控制方法,简单易实行,可以根据所述传感器模块获取的半挂车本体的运行参数信息,控制所述机电能量模块在驱动状态和发电状态之间进行切换,以提高能量利用率,同时,还可以根据所述传感器模块提前预知智能半挂车的行驶状态。The control system and control method of the intelligent semi-trailer provided by the present invention are simple and easy to implement, and the electromechanical energy module can be controlled to perform between the driving state and the power generation state according to the operating parameter information of the semi-trailer body obtained by the sensor module. switch to improve the energy utilization rate, and at the same time, the driving state of the intelligent semi-trailer can also be predicted in advance according to the sensor module.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following briefly introduces the drawings that are required in the description of the embodiments or the prior art.
图1为本发明各个实施例中的一种智能半挂车的立体示意图;Fig. 1 is the three-dimensional schematic diagram of a kind of intelligent semi-trailer in each embodiment of the present invention;
图2本发明各个实施例中的一种智能半挂车的硬件模块结构示意图;A schematic diagram of the hardware module structure of a smart semi-trailer in various embodiments of the present invention in Fig. 2;
图3为本发明智能半挂车的控制方法第一实施例的流程图;Fig. 3 is the flow chart of the first embodiment of the control method of the intelligent semi-trailer of the present invention;
图4为本发明智能半挂车的控制方法第二实施例的流程图;Fig. 4 is the flow chart of the second embodiment of the control method of the intelligent semi-trailer of the present invention;
图5为本发明智能半挂车的控制方法第三实施例的流程图;Fig. 5 is the flowchart of the third embodiment of the control method of the intelligent semi-trailer of the present invention;
图6为本发明智能半挂车的控制方法第四实施例的流程图;Fig. 6 is the flowchart of the fourth embodiment of the control method of the intelligent semi-trailer of the present invention;
图7为本发明智能半挂车的控制方法第五实施例的流程图;Fig. 7 is the flowchart of the fifth embodiment of the control method of the intelligent semi-trailer of the present invention;
图8为本发明智能半挂车的控制方法第六实施例的流程图。Fig. 8 is a flow chart of the sixth embodiment of the control method of the intelligent semi-trailer of the present invention.
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization of the purpose of the present invention, functional characteristics and advantages will be further described in conjunction with the embodiments and with reference to the accompanying drawings.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them.
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。In addition, the technical solutions of the various embodiments of the present invention can be combined with each other, but it must be based on the realization of those skilled in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered as a combination of technical solutions. Does not exist, nor is it within the scope of protection required by the present invention.
请参考图1和图2,各个实施例中的一种智能半挂车100的硬件模块结构示意图,所述智能半挂车100包括半挂车本体10和车体20,设置于所述半挂车本体10包括多个车轮11,以及与所述车轮11一一对应的车轮驱动轴12。Please refer to Fig. 1 and Fig. 2, the hardware module structure schematic diagram of a kind of intelligent semi-trailer 100 in each embodiment, described intelligent semi-trailer 100 comprises semi-trailer body 10 and car body 20, is arranged on described semi-trailer body 10 and includes A plurality of wheels 11 and wheel drive shafts 12 corresponding to the wheels 11 one by one.
通常的,在使用时,所述智能半挂车100与牵引车头连接组成整个货运车车辆,其中,牵引车头提供动力,智能半挂车100做货物运载器具,在牵引车头的拉动下,所述智能半挂车100完成运输任务。Usually, when in use, the smart semi-trailer 100 is connected with the tractor head to form the entire freight vehicle, wherein the tractor head provides power, and the smart semi-trailer 100 is used as a cargo carrier. Under the pull of the tractor head, the smart semi-trailer The trailer 100 completes the transport task.
其中,所述智能半挂车100的控制系统包括:至少一个机电能量转换模块13,储能模块14,传感器模块15以及控制模块16;所述机电能量转换模块13分布式设置于所述智能半挂车100的车轮转动轴12上,所述储能模块14与所述机电能量转换模块13连接,所述控制模块16与所述传感器模块15、储能模块14以及所述机电能量转换模块13连接,所述控制模块16接收所述传感器模块15获得的所述智能半挂车的运行参数信息,并将产生的控制指令至所述机电能量转换模块13。Wherein, the control system of the intelligent semi-trailer 100 includes: at least one electromechanical energy conversion module 13, an energy storage module 14, a sensor module 15 and a control module 16; the electromechanical energy conversion module 13 is distributed in the intelligent semi-trailer 100 on the wheel rotation shaft 12, the energy storage module 14 is connected to the electromechanical energy conversion module 13, the control module 16 is connected to the sensor module 15, the energy storage module 14 and the electromechanical energy conversion module 13, The control module 16 receives the operating parameter information of the smart semi-trailer obtained by the sensor module 15 , and sends the generated control instructions to the electromechanical energy conversion module 13 .
具体的,所述至少一个机电能量转换模块13分布式地与所述半挂车本体10的至少一个车轮驱动轴12一一对应的设置,其中,所述机电能量转换模块13在驱动状态下对所述车轮驱动轴12进行驱动输出,所述机电能量转换模块13在发电状态下,受所述车轮驱动轴12的带动,将车轮驱动轴12的机械能转换为电能。需要说明的是,所述机电能量转换模块13可以是同时具有电动机功能和发电机功能的电机或电机组等,在此不作具体限制。Specifically, the at least one electromechanical energy conversion module 13 is set in a one-to-one correspondence with the at least one wheel drive shaft 12 of the semi-trailer body 10 in a distributed manner, wherein the electromechanical energy conversion module 13 is configured for all The wheel drive shaft 12 performs drive output, and the electromechanical energy conversion module 13 is driven by the wheel drive shaft 12 to convert the mechanical energy of the wheel drive shaft 12 into electrical energy in the power generation state. It should be noted that the electromechanical energy conversion module 13 may be a motor or a motor unit having functions of both a motor and a generator, and there is no specific limitation here.
具体的,所述机电能量转换模块13可以用于驱动输出,以驱动所述半挂车本体10的车轮驱动轴12带动所述车轮转动;或者接收所述车轮驱动轴12的转动输入,将转动形成的机械能转化成电能。所述机电能量转换模块13可以为一组或者多组,所述机电能量转换模块13中的电机单元可以为轮边电机或者轮毂电机。Specifically, the electromechanical energy conversion module 13 can be used for drive output to drive the wheel drive shaft 12 of the semi-trailer body 10 to drive the wheels to rotate; or receive the rotation input of the wheel drive shaft 12 to form the rotation mechanical energy into electrical energy. The electromechanical energy conversion modules 13 may be in one or more groups, and the motor units in the electromechanical energy conversion modules 13 may be in-wheel motors or in-wheel motors.
可以理解的是,所述机电能量转换模块13可以用于对所述车轮驱动轴12进行驱动,同时,所述智能半挂车100还接受所述牵引车头的驱动进行前进或者后退。It can be understood that the electromechanical energy conversion module 13 can be used to drive the wheel drive shaft 12, and at the same time, the smart semi-trailer 100 can also be driven forward or backward by the traction head.
所述储能模块14,与所述机电能量转换模块13电连接,用于向所述机电能量转换模块13输出电能以及接收所述机电能量转换模块13在发电状态下的电能并储存。The energy storage module 14 is electrically connected with the electromechanical energy conversion module 13, and is used for outputting electric energy to the electromechanical energy conversion module 13 and receiving and storing the electric energy of the electromechanical energy conversion module 13 in a generating state.
可以理解的是,所述储能模块14与所述机电能量转换模块13相连,所述储能模块14可以在充电状态和放电状态之间进行切换。具体的,所述储能模块14根据所述机电能量转换模块13的运行状态做出相应的调整,比如:所述机电能量转换模块13进行驱动输出时,所述储能模块14切换为放电状态,以提供驱动力;在所述机电能量转换模块13受所述车轮驱动轴12的驱动,将车轮驱动轴12的机械能转换为电能,此时,所述储能模块14切换为充电状态,以存储所述机电能量转换模块13产生的电能。It can be understood that the energy storage module 14 is connected to the electromechanical energy conversion module 13, and the energy storage module 14 can be switched between a charging state and a discharging state. Specifically, the energy storage module 14 makes corresponding adjustments according to the operating state of the electromechanical energy conversion module 13, for example: when the electromechanical energy conversion module 13 performs drive output, the energy storage module 14 switches to the discharge state , to provide driving force; when the electromechanical energy conversion module 13 is driven by the wheel drive shaft 12 and converts the mechanical energy of the wheel drive shaft 12 into electrical energy, at this time, the energy storage module 14 is switched to a charging state to The electrical energy generated by the electromechanical energy conversion module 13 is stored.
其中,所述储能模块14可以包括至少一个的能量型超级电容或功率型电池。所述储能模块14的储能容量可以根据所述半挂车本体10的要求进行选择。所述储能模块14还包括有与所述能量型超级电容或功率型电池连接的电源管理电路,所述电源管理电路接受所述控制模块16的控制,以控制所述储能模块14在充电状态和发电状态之间的切换。Wherein, the energy storage module 14 may include at least one energy type supercapacitor or power type battery. The energy storage capacity of the energy storage module 14 can be selected according to the requirements of the semi-trailer body 10 . The energy storage module 14 also includes a power management circuit connected to the energy type supercapacitor or power battery, and the power management circuit is controlled by the control module 16 to control the energy storage module 14 when charging Toggle between state and generating state.
进一步地,在一实施例中,还可以在所述半挂车本体10上安装电量监测模块,所述电量监测模块与所述控制模块16以及所述储能模块14相连,用于监测所述储能模块14所存储的电量以及剩余电量,并将所述储能模块14所存储的电量以及剩余电量发送至控制模块16。所述控制模块16可以根据所述储能模块14所存储的电量以及剩余电量,来控制储能模块14的充放电程度以及充放电状态,或者供用户实时获取所述储能模块14的当前电量和剩余电量。Further, in an embodiment, a power monitoring module can also be installed on the semi-trailer body 10, and the power monitoring module is connected with the control module 16 and the energy storage module 14 for monitoring the The power stored in the energy storage module 14 and the remaining power, and the power stored in the energy storage module 14 and the remaining power are sent to the control module 16 . The control module 16 can control the charging and discharging degree and the charging and discharging state of the energy storage module 14 according to the electric quantity and remaining electric quantity stored in the energy storage module 14, or provide the user with real-time acquisition of the current electric quantity of the energy storage module 14 and remaining power.
传感器模块15,用于侦测所述半挂车本体10的运行参数信息;可以理解的是,在本实施例中,所述传感器模块15可以安装于所述半挂车本体10上,所述传感器模块15可以实时获取所述半挂车本体10行驶时的周围环境、驾驶员本身的状态以及车辆本身的运行参数信息。所述传感器模块15包括多个传感器,每个传感器安装于所述半挂车本体10的对应位置上,用于侦测不同的参数;例如,刹车片温度传感器安装于半挂车本体10的刹车片上,以实时侦测刹车片的温度;车轮转速传感器安装于半挂车本体10的车轮上,用于测量半挂车本体10车轮转速。在其他实施例中,所述传感器模块15还可以安装于牵引车头上,或是利用智能驾驶车辆上原有的传感器。The sensor module 15 is used to detect the operating parameter information of the semi-trailer body 10; it can be understood that, in this embodiment, the sensor module 15 can be installed on the semi-trailer body 10, and the sensor module 15 can acquire the surrounding environment when the semi-trailer body 10 is running, the state of the driver itself, and the operating parameter information of the vehicle itself in real time. Described sensor module 15 comprises a plurality of sensors, and each sensor is installed on the corresponding position of described semi-trailer body 10, is used for detecting different parameters; For example, brake pad temperature sensor is installed on the brake pad of semi-trailer body 10, To detect the temperature of the brake pads in real time; the wheel speed sensor is installed on the wheel of the semi-trailer body 10 for measuring the wheel speed of the semi-trailer body 10 . In other embodiments, the sensor module 15 can also be installed on the tractor head, or use the existing sensors on the intelligent driving vehicle.
具体的,所述传感器模块15将所获取的运行参数信息输出至所述控制模块16,以供所述控制模块16进行分析处理。根据所述运行参数信息,提前预知所述半挂车本体10的运行环境和状态。Specifically, the sensor module 15 outputs the acquired operating parameter information to the control module 16 for analysis and processing by the control module 16 . According to the operating parameter information, the operating environment and state of the semi-trailer body 10 are predicted in advance.
控制模块16,与所述传感器模块15、储能模块14以及所述机电能量转换模块13连接,用于根据所述传感器模块15获得的所述半挂车本体10的运行参数信息,发送相应的指令至所述机电能量转换模块13和所述储能模块14,以控制所述储能模块14的充电与放电状态之间的切换,以及控制所述机电能量转换模块13对应的在驱动状态与发电状态之间的切换。The control module 16 is connected with the sensor module 15, the energy storage module 14 and the electromechanical energy conversion module 13, and is used to send corresponding instructions according to the operating parameter information of the semi-trailer body 10 obtained by the sensor module 15 To the electromechanical energy conversion module 13 and the energy storage module 14, to control the switching between the charging and discharging states of the energy storage module 14, and to control the corresponding driving state and power generation of the electromechanical energy conversion module 13 switch between states.
具体的,在本实施例中,所述控制模块16设置于半挂车本体10上,所述控制模块16接收传感器模块15获取的半挂车本体10的运行参数信息,并根据所述运行参数信息,将所述半挂车本体10的运行状态确定为驱动状态或者能量回收状态,再输出相应的控制指令,控制所述机电能量转换模块13切换为相应的运行状态,同时,所述储能模块14切换为与所述机电能量转换模块13对应的运行状态。在其他实施例中,所述控制模块16还可以设置于所述牵引车头上,或者直接利用所述牵引车头的主控模块。Specifically, in this embodiment, the control module 16 is arranged on the semi-trailer body 10, the control module 16 receives the operating parameter information of the semi-trailer body 10 acquired by the sensor module 15, and according to the operating parameter information, Determine the operating state of the semi-trailer body 10 as the driving state or the energy recovery state, and then output the corresponding control command to control the electromechanical energy conversion module 13 to switch to the corresponding operating state, and at the same time, the energy storage module 14 switches to the corresponding operating state. is the operating state corresponding to the electromechanical energy conversion module 13 . In other embodiments, the control module 16 can also be set on the tractor head, or directly use the main control module of the tractor head.
比如,在所述传感器模块15监测到所述半挂车本体10处于刹车状态时,将该运行信息上传至所述控制模块16,且所述控制模块16根据所述电量监测模块监测到所述储能模块14电能未满,则可以确定所述半挂车本体10处于能量回收状态,并输出相应的控制指令至所述机电能量转换模块13和储能模块14,所述机电能量转换模块13切换为发电状态,并接收车轮转动轴的驱动,将所述半挂车本体10产生的机械能转换为电能,进而所述储能模块14切换为充电状态接收并存储该电能;当所述传感器模块15监测到所述半挂车本体10处于刹车状态时,但是述控制模块16根据所述电量监测模块监测到所述储能模块14电能已满,则所述半挂车本体10不能处于能量回收状态。在本实施例中,所述控制模块16根据传感器模块15获取的所述半挂车本体10的运行参数信息,实现了对所述半挂车本体10的能量进行优化分配。For example, when the sensor module 15 detects that the semi-trailer body 10 is in a braking state, the running information is uploaded to the control module 16, and the control module 16 detects that the stored energy is detected by the power monitoring module. If the electric energy of the energy module 14 is not full, it can be determined that the semi-trailer body 10 is in the energy recovery state, and output corresponding control instructions to the electromechanical energy conversion module 13 and the energy storage module 14, and the electromechanical energy conversion module 13 is switched to power generation state, and receive the drive of the wheel rotation shaft, convert the mechanical energy generated by the semi-trailer body 10 into electric energy, and then the energy storage module 14 switches to the charging state to receive and store the electric energy; when the sensor module 15 detects When the semi-trailer body 10 is in the braking state, but the control module 16 detects that the power of the energy storage module 14 is full according to the power monitoring module, the semi-trailer body 10 cannot be in the energy recovery state. In this embodiment, the control module 16 implements optimal distribution of energy of the semi-trailer body 10 according to the operating parameter information of the semi-trailer body 10 acquired by the sensor module 15 .
进一步地,所述半挂车本体10的控制系统还可以包括与外部监控中心或周围车辆通信连接的通信模块(图未示出),用于将所述半挂车本体10的运行状态上传至所述外部监控中心,以便所述外部监控中心实时了解所述半挂车本体10的当前运行状况,减少交通事故。Further, the control system of the semi-trailer body 10 may also include a communication module (not shown) that communicates with an external monitoring center or surrounding vehicles, for uploading the operating status of the semi-trailer body 10 to the An external monitoring center, so that the external monitoring center can understand the current operating conditions of the semi-trailer body 10 in real time, so as to reduce traffic accidents.
在本实施例中,通过在半挂车本体10上设置控制模块16、机电能量转换模块13以及传感器模块15,可以有效地回收所述半挂车本体10的能量,进而提高能量利用率和安全性,使所述半挂车本体10行驶更加平稳,同时,还可以根据所述传感器模块15获取的运行参数信息可以及时预测所述半挂车本体10的运行状态,以对所述半挂车本体10及时作出调整。In this embodiment, by setting the control module 16, the electromechanical energy conversion module 13 and the sensor module 15 on the semi-trailer body 10, the energy of the semi-trailer body 10 can be effectively recovered, thereby improving energy utilization and safety. The semi-trailer body 10 can run more smoothly, and at the same time, the operating state of the semi-trailer body 10 can be predicted in time according to the operating parameter information obtained by the sensor module 15, so as to make timely adjustments to the semi-trailer body 10 .
所述传感器模块15包括以下传感器中的至少一个:环境感知传感器、刹车片温度传感器、高度仪、气压计、车载雷达测速仪、距离传感器、加速度传感器、GPS定位器、车轮转速传感器、以及制动踏板行程传感器。在本实施例中,所述传感器模块15可以包括多种传感器以获取所述半挂车本体10在运行状态时的所有运行参数。The sensor module 15 includes at least one of the following sensors: environmental perception sensor, brake pad temperature sensor, altimeter, barometer, vehicle radar speedometer, distance sensor, acceleration sensor, GPS locator, wheel speed sensor, and brake Pedal travel sensor. In this embodiment, the sensor module 15 may include various sensors to obtain all operating parameters of the semi-trailer body 10 in an operating state.
其中,所述环境感知传感器是对所述半挂车本体10的周边环境进行数据采集,获取道路的路况信息例如:道路的弯曲度、坡度、公路限速标志、交通灯的颜色变化等信息,以及所述半挂车本体10与周围障碍物的位置信息以及所述半挂车本体10与周围车辆等障碍物的距离、速度等信息,其中,所述环境感知传感器主要有机器视觉、雷达传感器、超声波传感器、红外线传感器等;Wherein, the environmental perception sensor is to collect data on the surrounding environment of the semi-trailer body 10, and obtain road condition information such as: road curvature, slope, road speed limit signs, color changes of traffic lights and other information, and The position information of the semi-trailer body 10 and surrounding obstacles, and the distance and speed between the semi-trailer body 10 and surrounding vehicles and other obstacles, wherein the environmental perception sensors mainly include machine vision, radar sensors, and ultrasonic sensors. , infrared sensor, etc.;
所述刹车片温度传感器用于侦测所述半挂车本体10进入刹车状态时刹车片的温度;所述高度仪可以用于测量车辆水平高度等;所述气压计可以用于测量大气压强,以确定所述半挂车本体10当前所在位置的海拔高度;所述车载雷达测速仪可以用于测定所述半挂车本体10的行驶速度;所述距离传感器可以用于检测所述半挂车本体10与参考物体之间的距离,其中,所述距离传感器可以光距离传感器、超声波距离传感器等;所述加速度传感器用于测量所述半挂车本体10的加速度,以了解半挂车本体10的当前运动状态;所述GPS定位器可以用于实时定位所述半挂车本体10的地理位置、运动轨迹,其中,所述GPS定位器一般内置了GPS模块和移动通信模块,以将所述半挂车本体10的当前位置信息上传至服务器等;所述车轮转速传感器可以用于测量半挂车本体10车轮转速;所述制动踏板行程传感器可以用于侦测半挂车本体10的刹车片是否被使用,以及制动踏板的踩踏时间和踩踏的行程,从而来计算获取所述刹车片的状态。The brake pad temperature sensor is used to detect the temperature of the brake pad when the semi-trailer body 10 enters the braking state; the altimeter can be used to measure the level of the vehicle; the barometer can be used to measure the atmospheric pressure to Determine the altitude of the current location of the semi-trailer body 10; the vehicle radar speedometer can be used to measure the running speed of the semi-trailer body 10; the distance sensor can be used to detect the distance between the semi-trailer body 10 and the reference The distance between objects, wherein the distance sensor can be an optical distance sensor, an ultrasonic distance sensor, etc.; the acceleration sensor is used to measure the acceleration of the semi-trailer body 10 to understand the current state of motion of the semi-trailer body 10; The GPS locator can be used to locate the geographic location and motion track of the semi-trailer body 10 in real time, wherein, the GPS locator generally has a built-in GPS module and a mobile communication module to obtain the current position of the semi-trailer body 10 The information is uploaded to the server etc.; the wheel speed sensor can be used to measure the wheel speed of the semi-trailer body 10; the brake pedal stroke sensor can be used to detect whether the brake pads of the semi-trailer body 10 are used, and the The stepping time and the stepping distance are used to calculate and acquire the state of the brake pads.
可以理解的是,以上各种具体传感器可以单独使用也可以组合使用,所述环境感知传感器中部分的传感器可以实现相同的功能的前提下,可以不用采用单独的传感器来实现对同一参数的获取,在此不作具体限制。It can be understood that the above various specific sensors can be used alone or in combination. Under the premise that some of the sensors in the environment sensing sensor can achieve the same function, it is not necessary to use a separate sensor to achieve the acquisition of the same parameter. No specific limitation is made here.
进一步地,所述半挂车本体10的至少一个车轮驱动轴12上对应设有一个所述机电能量转换模块13,其中,所述半挂车本体10还包括与所述机电转换模块一一对应设置的减速器。Further, at least one wheel drive shaft 12 of the semi-trailer body 10 is correspondingly provided with an electromechanical energy conversion module 13, wherein the semi-trailer body 10 also includes a one-to-one corresponding arrangement with the electromechanical conversion modules. reducer.
所述半挂车本体10包括至少一个车轮转动轴,其中,至少一个所述车轮转动轴12上装有所述机电能量转换模块13和减速器(图未示出),其中,所述减速器与所述机电能量转换模块13可以单独设置,也可以集成在一起。在使用过程中,所述减速器与所述机电能量转换模块13相配合。行驶过程中,所述机电能量转换模块13处于发电状态时,对所述半挂车本体10起减速作用,同时,将减速过程中产生的机械能转换为电能。The semi-trailer body 10 includes at least one wheel rotation shaft, wherein at least one of the wheel rotation shafts 12 is equipped with the electromechanical energy conversion module 13 and a speed reducer (not shown), wherein the speed reducer and the The above electromechanical energy conversion modules 13 can be set separately or integrated together. During use, the speed reducer cooperates with the electromechanical energy conversion module 13 . During driving, when the electromechanical energy conversion module 13 is in the power generation state, it decelerates the semi-trailer body 10 and at the same time converts the mechanical energy generated during the deceleration into electrical energy.
本领域技术人员可以理解,图1和图2中所示出的智能半挂车100的控制系统还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。Those skilled in the art can understand that the control system of the intelligent semi-trailer 100 shown in Fig. 1 and Fig. 2 may also include more or less components than those shown in the illustration, or combine certain components, or arrange different components.
基于上述硬件结构,提出本发明中的智能半挂车100的控制方法的各个实施例。Based on the above hardware structure, various embodiments of the control method of the intelligent semi-trailer 100 in the present invention are proposed.
请参照图3,为本发明提供的第一实施例中的用于智能半挂车100的控制方法的方法流程图200,所述控制方法包括如下步骤:Please refer to FIG. 3 , which is a flow chart 200 of the control method for the intelligent semi-trailer 100 in the first embodiment provided by the present invention, and the control method includes the following steps:
步骤S10,获取所述传感器模块15获得的所述半挂车本体10的运行参数信息;Step S10, obtaining the operating parameter information of the semi-trailer body 10 obtained by the sensor module 15;
在行驶过程中,安装于所述半挂车本体10上或者安装于牵引车头上的传感器模块15实时感应运行参数信息,并将所述运行参数信息传输至控制模块16,以及时调整所述半挂车本体10的运行状态。During driving, the sensor module 15 installed on the semi-trailer body 10 or on the tractor head senses the operating parameter information in real time, and transmits the operating parameter information to the control module 16 to adjust the semi-trailer in time. The running state of the main body 10.
在本实施例中,所述运行参数信息可以包括所述半挂车本体10的车辆信息和外部环境信息。其中,所述半挂车本体10的运行参数信息包括以下参数信息中的至少一个:所述半挂车本体10与预设道路参照物之间的距离信息、所述半挂车本体10与前车或者后车之间的实时距离信息、所述智能半挂车100的行驶车速信息、所述智能半挂车100的行驶方向信息、所述智能半挂车100的当前行驶位置信息、当前道路弯曲度信息、当前道路坡度信息、当前车辆高度信息、所述半挂车本体10的加速度信息、公路限速标志信息、刹车片的温度信息、原车刹车是否被启动、以及交通灯的颜色信息。In this embodiment, the operating parameter information may include vehicle information and external environment information of the semi-trailer body 10 . Wherein, the operating parameter information of the semi-trailer body 10 includes at least one of the following parameter information: the distance information between the semi-trailer body 10 and the preset road reference object, the distance information between the semi-trailer body 10 and the vehicle in front or behind. The real-time distance information between vehicles, the driving speed information of the intelligent semi-trailer 100, the driving direction information of the intelligent semi-trailer 100, the current driving position information of the intelligent semi-trailer 100, the current road curvature information, the current road Slope information, current vehicle height information, acceleration information of the semi-trailer body 10, highway speed limit sign information, brake pad temperature information, whether the original vehicle brake is activated, and traffic light color information.
步骤S20,根据所述传感器模块15获得的所述半挂车本体10的运行参数信息,判断所述半挂车本体10是否处于预设的能量回收状态或者预设的驱动状态;Step S20, according to the operating parameter information of the semi-trailer body 10 obtained by the sensor module 15, determine whether the semi-trailer body 10 is in a preset energy recovery state or a preset driving state;
所述传感器模块15根据所述半挂车本体10的运行参数信息,可以将所述半挂车本体10的运行状态分为预设的能量回收状态和驱动状态。According to the operating parameter information of the semi-trailer body 10, the sensor module 15 can divide the operating state of the semi-trailer body 10 into a preset energy recovery state and a driving state.
具体的,在本实施例中,所述预设的能量回收状态包括以下条件中的至少一种:刹车状态,当前道路坡度信息为下坡、所述道路弯曲度大于预设的曲率、所述半挂车本体10的当前行驶车速大于预设的车速或者大于公路限速标志的限定车速值、所述半挂车本体10与道路参照物之间的距离小于预设的距离值、所述半挂车本体10与前车或者后车之间的距离小于预设的距离值;所述刹车温度大于预设的温度值、所述交通灯的颜色信息为红色且所述半挂车本体10与所述交通灯的距离小于预设的距离值;Specifically, in this embodiment, the preset energy recovery state includes at least one of the following conditions: the braking state, the current road slope information is downhill, the road curvature is greater than the preset curvature, the The current driving speed of the semi-trailer body 10 is greater than the preset vehicle speed or greater than the limited speed value of the highway speed limit sign, the distance between the semi-trailer body 10 and the road reference object is less than the preset distance value, and the semi-trailer body The distance between 10 and the vehicle in front or behind is less than the preset distance value; the brake temperature is greater than the preset temperature value, the color information of the traffic light is red, and the semi-trailer body 10 and the traffic light The distance is less than the preset distance value;
所述预设的驱动状态包括以下条件中的至少一种:所述半挂车本体10为起步状态,当前道路坡度信息为上坡,所述半挂车本体10的加速度为正值,所述道路弯曲度小于预设的曲率、所述半挂车本体10的当前行驶车速小于预设的车速或者小于公路限速标志的限定车速值、所述半挂车本体10与道路参照物之间的距离大于预设的距离值、所述半挂车本体10与前车或者后车之间的距离大于预设的距离值;所述交通灯的颜色信息为绿色且所述半挂车本体10与所述交通灯的距离大于预设的距离值。The preset driving state includes at least one of the following conditions: the semi-trailer body 10 is in a starting state, the current road gradient information is uphill, the acceleration of the semi-trailer body 10 is a positive value, and the road is curved. The degree of curvature is less than the preset curvature, the current driving speed of the semi-trailer body 10 is less than the preset speed or the limited speed value of the highway speed limit sign, and the distance between the semi-trailer body 10 and the road reference object is greater than the preset The distance value between the semi-trailer body 10 and the vehicle in front or behind is greater than the preset distance value; the color information of the traffic light is green and the distance between the semi-trailer body 10 and the traffic light greater than the preset distance value.
可以理解的是,所述半挂车本体10的运行参数信息与所述预设的能量回收状态之间的对应关系可以是:It can be understood that the correspondence between the operating parameter information of the semi-trailer body 10 and the preset energy recovery state may be:
所述传感器模块15中的车载雷达测速仪侦测到所述半挂车本体10的当前车速且当前车速在减小,且所述制动踏板行程传感器侦测到所述刹车被使用时,控制模块16确定所述智能半挂车100处于刹车状态;The vehicle-mounted radar speedometer in the sensor module 15 detects the current vehicle speed of the semi-trailer body 10 and the current vehicle speed is decreasing, and when the brake pedal stroke sensor detects that the brake is used, the control module 16. Determine that the smart semi-trailer 100 is in a braking state;
所述传感器模块15中的环境感知传感器侦测到当前道路为坡道路段,且GPS侦测到挂车从坡道地势高的一侧向地势低的一侧行驶、所述高度仪侦测到高度在递减,控制模块16确定所述智能半挂车100处于当前道路坡度信息为下坡状态;The environmental perception sensor in the sensor module 15 detects that the current road is a slope road section, and the GPS detects that the trailer travels from the high side of the slope to the low side of the terrain, and the altimeter detects the altitude In decrement, the control module 16 determines that the intelligent semi-trailer 100 is in the downhill state of the current road gradient information;
所述传感器模块15中的所述距离传感器侦测到所述半挂车本体10与道路参考物之间的距离小于预设的距离值,或者所述半挂车本体10与前车或者后车之间的距离小于预设的距离值,控制模块16可以确定所述智能半挂车100处于需要减速的能量回收状态;或者The distance sensor in the sensor module 15 detects that the distance between the semi-trailer body 10 and the road reference object is less than a preset distance value, or that the distance between the semi-trailer body 10 and the front vehicle or the rear vehicle is less than a preset distance. If the distance is less than the preset distance value, the control module 16 can determine that the smart semi-trailer 100 is in an energy recovery state that needs to be decelerated; or
所述传感器模块15中的环境感知传感器侦测到所述交通灯的颜色信息为红色,且距离传感器侦测到所述半挂车本体10与所述交通灯的距离小于预设的距离值,控制模块16可以确定所述智能半挂车100处于需要减速的能量回收状态。The environment perception sensor in the sensor module 15 detects that the color information of the traffic light is red, and the distance sensor detects that the distance between the semi-trailer body 10 and the traffic light is less than a preset distance value, and the control The module 16 may determine that the smart semi-trailer 100 is in an energy recovery state that requires deceleration.
可以理解的是,所述半挂车本体10的运行参数信息与所述预设的驱动状态之间的对应关系可以是:It can be understood that the correspondence between the operating parameter information of the semi-trailer body 10 and the preset driving state may be:
所述传感器模块15中的车载雷达测速仪侦测到所述半挂车本体10的当前车速为0且当前车速在增加,或者车轮转速传感器侦测到所述挂车的车轮转速为0,GPS定位仪侦测到所述智能半挂车100的运动轨迹没有发生位移或者发生的位移小于预设值,所述控制模块16确定所述智能半挂车100当前处于起步状态;The vehicle radar speedometer in the sensor module 15 detects that the current vehicle speed of the semi-trailer body 10 is 0 and the current vehicle speed is increasing, or the wheel speed sensor detects that the wheel speed of the trailer is 0, and the GPS locator Detecting that the trajectory of the intelligent semi-trailer 100 has no displacement or the displacement is less than a preset value, the control module 16 determines that the intelligent semi-trailer 100 is currently in the starting state;
所述传感器模块15中的环境感知传感器侦测到当前道路为坡道路段,且GPS侦测到挂车从坡道地势低的一侧向地势高的一侧行驶、所述高度仪侦测到高度在递增,控制模块16确定所述智能半挂车100处于当前道路坡度信息为上坡状态;The environmental perception sensor in the sensor module 15 detects that the current road is a slope road section, and the GPS detects that the trailer travels from the low side of the slope to the high side of the terrain, and the altimeter detects the altitude. In increments, the control module 16 determines that the intelligent semi-trailer 100 is in the uphill state of the current road gradient information;
所述传感器模块15中的加速度感应器侦测到所述半挂车本体10的加速度为正值,且所述距离传感器侦测到所述半挂车本体10与道路参考物之间的距离大于预设的距离值,或者所述半挂车本体10与前车或者后车之间的距离大于预设的距离值,控制模块16可以确定所述智能半挂车100处于可以加速的驱动状态;或者The acceleration sensor in the sensor module 15 detects that the acceleration of the semi-trailer body 10 is a positive value, and the distance sensor detects that the distance between the semi-trailer body 10 and the road reference object is greater than a preset or the distance between the semi-trailer body 10 and the front vehicle or the rear vehicle is greater than the preset distance value, the control module 16 can determine that the intelligent semi-trailer 100 is in a driving state that can be accelerated; or
所述传感器模块15中的环境感知传感器侦测到所述交通灯的颜色信息为绿色,且距离传感器侦测到所述半挂车本体10与所述交通灯的距离大于预设的距离值,控制模块16可以确定所述智能半挂车100处于可以加速的驱动状态。The environmental perception sensor in the sensor module 15 detects that the color information of the traffic light is green, and the distance sensor detects that the distance between the semi-trailer body 10 and the traffic light is greater than a preset distance value, and the control The module 16 can determine that the smart semi-trailer 100 is in a driving state that can be accelerated.
步骤S30,在所述半挂车本体10处于预设的能量回收状态时,所述控制模块16控制储能模块14切换为充电状态,以及控制所述机电能量转换模块13切换为发电状态;Step S30, when the semi-trailer body 10 is in the preset energy recovery state, the control module 16 controls the energy storage module 14 to switch to the charging state, and controls the electromechanical energy conversion module 13 to switch to the power generation state;
可以理解的是,根据所述传感器模块15获取的运行参数信息,所述控制模块16确定所述半挂车本体10处于能量回收状态时,比如:在所述半挂车本体10与前车之间的距离小于预设的距离值时,所述控制模块16可以向所述机电能量转换模块13输出控制指令,控制所述机电能量转换模块13切换为发电状态,同时,所述储能模块14对应地切换为充电状态,以存储所述机电能量转换模块13转换的电能,提高所述半挂车本体10的驱动力。It can be understood that, according to the operating parameter information acquired by the sensor module 15, the control module 16 determines that the semi-trailer body 10 is in the energy recovery state, for example: the distance between the semi-trailer body 10 and the front vehicle When the distance is less than the preset distance value, the control module 16 can output a control command to the electromechanical energy conversion module 13 to control the electromechanical energy conversion module 13 to switch to the power generation state, and at the same time, the energy storage module 14 correspondingly Switch to the charging state to store the electric energy converted by the electromechanical energy conversion module 13 and increase the driving force of the semi-trailer body 10 .
步骤S40,在所述半挂车本体10处于预设的驱动状态时,所述控制模块16控制储能模块14切换为放电状态,以及控制所述机电能量转换模块13切换为驱动状态。Step S40, when the semi-trailer body 10 is in a preset driving state, the control module 16 controls the energy storage module 14 to switch to a discharging state, and controls the electromechanical energy conversion module 13 to switch to a driving state.
其中,在所述半挂车本体10的运行状态为预设的驱动状态时,所述储能模块14切换为放电状态,所述机电能量转换模块13对所述车轮驱动轴12进行驱动输出,当所述机电能量转换模块13对所述车轮驱动轴12进行驱动输出时,所述机电能量转换模块13说明所述半挂车本体10处于驱动状态,当所述机电能量转换模块13受所述车轮驱动轴12的带动,说明所述半挂车本体10处于预设的能量回收状态。Wherein, when the operating state of the semi-trailer body 10 is the preset driving state, the energy storage module 14 is switched to a discharging state, and the electromechanical energy conversion module 13 performs drive output to the wheel drive shaft 12, when When the electromechanical energy conversion module 13 performs drive output to the wheel drive shaft 12, the electromechanical energy conversion module 13 indicates that the semi-trailer body 10 is in a driving state, and when the electromechanical energy conversion module 13 is driven by the wheels The driving of the shaft 12 indicates that the semi-trailer body 10 is in a preset energy recovery state.
在本实施例中,可以有效地回收行驶过程中的能量,提高能量利用率,以及增强半挂车本体10的驱动力;同时,所述控制模块16控制所述机电能量转换模块13切换为充电状态时,即所述挂车进入能量回收状态,还可以配合对所述半挂车本体10进行减速,避免刹车片因持续使用时间过长,导致刹车片温度过高而降低了挂车的安全性能,减少刹车片磨损,提高半挂车本体10的安全性,节约能量,同时,还可以最大化利用储能模块的储能容量,以减少储能模块的充放电次数,延长储能模块的使用寿命。In this embodiment, the energy during driving can be effectively recovered, the energy utilization rate can be improved, and the driving force of the semi-trailer body 10 can be enhanced; at the same time, the control module 16 controls the electromechanical energy conversion module 13 to switch to the charging state When the trailer enters the energy recovery state, it can also cooperate with the deceleration of the semi-trailer body 10 to prevent the brake pads from being used for too long, resulting in excessive temperature of the brake pads and reducing the safety performance of the trailer, reducing the brake pressure. wear and tear, improve the safety of the semi-trailer body 10, and save energy. At the same time, it can also maximize the use of the energy storage capacity of the energy storage module to reduce the number of charging and discharging of the energy storage module and prolong the service life of the energy storage module.
进一步地,请参考图4,提出第二实施例中智能半挂车100的控制方法的方法流程图,在第二实施例中,所述步骤S10~S40均与第一实施例相同,在此不再赘述;其不同在于,所述步骤40还包括:Further, please refer to FIG. 4 , which presents a method flow chart of the control method of the intelligent semi-trailer 100 in the second embodiment. In the second embodiment, the steps S10 to S40 are the same as those in the first embodiment, and are not described here. Repeat it again; the difference is that the step 40 also includes:
步骤S410,根据所述传感器模块15获得的所述半挂车本体10的位置信息以及当前道路坡度信息,或者根据获得的所述挂车车体的当前车辆高度信息,判断所述半挂车本体10是否处于上坡状态;Step S410, according to the position information of the semi-trailer body 10 obtained by the sensor module 15 and the current road gradient information, or according to the obtained current vehicle height information of the trailer body, it is judged whether the semi-trailer body 10 is in the Uphill state;
在行驶过程中,所述传感器模块15可以实时侦测所述半挂车本体10的运行状态,比如:调用高度仪以及GPS传感器,侦测所述半挂车本体10所处的地理位置信息,并通过高度仪测量所述半挂车本体10所在道路的坡度信息以及高度信息。所述控制模块16对所述坡度信息以及高度信息进行分析处理,以确定所述半挂车本体10是否正在进行爬坡运动。During driving, the sensor module 15 can detect the operating state of the semi-trailer body 10 in real time, such as: calling an altimeter and a GPS sensor to detect the geographic location information of the semi-trailer body 10, and pass The altimeter measures the slope information and height information of the road where the semi-trailer body 10 is located. The control module 16 analyzes and processes the slope information and height information to determine whether the semi-trailer body 10 is climbing a slope.
在其他实施例中,还可以设定参考高度和坡度,通过分析判断当前道路的坡度和高度是否在参考高度和坡度的范围内,在当前的道路坡度和高度超出参考高度和坡度的范围内时,所述控制模块16可以确定所述半挂车本体10正处于上坡状态,在当前的道路坡度和高度在参考高度和坡度的范围内时,所述控制模块16可以确定所述半挂车本体10没有进行上坡运动。In other embodiments, it is also possible to set a reference height and slope, and determine whether the slope and height of the current road are within the range of the reference height and slope through analysis. When the current road slope and height exceed the range of the reference height and slope , the control module 16 can determine that the semi-trailer body 10 is in an uphill state, and when the current road gradient and height are within the range of the reference height and gradient, the control module 16 can determine that the semi-trailer body 10 is in an uphill state. No uphill movement was performed.
步骤S420,在所述半挂车本体10处于上坡状态时,根据所述当前道路坡度信息以及当前车辆高度信息计算所述半挂车本体10上坡时的势能变化是否大于预设阈值;Step S420, when the semi-trailer body 10 is in an uphill state, calculate whether the potential energy change of the semi-trailer body 10 when going uphill is greater than a preset threshold according to the current road gradient information and current vehicle height information;
在上坡阶段,所述半挂车本体10需要消耗大量的能量,所述控制模块16控制所述储能模块14切换为放电状态,以为所述半挂车本体10提供驱动力,完成上坡运动。In the uphill phase, the semi-trailer body 10 needs to consume a lot of energy, and the control module 16 controls the energy storage module 14 to switch to a discharge state to provide driving force for the semi-trailer body 10 to complete the uphill movement.
在下坡阶段,所述控制模块16控制所述机电能量转换模块13切换为能量回收状态,同时所述储能模块14切换为充电状态,以回收所述半挂车本体10在下坡阶段产生的能量,同时还可以辅助车辆减速,减少刹车片磨损及发热。可以理解的是,在运行过程所消耗的电能由所述半挂车本体10运行产生的势能决定,其中,所述势能可以根据当前道路坡度信息以及车辆高度信息计算得出。In the downhill phase, the control module 16 controls the electromechanical energy conversion module 13 to switch to the energy recovery state, while the energy storage module 14 switches to the charging state, so as to recover the energy generated by the semi-trailer body 10 in the downhill phase, At the same time, it can also assist the vehicle to decelerate, reduce brake pad wear and heat. It can be understood that the electric energy consumed during the running process is determined by the potential energy generated by the operation of the semi-trailer body 10, wherein the potential energy can be calculated according to the current road gradient information and vehicle height information.
步骤S430,在所述半挂车本体10上坡时的势能变化大于预设阈值时,确定所述储能模块14的放电比例,为所述半挂车本体10后续在下坡时所述储能模块14的充电做准备。Step S430, when the potential energy change of the semi-trailer body 10 when it goes uphill is greater than a preset threshold, determine the discharge ratio of the energy storage module 14, which is used for the energy storage module 14 when the semi-trailer body 10 is going downhill. ready for charging.
在上坡阶段时,根据当前道路坡度信息和高度信息,计算得到所述半挂车本体10的势能变化,在所述半挂车本体10的势能变化大于预设阈值时,说明所述半挂车本体10需要消耗大量的电量,以增加驱动力,完成爬坡;同时,在所述半挂车本体10完成上坡阶段后,将进入下坡阶段,此时,所述半挂车本体10的储能模块14可以通过下坡过程中充分地补充将在上坡阶段所述消耗释放的电能,以减少所述储能模块14充放电的次数,延长所述储能模块14的使用寿命,并且在下坡阶段,所述机电能量转换模块13进入发电状态,可以对所述半挂车本体10进行减速,避免在下坡时持续使用刹车片刹车而导致刹车片温度过高,影响所述挂车的性能。During the uphill phase, according to the current road gradient information and height information, the potential energy change of the semi-trailer body 10 is calculated, and when the potential energy change of the semi-trailer body 10 is greater than a preset threshold, it indicates that the semi-trailer body 10 It needs to consume a large amount of electricity to increase the driving force and complete climbing; at the same time, after the semi-trailer body 10 completes the uphill phase, it will enter the downhill phase. At this time, the energy storage module 14 of the semi-trailer body 10 The electric energy that will be consumed and released during the uphill phase can be fully supplemented during the downhill process to reduce the number of charging and discharging of the energy storage module 14 and prolong the service life of the energy storage module 14, and during the downhill phase, The electromechanical energy conversion module 13 enters the power generation state, which can decelerate the semi-trailer body 10, so as to avoid excessive use of the brake pads when going downhill, resulting in excessive temperature of the brake pads and affecting the performance of the trailer.
可以理解的是,在所述半挂车本体10的势能变化大于预设阈值,且根据所述传感器模块15侦测到所述半挂车将进入下坡阶段,说明当前的坡度较大,所述储能模块14可以在下坡阶段可以补充消耗的电量,此时,可以确定所述储能模块14的放电比例,即将所述储能模块14的电能全部放光,以增加驱动力,最大限度地利用所述储能模块14的储能容量,减少所述储能模块14充放电的次数;在所述半挂车本体10的势能变化小于预设阈值时,说明当前道路的坡度较小,接下来的下坡路段的坡度较小,因此,所述半挂车本体10的储能模块14的电能可以全部用于对所述车轮驱动轴12进行驱动,也可以仅仅释放部分的电量,因为后续的下坡较小,不会存在电量被快速充满的情形。It can be understood that the change in the potential energy of the semi-trailer body 10 is greater than a preset threshold, and the sensor module 15 detects that the semi-trailer will enter a downhill stage, indicating that the current slope is relatively large, and the storage The energy module 14 can replenish the consumed electricity during the downhill stage. At this time, the discharge ratio of the energy storage module 14 can be determined, that is, all the electric energy of the energy storage module 14 is released, so as to increase the driving force and maximize the utilization The energy storage capacity of the energy storage module 14 reduces the number of charging and discharging times of the energy storage module 14; when the potential energy change of the semi-trailer body 10 is less than a preset threshold, it indicates that the current road has a small slope, and the next The slope of the downhill road section is small, therefore, the electric energy of the energy storage module 14 of the semi-trailer body 10 can be used to drive the wheel drive shaft 12, or only part of the electricity can be released, because the subsequent downhill is more difficult. Small, there will be no situation where the battery will be fully charged quickly.
另外,在其他实施例中,可以通过根据所述传感器模块15获得的所述半挂车本体10的位置信息以及当前道路坡度信息,或者根据获得的所述半挂车本体10的当前车辆高度信息,判断所述当前道路接下来是否是下坡,则控制所述储能模块14将电量放光后,以能够在下坡阶段得到充分地补充。In addition, in other embodiments, it can be determined according to the position information of the semi-trailer body 10 obtained by the sensor module 15 and the current road gradient information, or according to the obtained current vehicle height information of the semi-trailer body 10 Whether the current road is going downhill next, the energy storage module 14 is controlled to discharge the electricity so that it can be fully replenished during the downhill phase.
进一步地,请参考图5,提出第三实施例中智能半挂车100的控制方法的方法流程图,在第三实施例中,所述步骤S10~S40均与第一实施例相同,在此不再赘述;其不同在于,所述步骤S40还包括:Further, please refer to FIG. 5 , which presents a method flow chart of the control method of the intelligent semi-trailer 100 in the third embodiment. In the third embodiment, the steps S10 to S40 are the same as those in the first embodiment, and are not described here. Repeat it again; the difference is that the step S40 also includes:
步骤S440,根据所述传感器模块15获得的所述半挂车本体10的位置信息以及当前道路坡度信息,或者根据获得的所述挂车车体的当前车辆高度信息,判断所述半挂车本体10是否处于下坡状态;Step S440, according to the position information of the semi-trailer body 10 obtained by the sensor module 15 and the current road gradient information, or according to the obtained current vehicle height information of the trailer body, it is judged whether the semi-trailer body 10 is in the Downhill state;
在行驶过程中,所述传感器模块15实时侦测感知所述半挂车本体10的运行状态,比如:调用高度仪以及GPS传感器,侦测所述半挂车本体10所处的地理位置信息,并通过高度仪测量所述半挂车本体10所在道路的坡度信息以及高度信息。所述控制模块16对所述坡度信息以及高度信息进行分析处理,以确定所述半挂车本体10是否正在进行下坡运动。During driving, the sensor module 15 detects and perceives the operating state of the semi-trailer body 10 in real time, such as: calling an altimeter and a GPS sensor to detect the geographic location information of the semi-trailer body 10, and pass The altimeter measures the slope information and height information of the road where the semi-trailer body 10 is located. The control module 16 analyzes and processes the slope information and height information to determine whether the semi-trailer body 10 is moving downhill.
步骤450,在所述半挂车本体10处于下坡状态时,获取所述传感器模块15获得的所述当前道路坡度信息和所述刹车片的温度信息,以及所述储能模块14的剩余电量,确定半挂车本体10的原车刹车方式与所述机电能量转换模块13切换至发电状态的减速方式之间交替使用的间隔。Step 450, when the semi-trailer body 10 is in a downhill state, obtain the current road gradient information obtained by the sensor module 15, the temperature information of the brake pads, and the remaining power of the energy storage module 14, Determine the interval between the original vehicle braking mode of the semi-trailer body 10 and the deceleration mode in which the electromechanical energy conversion module 13 switches to the power generation state.
为避免所述半挂车本体10在下坡时因车速过快而导致所述半挂车本体10失去控制,进而造成交通事故出现,可以对所述半挂车本体10进行适当的减速;其中,减速的方式可以利用刹车片对半挂车本体10进行减速,还可以通过所述控制模块16将所述机电能量转换模块13切换为充电状态以达到减速目的。可以理解的是,使用刹车片减速是通过刹车片与轮胎之间的摩擦阻力以减缓所述半挂车本体10的行驶速度。在刹车的过程中,将所述半挂车本体10的动能转换为热能,从而使刹车片的温度升高。当所述刹车片的温度过高时,容易导致刹车片失灵,造成处于下坡阶段的半挂车本体10失控,进而导致交通事故出现,同时,当所述刹车片的温度过高时,还容易引燃半挂车本体10的轮胎,影响所述半挂车本体10的安全性。因此,在下坡过程中,需要实时监测刹车片的温度。In order to avoid the loss of control of the semi-trailer body 10 due to the excessive speed of the vehicle when going downhill, thereby causing traffic accidents, the semi-trailer body 10 can be properly decelerated; wherein, the deceleration method The brake pads can be used to decelerate the semi-trailer body 10 , and the electromechanical energy conversion module 13 can be switched to a charging state through the control module 16 to achieve the purpose of deceleration. It can be understood that using the brake pads to decelerate is to slow down the running speed of the semi-trailer body 10 through the frictional resistance between the brake pads and the tires. During the braking process, the kinetic energy of the semi-trailer body 10 is converted into heat energy, thereby increasing the temperature of the brake pads. When the temperature of the brake pads is too high, it is easy to cause the brake pads to fail, causing the semi-trailer body 10 in the downhill stage to lose control, thereby causing traffic accidents. At the same time, when the temperature of the brake pads is too high, it is easy to The tires of the semi-trailer body 10 are ignited, affecting the safety of the semi-trailer body 10 . Therefore, during the downhill process, it is necessary to monitor the temperature of the brake pads in real time.
在本实施例中,所述半挂车本体10在下坡时,根据当前道路坡度信息、刹车片的温度信息,以及所述储能模块14的剩余电量,交替使用所述机电能量转换模块13和刹车片对所述半挂车本体10进行减速。其中,所述半挂车本体10的原车刹车方式与所述机电能量转换模块13切换为充电状态的减速方式之间交替使用的间隔频率可以根据所述车辆的性能进行设定,也可以通过所述控制模块16根据当前道路坡度信息、刹车片的温度信息以及所述储能模块14的剩余电量的分析结果进行设定。In this embodiment, when the semi-trailer body 10 is going downhill, according to the current road gradient information, the temperature information of the brake pads, and the remaining power of the energy storage module 14, the electromechanical energy conversion module 13 and the brake pad are used alternately. The disc decelerates the body 10 of the semi-trailer. Wherein, the interval frequency used alternately between the original vehicle braking mode of the semi-trailer body 10 and the deceleration mode in which the electromechanical energy conversion module 13 switches to the charging state can be set according to the performance of the vehicle, or can be set by the The control module 16 is set according to the current road gradient information, the temperature information of the brake pads and the analysis result of the remaining power of the energy storage module 14 .
进一步地,请参考图6,提出第四实施例中智能半挂车100的控制方法的方法流程图,在第四实施例中,所述步骤S440~S450均与第三实施例相同,在此不再赘述;其不同在于,所述步骤S440之后还包括:Further, please refer to FIG. 6 , which presents the method flowchart of the control method of the intelligent semi-trailer 100 in the fourth embodiment. In the fourth embodiment, the steps S440-S450 are the same as those in the third embodiment, and are not described here. Repeat it again; the difference is that after the step S440, it also includes:
步骤S441,在所述半挂车本体10处于下坡状态时,判断所述刹车片的温度是否大于预设温度以及储能模块14的剩余电量是否小于预设电量;Step S441, when the semi-trailer body 10 is in a downhill state, it is judged whether the temperature of the brake pad is greater than a preset temperature and whether the remaining power of the energy storage module 14 is less than a preset power;
在所述半挂车本体10处于下坡状态时,为避免所述半挂车本体10的刹车片持续处于刹车状态而导致温度过高,或者所述储能模块14长时间处于电量充足时,所述储能模块14不能存储所述机电能连模块转换的电能,从而无法实现对所述半挂车本体10减速的情况,还可以通过实时监测所述刹车片的温度以及所述储能模块14的剩余电量。When the semi-trailer body 10 is in a downhill state, in order to prevent the brake pads of the semi-trailer body 10 from continuing to be in the braking state and cause the temperature to be too high, or when the energy storage module 14 is in sufficient power for a long time, the The energy storage module 14 cannot store the electric energy converted by the electromechanical energy connection module, so that the deceleration of the semi-trailer body 10 cannot be realized. electricity.
具体的,在本实施例中,可以将所述传感器模块15监测获得的刹车片的温度与预设温度进行比对,将所述储能模块14的剩余电量与预设电量进行比对,根据比对结果,判断是否适合继续使用刹车片对所述半挂车本体10进行减速,以及是否适合将所述机电能量转换模块13切换为发电状态。Specifically, in this embodiment, the temperature of the brake pads obtained by monitoring the sensor module 15 can be compared with the preset temperature, and the remaining power of the energy storage module 14 can be compared with the preset power. Comparing the results, it is judged whether it is suitable to continue to use the brake pads to decelerate the semi-trailer body 10, and whether it is suitable to switch the electromechanical energy conversion module 13 to the power generation state.
步骤S442,在所述刹车片的温度大于预设温度以及储能模块14的剩余电量小于预设电量时,控制所述机电能量转换模块13切换为充电状态;Step S442, when the temperature of the brake pad is greater than the preset temperature and the remaining power of the energy storage module 14 is less than the preset power, control the electromechanical energy conversion module 13 to switch to the charging state;
可以理解的是,当所述刹车片的温度大于预设温度以及所述储能模块14的剩余电量小于预设电量时,说明所述半挂车本体10的刹车片温度已经超过安全使用范围,不适合继续使用,同时,所述储能模块14处于非饱和状态,可以存储所述机电能量转换模块13产生的电能,因此,为避免继续使用刹车片而造成不良影响,同时,提高能量利用率,最大化利用所述储能模块14,所述半挂车本体10的控制模块16可以控制所述机电能量转换模块13切换为充电状态,以减慢所述半挂车本体10下坡时的行驶速度。It can be understood that when the temperature of the brake pads is greater than the preset temperature and the remaining power of the energy storage module 14 is less than the preset power, it means that the temperature of the brake pads of the semi-trailer body 10 has exceeded the safe use range, and it is not necessary to It is suitable for continuous use. At the same time, the energy storage module 14 is in a non-saturated state and can store the electric energy generated by the electromechanical energy conversion module 13. Therefore, in order to avoid adverse effects caused by the continued use of the brake pads, and to improve energy utilization, By maximizing the use of the energy storage module 14, the control module 16 of the semi-trailer body 10 can control the electromechanical energy conversion module 13 to switch to a charging state, so as to slow down the driving speed of the semi-trailer body 10 when going downhill.
步骤S443,在所述刹车片的温度小于预设温度以及所述储能模块14的剩余电量大于预设定量,控制所述半挂车本体10启用原车刹车。Step S443, when the temperature of the brake pads is lower than a preset temperature and the remaining power of the energy storage module 14 is greater than a preset amount, control the semi-trailer body 10 to activate the original vehicle brake.
在该步骤中,当所述刹车片的温度小于预设温度以及所述储能模块14的剩余电量大于预设电量时,说明所述半挂车本体10的刹车片温度处于正常使用状态,此时,为减少电能的消耗,以及避免对所述储能模块14进行频繁充放电而降低储能模块14的使用使用寿命,因此,可以直接启用所述半挂车本体10的原车刹车,以达到对所述半挂车本体10进行减速的目的。In this step, when the temperature of the brake pads is less than the preset temperature and the remaining power of the energy storage module 14 is greater than the preset power, it means that the temperature of the brake pads of the semi-trailer body 10 is in a normal use state. , in order to reduce the consumption of electric energy and avoid frequent charging and discharging of the energy storage module 14 and reduce the service life of the energy storage module 14, therefore, the original vehicle brake of the semi-trailer body 10 can be directly activated to achieve The purpose of the deceleration of the semi-trailer body 10 .
进一步地,请参考图7,提出第五实施例中智能半挂车100的控制方法的方法流程图201,所述步骤S10~S40均与第一实施例相同,在此不再赘述;其不同在于,所述步骤S40之后还包括:Further, please refer to FIG. 7 , a method flow chart 201 of the control method of the intelligent semi-trailer 100 in the fifth embodiment is proposed, and the steps S10 to S40 are the same as those in the first embodiment, and will not be repeated here; the difference is that , after the step S40 also includes:
步骤S50,根据通信模块获取到的路况信息以及所述传感器模块15获取的所述半挂车车体10的运行参数信息,对所述半挂车本体10在接下来的预设时间内的行驶状态以及路况环境信息进行预测,并根据所述预测结果对所述半挂车本体10在接下来的预设时间内的能量回收状态或者预设的驱动状态进行控制。Step S50, according to the road condition information obtained by the communication module and the operating parameter information of the semi-trailer body 10 obtained by the sensor module 15, the driving state of the semi-trailer body 10 in the next preset time and The road condition environment information is predicted, and the energy recovery state or preset driving state of the semi-trailer body 10 in the next preset time is controlled according to the prediction result.
可以理解的是,在步骤S50中,在行驶过程中,所述通信模块获取的路况信息可以包括以下信息中的至少一个:道路的车流量、道路拥挤程度信息、道路转向信息、区域交通事故信息、路口交叉信息、道路占用量信息、平均车速信息、车道数量信息。具体的,在本实施例中,将所述通信模块获取的路况信息与所述传感器模块获取的所述半挂车本体10的运行参数信息结合,并预测所述半挂车本体10在接下来的路段中是否需要进行减速处理,对应地控制所述机电能量转换模块13切换为能量回收状态或者驱动状态。比如:当所述通信模块获取到前方发生堵车时,且所述传感器模块15获取到所述前方车辆与所述智能半挂车100之间的距离较近,预测所述半挂车本体10将进入交通拥挤区,这说明所述半挂车本体10在预设时间段内进入该路段时,需要进行减速处理,即当所述半挂车本体10进入该路段时,所述控制模块16控制所述机电能量转换模块13切换为预设的能量回收状态;或者当所述通信模块获取到前方为交叉路口,且所述传感器模块15获取到所述道路的坡度信息为上坡,则预测所述半挂车本体10即将进行爬坡,此时,可以在预设的时间段内控制所述机电能量转换模块13切换为驱动状态。通过预测所述半挂车本体10的行驶状态,可以保证半挂车本体10的安全性,同时,实现能量优化分配。It can be understood that, in step S50, during driving, the road condition information acquired by the communication module may include at least one of the following information: road traffic volume, road congestion level information, road turning information, regional traffic accident information , intersection information, road occupancy information, average vehicle speed information, and lane number information. Specifically, in this embodiment, the road condition information obtained by the communication module is combined with the operating parameter information of the semi-trailer body 10 obtained by the sensor module, and the next road section of the semi-trailer body 10 is predicted. Whether it is necessary to perform deceleration processing, the electromechanical energy conversion module 13 is correspondingly controlled to switch to the energy recovery state or the driving state. For example: when the communication module obtains that there is a traffic jam ahead, and the sensor module 15 obtains that the distance between the vehicle in front and the intelligent semi-trailer 100 is relatively short, it is predicted that the semi-trailer body 10 will enter the traffic Congested area, which means that when the semi-trailer body 10 enters the road section within a preset time period, deceleration processing is required, that is, when the semi-trailer body 10 enters the road section, the control module 16 controls the electromechanical energy The conversion module 13 switches to the preset energy recovery state; or when the communication module obtains that the front is an intersection, and the sensor module 15 obtains the slope information of the road as uphill, then predicts that the semi-trailer body 10 is about to climb a slope, at this time, the electromechanical energy conversion module 13 can be controlled to switch to a driving state within a preset time period. By predicting the running state of the semi-trailer body 10, the safety of the semi-trailer body 10 can be ensured, and at the same time, energy optimal distribution can be realized.
进一步地,请参考图8,提出第六实施例中智能半挂车100的控制方法的方法流程图202,所述步骤S10~S40均与第一实施例相同,在此不再赘述;其不同在于,所述步骤S40之后还包括:Further, please refer to FIG. 8 , which presents a method flow chart 202 of the control method of the intelligent semi-trailer 100 in the sixth embodiment. The steps S10 to S40 are the same as those in the first embodiment, and will not be repeated here; the difference is that , after the step S40 also includes:
步骤S60,根据所述半挂车本体10的当前行驶速度和质量,计算所述半挂车本体10的当前动能;Step S60, calculating the current kinetic energy of the semi-trailer body 10 according to the current driving speed and mass of the semi-trailer body 10;
可以理解的是,在所述半挂车本体10的行驶过程中,可以实现能量转换,将所述半挂车本体10的储能模块14中的电量转换为所述半挂车本体10的动能。其中,所述半挂车本体10的动能可以根据所述半挂车本体10的当前行驶速度和质量计算获得。It can be understood that, during the running process of the semi-trailer body 10 , energy conversion can be realized, and the electricity in the energy storage module 14 of the semi-trailer body 10 can be converted into the kinetic energy of the semi-trailer body 10 . Wherein, the kinetic energy of the semi-trailer body 10 can be calculated according to the current driving speed and mass of the semi-trailer body 10 .
步骤S70,根据所述半挂车本体10的动能以及预设的条件,确定所述机电能量转换模块13处于发电状态时的发电功率。Step S70, according to the kinetic energy of the semi-trailer body 10 and preset conditions, determine the generating power when the electromechanical energy conversion module 13 is in the generating state.
在本实施例中,根据所述半挂车本体10在行驶状态中,产生的动能,以及能量之间的转换效率,可以确定所述机电能量转换模块13处于发电状态时的发电功率。例如:在交通拥挤的路段,需要频繁刹车,此时,所述控制模块16控制所述机电能量转换模块13可以切换为发电状态,以回收能量;当然也可以设置为发电功率较低,直接使用脚刹控制刹车,不使用机电能量转换模块13来影响车辆的行进,方面驾驶员操作;例如,所述半挂车本体10处于高速行驶状态时,动能较大,并且通常在刹车或者下坡时可以对所述半挂车本体10进行能量回收,因为在所述半挂车本体10在高速行驶中,如果在遇到障碍物时,需要及时进行减速,这时候所述机电能量转换模块13处于发电状态时可以控制其工作功率尽量的大;可以理解的是,当所述储能模块14的电量充足时,可控制功率为0,此时,所述机电能量转换模块13处于发电状态,可以控制其工作功率尽量的小。In this embodiment, according to the kinetic energy generated by the semi-trailer body 10 in the running state, and the conversion efficiency between energies, the power generated when the electromechanical energy conversion module 13 is in the power generation state can be determined. For example: in a road section with heavy traffic, frequent braking is required. At this time, the control module 16 controls the electromechanical energy conversion module 13 to switch to the power generation state to recover energy; The brake is controlled by the foot brake, and the electromechanical energy conversion module 13 is not used to affect the progress of the vehicle, so as to facilitate the driver's operation; Carry out energy recovery on the semi-trailer body 10, because when the semi-trailer body 10 is running at high speed, if it encounters an obstacle, it needs to slow down in time, when the electromechanical energy conversion module 13 is in the power generation state It can control its working power to be as large as possible; it can be understood that when the power of the energy storage module 14 is sufficient, the controllable power is 0. At this time, the electromechanical energy conversion module 13 is in the power generation state, and its work can be controlled The power should be as small as possible.
进一步地,在一可选地实施例中,所述智能半挂车100的控制方法还包括:步骤S80,根据所述传感器模块15获得的当前道路弯曲度信息、和/或所述智能半挂车100所对应的牵引车发送的方向盘的转动角度信息,确定所述半挂车车体10的转弯方向与速度;Further, in an optional embodiment, the control method of the intelligent semi-trailer 100 further includes: Step S80, according to the current road curvature information obtained by the sensor module 15, and/or the intelligent semi-trailer 100 The steering wheel rotation angle information sent by the corresponding tractor determines the turning direction and speed of the semi-trailer body 10;
步骤90,根据确定的所述半挂车车体10的转弯方向与速度,控制不同的所述车轮11的车轮驱动轴12对应的所述机电能量转换模块13的驱动输出功率。Step 90 , according to the determined turning direction and speed of the semi-trailer body 10 , control the drive output power of the electromechanical energy conversion module 13 corresponding to the wheel drive shaft 12 of the different wheels 11 .
具体的,所述当前道路弯曲度信息包括但不限于道路弯道半径等信息。所述牵引车上还可以设置有用于侦测方向盘的转弯角度的角度传感器,其中,牵引车是与智能半挂车100之间是建立有通信连接,例如,通过总线使得所述牵引车与所述控制模块16之间相互通信连接,从而将设置于牵引车上的角度传感器获取的方向盘的转弯角度信息以及牵引车的转向灯信息发送给智能半挂车100的控制模块。Specifically, the current road curvature information includes, but is not limited to, road curve radius and other information. The tractor can also be provided with an angle sensor for detecting the turning angle of the steering wheel, wherein a communication connection is established between the tractor and the intelligent semi-trailer 100, for example, the tractor and the The control modules 16 are connected to each other by communication, so as to send the steering wheel's turning angle information acquired by the angle sensor on the tractor and the turn signal information of the tractor to the control module of the intelligent semi-trailer 100 .
在本实施例中,通过当前道路弯曲度信息、和/或所述智能半挂车100所对应的牵引车发送的方向盘的转动角度信息以及牵引车的转向灯信息,确定所述半挂车本体10是否处于或者预测所述半挂车本体10的转弯状态,以控制所述机电能量转换模块13的输出功率,进而控制所述半挂车100的每个车轮的行驶速度和转动角度。In this embodiment, it is determined whether the semi-trailer body 10 is connected by the current road curvature information and/or the rotation angle information of the steering wheel sent by the tractor corresponding to the intelligent semi-trailer 100 and the turn signal information of the tractor. The turning state of the semi-trailer body 10 is in or predicted, so as to control the output power of the electromechanical energy conversion module 13 , and then control the driving speed and rotation angle of each wheel of the semi-trailer 100 .
例如,在车辆进入左转弯道时,角度传感器侦测到所述方向盘的转弯角度,所述牵引车的主控模块获取左右转向灯的开启或关闭信息,并发送到智能半挂车;且所述半挂车本体10上的环境感知传感器侦测到道路的弯曲度;所述控制模块16通过分析上述数据判断所述半挂车100的行驶方向以及行驶速度,确定每个车轮11所对应的机电转换模块13的输出功率,从而使右边轮的行驶速度比左边轮快,进而实现智能半挂车100的辅助转向驱动功能。For example, when the vehicle enters a left-turn curve, the angle sensor detects the turning angle of the steering wheel, the main control module of the tractor obtains the opening or closing information of the left and right turn signals, and sends it to the smart semi-trailer; and the The environment sensing sensor on the semi-trailer body 10 detects the curvature of the road; the control module 16 judges the driving direction and driving speed of the semi-trailer 100 by analyzing the above data, and determines the electromechanical conversion module corresponding to each wheel 11 13 output power, so that the driving speed of the right wheel is faster than that of the left wheel, and then realize the auxiliary steering driving function of the intelligent semi-trailer 100.
在本实施例中通过根据方向盘的转弯角度或者当前道路弯曲度信息,控制机电能量转换模块13的输出功率,以提供横向驱动力,辅助所述半挂车本体10进行转向。In this embodiment, the output power of the electromechanical energy conversion module 13 is controlled according to the turning angle of the steering wheel or the current road curvature information to provide lateral driving force and assist the steering of the semi-trailer body 10 .
本发明还提供一种智能半挂车100,包括车体20以及上述任一实施例所述的控制系统。The present invention also provides an intelligent semi-trailer 100, including a vehicle body 20 and the control system described in any one of the above-mentioned embodiments.
本发明还提供一种智能车辆,包括牵引车头以及如上述所述的智能半挂车100。The present invention also provides an intelligent vehicle, including a tractor head and the above-mentioned intelligent semi-trailer 100 .
以上所述仅为本发明的可选实施,并非因此限制本发明的专利范围,凡是在本发明的构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。The above description is only an optional implementation of the present invention, and does not limit the patent scope of the present invention. Under the concept of the present invention, the equivalent structural transformation made by using the description of the present invention and the contents of the accompanying drawings, or directly/indirectly used in Other relevant technical fields are included in the patent protection scope of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711440153.8A CN107985440B (en) | 2017-12-26 | 2017-12-26 | Intelligent vehicle, intelligent semi-trailer control system and control method thereof |
PCT/CN2018/095351 WO2019128188A1 (en) | 2017-12-26 | 2018-07-12 | Semi-trailer control system, semi-trailer, smart vehicle, and semi-trailer control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711440153.8A CN107985440B (en) | 2017-12-26 | 2017-12-26 | Intelligent vehicle, intelligent semi-trailer control system and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107985440A true CN107985440A (en) | 2018-05-04 |
CN107985440B CN107985440B (en) | 2025-02-18 |
Family
ID=62042326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711440153.8A Active CN107985440B (en) | 2017-12-26 | 2017-12-26 | Intelligent vehicle, intelligent semi-trailer control system and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107985440B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109532831A (en) * | 2018-11-16 | 2019-03-29 | 广东工业大学 | A kind of car speed control method and its relevant apparatus |
WO2019128188A1 (en) * | 2017-12-26 | 2019-07-04 | 长沙智能驾驶研究院有限公司 | Semi-trailer control system, semi-trailer, smart vehicle, and semi-trailer control method |
CN110303901A (en) * | 2019-07-12 | 2019-10-08 | 重庆长安新能源汽车科技有限公司 | A kind of car ramp auxiliary braking method, device and electric car |
CN111377259A (en) * | 2018-12-27 | 2020-07-07 | 北京优挂信息科技有限公司 | Trailer loading and unloading completion time estimation method |
CN111951605A (en) * | 2020-08-12 | 2020-11-17 | 扬州市伏尔坎机械制造有限公司 | Active safety control system and control method for semitrailer |
CN112147925A (en) * | 2020-09-08 | 2020-12-29 | 成都安尔法智控科技有限公司 | Sensor modularization device and method |
CN112572157A (en) * | 2020-12-28 | 2021-03-30 | 上海锣响汽车集团有限公司 | Control method and control system for braking energy recovery and auxiliary drive |
CN112823117A (en) * | 2018-09-03 | 2021-05-18 | 采埃孚商用车系统汉诺威有限公司 | Trailer brake controller, method and software for the same, and trailer vehicle having the same |
CN113246745A (en) * | 2021-05-19 | 2021-08-13 | 河南科技大学 | Auxiliary drive control method of new energy semi-trailer and new energy semi-trailer |
CN115147051A (en) * | 2022-09-01 | 2022-10-04 | 菏泽京九特种汽车有限公司 | Special lifting vehicle transportation safety supervision system based on big data |
CN115583154A (en) * | 2022-09-09 | 2023-01-10 | 清华大学 | Intelligent marshalling truck hybrid driving system and method based on trailer self-sensing |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101308690B1 (en) * | 2013-02-27 | 2013-09-13 | 주식회사 우경테크 | Driving controlling system for a motor driven electric vehicle |
CN104723887A (en) * | 2015-03-16 | 2015-06-24 | 三门峡荣通车辆应用技术开发有限公司 | Auxiliary brake device for trailer and trailer |
CN107226083A (en) * | 2016-03-25 | 2017-10-03 | 上海汽车集团股份有限公司 | A kind of power control system of hybrid vehicle |
CN207790922U (en) * | 2017-12-26 | 2018-08-31 | 长沙智能驾驶研究院有限公司 | The control system of intelligent vehicle, intelligent semitrailer and intelligent semitrailer |
-
2017
- 2017-12-26 CN CN201711440153.8A patent/CN107985440B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101308690B1 (en) * | 2013-02-27 | 2013-09-13 | 주식회사 우경테크 | Driving controlling system for a motor driven electric vehicle |
CN104723887A (en) * | 2015-03-16 | 2015-06-24 | 三门峡荣通车辆应用技术开发有限公司 | Auxiliary brake device for trailer and trailer |
CN107226083A (en) * | 2016-03-25 | 2017-10-03 | 上海汽车集团股份有限公司 | A kind of power control system of hybrid vehicle |
CN207790922U (en) * | 2017-12-26 | 2018-08-31 | 长沙智能驾驶研究院有限公司 | The control system of intelligent vehicle, intelligent semitrailer and intelligent semitrailer |
Non-Patent Citations (1)
Title |
---|
吕安涛, 毛恩荣, 林玮静: "半挂汽车列车智能化技术探讨", 林业机械与木工设备, no. 02 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019128188A1 (en) * | 2017-12-26 | 2019-07-04 | 长沙智能驾驶研究院有限公司 | Semi-trailer control system, semi-trailer, smart vehicle, and semi-trailer control method |
CN112823117A (en) * | 2018-09-03 | 2021-05-18 | 采埃孚商用车系统汉诺威有限公司 | Trailer brake controller, method and software for the same, and trailer vehicle having the same |
CN109532831A (en) * | 2018-11-16 | 2019-03-29 | 广东工业大学 | A kind of car speed control method and its relevant apparatus |
CN111377259A (en) * | 2018-12-27 | 2020-07-07 | 北京优挂信息科技有限公司 | Trailer loading and unloading completion time estimation method |
CN110303901B (en) * | 2019-07-12 | 2022-06-14 | 重庆长安新能源汽车科技有限公司 | Automobile ramp auxiliary braking method and device and electric automobile |
CN110303901A (en) * | 2019-07-12 | 2019-10-08 | 重庆长安新能源汽车科技有限公司 | A kind of car ramp auxiliary braking method, device and electric car |
CN111951605A (en) * | 2020-08-12 | 2020-11-17 | 扬州市伏尔坎机械制造有限公司 | Active safety control system and control method for semitrailer |
CN112147925A (en) * | 2020-09-08 | 2020-12-29 | 成都安尔法智控科技有限公司 | Sensor modularization device and method |
CN112572157A (en) * | 2020-12-28 | 2021-03-30 | 上海锣响汽车集团有限公司 | Control method and control system for braking energy recovery and auxiliary drive |
CN113246745A (en) * | 2021-05-19 | 2021-08-13 | 河南科技大学 | Auxiliary drive control method of new energy semi-trailer and new energy semi-trailer |
CN115147051A (en) * | 2022-09-01 | 2022-10-04 | 菏泽京九特种汽车有限公司 | Special lifting vehicle transportation safety supervision system based on big data |
CN115147051B (en) * | 2022-09-01 | 2022-12-09 | 菏泽京九特种汽车有限公司 | Special lifting vehicle transportation safety supervision system based on big data |
CN115583154A (en) * | 2022-09-09 | 2023-01-10 | 清华大学 | Intelligent marshalling truck hybrid driving system and method based on trailer self-sensing |
Also Published As
Publication number | Publication date |
---|---|
CN107985440B (en) | 2025-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107985440B (en) | Intelligent vehicle, intelligent semi-trailer control system and control method thereof | |
CN207790922U (en) | The control system of intelligent vehicle, intelligent semitrailer and intelligent semitrailer | |
CN102616235B (en) | A kind of collaborative collision avoidance device based on truck traffic and collision avoidance method | |
CN104627180B (en) | Semi-active cruise control system and method thereof | |
US8504269B2 (en) | Driving support system, method, and program | |
JP6286192B2 (en) | Drive control device for moving body | |
US20130090822A1 (en) | System and method for optimal deceleration of a vehicle using regenerative braking | |
JP2014502134A (en) | Vehicle operation method and driver support device | |
CN105946854A (en) | Vehicular automatic power control system and method and car | |
WO2011127034A1 (en) | Intelligent regenerative braking utilizing environmental data | |
CN103921889A (en) | Electric bicycle auxiliary riding system and control method | |
US10926818B1 (en) | Pooling vehicle and trailer system | |
CN112109546A (en) | Freight vehicle speed control system and method | |
WO2022212578A1 (en) | Continuously adaptable braking pedal map system | |
US20250050732A1 (en) | Adjustable accelerator pedal stroke | |
CN211280990U (en) | Whole vehicle energy management system of unmanned pure electric vehicle | |
CN113581210B (en) | Automatic driving longitudinal motion control method suitable for congestion car following working condition | |
US20200039498A1 (en) | Modulation of battery regeneration for a hybrid vehicle | |
CN112918468A (en) | Whole vehicle energy management system of unmanned pure electric vehicle and working method | |
WO2019128188A1 (en) | Semi-trailer control system, semi-trailer, smart vehicle, and semi-trailer control method | |
CN212828328U (en) | Vehicle pre-judging system | |
US12128899B2 (en) | Assisting one-pedal driving | |
CN110126641B (en) | Linear following method and system for electric automobile | |
CN117944470A (en) | Torque control method and device and vehicle | |
CN110509841A (en) | It is a kind of for new energy and the working method of the energy-saving safe system that has energy recovery function vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Country or region after: China Address after: Building A3 and A4, Hunan Inspection and testing characteristic industrial park, No. 336, bachelor Road, Yuelu District, Changsha City, Hunan Province Applicant after: Xidi Intelligent Driving (Hunan) Co.,Ltd. Address before: Building A3 and A4, Hunan Inspection and testing characteristic industrial park, No. 336, bachelor Road, Yuelu District, Changsha City, Hunan Province Applicant before: CHANGSHA INTELLIGENT DRIVING RESEARCH INSTITUTE Co.,Ltd. Country or region before: China |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: Building A3 and A4, Hunan Inspection and testing characteristic industrial park, No. 336, bachelor Road, Yuelu District, Changsha City, Hunan Province Patentee after: Xidi Intelligent Driving Technology Co.,Ltd. Country or region after: China Address before: Building A3 and A4, Hunan Inspection and testing characteristic industrial park, No. 336, bachelor Road, Yuelu District, Changsha City, Hunan Province Patentee before: Xidi Intelligent Driving (Hunan) Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |