CN107958215A - A kind of antifraud recognition methods, device, server and storage medium - Google Patents
A kind of antifraud recognition methods, device, server and storage medium Download PDFInfo
- Publication number
- CN107958215A CN107958215A CN201711183570.9A CN201711183570A CN107958215A CN 107958215 A CN107958215 A CN 107958215A CN 201711183570 A CN201711183570 A CN 201711183570A CN 107958215 A CN107958215 A CN 107958215A
- Authority
- CN
- China
- Prior art keywords
- user
- current
- identified
- fraudulent
- frequency value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 210000000214 mouth Anatomy 0.000 claims abstract description 12
- 210000001260 vocal cord Anatomy 0.000 claims abstract description 12
- 238000000605 extraction Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 2
- 230000001755 vocal effect Effects 0.000 abstract 5
- 230000006399 behavior Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/70—Multimodal biometrics, e.g. combining information from different biometric modalities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/018—Certifying business or products
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Business, Economics & Management (AREA)
- Multimedia (AREA)
- Acoustics & Sound (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Entrepreneurship & Innovation (AREA)
- Signal Processing (AREA)
- Computational Linguistics (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Finance (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明实施例涉及网络欺诈技术领域,尤其涉及一种防欺诈识别方法、装置、服务器及存储介质。The embodiments of the present invention relate to the technical field of network fraud, and in particular to an anti-fraud identification method, device, server and storage medium.
背景技术Background technique
随着科技的发展,电子商务的应用越来越广泛,信息的机密性、完整性及安全性等受到了巨大的考验。With the development of science and technology, the application of e-commerce has become more and more extensive, and the confidentiality, integrity and security of information have been greatly tested.
现有的欺诈识别方法中,目前主要是通过识别人脸或校对用户基本信息来核实用户的身份。但是现有技术提供的两种核实用户身份的方法都存在缺陷,其中识别人脸中伪冒申请者通过3D软件建模技术制备出用户的“面具脸”,在识别人脸较差的环境中,容易误判,导致识别人脸成功;或者伪冒申请者通过盗取用户的基本信息,例如:用户名,家庭信息及工作信息等,可以来冒充用户进行申请授信,潜在使得用户基本信息校对成功。因此,现有技术在核实用户身份识别欺诈行为中,准确度较低,容易误判,容易使得用户的财产安全受到威胁。In the existing fraud identification methods, at present, the identity of the user is mainly verified by recognizing the face or proofreading the basic information of the user. However, the two methods for verifying the user's identity provided by the existing technology have defects. Among them, the counterfeit applicant in the recognition of the face uses the 3D software modeling technology to prepare the user's "mask face". , it is easy to misjudgment, resulting in the success of face recognition; or a counterfeit applicant can steal the basic information of the user, such as: user name, family information and work information, etc., can pretend to be the user to apply for credit, potentially making the basic information of the user proofread success. Therefore, the existing technology has low accuracy in verifying fraudulent behaviors of user identification, is prone to misjudgment, and easily threatens the security of the user's property.
发明内容Contents of the invention
本发明实施例提供一种防欺诈识别方法、装置、服务器及存储介质,提高识别欺诈行为的准确度。Embodiments of the present invention provide an anti-fraud identification method, device, server, and storage medium, so as to improve the accuracy of fraud identification.
第一方面,本发明实施例提供了一种防欺诈识别方法,该方法包括:In a first aspect, an embodiment of the present invention provides an anti-fraud identification method, the method comprising:
接收待识别用户发送的语音采集指令时,采集所述待识别用户按照预先设置的输入方式输入的当前语音信号;When receiving the voice collection instruction sent by the user to be identified, collect the current voice signal input by the user to be identified according to the preset input mode;
提取所述当前语音信号中的当前声纹特征参数;其中,所述当前声纹特征参数包括:口腔特征参数、鼻音特征参数、卷平舌特征参数或者声带特征参数;Extracting the current voiceprint feature parameters in the current voice signal; wherein, the current voiceprint feature parameters include: oral cavity feature parameters, nasal sound feature parameters, flat tongue roll feature parameters or vocal cord feature parameters;
当所述当前声纹特征参数与预先保存的欺诈声纹特征参数匹配时,在数据库中获取所述当前声纹特征参数对应的当前频率值;When the current voiceprint characteristic parameter matches the pre-saved fraudulent voiceprint characteristic parameter, obtain the current frequency value corresponding to the current voiceprint characteristic parameter in the database;
当所述当前频率值大于预先设置的频率阈值时,将所述待识别用户识别为欺诈用户。When the current frequency value is greater than a preset frequency threshold, the user to be identified is identified as a fraudulent user.
第二方面,本发明实施例还提供了一种防欺诈识别装置,该装置包括:In the second aspect, the embodiment of the present invention also provides an anti-fraud identification device, which includes:
接收模块、提取模块、获取模块和识别模块;其中,Receiving module, extracting module, acquiring module and identifying module; wherein,
所述接收模块,用于接收待识别用户发送的语音采集指令时,采集所述待识别用户按照预先设置的输入方式输入的当前语音信号;The receiving module is configured to collect a current voice signal input by the user to be identified according to a preset input mode when receiving a voice collection instruction sent by the user to be identified;
所述提取模块,用于提取所述当前语音信号中的当前声纹特征参数;其中,所述当前声纹特征参数包括:口腔特征参数、鼻音特征参数、卷平舌特征参数或者声带特征参数;The extraction module is used to extract the current voiceprint characteristic parameters in the current speech signal; wherein, the current voiceprint characteristic parameters include: oral cavity characteristic parameters, nasal sound characteristic parameters, tongue rolling and flattening characteristic parameters or vocal cord characteristic parameters;
所述获取模块,用于当所述当前声纹特征参数与预先保存的欺诈声纹特征参数匹配时,在数据库中获取所述当前声纹特征参数对应的当前频率值;The acquisition module is configured to acquire the current frequency value corresponding to the current voiceprint characteristic parameter in the database when the current voiceprint characteristic parameter matches the pre-saved fraudulent voiceprint characteristic parameter;
所述识别模块,用于当所述当前频率值大于预先设置的频率阈值时,将所述待识别用户识别为欺诈用户。The identification module is configured to identify the user to be identified as a fraudulent user when the current frequency value is greater than a preset frequency threshold.
第三方面,本发明实施例还提供了一种服务器,所述服务器包括:In a third aspect, an embodiment of the present invention also provides a server, where the server includes:
一个或多个处理器;one or more processors;
存储装置,用于存储一个或多个程序,storage means for storing one or more programs,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上所述的防欺诈识别方法。When the one or more programs are executed by the one or more processors, the one or more processors are made to implement the anti-fraud identification method as described above.
第四方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上所述的防欺诈识别方法。In a fourth aspect, the embodiment of the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the anti-fraud identification method as described above is implemented.
本发明实施例采集待识别用户预先输入的语音信号,通过提取当前语音信号中的当前声纹特征参数与预先保存的欺诈声纹特征参数匹配,并获得当前声纹特征参数对应的当前频率值,若当前频率值大于预先设置的频率阈值时,则判定待识别用户为欺诈用户,解决了现有技术中识别欺诈行为时容易误判的问题,提高识别欺诈行为的准确度,进一步保证了用户的财产安全。The embodiment of the present invention collects the voice signal pre-input by the user to be identified, matches the characteristic parameter of the fraudulent voiceprint by extracting the current voiceprint feature parameter in the current voice signal, and obtains the current frequency value corresponding to the current voiceprint feature parameter, If the current frequency value is greater than the preset frequency threshold, it is determined that the user to be identified is a fraudulent user, which solves the problem of easy misjudgment when identifying fraudulent behavior in the prior art, improves the accuracy of identifying fraudulent behavior, and further ensures the user's security. Property security.
附图说明Description of drawings
图1是本发明实施例一中的防欺诈识别方法的流程图;FIG. 1 is a flow chart of the anti-fraud identification method in Embodiment 1 of the present invention;
图2是本发明实施例二中的防欺诈识别方法的流程图;Fig. 2 is a flowchart of the anti-fraud identification method in Embodiment 2 of the present invention;
图3是本发明实施例三中的防欺诈装置的结构示意图;Fig. 3 is a schematic structural diagram of the anti-fraud device in Embodiment 3 of the present invention;
图4是本发明实施例四中的服务器的结构示意图。FIG. 4 is a schematic structural diagram of a server in Embodiment 4 of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, only some structures related to the present invention are shown in the drawings but not all structures.
实施例一Embodiment one
图1为本发明实施例一提供的防欺诈识别方法的流程图,本实施例可适用于对欺诈用户的非法行为进行识别的情况,该方法可以由防欺诈识别装置来执行,该装置可以采用软件和/或硬件的方式实现。如图1所示,该方法具体包括:Figure 1 is a flow chart of the anti-fraud identification method provided by Embodiment 1 of the present invention. This embodiment is applicable to the situation of identifying the illegal behavior of fraudulent users. The method can be executed by an anti-fraud identification device, which can adopt implemented in software and/or hardware. As shown in Figure 1, the method specifically includes:
S110、接收待识别用户发送的语音采集指令时,采集待识别用户按照预先设置的输入方式输入的当前语音信号。S110. When receiving a voice collection instruction sent by the user to be identified, collect a current voice signal input by the user to be identified according to a preset input mode.
本实施例中,为了准确判断欺诈行为,首先需要接收当前待识别用户发送的语音采集指令,当前待识别用户可以为申请授信的用户,采集待识别用户按照预先设置的输入方式输入当前语音信号,其中,语音信号的获取可以在服务器端随机生成一些口令信息,将口令信息显示给待识别用户。其中,口令信息可以通过问答的形式获得。In this embodiment, in order to accurately determine the fraudulent behavior, it is first necessary to receive the voice collection instruction sent by the current user to be identified. The current user to be identified can be a user applying for credit, and the user to be identified can input the current voice signal according to the preset input method. Wherein, the acquisition of the voice signal may randomly generate some password information on the server side, and display the password information to the user to be identified. Wherein, the password information can be obtained in the form of question and answer.
S120、提取当前语音信号中的当前声纹特征参数;其中,当前声纹特征参数包括:口腔特征参数、鼻音特征参数、卷平舌特征参数或者声带特征参数。S120. Extract current voiceprint feature parameters in the current voice signal; wherein, the current voiceprint feature parameters include: oral cavity feature parameters, nasal sound feature parameters, flat tongue roll feature parameters, or vocal cord feature parameters.
采集当前语音信号以后,提取当前语音信号中包含的当前声纹特征参数,其中当前声纹特征参数包括:口腔特征参数,鼻音特征参数,卷平舌特征参数或声带特征参数。其中,上述的特征参数会存在一个判断的范围值。After the current voice signal is collected, the current voiceprint feature parameters included in the current voice signal are extracted, wherein the current voiceprint feature parameters include: oral cavity feature parameters, nasal sound feature parameters, tongue roll and flat tongue feature parameters or vocal cord feature parameters. Wherein, the above-mentioned feature parameters may have a judgment range value.
S130、当前声纹特征参数与预先保存的欺诈声纹特征参数匹配时,在数据库中获取当前声纹特征参数对应的当前频率值。S130. When the current voiceprint feature parameter matches the pre-saved fraudulent voiceprint feature parameter, acquire the current frequency value corresponding to the current voiceprint feature parameter from the database.
预选保存的欺诈声纹特征参数包括在数据库中预存下来的欺诈用户的口腔特征参数、鼻音特征参数、卷平舌特征参数或者声带特征参数等信息。其中预选保存的欺诈声纹特征参数设定有判断范围值,若当前声纹特征参数与预先保存的欺诈声纹特征参数匹配时,即:当前声纹特征参数的判断范围值落入预先保存的欺诈声纹特征参数的判断范围值时,则认为声纹特征参数匹配成功。The pre-selected and saved fraudulent voiceprint characteristic parameters include the fraudulent user's mouth characteristic parameters, nasal sound characteristic parameters, flat tongue curl characteristic parameters or vocal cord characteristic parameters and other information pre-stored in the database. Among them, the pre-selected and saved fraudulent voiceprint feature parameters are set with judgment range values. If the current voiceprint feature parameters match the pre-saved fraudulent voiceprint feature parameters, that is: the judgment range value of the current voiceprint feature parameters falls within the pre-saved If the judgment range value of the voiceprint feature parameter is cheated, the voiceprint feature parameter is considered to be matched successfully.
若声纹特征参数匹配成功,则在数据库中可以获取当前声纹特征参数对应的当前频率值,即:当前声纹特征参数的判断范围值出现的次数。If the voiceprint characteristic parameters are successfully matched, the current frequency value corresponding to the current voiceprint characteristic parameter can be obtained in the database, that is, the number of occurrences of the judgment range value of the current voiceprint characteristic parameter.
S140、当前频率值大于预先设置的频率阈值时,将待识别用户识别为欺诈用户。S140. When the current frequency value is greater than a preset frequency threshold, identify the user to be identified as a fraudulent user.
在数据库中预先设置的频率阈值可以为大于或等于两次,若当前声纹特征参数出现的频率值大于预先设置的频率阈值时,则待识别用户识别为欺诈用户。The frequency threshold preset in the database may be greater than or equal to twice. If the frequency value of the current voiceprint characteristic parameter is greater than the preset frequency threshold, the user to be identified will be identified as a fraudulent user.
本发明实施例提供的防欺诈识别方法,采集待识别用户预先输入的语音信号,通过提取当前语音信号中的当前声纹特征参数与预先保存的欺诈声纹特征参数匹配,进而判断当前声纹特征参数对应的当前频率值,若当前频率值大于预先设置的频率阈值时,则判定待识别用户为欺诈用户,解决了现有技术中识别欺诈行为时容易误判的问题,提高识别欺诈行为的准确度,进一步保证了用户的财产安全。The anti-fraud identification method provided by the embodiment of the present invention collects the voice signal input by the user to be identified in advance, and then judges the current voiceprint feature by extracting the current voiceprint feature parameters in the current voice signal and matching the pre-saved fraudulent voiceprint feature parameters The current frequency value corresponding to the parameter, if the current frequency value is greater than the preset frequency threshold, it is determined that the user to be identified is a fraudulent user, which solves the problem of easy misjudgment when identifying fraudulent behavior in the prior art, and improves the accuracy of identifying fraudulent behavior Degree, to further ensure the safety of the user's property.
可选地,采集待识别用户按照预先设置的输入方式输入的当前语音信号,包括:随机生成用于获取当前语音信号的口令信息,将口令信息显示给待识别用户;采集待识别用户念读口令信息后提交的当前语音信号。Optionally, collecting the current voice signal input by the user to be identified according to a preset input method includes: randomly generating password information for acquiring the current voice signal, and displaying the password information to the user to be identified; collecting the user to be identified and reading the password The current speech signal submitted after the message.
预先设置的输入方式包括问答形式输入语音信号的方式,采集待识别用户按照预先设置的输入方式输入的当前语音信号,包括:随机生成用于获取当前语音信号的口令信息,口令信息可以包括文本文字,将口令信息显示给待识别用户,采集待识别用户根据口令信息通过念读方式发出的当前语音信号,并提交、分析当前的语音信号。The preset input method includes the method of inputting the voice signal in the form of question and answer, and collects the current voice signal input by the user to be recognized according to the preset input method, including: randomly generating password information for obtaining the current voice signal, and the password information can include text , display the password information to the user to be identified, collect the current voice signal sent by the user to be identified by reading according to the password information, and submit and analyze the current voice signal.
本实施例中待识别用户通过念读口令信息后输入的当前语音信号,方便、快速,可以进一步节省信号采集的时间。In this embodiment, the current voice signal input by the user to be identified after reading the password information is convenient and fast, and can further save the time for signal collection.
可选地,在数据库中获取当前声纹特征参数对应的当前频率值,包括:在语音采集指令中获取待识别用户的用户标识;根据用户标识在数据库中获取当前声纹特征参数对应的当前频率值。Optionally, obtaining the current frequency value corresponding to the current voiceprint characteristic parameter in the database includes: obtaining the user identification of the user to be identified in the voice collection instruction; obtaining the current frequency corresponding to the current voiceprint characteristic parameter in the database according to the user identification value.
用户标识为用户登录或注册时识别用户身份的名字。在语音采集指令中获取待识别用户的用户标识,可以通过用户的ID判断用户的身份信息。根据用户标识可以在数据库中获取当前声纹特征参数对应的当前频率值。其中对应的当前频率值可以为零次,也可以为大于或等于一次。User ID is the name by which a user is identified when logging in or registering. The user identification of the user to be identified is obtained in the voice collection instruction, and the identity information of the user can be judged by the user ID. According to the user identification, the current frequency value corresponding to the current voiceprint feature parameter can be acquired in the database. The corresponding current frequency value may be zero times, or greater than or equal to one times.
本实施例中通过用户标识可以获取当前声纹特征参数,根据声纹特征的唯一性可以准确的获取数据库中对应的当前频率值,此种方法更准确地可以判断出欺诈的用户及欺诈的行为。In this embodiment, the current voiceprint feature parameters can be obtained through the user identification, and the corresponding current frequency value in the database can be accurately obtained according to the uniqueness of the voiceprint feature. This method can more accurately determine fraudulent users and fraudulent behavior .
实施例二Embodiment two
图2是本发明实施例二提供的防欺诈识别方法的流程图,本实施例在实施例一的基础上进行优化,实施例二中提供的防欺诈识别方法还包括:当前频率值小于或等于预先设置的频率阈值时,接收待识别用户输入的基本信息;当待识别用户输入的基本信息与预先保存的欺诈基本信息相同时,将待识别用户识别为欺诈用户。Fig. 2 is a flowchart of the anti-fraud identification method provided by Embodiment 2 of the present invention. This embodiment is optimized on the basis of Embodiment 1. The anti-fraud identification method provided in Embodiment 2 also includes: the current frequency value is less than or equal to When the preset frequency threshold is set, the basic information input by the user to be identified is received; when the basic information input by the user to be identified is the same as the pre-saved fraudulent basic information, the user to be identified is identified as a fraudulent user.
S210、接收待识别用户发送的语音采集指令时,采集待识别用户按照预先设置的输入方式输入的当前语音信号。S210. When receiving a voice collection instruction sent by the user to be identified, collect a current voice signal input by the user to be identified according to a preset input mode.
S220、提取当前语音信号中的当前声纹特征参数;其中,当前声纹特征参数包括:口腔特征参数、鼻音特征参数、卷平舌特征参数或者声带特征参数。S220. Extract the current voiceprint feature parameters in the current speech signal; wherein, the current voiceprint feature parameters include: oral cavity feature parameters, nasal sound feature parameters, flat tongue roll feature parameters, or vocal cord feature parameters.
S230、当前声纹特征参数与预先保存的欺诈声纹特征参数匹配时,在数据库中获取当前声纹特征参数对应的当前频率值。S230. When the current voiceprint feature parameter matches the pre-saved fraudulent voiceprint feature parameter, acquire the current frequency value corresponding to the current voiceprint feature parameter from the database.
S240、当前频率值小于或等于预先设置的频率阈值时,接收待识别用户输入的基本信息;当待识别用户输入的基本信息与预先保存的欺诈基本信息相同时,将待识别用户识别为欺诈用户。S240. When the current frequency value is less than or equal to the preset frequency threshold, receive the basic information input by the user to be identified; when the basic information input by the user to be identified is the same as the pre-saved fraudulent basic information, identify the user to be identified as a fraudulent user .
若当前频率值小于或等于预先设置的频率阈值时,则接收待识别用户输入的基本信息,待识别用户输入的基本信息包括家庭信息及工作信息等。当待识别用户输入的基本信息与预先保存的欺诈基本信息相同时,则将待识别用户判断为欺诈用户。其中,预先保存的欺诈基本信息为数据库中已设存储的基本信息。If the current frequency value is less than or equal to the preset frequency threshold, the basic information input by the user to be identified is received. The basic information input by the user to be identified includes family information and work information. When the basic information input by the user to be identified is the same as the pre-saved fraudulent basic information, the user to be identified is judged as a fraudulent user. Wherein, the pre-saved basic fraud information is the basic information already stored in the database.
本实施例在声纹判断的基础上,对用户输入的基本信息进行再次判断,增加一判断标准,提高了欺诈用户判定的准确性。In this embodiment, on the basis of the voiceprint judgment, the basic information input by the user is judged again, and a judgment standard is added to improve the accuracy of judging fraudulent users.
实施例三Embodiment Three
图3是本发明实施例三中的防欺诈装置的结构示意图。如图3所示,防欺诈装置包括:接收模块、提取模块、获取模块和识别模块。Fig. 3 is a schematic structural diagram of the anti-fraud device in Embodiment 3 of the present invention. As shown in Figure 3, the anti-fraud device includes: a receiving module, an extraction module, an acquisition module and an identification module.
接收模块310,用于接收待识别用户发送的语音采集指令时,采集待识别用户按照预先设置的输入方式输入的当前语音信号。The receiving module 310 is configured to collect a current voice signal input by the user to be recognized according to a preset input mode when receiving a voice collection instruction sent by the user to be recognized.
提取模块320,用于提取当前语音信号中的当前声纹特征参数;其中,当前声纹特征参数包括:口腔特征参数、鼻音特征参数、卷平舌特征参数或者声带特征参数。The extraction module 320 is used to extract the current voiceprint characteristic parameters in the current voice signal; wherein, the current voiceprint characteristic parameters include: oral cavity characteristic parameters, nasal sound characteristic parameters, tongue-rolled and flattened characteristic parameters or vocal cord characteristic parameters.
获取模块330,用于当前声纹特征参数与预先保存的欺诈声纹特征参数匹配时,在数据库中获取当前声纹特征参数对应的当前频率值。The acquisition module 330 is configured to acquire the current frequency value corresponding to the current voiceprint characteristic parameter in the database when the current voiceprint characteristic parameter matches the pre-saved fraudulent voiceprint characteristic parameter.
识别模块340,用于当前频率值大于预先设置的频率阈值时,将待识别用户识别为欺诈用户。The identifying module 340 is configured to identify the user to be identified as a fraudulent user when the current frequency value is greater than a preset frequency threshold.
进一步地,接收模块310,具体用于随机生成用于获取当前语音信号的口令信息,将口令信息显示给待识别用户;采集待识别用户念读口令信息后提交的当前语音信号。Further, the receiving module 310 is specifically configured to randomly generate password information for acquiring the current voice signal, display the password information to the user to be identified; collect the current voice signal submitted by the user to be identified after reading the password information.
获取模块330,具体用于在语音采集指令中获取待识别用户的用户标识;根据用户标识在数据库中获取当前声纹特征参数对应的当前频率值。The obtaining module 330 is specifically configured to obtain the user identification of the user to be identified in the voice collection instruction; obtain the current frequency value corresponding to the current voiceprint feature parameter in the database according to the user identification.
接收模块310,还用于当前频率值小于或等于预先设置的频率阈值时,接收待识别用户输入的基本信息;The receiving module 310 is also used to receive the basic information input by the user to be identified when the current frequency value is less than or equal to the preset frequency threshold;
识别模块340,还用于当待识别用户输入的基本信息与预先保存的欺诈基本信息相同时,将待识别用户识别为欺诈用户。The identification module 340 is further configured to identify the user to be identified as a fraudulent user when the basic information input by the user to be identified is the same as the pre-saved fraudulent basic information.
本发明实施例提供的防欺诈装置,采集待识别用户预先输入的语音信号,通过提取当前语音信号中的当前声纹特征参数与预先保存的欺诈声纹特征参数匹配,并获得当前声纹特征参数对应的当前频率值,若当前频率值大于预先设置的频率阈值时,则判定待识别用户为欺诈用户,解决了现有技术中识别欺诈行为时容易误判的问题,提高识别欺诈行为的准确度,进一步保障了用户的财产安全性。The anti-fraud device provided by the embodiment of the present invention collects the voice signal input by the user to be identified in advance, and obtains the current voiceprint feature parameter by extracting the current voiceprint feature parameter in the current voice signal and matching the pre-saved fraudulent voiceprint feature parameter For the corresponding current frequency value, if the current frequency value is greater than the preset frequency threshold, it is determined that the user to be identified is a fraudulent user, which solves the problem of easy misjudgment when identifying fraudulent behavior in the prior art, and improves the accuracy of fraudulent behavior identification , To further protect the user's property security.
实施例四Embodiment Four
图4为本发明实施例四中的服务器的结构示意图。图4示出了适于用来实现本发明实施方式的示例性服务器412的框图。图4显示的服务器412仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。FIG. 4 is a schematic structural diagram of a server in Embodiment 4 of the present invention. Figure 4 shows a block diagram of an exemplary server 412 suitable for use in implementing embodiments of the present invention. The server 412 shown in FIG. 4 is only an example, and should not limit the functions and scope of use of this embodiment of the present invention.
如图4所示,服务器412以通用计算设备的形式表现。服务器412的组件可以包括但不限于:一个或者多个处理器或者处理单元416,系统存储器428,连接不同系统组件(包括系统存储器428和处理单元416)的总线418。As shown in FIG. 4, server 412 takes the form of a general-purpose computing device. Components of server 412 may include, but are not limited to: one or more processors or processing units 416, system memory 428, bus 418 connecting various system components including system memory 428 and processing unit 416.
总线418表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线,微通道体系结构(MAC)总线,增强型ISA总线、视频电子标准协会(VESA)局域总线以及外围组件互连(PCI)总线。Bus 418 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor, or a local bus using any of a variety of bus structures. These architectures include, by way of example, but are not limited to Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MAC) bus, Enhanced ISA bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect ( PCI) bus.
服务器412典型地包括多种计算机系统可读介质。这些介质可以是任何能够被服务器412访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。Server 412 typically includes a variety of computer system readable media. These media can be any available media that can be accessed by server 412 and include both volatile and nonvolatile media, removable and non-removable media.
系统存储器428可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)430和/或高速缓存存储器432。服务器412可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统434可以用于读写不可移动的、非易失性磁介质(图4未显示,通常称为“硬盘驱动器”)。尽管图4中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线418相连。存储器428可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明各实施例的功能。System memory 428 may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 430 and/or cache memory 432 . Server 412 may further include other removable/non-removable, volatile/nonvolatile computer system storage media. By way of example only, storage system 434 may be used to read and write to non-removable, non-volatile magnetic media (not shown in FIG. 4, commonly referred to as a "hard drive"). Although not shown in FIG. 4, a disk drive for reading and writing to removable nonvolatile disks (e.g., "floppy disks") may be provided, as well as for removable nonvolatile optical disks (e.g., CD-ROM, DVD-ROM). or other optical media) CD-ROM drive. In these cases, each drive may be connected to bus 418 through one or more data media interfaces. Memory 428 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of various embodiments of the present invention.
具有一组(至少一个)程序模块442的程序/实用工具440,可以存储在例如存储器428中,这样的程序模块442包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块442通常执行本发明所描述的实施例中的功能和/或方法。A program/utility 440 having a set (at least one) of program modules 442, such as but not limited to, an operating system, one or more application programs, other program modules, and program data, may be stored, for example, in memory 428 , each or some combination of these examples may include implementations of network environments. Program modules 442 generally perform the functions and/or methodologies of the described embodiments of the invention.
服务器412也可以与一个或多个外部设备414(例如键盘、指向设备、显示器424等)通信,还可与一个或者多个使得用户能与该服务器412交互的设备通信,和/或与使得该服务器412能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口422进行,其中输入接口的主要接收当前用户的语音信号。并且,服务器412还可以通过网络适配器420与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器420通过总线418与服务器412的其它模块通信。应当明白,尽管图中未示出,可以结合服务器412使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。Server 412 may also communicate with one or more external devices 414 (e.g., keyboards, pointing devices, displays 424, etc.), and may also communicate with one or more devices that enable a user to interact with the server 412, and/or communicate with the Server 412 is capable of communicating with any device (eg, network card, modem, etc.) that communicates with one or more other computing devices. Such communication may be performed through an input/output (I/O) interface 422, wherein the input interface mainly receives the current user's voice signal. Moreover, the server 412 can also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN) and/or a public network, such as the Internet) through a network adapter 420 . As shown, network adapter 420 communicates with other modules of server 412 over bus 418 . It should be appreciated that although not shown, other hardware and/or software modules may be used in conjunction with server 412, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and Data backup storage system, etc.
处理单元416通过运行存储在系统存储器428中的程序,从而执行各种功能应用以及数据处理,例如实现本发明实施例所提供的防欺诈识别方法,包括:The processing unit 416 executes various functional applications and data processing by running the program stored in the system memory 428, such as implementing the anti-fraud identification method provided by the embodiment of the present invention, including:
接收待识别用户发送的语音采集指令时,采集待识别用户按照预先设置的输入方式输入的当前语音信号;When receiving the voice collection instruction sent by the user to be identified, collect the current voice signal input by the user to be identified according to the preset input method;
提取当前语音信号中的当前声纹特征参数;其中,当前声纹特征参数包括:口腔特征参数、鼻音特征参数、卷平舌特征参数或者声带特征参数;Extracting the current voiceprint feature parameters in the current voice signal; wherein, the current voiceprint feature parameters include: oral cavity feature parameters, nasal sound feature parameters, flat tongue roll feature parameters or vocal cord feature parameters;
当前声纹特征参数与预先保存的欺诈声纹特征参数匹配时,在数据库中获取当前声纹特征参数对应的当前频率值;When the current voiceprint feature parameter matches the pre-saved fraudulent voiceprint feature parameter, the current frequency value corresponding to the current voiceprint feature parameter is obtained in the database;
当前频率值大于预先设置的频率阈值时,将待识别用户识别为欺诈用户。When the current frequency value is greater than the preset frequency threshold, the user to be identified is identified as a fraudulent user.
实施例五Embodiment five
本发明实施例五提供了一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本发明实施例所提供的防欺诈识别方法,包括:Embodiment 5 of the present invention provides a storage medium on which a computer program is stored. When the program is executed by a processor, the anti-fraud identification method provided in the embodiment of the present invention is implemented, including:
接收待识别用户发送的语音采集指令时,采集待识别用户按照预先设置的输入方式输入的当前语音信号;When receiving the voice collection instruction sent by the user to be identified, collect the current voice signal input by the user to be identified according to the preset input method;
提取当前语音信号中的当前声纹特征参数;其中,当前声纹特征参数包括:口腔特征参数、鼻音特征参数、卷平舌特征参数或者声带特征参数;Extracting the current voiceprint feature parameters in the current voice signal; wherein, the current voiceprint feature parameters include: oral cavity feature parameters, nasal sound feature parameters, flat tongue roll feature parameters or vocal cord feature parameters;
当前声纹特征参数与预先保存的欺诈声纹特征参数匹配时,在数据库中获取当前声纹特征参数对应的当前频率值;When the current voiceprint feature parameter matches the pre-saved fraudulent voiceprint feature parameter, the current frequency value corresponding to the current voiceprint feature parameter is obtained in the database;
当前频率值大于预先设置的频率阈值时,将待识别用户识别为欺诈用户。When the current frequency value is greater than the preset frequency threshold, the user to be identified is identified as a fraudulent user.
本发明实施例提供的存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。The storage medium provided by the embodiments of the present invention may use any combination of one or more computer-readable media. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer-readable storage media include: electrical connections with one or more leads, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above. In this document, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。A computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including - but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for carrying out the operations of the present invention may be written in one or more programming languages, or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional Procedural Programming Language - such as "C" or a similar programming language. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In cases involving a remote computer, the remote computer may be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (such as through an Internet Service Provider). Internet connection).
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and that various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention, and the present invention The scope is determined by the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711183570.9A CN107958215A (en) | 2017-11-23 | 2017-11-23 | A kind of antifraud recognition methods, device, server and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711183570.9A CN107958215A (en) | 2017-11-23 | 2017-11-23 | A kind of antifraud recognition methods, device, server and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107958215A true CN107958215A (en) | 2018-04-24 |
Family
ID=61961772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711183570.9A Pending CN107958215A (en) | 2017-11-23 | 2017-11-23 | A kind of antifraud recognition methods, device, server and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107958215A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108711430A (en) * | 2018-04-28 | 2018-10-26 | 广东美的制冷设备有限公司 | Audio recognition method, smart machine and storage medium |
CN109544324A (en) * | 2018-11-27 | 2019-03-29 | 深圳前海微众银行股份有限公司 | Credit is counter to cheat method, system, equipment and computer readable storage medium |
CN109670934A (en) * | 2018-09-26 | 2019-04-23 | 深圳壹账通智能科技有限公司 | Personal identification method, equipment, storage medium and device based on user behavior |
CN111125658A (en) * | 2019-12-31 | 2020-05-08 | 深圳市分期乐网络科技有限公司 | Method, device, server and storage medium for identifying fraudulent users |
CN112331230A (en) * | 2020-11-17 | 2021-02-05 | 平安科技(深圳)有限公司 | Method and device for identifying fraudulent conduct, computer equipment and storage medium |
CN113992797A (en) * | 2021-08-16 | 2022-01-28 | 浙江小易信息科技有限公司 | Fraud prevention and control platform and method |
CN115021937A (en) * | 2022-06-21 | 2022-09-06 | 中国银行股份有限公司 | User identity authentication method, system, electronic equipment and storage medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070233484A1 (en) * | 2004-09-02 | 2007-10-04 | Coelho Rosangela F | Method for Automatic Speaker Recognition |
CN101662680A (en) * | 2008-08-28 | 2010-03-03 | 华为技术有限公司 | Method, device and system for measuring video flow performance |
CN103077713A (en) * | 2012-12-25 | 2013-05-01 | 青岛海信电器股份有限公司 | Speech processing method and device |
CN105261356A (en) * | 2015-10-30 | 2016-01-20 | 桂林信通科技有限公司 | Voice recognition system and method |
CN105357006A (en) * | 2014-08-20 | 2016-02-24 | 中兴通讯股份有限公司 | Method and equipment for performing security authentication based on voiceprint feature |
CN106203333A (en) * | 2016-07-08 | 2016-12-07 | 乐视控股(北京)有限公司 | Face identification method and system |
CN106503513A (en) * | 2016-09-23 | 2017-03-15 | 北京小米移动软件有限公司 | Method for recognizing sound-groove and device |
CN106548138A (en) * | 2016-10-21 | 2017-03-29 | 哈尔滨工业大学深圳研究生院 | Identity identifying method and system based on the dynamic feature of lip |
-
2017
- 2017-11-23 CN CN201711183570.9A patent/CN107958215A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070233484A1 (en) * | 2004-09-02 | 2007-10-04 | Coelho Rosangela F | Method for Automatic Speaker Recognition |
CN101662680A (en) * | 2008-08-28 | 2010-03-03 | 华为技术有限公司 | Method, device and system for measuring video flow performance |
CN103077713A (en) * | 2012-12-25 | 2013-05-01 | 青岛海信电器股份有限公司 | Speech processing method and device |
CN105357006A (en) * | 2014-08-20 | 2016-02-24 | 中兴通讯股份有限公司 | Method and equipment for performing security authentication based on voiceprint feature |
CN105261356A (en) * | 2015-10-30 | 2016-01-20 | 桂林信通科技有限公司 | Voice recognition system and method |
CN106203333A (en) * | 2016-07-08 | 2016-12-07 | 乐视控股(北京)有限公司 | Face identification method and system |
CN106503513A (en) * | 2016-09-23 | 2017-03-15 | 北京小米移动软件有限公司 | Method for recognizing sound-groove and device |
CN106548138A (en) * | 2016-10-21 | 2017-03-29 | 哈尔滨工业大学深圳研究生院 | Identity identifying method and system based on the dynamic feature of lip |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108711430A (en) * | 2018-04-28 | 2018-10-26 | 广东美的制冷设备有限公司 | Audio recognition method, smart machine and storage medium |
CN109670934A (en) * | 2018-09-26 | 2019-04-23 | 深圳壹账通智能科技有限公司 | Personal identification method, equipment, storage medium and device based on user behavior |
CN109544324A (en) * | 2018-11-27 | 2019-03-29 | 深圳前海微众银行股份有限公司 | Credit is counter to cheat method, system, equipment and computer readable storage medium |
CN109544324B (en) * | 2018-11-27 | 2022-03-22 | 深圳前海微众银行股份有限公司 | Credit anti-fraud method, system, device and computer-readable storage medium |
CN111125658A (en) * | 2019-12-31 | 2020-05-08 | 深圳市分期乐网络科技有限公司 | Method, device, server and storage medium for identifying fraudulent users |
CN111125658B (en) * | 2019-12-31 | 2024-03-22 | 深圳市分期乐网络科技有限公司 | Method, apparatus, server and storage medium for identifying fraudulent user |
CN112331230A (en) * | 2020-11-17 | 2021-02-05 | 平安科技(深圳)有限公司 | Method and device for identifying fraudulent conduct, computer equipment and storage medium |
WO2022105169A1 (en) * | 2020-11-17 | 2022-05-27 | 平安科技(深圳)有限公司 | Fraud behavior recognition method and apparatus, computer device and storage medium |
CN113992797A (en) * | 2021-08-16 | 2022-01-28 | 浙江小易信息科技有限公司 | Fraud prevention and control platform and method |
CN113992797B (en) * | 2021-08-16 | 2022-08-23 | 浙江小易信息科技有限公司 | Fraud prevention and control platform and method |
CN115021937A (en) * | 2022-06-21 | 2022-09-06 | 中国银行股份有限公司 | User identity authentication method, system, electronic equipment and storage medium |
CN115021937B (en) * | 2022-06-21 | 2024-02-09 | 中国银行股份有限公司 | User identity authentication method, system, electronic equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107958215A (en) | A kind of antifraud recognition methods, device, server and storage medium | |
WO2018166187A1 (en) | Server, identity verification method and system, and a computer-readable storage medium | |
JP6429945B2 (en) | Method and apparatus for processing audio data | |
WO2016184325A1 (en) | Identity authentication method, terminal and server | |
CN109660509A (en) | Login method, device, system and storage medium based on recognition of face | |
CN104219195A (en) | Identity verifying method, device and system | |
CN110363067A (en) | Identity verification method and device, electronic device and storage medium | |
CN104683302A (en) | Authentication method, authentication device, terminal equipment, authentication server and system | |
KR20160011709A (en) | Method, apparatus and system for payment validation | |
CN111754234A (en) | Air banking business processing method and device | |
WO2019113776A1 (en) | Face and voiceprint-based payment authentication method, and terminal | |
CN106600397A (en) | Remote account opening method and device | |
CN111241517A (en) | Method and device for constructing biological characteristic verification question-answer library | |
JP6480710B2 (en) | Handwritten data verification method and user authentication method | |
CN104158664A (en) | Identity authentication method and system | |
CN106888204B (en) | Implicit identity authentication method based on natural interaction | |
CN107657454A (en) | Biological method of payment, device, equipment and storage medium | |
US11899770B2 (en) | Verification method and apparatus, and computer readable storage medium | |
CN110324314A (en) | User registering method and device, storage medium, electronic equipment | |
CN112911334A (en) | Emotion recognition method, device and equipment based on audio and video data and storage medium | |
CN106330915A (en) | Voice verification processing method and device | |
WO2019218512A1 (en) | Server, voiceprint verification method, and storage medium | |
CN107358763A (en) | A kind of method, apparatus and system of ATM checking identity | |
CN105224844A (en) | Verification method, system and device | |
TW201944320A (en) | Payment authentication method, device, equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180424 |
|
RJ01 | Rejection of invention patent application after publication |