CN107957560A - A kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit - Google Patents
A kind of lithium ion battery SOC algorithm for estimating based on equivalent circuit Download PDFInfo
- Publication number
- CN107957560A CN107957560A CN201711376573.4A CN201711376573A CN107957560A CN 107957560 A CN107957560 A CN 107957560A CN 201711376573 A CN201711376573 A CN 201711376573A CN 107957560 A CN107957560 A CN 107957560A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- soc
- mfrac
- msup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/387—Determining ampere-hour charge capacity or SoC
- G01R31/388—Determining ampere-hour charge capacity or SoC involving voltage measurements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域technical field
本发明属于检测领域,具体涉及一种锂离子电池荷电状态的估算方法。The invention belongs to the detection field, and in particular relates to a method for estimating the state of charge of a lithium ion battery.
背景技术Background technique
近年,全球的汽车数量急剧攀升,对能源的需求也越来越大,同时对环境造成的污染也愈发严重。新能源汽车,尤其是电动汽车已成为未来汽车的发展方向,但其发展速度仍受着动力电池及其应用技术的制约。如何延长电池的使用寿命、提高电池的能量效率及可靠性,是电动汽车产业化必须解决的问题,因此研究电池管理技术具有十分重大的意义。In recent years, the number of automobiles in the world has risen sharply, the demand for energy is also increasing, and the pollution to the environment is also becoming more and more serious. New energy vehicles, especially electric vehicles, have become the development direction of future vehicles, but their development speed is still restricted by power batteries and their application technologies. How to prolong the service life of the battery and improve the energy efficiency and reliability of the battery is a problem that must be solved in the industrialization of electric vehicles. Therefore, it is of great significance to study battery management technology.
动力电池荷电状态(State of Charge)简称SOC。锂离子电池的剩余电量是电池在运行过程中最重要的性能参数之一,剩余电量的估计是一个不可忽视的环节。对于电动车来说,准确地估计电池的SOC,不仅可以提高续航能力,还可以延长电池寿命,提高安全性。The state of charge of the power battery is referred to as SOC. The remaining power of a lithium-ion battery is one of the most important performance parameters during the operation of the battery, and the estimation of the remaining power is a link that cannot be ignored. For electric vehicles, accurately estimating the SOC of the battery can not only improve battery life, but also extend battery life and improve safety.
发明内容Contents of the invention
针对本领域存在的不足之处,本发明公开了一种基于等效电路的锂离子电池SOC估计算法,以准确地估计电池的SOC。Aiming at the deficiencies in the art, the invention discloses a lithium-ion battery SOC estimation algorithm based on an equivalent circuit to accurately estimate the SOC of the battery.
实现本发明上述目的技术方案为:Realize above-mentioned object technical scheme of the present invention is:
一种基于等效电路的锂离子电池SOC估计算法,包括步骤:A kind of lithium-ion battery SOC estimation algorithm based on equivalent circuit, comprises steps:
S1、在不同的温度下,获取开路电压UOCV与SOC及温度T的关系,S1. Obtain the relationship between open circuit voltage U OCV , SOC and temperature T at different temperatures,
S2、建立等效电路模型,获取所述模型参数与所述SOC及温度T的关系,该步骤具体为S2. Establish an equivalent circuit model to obtain the relationship between the model parameters and the SOC and temperature T. This step is specifically as follows
S21、建立三阶等效电路模型,等效电路内包含串联的欧姆电阻R0和三个RC单元,每个RC单元由并联的电阻和电容组成;确定所述等效电路端电压U与开路电压UOCV的特性关系;S21, establish a third-order equivalent circuit model, the equivalent circuit includes a series-connected ohmic resistor R0 and three RC units, each RC unit is composed of parallel resistors and capacitors; determine the equivalent circuit terminal voltage U and open circuit The characteristic relationship of the voltage U OCV ;
S22、获取所述等效电路模型中的欧姆内阻R0与SOC及温度T的关系:确定脉冲放电结束瞬间的电压特性。S22. Obtain the relationship between the ohmic internal resistance R 0 , the SOC, and the temperature T in the equivalent circuit model: determine the voltage characteristic at the moment when the pulse discharge ends.
S222、获取温度T下欧姆内阻R0与SOC的关系S222. Obtain the relationship between the ohmic internal resistance R 0 and the SOC at the temperature T
S223、获得其它温度下欧姆内阻R0与SOC的关系S223. Obtain the relationship between ohmic internal resistance R 0 and SOC at other temperatures
S23、获取所述等效电路模型中的RC单元参数R1,C1,R2,C2,R3,C3与SOC及温度T的关系;S23. Obtain the relationship between the RC unit parameters R 1 , C 1 , R 2 , C 2 , R 3 , and C 3 in the equivalent circuit model and the SOC and temperature T;
S231、测定脉冲放电结束瞬间后的等效电路的电压U(t);S231. Measuring the voltage U(t) of the equivalent circuit immediately after the end of the pulse discharge;
S232、获取相同温度下RC单元参数R1,C1,R2,C2,R3,C3与SOC的关系。S232. Obtain the relationship between the RC unit parameters R 1 , C 1 , R 2 , C 2 , R 3 , and C 3 and the SOC at the same temperature.
S233、获取其它温度下并联RC单元参数R1,C1,R2,C2,R3,C3与SOC的关系。S233. Obtain the relationship between the parameters R1, C1, R2, C2, R3, C3 and the SOC of the parallel RC units at other temperatures.
S3、估计当前温度T和电池运行的时间t下的SOC值,包括S31、简化电压特性方程,S32、对电压特性方程进行求解。S3. Estimating the SOC value at the current temperature T and the battery running time t, including S31, simplifying the voltage characteristic equation, and S32, solving the voltage characteristic equation.
其中,步骤S1中,获取一系列温度T下开路电压UOCV与SOC的关系,T的温度范围为-10~50℃,SOC为0.1~0.9范围内的至少9个值。Wherein, in step S1, the relationship between the open circuit voltage U OCV and SOC at a series of temperatures T is obtained, the temperature range of T is -10-50°C, and the SOC is at least 9 values within the range of 0.1-0.9.
进一步地,将温度T下开路电压UOCV与SOC的关系以五阶多项式表达:Further, the relationship between open circuit voltage UOCV and SOC at temperature T is expressed by a fifth-order polynomial:
UOCV=a0+a1SOC+a2SOC2+a3SOC3+a4SOC4+a5SOC5 U OCV =a 0 +a 1 SOC+a 2 SOC 2 +a 3 SOC 3 +a 4 SOC 4 +a 5 SOC 5
其中Uocv表示电池开路电压,a0~a5为多项式系数,且为常数,SOC为电池的荷电状态。Among them, Uocv represents the open circuit voltage of the battery, a0-a5 are polynomial coefficients and are constants, and SOC is the state of charge of the battery.
可选地,T在低于10℃时每4-8℃获取一组UOCV与SOC的关系,T在10℃以上时每8-12℃获取一组UOCV与SOC的关系。Optionally, a set of relationship between U OCV and SOC is obtained every 4-8°C when T is lower than 10°C, and a set of relationship between U OCV and SOC is obtained every 8-12°C when T is above 10°C.
其中,所述步骤S21为:Wherein, the step S21 is:
针对三阶等效电路模型,建立电池模型的特性方程:For the third-order equivalent circuit model, the characteristic equation of the battery model is established:
其中,U0为所述欧姆内阻R0两端的电压,U1~U3为所述三个RC单元两端的电压,I为电流;Wherein, U 0 is the voltage at both ends of the ohmic internal resistance R 0 , U 1 to U 3 are the voltages at both ends of the three RC units, and I is the current;
求解式(1),可得等效电路端电压的表达式为:Solving equation (1), the expression of the equivalent circuit terminal voltage can be obtained as:
其中,U1(0)、U2(0)和U3(0)分别为脉冲放电(HPPC)计时开始时,三个RC单元两端的电压初值。Wherein, U 1 (0), U 2 (0) and U 3 (0) are the initial voltage values at both ends of the three RC units when the pulse discharge (HPPC) timing starts, respectively.
步骤S22中,脉冲放电(HPPC)为已有的测试方法,脉冲放电时间、电流等均为已有的规范(例如依据Freedom电池测试手册)。In step S22, pulse discharge (HPPC) is an existing test method, and pulse discharge time, current, etc. are all existing specifications (for example, according to the Freedom battery test manual).
根据图2的结构可知,脉冲放电结束瞬间,电压的变化完全是由欧姆内阻R0产生。因此,欧姆内阻R0采用下式获取:According to the structure in Fig. 2, it can be seen that at the end of the pulse discharge, the voltage change is entirely caused by the ohmic internal resistance R 0 . Therefore, the ohmic internal resistance R0 is obtained by the following formula :
式中,UL为脉冲放电结束的电压突变,I为脉冲放电电流值。 In the formula, U L is the voltage mutation at the end of the pulse discharge, and I is the pulse discharge current value.
其中,所述步骤S22为:Wherein, the step S22 is:
根据温度T下,电池在不同SOC下的HPPC实验得到的电压响应曲线,采用式(4)计算得到不同SOC下的欧姆内阻R0和R0-SOC曲线。所述SOC值为0.1~0.9范围内的至少9个数值。对该温度下的R0-SOC曲线进行多项式拟拟合,所述多项式拟合式为:According to the voltage response curve obtained from the HPPC experiment of the battery at different SOCs at temperature T, the ohmic internal resistance R 0 and R 0 -SOC curves at different SOCs are calculated by using formula (4). The SOC value is at least 9 values within the range of 0.1-0.9. The R 0 -SOC curve at this temperature is subjected to polynomial fitting, and the polynomial fitting formula is:
R0=b0+b1SOC+b2SOC2+b3SOC3+b4SOC4+b5SOC5 R 0 =b 0 +b 1 SOC+b 2 SOC 2 +b 3 SOC 3 +b 4 SOC 4 +b 5 SOC 5
其中R0表示欧姆内阻,b0~b5为多项式系数,且为常数,SOC为电池的荷电状态。Where R 0 represents ohmic internal resistance, b 0 to b 5 are polynomial coefficients and are constants, and SOC is the state of charge of the battery.
脉冲放电结束瞬间,电流为零,图2所示电路结构为零输入响应,其电压特性方程为:At the moment when the pulse discharge ends, the current is zero, and the circuit structure shown in Figure 2 responds to zero input, and its voltage characteristic equation is:
进一步地,所述步骤S231具体为:Further, the step S231 is specifically:
由图2的电路结构可知,脉冲放电结束瞬间后,欧姆内阻两端的电压变为零,但三个RC单元两端的电压不会变为零。因此式(3)变为:It can be known from the circuit structure in Figure 2 that the voltage across the ohmic internal resistance becomes zero immediately after the pulse discharge ends, but the voltage across the three RC units does not become zero. So formula (3) becomes:
原则上,采用数学软件的非线性拟合工具,可以直接根据式(4)对电压响应曲线拟合,得到三个RC单元的参数值。但是,由于式(4)中存在指数函数,且图2结构中的电容的数值从几十到几百kF不等,因此,采用式(5)直接拟合,难以对拟合过程进行控制,同时由于拟合参数处于分母位置,每次迭代运算,均会引入截断误差。得到的结果稳定性较差。所以,将式(5)可写为:In principle, using the nonlinear fitting tool of mathematical software, the voltage response curve can be fitted directly according to formula (4), and the parameter values of the three RC units can be obtained. However, since there is an exponential function in formula (4), and the value of the capacitance in the structure in Figure 2 varies from tens to hundreds of kF, it is difficult to control the fitting process by using formula (5) for direct fitting. At the same time, since the fitting parameters are in the denominator position, truncation errors will be introduced for each iteration. The obtained results are less stable. Therefore, formula (5) can be written as:
其中,c1~c3和d1~d3为与RC单元参数相关的常数。Wherein, c 1 -c 3 and d 1 -d 3 are constants related to the parameters of the RC unit.
其中,步骤S231中将脉冲放电结束瞬间后的电压特性方程确定为Wherein, in the step S231, the voltage characteristic equation after the end of the pulse discharge moment is determined as
其中,ts是脉冲放电后静置的时间,c1~c3和d1~d3为与RC单元参数相关的常数。Among them, t s is the resting time after the pulse discharge, and c 1 ~ c 3 and d 1 ~ d 3 are constants related to the parameters of the RC unit.
HPPC实验包括先对电池进行脉冲放电,再静置。ts的计时起点为脉冲结束时,即脉冲放电结束后的时间。The HPPC experiments consisted of pulse-discharging the battery followed by resting. The timing starting point of t s is when the pulse ends, that is, the time after the pulse discharge ends.
其中,步骤S232为:Wherein, step S232 is:
根据温度T下,电池在不同SOC下的HPPC实验脉冲放电后静置的电压响应曲线,采用(6)式通过非线性拟合得到不同SOC下的c1~c3和d1~d3值。所述SOC值为0.1~0.9范围内的至少9个数值,再根据下式计算得到不同SOC下的RC单元参数值:According to the voltage response curves of the battery under different SOC after the pulse discharge of the HPPC experiment at temperature T, the values of c 1 ~ c 3 and d 1 ~ d 3 under different SOCs can be obtained by nonlinear fitting using formula (6) . The SOC value is at least 9 values in the range of 0.1 to 0.9, and then calculated according to the following formula to obtain the RC unit parameter values under different SOCs:
根据得到的不同SOC下的Ri和Ci值,对R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表进行三次样条插值,得到加密后的R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表。According to the Ri and Ci values obtained under different SOC, perform cubic spline interpolation on the parameter tables of R 1 -SOC, R 2 -SOC, R 3 -SOC, C 1 -SOC, C 2 -SOC and C 3 -SOC , to obtain the encrypted parameter tables of R 1 -SOC, R 2 -SOC, R 3 -SOC, C 1 -SOC, C 2 -SOC and C 3 -SOC.
其中,所述步骤S233具体为,改变温度T,重复S232,获取其它温度下加密后的R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表,建立R1、R2、R3、C1、C2和C3随SOC和温度的二维参数网络Wherein, the step S233 specifically includes changing the temperature T, repeating S232, and obtaining encrypted R 1 -SOC, R 2 -SOC, R 3 -SOC, C 1 -SOC, C 2 -SOC and C 3 at other temperatures - SOC parameter table, establish a two-dimensional parameter network of R 1 , R 2 , R 3 , C 1 , C 2 and C 3 with SOC and temperature
进一步地,步骤S32中在计算当前温度T和时间t下的SOC值时不直接采用数学软件的非线性方程求解工具求解等效电路模型得到的高度非线性方程,而采用编写程序的方式求解,包括:Further, in step S32, when calculating the SOC value under the current temperature T and time t, the non-linear equation solving tool of the mathematical software is not directly used to solve the highly nonlinear equation obtained by the equivalent circuit model, but the method of writing a program is used to solve it, include:
i)设定SOC初始值为0.9,计算电池的端电压值U;i) Set the initial value of SOC to 0.9, and calculate the terminal voltage value U of the battery;
ii)计算当前t下的电池端电压值U*与U的相对偏差ii) Calculate the relative deviation between the battery terminal voltage value U* and U at the current t
Δ=|U-U*|/U;Δ=|U-U*|/U;
iii)若Δ≥0.001,则令SOC值减小0.001,重复i)~ii);若Δ<0.001,则输出此SOC值,即为当前温度T和时间t下的SOC值。iii) If Δ≥0.001, decrease the SOC value by 0.001, and repeat i)~ii); if Δ<0.001, output the SOC value, which is the SOC value under the current temperature T and time t.
由于已经得到了式(2)Uocv、R0、R1、R2、R3、C1、C2和C3在不同SOC及温度T下的值,因此,步骤S31为:Since the values of formula (2) U ocv , R 0 , R 1 , R 2 , R 3 , C 1 , C 2 and C 3 at different SOCs and temperatures T have been obtained, step S31 is:
等效电路端电压的表达式写为:The expression for the terminal voltage of the equivalent circuit is written as:
对于当前温度T和时间t,则式(8)中的U(t),U1(0)、U2(0)和U3(0)和I均为已知量,且Uocv、R0、R1、R2、R3、C1、C2和C3只与SOC相关,则式(8)可写作For the current temperature T and time t, U(t), U 1 (0), U 2 (0), U 3 (0) and I in formula (8) are all known quantities, and U ocv , R 0 , R 1 , R 2 , R 3 , C 1 , C 2 and C 3 are only related to SOC, then formula (8) can be written as
对式(9)进行求解,即可得到当前温度T和时间t下的SOC值。Solving formula (9), the SOC value at the current temperature T and time t can be obtained.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明提供一种锂离子电池的SOC估计方法。该方法的原理简单,估计精度高。具体包括:The invention provides a method for estimating the SOC of a lithium ion battery. The principle of this method is simple and the estimation accuracy is high. Specifically include:
1、本发明提供的SOC估计方法对锂离子电池的SOC估计精度最大偏差不超过1%。1. The SOC estimating method provided by the present invention has a maximum deviation of SOC estimating accuracy of lithium-ion batteries not exceeding 1%.
2、本发明提供的SOC估计方法在对等效电路模型的RC单元参数进行非线性拟合时,改变了拟合的参数形式,能够有效提高拟合的稳定性和速度。2. The SOC estimation method provided by the present invention changes the form of the fitting parameters when performing nonlinear fitting to the RC unit parameters of the equivalent circuit model, and can effectively improve the stability and speed of the fitting.
3、本发明提供的SOC估计方法在获取等效电路模型的RC单元参数与SOC的关系时,不采用多项式拟合方法,而采用三次样条插值技术建立参数表,能够有效避免多项式拟合带来的偏差。3. The SOC estimation method provided by the present invention does not adopt the polynomial fitting method when obtaining the relationship between the RC unit parameters and the SOC of the equivalent circuit model, but adopts the cubic spline interpolation technique to set up the parameter table, which can effectively avoid the polynomial fitting band coming deviation.
4、本发明提供SOC估计方法在求解等效电路电压特性方程时,不直接求解非线性方程,采用编写程序的方法求解,有效提高求解精度,降低求解时间。4. The SOC estimation method provided by the present invention does not directly solve the nonlinear equation when solving the voltage characteristic equation of the equivalent circuit, but uses the method of writing a program to solve it, which effectively improves the solution accuracy and reduces the solution time.
附图说明Description of drawings
图1为本发明基于等效电路的电池SOC的估计方法的流程图;Fig. 1 is the flowchart of the estimation method of battery SOC based on equivalent circuit of the present invention;
图2为等效电路的电路结构;Fig. 2 is the circuit structure of equivalent circuit;
图3采用编写程序的方式求解式(9)的流程图。Figure 3 is a flow chart for solving formula (9) by writing a program.
图4为拟合得到的开路电压与SOC的关系。Figure 4 shows the relationship between the fitted open circuit voltage and SOC.
图5为拟合得到的欧姆内阻与SOC的关系。Figure 5 shows the relationship between the fitted ohmic internal resistance and SOC.
图6至图11分别为R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表。Figure 6 to Figure 11 are the parameter tables of R1-SOC, R2-SOC, R3-SOC, C1-SOC, C2-SOC and C3-SOC respectively.
图12为所得到的SOC估计值与实验值对比,Figure 12 is a comparison of the obtained SOC estimated value and the experimental value,
图13估算结果的偏差情况。Figure 13 The deviation of the estimated results.
具体实施方式Detailed ways
下面通过最佳实施例来说明本发明。本领域技术人员所应知的是,实施例只用来说明本发明而不是用来限制本发明的范围。The present invention is illustrated below through the preferred embodiments. It should be understood by those skilled in the art that the examples are only used to illustrate the present invention and not to limit the scope of the present invention.
实施例中,如无特别说明,所用手段均为本领域常规的手段。In the examples, unless otherwise specified, the means used are conventional means in the art.
实施例1Example 1
本实施例结合一款正极材料为三元材料的电池,T=25℃为例,采用以下估计方法,对其SOC进行估计。In this embodiment, a battery whose cathode material is a ternary material is used as an example, and the SOC is estimated by using the following estimation method.
具体过程包括下列步骤:The specific process includes the following steps:
S1、获取所述开路电压UOCV与所述SOC及温度T的关系S1. Obtain the relationship between the open circuit voltage U OCV and the SOC and temperature T
根据温度25℃下恒流放电得到的电池在不同SOC下的开路电压Uocv,所述SOC值为0.1~0.9范围内的至少9个数值。对25℃下的Uocv-SOC曲线进行多项式拟拟合。According to the open circuit voltage U ocv of the battery at different SOCs obtained by constant current discharge at a temperature of 25° C., the SOC values are at least 9 values within the range of 0.1-0.9. A polynomial fit was performed on the U ocv -SOC curve at 25 °C.
所述多项式拟合公式为:The polynomial fitting formula is:
UOCV=a0+a1SOC+a2SOC2+a3SOC3+a4SOC4+a5SOC5 U OCV =a 0 +a 1 SOC+a 2 SOC 2 +a 3 SOC 3 +a 4 SOC 4 +a 5 SOC 5
其中Uocv表示电池开路电压,a0~a5为多项式系数,且为常数,SOC为电池的荷电状态。Among them, U ocv represents the open circuit voltage of the battery, a 0 to a 5 are polynomial coefficients and are constants, and SOC is the state of charge of the battery.
图4为拟合的结果,得到的开路电压与SOC的关系为:Figure 4 is the fitting result, the relationship between the obtained open circuit voltage and SOC is:
UOCV=3.3233+0.02455SOC-8.9131×10-4SOC2 U OCV =3.3233+0.02455SOC-8.9131×10 -4 SOC 2
+1.6196×10-5SOC3-1.2246×10-7SOC4+3.3391×10-10SOC5 +1.6196×10 -5 SOC 3 -1.2246×10 -7 SOC 4 +3.3391×10 -10 SOC 5
S2、建立等效电路模型,获取所述模型参数与所述SOC及温度T的关系,该步骤包括如下子步骤:S2. Establish an equivalent circuit model to obtain the relationship between the model parameters and the SOC and temperature T. This step includes the following sub-steps:
S21、建立三阶等效电路模型,明确所述电池端电压U与开路电压UOCV的特性关系。S21. Establish a third-order equivalent circuit model to clarify the characteristic relationship between the battery terminal voltage U and the open circuit voltage U OCV .
针对图2所示电路图,建立电池模型的特性方程:According to the circuit diagram shown in Figure 2, the characteristic equation of the battery model is established:
U0=IR0 U 0 =IR 0
U=Uocv-U0-U1-U2-U3 U=U ocv -U 0 -U 1 -U 2 -U 3
其中,U0为所述欧姆内阻R0两端的电压,U1~U3为三个RC单元两端的电压,I为电流。Wherein, U 0 is the voltage across the ohmic internal resistance R 0 , U 1 to U 3 are the voltages across the three RC units, and I is the current.
求解式(1),可得端电压的表达式为:Solving equation (1), the expression of terminal voltage can be obtained as:
其中,U1(0)、U2(0)和U3(0)分别为计时开始时,三个RC单元两端的电压初值。Wherein, U 1 (0), U 2 (0) and U 3 (0) are the initial values of the voltages at both ends of the three RC units when the timing starts, respectively.
S22、获取所述等效电路模型中的欧姆内阻R0与SOC及温度T的关系。S22. Obtain the relationship between the ohmic internal resistance R 0 , the SOC, and the temperature T in the equivalent circuit model.
S221、确定脉冲放电结束瞬间的电压特性。S221. Determine the voltage characteristic at the moment when the pulse discharge ends.
脉冲放电结束瞬间,电流为零,图2所示电路结构为零输入响应,其电压特性方程为:At the moment when the pulse discharge ends, the current is zero, and the circuit structure shown in Figure 2 responds to zero input, and its voltage characteristic equation is:
根据图2的结构可知,脉冲放电结束瞬间,电压的变化完全是由欧姆内阻R0产生。因此,欧姆内阻R0采用下式获取:According to the structure in Fig. 2, it can be seen that at the end of the pulse discharge, the voltage change is entirely caused by the ohmic internal resistance R 0 . Therefore, the ohmic internal resistance R0 is obtained by the following formula :
其中,UL为脉冲放电结束的电压突变,I为脉冲放电电流值。Among them, U L is the voltage mutation at the end of the pulse discharge, and I is the pulse discharge current value.
S222、获取某相同温度下欧姆内阻R0与SOC的关系S222. Obtain the relationship between ohmic internal resistance R 0 and SOC at the same temperature
根据温度25℃下,电池在不同SOC下的HPPC实验得到的电压响应曲线,采用S221所述方法计算得到不同SOC下的欧姆内阻R0和R0-SOC曲线。所述SOC值为0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8和0.9。对25℃下的R0-SOC曲线进行如下的多项式拟合:According to the voltage response curve obtained from the HPPC experiment of the battery at different SOCs at a temperature of 25°C, the ohmic internal resistance R 0 and R 0 -SOC curves at different SOCs were calculated using the method described in S221. The SOC values are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. The following polynomial fitting is performed on the R 0 -SOC curve at 25°C:
R0=b0+b1SOC+b2SOC2+b3SOC3+b4SOC4+b5SOC5 R 0 =b 0 +b 1 SOC+b 2 SOC 2 +b 3 SOC 3 +b 4 SOC 4 +b 5 SOC 5
其中R0表示欧姆内阻,b0~b5为多项式系数,且为常数,SOC为电池的荷电状态。Where R 0 represents ohmic internal resistance, b 0 to b 5 are polynomial coefficients and are constants, and SOC is the state of charge of the battery.
图5为拟合结果,得到的欧姆内阻与SOC的关系为:Figure 5 is the fitting result, the obtained relationship between ohmic internal resistance and SOC is:
R0=2.5800-0.03058SOC-4.5770×10-4SOC2 R 0 =2.5800-0.03058SOC-4.5770×10 -4 SOC 2
+1.6125×10-6SOC3-8.6662×10-8SOC4+5.0321×10-10SOC5 +1.6125×10 -6 SOC 3 -8.6662×10 -8 SOC 4 +5.0321×10 -10 SOC 5
S23、获取所述等效电路模型中的并联RC单元参数R1,C1,R2,C2,R3,C3与SOC及温度T的关系。包含如下子步骤:S23. Obtain the relationship between the parameters R 1 , C 1 , R 2 , C 2 , R 3 , and C 3 of the parallel RC unit in the equivalent circuit model, and the SOC and temperature T. Contains the following sub-steps:
S231、确定脉冲放电结束瞬间后的电压特性。S231. Determine the voltage characteristic immediately after the end of the pulse discharge.
由图2的电路结构可知,脉冲放电结束瞬间后,欧姆内阻两端的电压变为零,但三个RC单元两端的电压不会变为零。因此式(3)变为:It can be known from the circuit structure in Figure 2 that the voltage across the ohmic internal resistance becomes zero immediately after the pulse discharge ends, but the voltage across the three RC units does not become zero. So formula (3) becomes:
原则上,采用数学软件的非线性拟合工具,可以直接根据式(4)对电压响应曲线拟合,得到三个RC单元的参数值。但是,由于式(4)中存在指数函数,且图2结构中的电容的数值从几十到几百kF不等,同时由于拟合参数处于分母位置,每次迭代运算,均会引入截断误差。因此,采用式(5)直接拟合,难以对拟合过程进行控制,得到的结果稳定性较差。所以,将式(5)写为:In principle, using the nonlinear fitting tool of mathematical software, the voltage response curve can be fitted directly according to formula (4), and the parameter values of the three RC units can be obtained. However, since there is an exponential function in formula (4), and the values of the capacitors in the structure in Figure 2 range from tens to hundreds of kF, and because the fitting parameters are in the denominator position, each iterative operation will introduce a truncation error . Therefore, it is difficult to control the fitting process by using formula (5) for direct fitting, and the stability of the obtained results is poor. So, write formula (5) as:
其中,c1~c3和d1~d3为与RC单元参数相关的常数。Wherein, c 1 -c 3 and d 1 -d 3 are constants related to the parameters of the RC unit.
S232、获取某相同温度下并联RC单元参数R1,C1,R2,C2,R3,C3与SOC的关系。S232. Obtain the relationship between the parameters R 1 , C 1 , R 2 , C 2 , R 3 , and C 3 of the parallel RC units at the same temperature and the SOC.
根据温度25℃下,电池在不同SOC下的HPPC实验冲放电后静置的电压响应曲线,基于式(6)通过非线性拟合得到不同SOC下的c1~c3和d1~d3值。According to the voltage response curves of the battery at 25°C, after charging and discharging in the HPPC experiment at different SOCs, c 1 ~ c 3 and d 1 ~ d 3 at different SOCs are obtained through nonlinear fitting based on formula (6) value.
所述SOC值为0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8和0.9。再根据下式计算得到不同SOC下的RC单元参数值。所述表达式为:The SOC values are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. Then calculate the parameter values of the RC unit under different SOCs according to the following formula. Said expression is:
根据步骤上述得到的不同SOC下的R1~R3和C1~C3值,对R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表进行三次样条插值,得到加密后的R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表。According to the values of R 1 ~R 3 and C 1 ~C 3 under different SOC obtained in the steps above, for R 1 -SOC, R 2 -SOC, R 3 -SOC, C 1 -SOC, C 2 -SOC and C 3 - Perform cubic spline interpolation on the parameter table of the SOC to obtain encrypted parameter tables of R 1 -SOC, R 2 -SOC, R 3 -SOC, C 1 -SOC, C 2 -SOC and C 3- SOC.
参数的结果见图6~11。The results of the parameters are shown in Figures 6-11.
S3、估计当前温度T和时间t下的SOC值S3. Estimate the SOC value at the current temperature T and time t
该步骤包含如下子步骤:This step includes the following sub-steps:
S31、简化电压特性方程S31. Simplify the voltage characteristic equation
由于已经得到了式(2)Uocv、R0、R1、R2、R3、C1、C2和C3在不同SOC及温度T下的值,因此,式(2)可改写为:Since the values of formula (2) U ocv , R 0 , R 1 , R 2 , R 3 , C 1 , C 2 and C 3 at different SOC and temperature T have been obtained, formula (2) can be rewritten as :
对于当前温度T和时间t,则式(8)中的U(t),U1(0)、U2(0)和U3(0)和I均为已知量,且Uocv、R0、R1、R2、R3、C1、C2和C3只与SOC相关,则式(8)可写作For the current temperature T and time t, U(t), U 1 (0), U 2 (0), U 3 (0) and I in formula (8) are all known quantities, and U ocv , R 0 , R 1 , R 2 , R 3 , C 1 , C 2 and C 3 are only related to SOC, then formula (8) can be written as
对式(9)进行求解,即可得到当前温度T和电池运行的时间t下的SOC值。Solve equation (9), and then the SOC value at the current temperature T and battery running time t can be obtained.
S32、对电压特性方程进行求解S32, solving the voltage characteristic equation
式(9)是一个高度非线性方程,直接采用数学软件的非线性方程求解工具进行求解,无法得到稳定的求解结果,且求解时间较长。考虑到SOC值本身具有上下限,因此采用编写程序的方式求解式(9),具体的流程如图3所示。Equation (9) is a highly nonlinear equation, which can be solved directly by the nonlinear equation solving tool of mathematical software, which cannot obtain stable solution results and takes a long time to solve. Considering that the SOC value itself has upper and lower limits, formula (9) is solved by writing a program. The specific process is shown in Figure 3.
i)设定SOC初始值为0.9,根据式(9)计算电池的端电压值U;i) Set the initial value of SOC to 0.9, and calculate the terminal voltage value U of the battery according to formula (9);
ii)当前t下的电池端电压值U*与U的相对偏差ii) The relative deviation between the battery terminal voltage value U* and U at the current t
Δ=|U-U*|/U;Δ=|U-U*|/U;
iii)若Δ≥0.001。则令SOC值减小0.001,重复i)~ii)。若Δ<0.001,则输出此SOC值,即为当前温度T和时间t下的SOC值。iii) If Δ≥0.001. Then reduce the SOC value by 0.001, and repeat i) to ii). If Δ<0.001, then output this SOC value, which is the SOC value under the current temperature T and time t.
具体编程示例如下(只列出了求解非线性方程的程序,未列出式中各参数与SOC的关系的程序):The specific programming example is as follows (only the program for solving nonlinear equations is listed, and the program for the relationship between each parameter in the formula and SOC is not listed):
本实施例详细描述了本方法从参数获取到SOC估计的全过程。在实际应用中,对于相同的电池,所有参数获取过程即S1和S2以及估计过程的表达式简化过程S31均只需要执行一次,获取相应的参数值。进行SOC估计时只需要具体执行S32步骤。This embodiment describes in detail the whole process of the method from parameter acquisition to SOC estimation. In practical applications, for the same battery, all parameter acquisition processes, namely S1 and S2 and the expression simplification process S31 of the estimation process, only need to be executed once to obtain corresponding parameter values. When performing SOC estimation, only step S32 needs to be specifically executed.
实施效果:Implementation Effect:
所得到的SOC估计值与实验值对比见图12,从图中看实验测试(experiment)和预测结果(prediction)基本完全重合,偏差情况见图13。正负的最大偏差均约为0.6%。The comparison of the obtained SOC estimated value and the experimental value is shown in Figure 12. From the figure, it can be seen that the experimental test (experiment) and the predicted result (prediction) basically coincide completely, and the deviation is shown in Figure 13. The maximum deviation, both positive and negative, is about 0.6%.
实施例2Example 2
采用和实施例1系统的方法,设定其他值的温度,T在低于10℃时每5℃获取一组UOCV与SOC的关系,T在10℃以上时每10℃获取一组UOCV与SOC的关系。Adopt the same method as in Example 1, set the temperature at other values, obtain the relationship between a set of U OCV and SOC every 5°C when T is lower than 10°C, and obtain a set of U OCV every 10°C when T is above 10°C Relationship with SOC.
所得到的SOC估计值与实验值对比,其最大偏差不超过1%。The obtained SOC estimation value is compared with the experimental value, and its maximum deviation does not exceed 1%.
以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案做出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。The above embodiments are only descriptions of preferred implementations of the present invention, and are not intended to limit the scope of the present invention. On the premise of not departing from the design spirit of the present invention, various technical solutions of the present invention can be made by ordinary engineers and technicians in the field. Variations and improvements should fall within the scope of protection defined by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711376573.4A CN107957560B (en) | 2017-12-19 | 2017-12-19 | An Equivalent Circuit-Based SOC Estimation Algorithm for Li-ion Batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711376573.4A CN107957560B (en) | 2017-12-19 | 2017-12-19 | An Equivalent Circuit-Based SOC Estimation Algorithm for Li-ion Batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107957560A true CN107957560A (en) | 2018-04-24 |
CN107957560B CN107957560B (en) | 2020-03-06 |
Family
ID=61959236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711376573.4A Active CN107957560B (en) | 2017-12-19 | 2017-12-19 | An Equivalent Circuit-Based SOC Estimation Algorithm for Li-ion Batteries |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107957560B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108988450A (en) * | 2018-09-04 | 2018-12-11 | 石家庄科林电气股份有限公司 | Intelligent Charger for Electric Bicycle and charging method with fire-proof and explosion-proof function |
CN109878378A (en) * | 2019-01-30 | 2019-06-14 | 北京长城华冠汽车科技股份有限公司 | Internal resistance of cell calculation method, device and battery management system |
CN110058159A (en) * | 2019-04-29 | 2019-07-26 | 杭州电子科技大学 | A kind of lithium battery health status estimation method based on grey neural network |
CN110208701A (en) * | 2019-04-09 | 2019-09-06 | 清华大学 | The calculation method of energy-storage system virtual battery internal resistance in a kind of direct-current micro-grid |
CN110208707A (en) * | 2019-06-14 | 2019-09-06 | 湖北锂诺新能源科技有限公司 | A kind of lithium ion battery parameter evaluation method based on equivalent-circuit model |
CN110348062A (en) * | 2019-06-14 | 2019-10-18 | 湖北锂诺新能源科技有限公司 | The construction method of lithium ion battery equivalent-circuit model |
CN110954831A (en) * | 2019-12-06 | 2020-04-03 | 重庆大学 | Multi-time scale square lithium battery SOC and SOT joint estimation method |
CN111025172A (en) * | 2019-12-31 | 2020-04-17 | 国联汽车动力电池研究院有限责任公司 | A method for fast measurement of the maximum allowable power of lithium-ion battery charging and discharging |
CN111413618A (en) * | 2020-03-27 | 2020-07-14 | 国联汽车动力电池研究院有限责任公司 | Lithium ion battery equivalent circuit model parameter relation calculation method and system |
CN111579992A (en) * | 2020-04-27 | 2020-08-25 | 沃太能源南通有限公司 | Second-order RC equivalent circuit parameter fitting method based on cubic spline difference |
CN117117346A (en) * | 2023-07-31 | 2023-11-24 | 广东嘉尚新能源科技有限公司 | Design and control method of sodium ion battery management system |
EP4407329A1 (en) * | 2023-01-24 | 2024-07-31 | Rimac Technology LLC | Method and device for determining a derated power limit of a battery |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050030041A1 (en) * | 2003-08-07 | 2005-02-10 | Jae Seung Koo | Method for determining a steady state battery terminal voltage |
JP2010135075A (en) * | 2008-12-02 | 2010-06-17 | Calsonic Kansei Corp | Method and device for estimating temperature of battery pack |
CN103439668A (en) * | 2013-09-05 | 2013-12-11 | 桂林电子科技大学 | Charge state evaluation method and system of power lithium ion battery |
CN103901351A (en) * | 2014-03-18 | 2014-07-02 | 浙江大学城市学院 | Single lithium ion battery SOC estimation method based on sliding window filtering |
CN103926538A (en) * | 2014-05-05 | 2014-07-16 | 山东大学 | Variable tap-length RC equivalent circuit model and realization method based on AIC |
CN105425154A (en) * | 2015-11-02 | 2016-03-23 | 北京理工大学 | Method for estimating charge state of power cell set of electric vehicle |
CN106026260A (en) * | 2016-06-24 | 2016-10-12 | 南京航空航天大学 | SOC estimation method for series-wound battery pack having equalization circuit |
CN106918787A (en) * | 2017-03-20 | 2017-07-04 | 国网重庆市电力公司电力科学研究院 | A kind of electric automobile lithium battery residual charge evaluation method and device |
-
2017
- 2017-12-19 CN CN201711376573.4A patent/CN107957560B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050030041A1 (en) * | 2003-08-07 | 2005-02-10 | Jae Seung Koo | Method for determining a steady state battery terminal voltage |
JP2010135075A (en) * | 2008-12-02 | 2010-06-17 | Calsonic Kansei Corp | Method and device for estimating temperature of battery pack |
CN103439668A (en) * | 2013-09-05 | 2013-12-11 | 桂林电子科技大学 | Charge state evaluation method and system of power lithium ion battery |
CN103901351A (en) * | 2014-03-18 | 2014-07-02 | 浙江大学城市学院 | Single lithium ion battery SOC estimation method based on sliding window filtering |
CN103926538A (en) * | 2014-05-05 | 2014-07-16 | 山东大学 | Variable tap-length RC equivalent circuit model and realization method based on AIC |
CN105425154A (en) * | 2015-11-02 | 2016-03-23 | 北京理工大学 | Method for estimating charge state of power cell set of electric vehicle |
CN106026260A (en) * | 2016-06-24 | 2016-10-12 | 南京航空航天大学 | SOC estimation method for series-wound battery pack having equalization circuit |
CN106918787A (en) * | 2017-03-20 | 2017-07-04 | 国网重庆市电力公司电力科学研究院 | A kind of electric automobile lithium battery residual charge evaluation method and device |
Non-Patent Citations (1)
Title |
---|
项胜: "电动汽车动力电池安全管理系统研究与设计", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108988450A (en) * | 2018-09-04 | 2018-12-11 | 石家庄科林电气股份有限公司 | Intelligent Charger for Electric Bicycle and charging method with fire-proof and explosion-proof function |
CN108988450B (en) * | 2018-09-04 | 2021-03-30 | 石家庄科林电气股份有限公司 | Electric bicycle intelligent charger with fireproof and explosion-proof functions and charging method |
CN109878378A (en) * | 2019-01-30 | 2019-06-14 | 北京长城华冠汽车科技股份有限公司 | Internal resistance of cell calculation method, device and battery management system |
CN110208701B (en) * | 2019-04-09 | 2020-07-10 | 清华大学 | A calculation method of virtual battery internal resistance of energy storage system in DC microgrid |
CN110208701A (en) * | 2019-04-09 | 2019-09-06 | 清华大学 | The calculation method of energy-storage system virtual battery internal resistance in a kind of direct-current micro-grid |
CN110058159A (en) * | 2019-04-29 | 2019-07-26 | 杭州电子科技大学 | A kind of lithium battery health status estimation method based on grey neural network |
CN110208707A (en) * | 2019-06-14 | 2019-09-06 | 湖北锂诺新能源科技有限公司 | A kind of lithium ion battery parameter evaluation method based on equivalent-circuit model |
CN110348062A (en) * | 2019-06-14 | 2019-10-18 | 湖北锂诺新能源科技有限公司 | The construction method of lithium ion battery equivalent-circuit model |
CN110348062B (en) * | 2019-06-14 | 2023-05-26 | 湖北锂诺新能源科技有限公司 | Construction method of equivalent circuit model of lithium ion battery |
CN110954831A (en) * | 2019-12-06 | 2020-04-03 | 重庆大学 | Multi-time scale square lithium battery SOC and SOT joint estimation method |
CN110954831B (en) * | 2019-12-06 | 2021-10-26 | 重庆大学 | Multi-time scale square lithium battery SOC and SOT joint estimation method |
CN111025172A (en) * | 2019-12-31 | 2020-04-17 | 国联汽车动力电池研究院有限责任公司 | A method for fast measurement of the maximum allowable power of lithium-ion battery charging and discharging |
CN111025172B (en) * | 2019-12-31 | 2022-03-01 | 国联汽车动力电池研究院有限责任公司 | A method for fast measurement of the maximum allowable power of lithium-ion battery charging and discharging |
CN111413618A (en) * | 2020-03-27 | 2020-07-14 | 国联汽车动力电池研究院有限责任公司 | Lithium ion battery equivalent circuit model parameter relation calculation method and system |
CN111579992A (en) * | 2020-04-27 | 2020-08-25 | 沃太能源南通有限公司 | Second-order RC equivalent circuit parameter fitting method based on cubic spline difference |
EP4407329A1 (en) * | 2023-01-24 | 2024-07-31 | Rimac Technology LLC | Method and device for determining a derated power limit of a battery |
CN117117346A (en) * | 2023-07-31 | 2023-11-24 | 广东嘉尚新能源科技有限公司 | Design and control method of sodium ion battery management system |
CN117117346B (en) * | 2023-07-31 | 2024-03-12 | 广东嘉尚新能源科技有限公司 | Design and control method of sodium ion battery management system |
Also Published As
Publication number | Publication date |
---|---|
CN107957560B (en) | 2020-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107957560B (en) | An Equivalent Circuit-Based SOC Estimation Algorithm for Li-ion Batteries | |
CN110795851B (en) | Lithium ion battery modeling method considering environmental temperature influence | |
CN109188293B (en) | SOC estimation method of EKF lithium-ion battery based on the fading factor of innovation covariance band | |
CN104392080B (en) | A kind of lithium battery fractional order becomes rank equivalent-circuit model and its discrimination method | |
CN103439668B (en) | The charge state evaluation method of power lithium-ion battery and system | |
CN103472403B (en) | A kind of electrokinetic cell SOC compound method of estimation based on PNGV equivalent-circuit model | |
CN104122504B (en) | A kind of SOC estimation method of battery | |
CN107576919A (en) | Power battery charged state estimating system and method based on ARMAX models | |
CN105425154B (en) | A kind of method of the state-of-charge for the power battery pack for estimating electric automobile | |
CN106443467A (en) | Lithium ion battery charging electric quantity modeling method based on charging process and application thereof | |
CN109839599B (en) | Lithium-ion battery SOC estimation method based on second-order EKF algorithm | |
CN108062086A (en) | Method based on Simscape battery pack models verification battery charging and discharging control strategy | |
CN112305426B (en) | Lithium ion battery power state estimation system under multi-constraint condition | |
CN110109019A (en) | A kind of SOC estimation method of the hybrid power lithium battery based on EKF algorithm | |
CN107957555A (en) | A kind of new method for estimating dynamic lithium battery SoC | |
JP3876252B2 (en) | Battery steady state terminal voltage calculation method | |
CN111638462B (en) | A SOC-OCV piecewise fitting method | |
CN112379280B (en) | Method for determining relation between battery model parameters and OCV-SOC (open Circuit Voltage-State Charge) based on constant voltage and constant current charging curve | |
CN105974320B (en) | A kind of liquid or semi-liquid metal battery charge state method of estimation | |
CN112379270B (en) | Rolling time domain estimation method for state of charge of power battery of electric automobile | |
CN110031772B (en) | Real-time estimation method for equivalent internal resistance of lithium ion battery | |
CN108508370A (en) | A kind of open-circuit voltage based on temperature correction-ampere-hour integral SOC methods of estimation | |
CN112580289A (en) | Hybrid capacitor power state online estimation method and system | |
CN113419123B (en) | A state-of-charge estimation method for series-connected supercapacitor banks for variable temperature environments | |
CN113900027A (en) | Battery SOC estimation method, device, control unit and computer readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |