[go: up one dir, main page]

CN107945534A - A kind of special bus method for predicting based on GMDH neutral nets - Google Patents

A kind of special bus method for predicting based on GMDH neutral nets Download PDF

Info

Publication number
CN107945534A
CN107945534A CN201711325978.5A CN201711325978A CN107945534A CN 107945534 A CN107945534 A CN 107945534A CN 201711325978 A CN201711325978 A CN 201711325978A CN 107945534 A CN107945534 A CN 107945534A
Authority
CN
China
Prior art keywords
neural network
data
vehicle
gmdh
training
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711325978.5A
Other languages
Chinese (zh)
Inventor
刘泓
臧泽林
马东方
戚伟
朱胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou City University
Original Assignee
Zhejiang University City College ZUCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University City College ZUCC filed Critical Zhejiang University City College ZUCC
Priority to CN201711325978.5A priority Critical patent/CN107945534A/en
Publication of CN107945534A publication Critical patent/CN107945534A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/065Traffic control systems for road vehicles by counting the vehicles in a section of the road or in a parking area, i.e. comparing incoming count with outgoing count
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles
    • G08G1/0175Detecting movement of traffic to be counted or controlled identifying vehicles by photographing vehicles, e.g. when violating traffic rules

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及一种基于GMDH神经网络的交通车流量预测方法,包括GMDH神经网络离线车流量训练和GMDH神经网络在线车流量实时预测。本发明的有益效果是:本方法使用GMDH神经网络算法对交通路口的车流量进行预测,一般的预测方法在处理大体量的数据过程中有时间长,准确率低等缺点,较难实现交通流量实时预测的要求;由于GMDH神经网络具有强大的逼近能力,可以将车流量的预测分成离线学习和在线预测两个部分:在离线学习环节结合大量的数据,通过进行神经网络的训练,学习车流量变化的规律;在在线预测部分通过调用已学习完毕的神经网络,快速有效的对车辆的通行状态进行实时预测。

The invention relates to a traffic traffic flow prediction method based on a GMDH neural network, which includes offline vehicle flow training of the GMDH neural network and real-time prediction of the online vehicle flow of the GMDH neural network. The beneficial effects of the present invention are: the method uses the GMDH neural network algorithm to predict the traffic flow at traffic intersections. The general prediction method has the disadvantages of long time and low accuracy in the process of processing large volumes of data, and it is difficult to realize traffic flow. Requirements for real-time prediction; due to the strong approximation ability of the GMDH neural network, the prediction of traffic flow can be divided into two parts: offline learning and online prediction: in the offline learning link, a large amount of data is combined, and the training of the neural network is used to learn the traffic flow. The law of change; in the online prediction part, by calling the neural network that has been learned, it can quickly and effectively predict the traffic status of the vehicle in real time.

Description

一种基于GMDH神经网络的交通车流量预测方法A Traffic Flow Forecasting Method Based on GMDH Neural Network

技术领域technical field

本发明涉及一种交通车流量预测方法,具体涉及一种基于GMDH神经网络的交通车流量预测方法。The invention relates to a traffic vehicle flow prediction method, in particular to a traffic vehicle flow prediction method based on a GMDH neural network.

背景技术Background technique

现有的交通车流量预测方法,大多使用时间序列模型,或使用与时间序列模型相似的线性模型。这类方法将某一时刻的交通流量看成是非平稳随机序列,并在时间的维度上进行分析和运算。如以基于时间序列模型的方法为例,这类方法建立在大量不间断数据的基础上,具有较高的预测精度,但需要复杂的参数估计,且计算出的参数不具备可移植性。在实际应用中,由于各种原因很容易造成数据的遗漏,很容易导致模型预测精度的降低,另外还依赖大量的历史数据,数据成本较高。Most of the existing traffic flow forecasting methods use time series models, or use linear models similar to time series models. This type of method regards the traffic flow at a certain moment as a non-stationary random sequence, and analyzes and calculates it in the dimension of time. Take methods based on time series models as an example. This type of method is based on a large amount of uninterrupted data and has high prediction accuracy, but requires complex parameter estimation, and the calculated parameters are not portable. In practical applications, due to various reasons, it is easy to cause data omission, which can easily lead to a reduction in the prediction accuracy of the model. In addition, it also relies on a large amount of historical data, and the data cost is relatively high.

发明内容Contents of the invention

本发明的目的是克服现有技术中的不足,提供一种具有预测精度高,对历史数据依赖小,数据成本低的基于GMDH神经网络的交通车流量预测方法。The purpose of the present invention is to overcome the deficiencies in the prior art, and provide a traffic flow prediction method based on GMDH neural network with high prediction accuracy, little dependence on historical data, and low data cost.

一种基于GMDH神经网络的交通车流量预测方法,包括如下步骤:A traffic flow prediction method based on GMDH neural network, comprising the steps:

1)、GMDH神经网络离线车流量训练1), GMDH neural network offline traffic flow training

1.1)、读取车辆通行历史数据;历史数据依据车辆道路上的智能摄像头采集,具体包括通过车辆的速度、车辆车牌号等信息;1.1), read the historical data of vehicle traffic; the historical data is collected according to the intelligent camera on the vehicle road, including the speed of the passing vehicle, the license plate number of the vehicle and other information;

1.2)、确定智能摄像头工作正常,所采集的车辆数据是否正确;剔除车速过快,车辆车牌号识别有误,车辆前后行驶轨迹不符,幽灵车辆等数据,1.2) Determine whether the smart camera is working normally and whether the collected vehicle data is correct; remove the data such as excessive speed, incorrect recognition of the vehicle license plate number, discrepancies in the front and rear driving trajectories of the vehicle, and ghost vehicles.

1.3)、初始化GMDH神经网络;根据数据的采集频率和数据所采集的总天数,设定神经网络的结构,神经网络的维度一般与数据量的大小成正比,确保神经网络预测的准确性;1.3), initialize the GMDH neural network; set the structure of the neural network according to the frequency of data collection and the total number of days of data collection, and the dimension of the neural network is generally proportional to the size of the data volume to ensure the accuracy of the prediction of the neural network;

1.4)、进行神经网络的训练;使用梯度下降法对神经网络的权值和偏置进行调整,通过多次遍历神经网络的每一层实现神经网络的训练;1.4), carry out the training of neural network; Use gradient descent method to adjust the weight and bias of neural network, realize the training of neural network by traversing each layer of neural network multiple times;

1.5)、保存最优的训练结果;在神经网络训练结束后,应将神经网络的结构,权值和偏置进行保存,从而用于步骤2)的在线车流量实时预测;1.5), save the optimal training result; after the neural network training is finished, the structure, weight and bias of the neural network should be saved, so as to be used for the real-time prediction of online traffic flow in step 2);

2)、GMDH神经网络在线车流量实时预测2), GMDH neural network online traffic flow real-time prediction

2.1)、读取车辆通行历史数据;历史数据依据车辆道路上的智能摄像头采集,具体包括通过车辆的速度、车辆车牌号等信息;2.1), read the historical data of vehicle traffic; the historical data is collected according to the intelligent camera on the vehicle road, including the speed of the passing vehicle, the license plate number of the vehicle and other information;

2.2)、确定智能摄像头工作正常,所采集的车辆数据是否正确;剔除车速过快,车辆车牌号识别有误,车辆前后行驶轨迹不符,幽灵车辆等数据;2.2) Determine whether the smart camera is working normally and whether the collected vehicle data is correct; exclude data such as excessive speed, incorrect identification of the vehicle license plate number, discrepancies in the front and rear driving trajectories of the vehicle, and ghost vehicles;

2.3)、根据步骤1中确定的神经网络结构来初始化GMDH神经网络;2.3), initialize the GMDH neural network according to the neural network structure determined in step 1;

2.4)、进行神经网络的预测;使用先前步骤1)获得的神经网络的结构,权值和偏置对实时的车流量进行预测;2.4), carry out the prediction of neural network; Use the structure of the neural network obtained in previous step 1), weight and bias to predict the real-time traffic flow;

2.5)、输出结果,用于对交通情况进行控制。2.5), the output result is used to control the traffic situation.

作为优选:步骤1.2)具体包括如下步骤:As preferably: step 1.2) specifically comprises the following steps:

1.2.1)、判断单位时间的车辆通行数n,应满足约束:nnin<n<nmax(nnin,nmax为单位时间车辆通行最小数和最大数),如果不能满足本约束则说明数据采集过程出现问题。1.2.1), judging the number n of vehicles passing per unit time, should satisfy the constraint: n nin <n<n max (n nin , n max is the minimum and maximum number of vehicles passing per unit time), if this constraint cannot be satisfied, explain There was a problem with the data collection process.

1.2.2)、判断该路口车辆通行数n1,与当前时间其他路口车辆通行数ni满足约束:a·ni<n1<b·ni(a,b为相应系数),如果不能满足当前约束则说明数据的采集过程出现问题。1.2.2), judging that the number n 1 of vehicles at this intersection meets the constraints with the number n i of vehicles at other intersections at the current time: a·n i <n 1 <b·n i (a, b is the corresponding coefficient), if not Satisfying the current constraints indicates that there is a problem in the data collection process.

1.2.3)、其他对采集数据进行验证的方法同样包含在此专利要求的范围内。1.2.3), other methods for verifying the collected data are also included in the scope of this patent requirement.

1.2.4)、如果判定数据不准确,使用对应的数据还原方案进行数据的补全,从历史数据中推测丢失的相应数据。1.2.4), if it is judged that the data is inaccurate, use the corresponding data restoration plan to complete the data, and speculate the corresponding missing data from the historical data.

1.2.5)、如果不能从数据中进行推测,则报错,要求系统对传感器模块进行维护。1.2.5), if it cannot be inferred from the data, an error will be reported and the system will be required to maintain the sensor module.

作为优选:步骤1.3)具体包括如下步骤:As preferably: step 1.3) specifically comprises the following steps:

1.3.1)、读取训练数据的持续天数D,用于衡量数据的维度,确定神经网络的规模。1.3.1), the number of days D to read the training data is used to measure the dimension of the data and determine the scale of the neural network.

1.3.2)、读取训练数据的采样周期T,并计算每天采集的数据数量N,确定神经网络的规模。1.3.2), read the sampling period T of the training data, and calculate the number N of data collected every day, and determine the scale of the neural network.

1.3.3)、确定神经网络的输入神经元个数Cin=N,与神经网络的输出神经元个数Cout=N,确定神经网络的中间层神经元个数Cmin=2N。1.3.3), determine the number of input neurons C in =N of the neural network, and the number of output neurons C out =N of the neural network, and determine the number of neurons of the middle layer of the neural network C min =2N.

1.3.4)、确定神经网络的神经元层数,L=2+(Cmin+Cout)0.51.3.4), determine the number of neuron layers of the neural network, L=2+(C min +C out ) 0.5 .

1.3.5)、将相应的神经网络信息保存起来,以备在1.4)中初始化神经网络中使用。1.3.5), save the corresponding neural network information for use in initializing the neural network in 1.4).

作为优选:步骤1.4)具体包括如下步骤:As preferably: step 1.4) specifically comprises the following steps:

1.4.1)、初始化神经网络;根据1.3)保存的神经网络信息,建立神经的结构,初始化神经网络的权值W,偏置等值B,初始化层数指针Pf=1,学习次数Ps=1。1.4.1), initialize the neural network; according to the neural network information saved in 1.3), establish the neural structure, initialize the weight W of the neural network, the bias equivalent B, initialize the layer number pointer P f =1, and learn the number of times P s =1.

1.4.2)、得到当前层的输出;使用I,B计算当前层的输出矩阵O,公式为O=I*W+B。1.4.2), obtain the output of the current layer; use I, B to calculate the output matrix O of the current layer, the formula is O=I*W+B.

1.4.3)、记录本层输出数据O,用于步骤1.3.4)的学习。1.4.3), record the output data O of this layer, for the study of step 1.3.4).

1.4.4)、判断运行是否到达最后一层,如果不到则训练的层数加1,回到步骤1.4.2),如果到达则进入步骤1.4.5)。1.4.4), judge whether the operation reaches the last layer, if not, add 1 to the number of training layers, return to step 1.4.2), if reached, then enter step 1.4.5).

1.4.5)、判断数据是否达到训练次数,如果不到则训练次数加1,同时层数指针返回1,回到步骤1.4.2);如果到达则进入步骤1.4.6)。1.4.5), judge whether the data reaches the number of training times, if not, add 1 to the number of training times, and at the same time, the layer number pointer returns to 1, and returns to step 1.4.2); if it reaches step 1.4.6).

1.4.6)、保存训练结果。1.4.6), save the training results.

作为优选:步骤2.2)具体包括如下步骤:As preferably: step 2.2) specifically comprises the following steps:

2.2.1)、判断单位时间的车辆通行数n,应当满足约束:nnin<n<nmax(nnin,nmax经过挑选的系数),如果不能满足当前约束则说明数据的采集过程出现问题。2.2.1), judging the number n of vehicles passing per unit time, should meet the constraints: n nin <n<n max (n nin , n max is a selected coefficient), if the current constraints cannot be satisfied, it means that there is a problem in the data collection process .

2.2.2)、判断该路口的车辆通行数n1,应当与当前时间的其他路口的车辆通行数ni满足约束关系:a·ni<n1<b·ni(a,b为相应系数),如果不能满足当前约束则说明数据的采集过程出现问题。2.2.2), judging that the number n 1 of vehicles at this intersection should satisfy the constraint relationship with the number n i of vehicles at other intersections at the current time: a·n i <n 1 <b·n i (a, b is the corresponding coefficient), if the current constraints cannot be satisfied, it means that there is a problem in the data collection process.

2.2.3)、其他对采集数据进行验证的方法同样包含在此专利要求的范围内。2.2.3), other methods for verifying the collected data are also included in the scope of this patent requirement.

2.2.4)、如果判定数据不准确,使用相应的数据还原方案,从历史数据中推测丢失的相应数据。2.2.4), if it is judged that the data is inaccurate, use the corresponding data restoration scheme to infer the corresponding missing data from the historical data.

2.2.5)、如果不能从数据中进行推测,则向本方法的使用这报错,要求对传感器模块进行维护。2.2.5), if it cannot be inferred from the data, then report an error to the use of this method and require the sensor module to be maintained.

作为优选:步骤2.3)具体包括如下步骤:As preferably: step 2.3) specifically comprises the following steps:

2.3.1)、读取训练数据的持续天数D。2.3.1), the continuous number of days D to read the training data.

2.3.2)、读取训练数据的采样周期T,并通过算式计算每天采集的数据数量N,用于衡量数据的维度读入神经网络的规模。2.3.2), read the sampling period T of the training data, and calculate the number N of data collected every day through the formula, which is used to measure the scale of the dimension of the data read into the neural network.

2.3.3)、读入神经网络的输入神经元个数Cin=N,与神经网络的输出神经元个数Cout=N,读入神经网络的中间层神经元个数Cmin=2N。2.3.3), the number of input neurons C in =N read into the neural network, and the number of output neurons C out =N of the neural network, the number of intermediate layer neurons read into the neural network C min =2N.

2.3.4)、读入神经网络的神经元层数,L=2+(Cmin+Cout)0.52.3.4), the number of neuron layers read into the neural network, L=2+(C min +C out ) 0.5 .

2.3.5)、将相应的神经网络信息保存起来,以备在1.4)中初始化神经网络中使用。2.3.5), save the corresponding neural network information for use in initializing the neural network in 1.4).

作为优选:步骤2.4)具体包括如下步骤:As preferably: step 2.4) specifically comprises the following steps:

2.4.1)、读取网络结构,读取1.4)保存的神经网络的权值W,偏置等值B,层数指针设为1。2.4.1), read the network structure, read the weight W of the neural network saved in 1.4), the bias equivalent value B, and set the layer number pointer to 1.

2.4.2)、得到当前层的输出;以当前层的输入矩阵I为原料计算计算当前层的输出矩阵O,公式为O=I*W+B。2.4.2), obtain the output of the current layer; use the input matrix I of the current layer as raw material to calculate the output matrix O of the current layer, the formula is O=I*W+B.

2.4.3)、记录本层输出数据O,用于步骤2.3.4)的预测。2.4.3), record the output data O of this layer, for the prediction of step 2.3.4).

2.4.4)、判断运行是否到达最后一层,如果不到则训练的层数加1,回到步骤1.4.2),如果到达则进入步骤1.4.5)。2.4.4), judge whether the operation reaches the last layer, if not, add 1 to the number of training layers, return to step 1.4.2), if reached, then enter step 1.4.5).

2.4.5)、保存预测结果。2.4.5), save the prediction result.

本发明的有益效果是:本方法使用GMDH神经网络算法对交通路口的车流量进行预测,一般的预测方法在处理大体量的数据过程中有时间长,准确率低等缺点,较难实现交通流量实时预测的要求。由于GMDH神经网络具有强大的逼近能力,可以将车流量的预测分成离线学习和在线预测两个部分:在离线学习环节结合大量的数据,通过进行神经网络的训练,学习车流量变化的规律;在在线预测部分通过调用已学习完毕的神经网络,快速有效的对车辆的通行状态进行实时预测。离线数据的学习可以通过滚动的方式进行,从而使神经网络实时符合现实车流量的变换特性。The beneficial effects of the present invention are: the method uses the GMDH neural network algorithm to predict the traffic flow at the traffic intersection, and the general prediction method has the shortcomings of long time and low accuracy in the process of processing large volumes of data, and it is difficult to realize the traffic flow Requirements for real-time forecasting. Due to the strong approximation ability of the GMDH neural network, the prediction of traffic flow can be divided into two parts: offline learning and online prediction: in the offline learning link, a large amount of data is combined to learn the law of traffic flow changes through neural network training; The online prediction part quickly and effectively predicts the traffic status of vehicles in real time by calling the learned neural network. The learning of offline data can be carried out by rolling, so that the neural network can conform to the transformation characteristics of real traffic flow in real time.

附图说明Description of drawings

图1为专利流程图Figure 1 is a patent flow chart

图2为GMDH网络基本处理单元Figure 2 is the basic processing unit of the GMDH network

图3为一种5输入的GMDH网络形成示意图Figure 3 is a schematic diagram of the formation of a 5-input GMDH network

图4为GMDH网络第一层结构图Figure 4 is the structure diagram of the first layer of the GMDH network

图5为GMDH网络第一层中间模型筛选图Figure 5 is the screening diagram of the first layer intermediate model of the GMDH network

图6为GMDH网络第二层的构造图Figure 6 is a structural diagram of the second layer of the GMDH network

图7为GMDH网络第二层中间模型筛选图Figure 7 is the screening diagram of the second-layer intermediate model of the GMDH network

图8为GMDH预测结果示例1Figure 8 is an example 1 of GMDH prediction results

图9为GMDH预测结果示例2Figure 9 is an example 2 of GMDH prediction results

图10为GMDH预测结果示例3Figure 10 is an example 3 of GMDH prediction results

图11为GMDH预测结果示例4Figure 11 is an example 4 of GMDH prediction results

图12为GMDH预测结果示例5。Figure 12 is Example 5 of GMDH prediction results.

具体实施方式Detailed ways

下面结合实施例对本发明做进一步描述。下述实施例的说明只是用于帮助理解本发明。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。The present invention will be further described below in conjunction with the examples. The description of the following examples is provided only to aid the understanding of the present invention. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.

1算法原理说明1 Algorithm principle description

GMDH算法的主要思想是模拟仿照生物的“遗传—变异—选择—进化”过程:从一个简单的初始模型集合出发,模型集合中的元素彼此按照某种规定的法则进行组合,生成新的中间候选模型(遗传、变异),再经过某种策略或方案对中间候选模型进行筛选(选择),不断重复这种遗传、变异、选择和进化的过程,使生成的中间模型的复杂度不断提高,直至新生成模型的复杂度不再增加得到最优复杂度模型。The main idea of the GMDH algorithm is to simulate the "genetic-variation-selection-evolution" process of organisms: starting from a simple initial model set, the elements in the model set are combined with each other according to certain prescribed rules to generate new intermediate candidates model (heredity, variation), and then screen (select) the intermediate candidate model through a certain strategy or scheme, and repeat this process of inheritance, variation, selection and evolution, so that the complexity of the generated intermediate model continues to increase, until The complexity of the newly generated model is no longer increased to obtain the optimal complexity model.

GMDH算法从对系统有影响的因素样本出发,将样本数据划分为训练集、测试集和预测集。训练集的数据用于对建模过程中生成的各中间模型的参数估计(一般可采用最小二乘法),测试集的样本数据用于结合外准则(主要有误差平方和准则、最小信息准则、平均相对误差准则)对生成的中间待选模型进行筛选。GMDH算法建模的网络终止法则是由最优复杂度原理给出的。The GMDH algorithm starts from the sample of factors that have an impact on the system, and divides the sample data into a training set, a test set and a prediction set. The data in the training set is used to estimate the parameters of each intermediate model generated in the modeling process (generally, the least square method can be used), and the sample data in the test set is used to combine the external criteria (mainly the error sum of squares criterion, the minimum information criterion, average relative error criterion) to screen the generated intermediate candidate models. The network termination rule modeled by the GMDH algorithm is given by the optimal complexity principle.

GMDH建模前一般要选择适当的初始模型集合作为初始层变量。初始模型一般由参考函数生成,而参考函数一般用式(1)的Kolmogorov-Gabor(K-G)多项式:Before GMDH modeling, it is generally necessary to select an appropriate initial model set as the initial layer variable. The initial model is generally generated by a reference function, and the reference function generally uses the Kolmogorov-Gabor (K-G) polynomial of formula (1):

2GMDH网络构建2GMDH network construction

GMDH网络基本处理单元的示意图。这是一种双输入单输出的结构,传递函数(也称参考函数)可以是多种形式,如:Schematic diagram of the basic processing unit of the GMDH network. This is a double-input single-output structure, and the transfer function (also known as the reference function) can be in various forms, such as:

y=ax1+bx2+cy=ax 1 +bx 2 +c

y=a0+a1x1+a2x2+a3x1 2+a4x2 2+a5x1x2 y=a 0 +a 1 x 1 +a 2 x 2 +a 3 x 1 2 +a 4 x 2 2 +a 5 x 1 x 2

式中,x1,x2是双输入系统的两个输入,y是系统的输出。In the formula, x 1 , x 2 are the two inputs of the dual-input system, and y is the output of the system.

图2是一个包含5个建模变量的GMDH网络形成的示意图,其中vi为输入,Figure 2 is a schematic diagram of the formation of a GMDH network containing 5 modeling variables, where vi is the input,

yij为第i层的第j个中间模型,wi为第二层的输入,zi为第三层输入,s1,s2为倒数第二层的输入,y为最优模型。在建模过程GMDH网络的结构是自组织确定的,网络的层数不是固定的.y ij is the j-th intermediate model of the i-th layer, w i is the input of the second layer, z i is the input of the third layer, s 1 and s 2 are the inputs of the penultimate layer, and y is the optimal model. In the modeling process, the structure of the GMDH network is determined by self-organization, and the number of layers of the network is not fixed.

GMDH网络的构造步骤如下:The construction steps of the GMDH network are as follows:

(1)初始层变量的确定。GMDH建模过程是自组织完成的,用户只需给定模型输入。初始模型是由输入变量两两组合按照传递函数生成,而传递函数一般用式所示的Kolmogorov-Gabor(简称K-G)多项式。(1) Determination of initial layer variables. The GMDH modeling process is completed by self-organization, and the user only needs to give the model input. The initial model is generated by combining the input variables in pairs according to the transfer function, and the transfer function is generally a Kolmogorov-Gabor (referred to as K-G) polynomial shown in the formula.

初始模型集合一般选为:The initial model set is generally selected as:

V={v1=x1,v2=x2,v3=x3,v4=x1 2,v5=x2 2,v6=x3 2,v7=x1x2,v8=x1x3,v9=x2x3}V={v 1 =x 1 ,v 2 =x 2 ,v 3 =x 3 ,v 4 =x 1 2 ,v 5 =x 2 2 ,v 6 =x 3 2 ,v 7 =x 1 x 2 , v 8 =x 1 x 3 , v 9 =x 2 x 3 }

(2)初始模型出发,各变量间相互重新组合得到新的第一层中间模型(如图4所示)。(2) Starting from the initial model, the variables are recombined with each other to obtain a new first-level intermediate model (as shown in Figure 4).

如果输入变量个数是五个,If the number of input variables is five,

(3)根据外准则,对第1层中间模型进行选择,保留下的中间模型被作为下一层的输入变量,如图5。(3) According to the outer criterion, the intermediate model of the first layer is selected, and the remaining intermediate model is used as the input variable of the next layer, as shown in Figure 5.

(4)再产生与再选择。重复步骤(2),以第一层保留下来的处理单元的输出作为下一层的输入变量,继续构造出第二层处理单元(图6)。重复步骤(3),对第二层处理单元进行筛选,保留下来的单元继续进行下一层单元的构造(图7)。(4) Regeneration and reselection. Repeat step (2), and use the output of the processing unit retained in the first layer as the input variable of the next layer to continue to construct the processing unit of the second layer (Fig. 6). Repeat step (3) to screen the second layer of processing units, and the remaining units continue to construct the next layer of units (Fig. 7).

3GMDH算法建模过程3GMDH algorithm modeling process

GMDH算法是基于样本划分的建模方法,将建模数据样本集W(n个数据样本)分为训练集A(training set A),样本个数:nA,检测集B(testing set B),样本个数:nB,这里所说的建模数据不包括预测验证数据。数据的存储如表1所示,模型的输入、输出数据形式如下:The GMDH algorithm is a modeling method based on sample division, which divides the modeling data sample set W (n data samples) into a training set A (training set A), the number of samples: n A , and a testing set B (testing set B) , Number of samples: n B , the modeling data mentioned here does not include the prediction verification data. The data storage is shown in Table 1, and the input and output data forms of the model are as follows:

上式中XAXB分别为训练数据输入和测试数据输入,m为系统建模变量个数,yA、yB为训练样本实际输出和测试样本实际输出。并且n=nA+nB,W=A∪B。(xA,yA)即训练集A,用于中间模型的参数的估计。(xB,yB)即测试集B,用来筛选中间模型。数据的存储形式如表1所示。In the above formula, XAXB are the training data input and test data input respectively, m is the number of system modeling variables, y A , y B are the actual output of the training sample and the actual output of the test sample. And n=n A +n B , W=A∪B. (x A , y A ) is the training set A, which is used to estimate the parameters of the intermediate model. (x B , y B ) is the test set B, which is used to screen the intermediate model. The data storage form is shown in Table 1.

表1Table 1

4GMDH算法预测结果分析4GMDH Algorithm Prediction Result Analysis

图8-12为使用GMDH算法进行数据预测的五组数据的结果,使用杭州市天目山路西溪路东交叉口的连续60天的数据训练GMDH神经网络。然后使用训练完成的神经网络以连续的30天的数据为输入预测未来一天的车流量情况。图8-12中的车流量情况分别为2016年11-15日的车流量数据与预测数据的比较。总体看误差小于3%,有很强的使用价值。Figure 8-12 shows the results of five sets of data using the GMDH algorithm for data prediction. The GMDH neural network is trained using data from the east intersection of Xixi Road, Tianmushan Road, Hangzhou City for 60 consecutive days. Then use the trained neural network to predict the traffic flow of the next day with continuous 30-day data as input. The traffic flow conditions in Figures 8-12 are the comparisons between the traffic flow data and the forecast data from November 15 to 15, 2016. Overall, the error is less than 3%, which has a strong use value.

Claims (7)

1.一种基于GMDH神经网络的交通车流量预测方法,其特征在于,包括如下步骤:1. a traffic flow prediction method based on GMDH neural network, is characterized in that, comprises the steps: 1)、GMDH神经网络离线车流量训练1), GMDH neural network offline traffic flow training 1.1)、读取车辆通行历史数据;历史数据依据车辆道路上的智能摄像头采集,具体包括通过车辆的速度、车辆车牌号信息;1.1), read the historical data of vehicle traffic; the historical data is collected according to the smart camera on the vehicle road, including the speed of the passing vehicle and the license plate number information of the vehicle; 1.2)、确定智能摄像头工作正常,所采集的车辆数据是否正确;剔除车速过快,车辆车牌号识别有误,车辆前后行驶轨迹不符,幽灵车辆数据,1.2) Determine whether the smart camera is working normally and whether the collected vehicle data is correct; exclude excessive speed, wrong vehicle license plate number recognition, discrepancies between the front and rear driving tracks of the vehicle, and ghost vehicle data. 1.3)、初始化GMDH神经网络;根据数据的采集频率和数据所采集的总天数,设定神经网络的结构,神经网络的维度与数据量的大小成正比,确保神经网络预测的准确性;1.3), initialize the GMDH neural network; set the structure of the neural network according to the frequency of data collection and the total number of days collected by the data, and the dimension of the neural network is proportional to the size of the data volume to ensure the accuracy of the prediction of the neural network; 1.4)、进行神经网络的训练;使用梯度下降法对神经网络的权值和偏置进行调整,通过多次遍历神经网络的每一层实现神经网络的训练;1.4), carry out the training of neural network; Use gradient descent method to adjust the weight and bias of neural network, realize the training of neural network by traversing each layer of neural network multiple times; 1.5)、保存最优的训练结果;在神经网络训练结束后,应将神经网络的结构,权值和偏置进行保存,从而用于步骤2)的在线车流量实时预测;1.5), save the optimal training result; after the neural network training is finished, the structure, weight and bias of the neural network should be saved, so as to be used for the real-time prediction of online traffic flow in step 2); 2)、GMDH神经网络在线车流量实时预测2), GMDH neural network online traffic flow real-time prediction 2.1)、读取车辆通行历史数据;历史数据依据车辆道路上的智能摄像头采集,具体包括通过车辆的速度、车辆车牌号信息;2.1), read the historical data of vehicle traffic; the historical data is collected according to the smart camera on the vehicle road, including the speed of the passing vehicle and the license plate number of the vehicle; 2.2)、确定智能摄像头工作正常,所采集的车辆数据是否正确;剔除车速过快,车辆车牌号识别有误,车辆前后行驶轨迹不符,幽灵车辆数据;2.2) Determine whether the smart camera is working normally and whether the collected vehicle data is correct; exclude excessive speed, incorrect recognition of the vehicle license plate number, discrepancies between the front and rear driving trajectories of the vehicle, and ghost vehicle data; 2.3)、根据步骤1)中确定的神经网络结构来初始化GMDH神经网络;2.3), initialize the GMDH neural network according to the neural network structure determined in step 1); 2.4)、进行神经网络的预测;使用先前步骤1)获得的神经网络的结构,权值和偏置对实时的车流量进行预测;2.4), carry out the prediction of neural network; Use the structure of the neural network obtained in previous step 1), weight and bias to predict the real-time traffic flow; 2.5)、输出结果,用于对交通情况进行控制。2.5), the output result is used to control the traffic situation. 2.根据权利要求1所述的基于GMDH神经网络的交通车流量预测方法,其特征在于:所述步骤1.2)具体包括如下步骤:2. the traffic vehicle flow prediction method based on GMDH neural network according to claim 1, is characterized in that: described step 1.2) specifically comprises the steps: 1.2.1)、判断单位时间的车辆通行数n,应满足约束:nnin<n<nmax,nnin和nmax为单位时间车辆通行最小数和最大数,如果不能满足本约束则说明数据采集过程出现问题;1.2.1), judging the number n of vehicles passing per unit time, should meet the constraints: n nin <n<n max , n nin and n max are the minimum and maximum numbers of vehicles passing per unit time, if this constraint cannot be satisfied, then the data There is a problem in the collection process; 1.2.2)、判断该路口车辆通行数n1,与当前时间其他路口车辆通行数ni满足约束:a·ni<n1<b·ni,其中a,b为相应系数,如果不能满足当前约束则说明数据的采集过程出现问题;1.2.2), judging that the number n 1 of vehicles at this intersection meets the constraints with the number n i of vehicles at other intersections at the current time: a·n i <n 1 <b·n i , where a and b are corresponding coefficients, if not Satisfying the current constraints indicates that there is a problem in the data collection process; 1.2.3)、其他对采集数据进行验证的方法同样包含在此专利要求的范围内;1.2.3), other methods of verifying the collected data are also included in the scope of this patent requirement; 1.2.4)、如果判定数据不准确,使用对应的数据还原方案进行数据的补全,从历史数据中推测丢失的相应数据;1.2.4), if it is judged that the data is inaccurate, use the corresponding data restoration plan to complete the data, and infer the corresponding missing data from the historical data; 1.2.5)、如果不能从数据中进行推测,则报错,要求系统对传感器模块进行维护。1.2.5), if it cannot be inferred from the data, an error will be reported and the system will be required to maintain the sensor module. 3.根据权利要求1所述的基于GMDH神经网络的交通车流量预测方法,其特征在于:所述步骤1.3)具体包括如下步骤:3. the traffic vehicle flow prediction method based on GMDH neural network according to claim 1, is characterized in that: described step 1.3) specifically comprises the steps: 1.3.1)、读取训练数据的持续天数D,用于衡量数据的维度,确定神经网络的规模;1.3.1), the number of days D to read the training data is used to measure the dimension of the data and determine the scale of the neural network; 1.3.2)、读取训练数据的采样周期T,并计算每天采集的数据数量N,确定神经网络的规模;1.3.2), read the sampling period T of the training data, and calculate the number N of data collected every day, and determine the scale of the neural network; 1.3.3)、确定神经网络的输入神经元个数Cin=N,与神经网络的输出神经元个数Cout=N,确定神经网络的中间层神经元个数Cmin=2N;1.3.3), determine the input neuron number C in =N of the neural network, and the output neuron number C out =N of the neural network, determine the intermediate layer neuron number C min =2N of the neural network; 1.3.4)、确定神经网络的神经元层数,L=2+(Cmin+Cout)0.51.3.4), determine the number of neuron layers of the neural network, L=2+(C min +C out ) 0.5 ; 1.3.5)、将相应的神经网络信息保存起来,以备在1.4)中初始化神经网络中使用。1.3.5), save the corresponding neural network information for use in initializing the neural network in 1.4). 4.根据权利要求1所述的基于GMDH神经网络的交通车流量预测方法,其特征在于:所述步骤1.4)具体包括如下步骤:4. the traffic vehicle flow prediction method based on GMDH neural network according to claim 1, is characterized in that: described step 1.4) specifically comprises the steps: 1.4.1)、初始化神经网络;根据1.3)保存的神经网络信息,建立神经的结构,初始化神经网络的权值W,偏置等值B,初始化层数指针Pf=1,学习次数Ps=1;1.4.1), initialize the neural network; according to the neural network information saved in 1.3), establish the neural structure, initialize the weight W of the neural network, the bias equivalent value B, initialize the layer number pointer P f =1, and the number of learning times P s = 1; 1.4.2)、得到当前层的输出;使用I,B计算当前层的输出矩阵O,公式为O=I*W+B;1.4.2), obtain the output of current layer; Use I, B to calculate the output matrix O of current layer, formula is O=I*W+B; 1.4.3)、记录本层输出数据O,用于步骤1.3.4)的学习;1.4.3), record this layer output data O, be used for the study of step 1.3.4); 1.4.4)、判断运行是否到达最后一层,如果不到则训练的层数加1,回到步骤1.4.2),如果到达则进入步骤1.4.5);1.4.4), judge whether the operation reaches the last layer, if not, add 1 to the number of training layers, return to step 1.4.2), if reached, enter step 1.4.5); 1.4.5)、判断数据是否达到训练次数,如果不到则训练次数加1,同时层数指针返回1,回到步骤1.4.2);如果到达则进入步骤1.4.6);1.4.5), judge whether the data reaches the number of training times, if not, add 1 to the number of training times, and at the same time, the layer pointer returns to 1, and returns to step 1.4.2); if it reaches step 1.4.6); 1.4.6)、保存训练结果。1.4.6), save the training results. 5.根据权利要求1所述的基于GMDH神经网络的交通车流量预测方法,其特征在于:所述步骤2.2)具体包括如下步骤:5. the traffic vehicle flow prediction method based on GMDH neural network according to claim 1, is characterized in that: described step 2.2) specifically comprises the steps: 2.2.1)、判断单位时间的车辆通行数n,应当满足约束:nnin<n<nmax,nnin和nmax经过挑选的系数,如果不能满足当前约束则说明数据的采集过程出现问题;2.2.1), judging the number n of vehicles passing per unit time, should meet the constraints: n nin <n<n max , the selected coefficients of n nin and n max , if the current constraints cannot be satisfied, it means that there is a problem in the data collection process; 2.2.2)、判断该路口的车辆通行数n1,应当与当前时间的其他路口的车辆通行数ni满足约束关系:a·ni<n1<b·ni,a,b为相应系数,如果不能满足当前约束则说明数据的采集过程出现问题;2.2.2), judging that the number n 1 of vehicles at this intersection should satisfy the constraint relationship with the number n i of vehicles at other intersections at the current time: a·n i <n 1 <b·n i , a and b are corresponding coefficient, if the current constraint cannot be satisfied, it means that there is a problem in the data collection process; 2.2.3)、其他对采集数据进行验证的方法同样包含在此专利要求的范围内;2.2.3), other methods of verifying the collected data are also included in the scope of this patent requirement; 2.2.4)、如果判定数据不准确,使用相应的数据还原方案,从历史数据中推测丢失的相应数据;2.2.4), if it is judged that the data is inaccurate, use the corresponding data restoration plan to speculate the corresponding lost data from the historical data; 2.2.5)、如果不能从数据中进行推测,则向本方法的使用这报错,要求对传感器模块进行维护。2.2.5), if it cannot be inferred from the data, then report an error to the use of this method and require the sensor module to be maintained. 6.根据权利要求1所述的基于GMDH神经网络的交通车流量预测方法,其特征在于:所述步骤2.3)具体包括如下步骤:6. the traffic vehicle flow prediction method based on GMDH neural network according to claim 1, is characterized in that: described step 2.3) specifically comprises the steps: 2.3.1)、读取训练数据的持续天数D;2.3.1), the continuous number of days D to read the training data; 2.3.2)、读取训练数据的采样周期T,并通过算式计算每天采集的数据数量N,用于衡量数据的维度读入神经网络的规模;2.3.2), read the sampling period T of the training data, and calculate the number N of data collected every day through the formula, which is used to measure the dimension of the data read into the scale of the neural network; 2.3.3)、读入神经网络的输入神经元个数Cin=N,与神经网络的输出神经元个数Cout=N,读入神经网络的中间层神经元个数Cmin=2N;2.3.3), the number of input neurons C in =N read into the neural network, and the number of output neurons C out =N of the neural network, the number of intermediate layer neurons C min =2N read into the neural network; 2.3.4)、读入神经网络的神经元层数,L=2+(Cmin+Cout)0.52.3.4), the number of layers of neurons read into the neural network, L=2+(C min +C out ) 0.5 ; 2.3.5)、将相应的神经网络信息保存起来,以备在1.4)中初始化神经网络中使用。2.3.5), save the corresponding neural network information for use in initializing the neural network in 1.4). 7.根据权利要求1所述的基于GMDH神经网络的交通车流量预测方法,其特征在于:所述步骤2.4)具体包括如下步骤:7. the traffic vehicle flow prediction method based on GMDH neural network according to claim 1, is characterized in that: described step 2.4) specifically comprises the steps: 2.4.1)、读取网络结构,读取1.4)保存的神经网络的权值W,偏置等值B,层数指针设为1;2.4.1), read the network structure, read the weight W of the neural network saved in 1.4), the bias equivalent value B, and set the layer number pointer to 1; 2.4.2)、得到当前层的输出;以当前层的输入矩阵I为原料计算计算当前层的输出矩阵O,公式为O=I*W+B;2.4.2), obtain the output of the current layer; take the input matrix I of the current layer as raw material to calculate the output matrix O of the current layer, the formula is O=I*W+B; 2.4.3)、记录本层输出数据O,用于步骤2.3.4)的预测;2.4.3), record this layer output data O, for the prediction of step 2.3.4); 2.4.4)、判断运行是否到达最后一层,如果不到则训练的层数加1,回到步骤1.4.2),如果到达则进入步骤1.4.5);2.4.4), judge whether the operation reaches the last layer, if not, add 1 to the number of training layers, return to step 1.4.2), if reached, enter step 1.4.5); 2.4.5)、保存预测结果。2.4.5), save the prediction result.
CN201711325978.5A 2017-12-13 2017-12-13 A kind of special bus method for predicting based on GMDH neutral nets Pending CN107945534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711325978.5A CN107945534A (en) 2017-12-13 2017-12-13 A kind of special bus method for predicting based on GMDH neutral nets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711325978.5A CN107945534A (en) 2017-12-13 2017-12-13 A kind of special bus method for predicting based on GMDH neutral nets

Publications (1)

Publication Number Publication Date
CN107945534A true CN107945534A (en) 2018-04-20

Family

ID=61944036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711325978.5A Pending CN107945534A (en) 2017-12-13 2017-12-13 A kind of special bus method for predicting based on GMDH neutral nets

Country Status (1)

Country Link
CN (1) CN107945534A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110517481A (en) * 2019-07-26 2019-11-29 厦门卫星定位应用股份有限公司 Vehicle flowrate prediction technique, medium, equipment and device
GB2574224A (en) * 2018-05-31 2019-12-04 Vivacity Labs Ltd Traffic management system
CN111197991A (en) * 2020-01-15 2020-05-26 西安电子科技大学 A method for predicting the best driving path of vehicles based on deep neural network
CN111369049A (en) * 2020-03-03 2020-07-03 新疆大学 Method, device and electronic device for predicting traffic flow
CN112215520A (en) * 2020-10-28 2021-01-12 润联软件系统(深圳)有限公司 Multi-target fusion passing method and device, computer equipment and storage medium
CN112419711A (en) * 2020-10-22 2021-02-26 桂林电子科技大学 Prediction method of parking demand in closed parking lot based on improved GMDH algorithm

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737508A (en) * 2012-06-19 2012-10-17 银江股份有限公司 Urban road traffic state detection method combined with support vector machine (SVM) and back propagation (BP) neural network
CN105046953A (en) * 2015-06-18 2015-11-11 南京信息工程大学 Short-time traffic-flow combination prediction method
CN105160866A (en) * 2015-08-07 2015-12-16 浙江高速信息工程技术有限公司 Traffic flow prediction method based on deep learning nerve network structure
CN106205126A (en) * 2016-08-12 2016-12-07 北京航空航天大学 Large-scale Traffic Network based on convolutional neural networks is blocked up Forecasting Methodology and device
CN106373397A (en) * 2016-09-28 2017-02-01 哈尔滨工业大学 Fuzzy neural network-based remote sensing image road traffic situation analysis method
CN106779198A (en) * 2016-12-06 2017-05-31 广州市科恩电脑有限公司 A kind of congestion in road situation analysis method
CN106910337A (en) * 2017-01-19 2017-06-30 长安大学 A kind of traffic flow forecasting method based on glowworm swarm algorithm Yu RBF neural
CN107085941A (en) * 2017-06-26 2017-08-22 广东工业大学 A traffic flow forecasting method, device and system
WO2017177005A1 (en) * 2016-04-06 2017-10-12 Nec Laboratories America, Inc Multi-modal driving danger prediction system for automobiles
CN107293115A (en) * 2017-05-09 2017-10-24 上海电科智能系统股份有限公司 A kind of traffic flow forecasting method for microscopic simulation
CN110210644A (en) * 2019-04-17 2019-09-06 浙江大学 The traffic flow forecasting method integrated based on deep neural network

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737508A (en) * 2012-06-19 2012-10-17 银江股份有限公司 Urban road traffic state detection method combined with support vector machine (SVM) and back propagation (BP) neural network
CN105046953A (en) * 2015-06-18 2015-11-11 南京信息工程大学 Short-time traffic-flow combination prediction method
CN105160866A (en) * 2015-08-07 2015-12-16 浙江高速信息工程技术有限公司 Traffic flow prediction method based on deep learning nerve network structure
WO2017177005A1 (en) * 2016-04-06 2017-10-12 Nec Laboratories America, Inc Multi-modal driving danger prediction system for automobiles
CN106205126A (en) * 2016-08-12 2016-12-07 北京航空航天大学 Large-scale Traffic Network based on convolutional neural networks is blocked up Forecasting Methodology and device
CN106373397A (en) * 2016-09-28 2017-02-01 哈尔滨工业大学 Fuzzy neural network-based remote sensing image road traffic situation analysis method
CN106779198A (en) * 2016-12-06 2017-05-31 广州市科恩电脑有限公司 A kind of congestion in road situation analysis method
CN106910337A (en) * 2017-01-19 2017-06-30 长安大学 A kind of traffic flow forecasting method based on glowworm swarm algorithm Yu RBF neural
CN107293115A (en) * 2017-05-09 2017-10-24 上海电科智能系统股份有限公司 A kind of traffic flow forecasting method for microscopic simulation
CN107085941A (en) * 2017-06-26 2017-08-22 广东工业大学 A traffic flow forecasting method, device and system
CN110210644A (en) * 2019-04-17 2019-09-06 浙江大学 The traffic flow forecasting method integrated based on deep neural network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
付小宁: "《数据处理及模型化方法》", 30 June 2016, 西北农林科技大学出版社 *
罗文慧 等: "基于CNN_SVR混合深度学习模型的短时交通流预测", 《交通运输系统工程与信息》 *
陈洪 等: "基于模糊GMDH网络的交通流量预测模型", 《南京理工大学学报(自然科学版)》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2574224A (en) * 2018-05-31 2019-12-04 Vivacity Labs Ltd Traffic management system
GB2574224B (en) * 2018-05-31 2022-06-29 Vivacity Labs Ltd Traffic management system
CN110517481A (en) * 2019-07-26 2019-11-29 厦门卫星定位应用股份有限公司 Vehicle flowrate prediction technique, medium, equipment and device
CN111197991A (en) * 2020-01-15 2020-05-26 西安电子科技大学 A method for predicting the best driving path of vehicles based on deep neural network
CN111197991B (en) * 2020-01-15 2022-09-23 西安电子科技大学 A method for predicting the best driving path of vehicles based on deep neural network
CN111369049A (en) * 2020-03-03 2020-07-03 新疆大学 Method, device and electronic device for predicting traffic flow
CN111369049B (en) * 2020-03-03 2022-08-26 新疆大学 Method and device for predicting traffic flow and electronic equipment
CN112419711A (en) * 2020-10-22 2021-02-26 桂林电子科技大学 Prediction method of parking demand in closed parking lot based on improved GMDH algorithm
CN112419711B (en) * 2020-10-22 2022-05-17 桂林电子科技大学 Prediction method of parking demand in closed parking lot based on improved GMDH algorithm
CN112419711B8 (en) * 2020-10-22 2022-06-14 桂林电子科技大学 Closed parking lot parking demand prediction method based on improved GMDH algorithm
CN112215520A (en) * 2020-10-28 2021-01-12 润联软件系统(深圳)有限公司 Multi-target fusion passing method and device, computer equipment and storage medium

Similar Documents

Publication Publication Date Title
CN107945534A (en) A kind of special bus method for predicting based on GMDH neutral nets
CN110164128B (en) City-level intelligent traffic simulation system
CN108197739B (en) Urban rail transit passenger flow prediction method
CN109285346B (en) Urban road network traffic state prediction method based on key road sections
CN112201069B (en) Construction method of driver&#39;s longitudinal vehicle following behavior model based on deep reinforcement learning
CN107180530B (en) A Road Network State Prediction Method Based on Deep Space-Time Convolutional Recurrent Network
CN110223517A (en) Short-term traffic flow forecast method based on temporal correlation
CN107909206B (en) PM2.5 prediction method based on deep structure recurrent neural network
CN110991713A (en) Irregular area flow prediction method based on multi-graph convolution sum GRU
CN115376317B (en) A Traffic Flow Prediction Method Based on Dynamic Graph Convolution and Temporal Convolutional Network
CN104778508B (en) A kind of public bicycles based on multisource data fusion lease Forecasting Methodology
CN112949828A (en) Graph convolution neural network traffic prediction method and system based on graph learning
CN112365724A (en) Continuous intersection signal cooperative control method based on deep reinforcement learning
CN104408913A (en) Traffic flow three parameter real time prediction method taking regard of space-time correlation
CN106781489A (en) A kind of road network trend prediction method based on recurrent neural network
CN108346293A (en) A kind of arithmetic for real-time traffic flow Forecasting Approach for Short-term
CN103942461A (en) Water quality parameter prediction method based on online sequential extreme learning machine
CN107045785A (en) A kind of method of the short-term traffic flow forecast based on grey ELM neutral nets
CN112907970B (en) Variable lane steering control method based on vehicle queuing length change rate
CN111882869A (en) A deep learning traffic flow prediction method considering adverse weather
CN110164129A (en) Single Intersection multi-lane traffic flow amount prediction technique based on GERNN
CN106991493A (en) Sewage disposal water outlet parameter prediction method based on Grey production fuction
CN114267170A (en) Traffic flow prediction method based on graph space-time transform model considering human mobility
CN116895158B (en) A traffic signal control method for urban road networks based on multi-agent Actor-Critic and GRU
CN110490365A (en) A method of based on the pre- survey grid of multisource data fusion about vehicle order volume

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420

RJ01 Rejection of invention patent application after publication