CN107934976A - Method that silicate type apatite is prepared by smelting iron and steel slag and application thereof - Google Patents
Method that silicate type apatite is prepared by smelting iron and steel slag and application thereof Download PDFInfo
- Publication number
- CN107934976A CN107934976A CN201711256808.6A CN201711256808A CN107934976A CN 107934976 A CN107934976 A CN 107934976A CN 201711256808 A CN201711256808 A CN 201711256808A CN 107934976 A CN107934976 A CN 107934976A
- Authority
- CN
- China
- Prior art keywords
- apatite
- silicate
- iron
- smelting slag
- steel smelting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000003723 Smelting Methods 0.000 title claims abstract description 24
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 24
- 239000002893 slag Substances 0.000 title claims abstract description 24
- 239000010959 steel Substances 0.000 title claims abstract description 24
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 23
- 229910052586 apatite Inorganic materials 0.000 title claims abstract description 20
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 title claims abstract description 20
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 title 1
- 150000002500 ions Chemical class 0.000 claims abstract description 29
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 27
- 229910000180 silicate apatite Inorganic materials 0.000 claims abstract description 23
- 239000002351 wastewater Substances 0.000 claims abstract description 15
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000008367 deionised water Substances 0.000 claims abstract description 9
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 9
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 5
- 239000010452 phosphate Substances 0.000 claims abstract description 5
- 230000007935 neutral effect Effects 0.000 claims abstract description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 17
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 3
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical group [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 3
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims description 3
- 235000019838 diammonium phosphate Nutrition 0.000 claims description 3
- 235000019837 monoammonium phosphate Nutrition 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 2
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 claims description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910000403 monosodium phosphate Inorganic materials 0.000 claims description 2
- 235000019799 monosodium phosphate Nutrition 0.000 claims description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 claims 1
- 239000011591 potassium Substances 0.000 claims 1
- 229910052700 potassium Inorganic materials 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 22
- 238000003756 stirring Methods 0.000 abstract description 13
- 239000002994 raw material Substances 0.000 abstract description 7
- 239000003463 adsorbent Substances 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 5
- 239000011259 mixed solution Substances 0.000 abstract description 5
- 238000002360 preparation method Methods 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 15
- 239000011133 lead Substances 0.000 description 10
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- RVPVRDXYQKGNMQ-UHFFFAOYSA-N lead(2+) Chemical compound [Pb+2] RVPVRDXYQKGNMQ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000009388 chemical precipitation Methods 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000010842 industrial wastewater Substances 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- OOSZCNKVJAVHJI-UHFFFAOYSA-N 1-[(4-fluorophenyl)methyl]piperazine Chemical compound C1=CC(F)=CC=C1CN1CCNCC1 OOSZCNKVJAVHJI-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 229910014497 Ca10(PO4)6(OH)2 Inorganic materials 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 231100000704 bioconcentration Toxicity 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- DGLRDKLJZLEJCY-UHFFFAOYSA-L disodium hydrogenphosphate dodecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].OP([O-])([O-])=O DGLRDKLJZLEJCY-UHFFFAOYSA-L 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 210000003278 egg shell Anatomy 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940074545 sodium dihydrogen phosphate dihydrate Drugs 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了钢铁冶炼矿渣制备硅酸根型磷灰石的方法及其用途,并研究了硅酸根型磷灰石对废水中重金属离子的吸附效果,属于环境保护领域。本发明的制备方法主要包括以下步骤:首先将钢铁冶炼矿渣粉末和磷酸盐分别置于去离子水,混合,不断搅拌;其次用碱液调节混合液的pH至碱性;然后将搅拌均匀的混合液通过水热法合成硅酸根型磷灰石;最后,去离子水洗涤至中性得到硅酸根型磷灰石吸附剂,对重金属离子进行吸附。本发明制备方法简单,原料来源广泛,环境友好,吸附效果优异,易于推广。
The invention discloses a method for preparing silicate-type apatite from iron and steel smelting slag and its application, and studies the adsorption effect of the silicate-type apatite on heavy metal ions in waste water, belonging to the field of environmental protection. The preparation method of the present invention mainly includes the following steps: firstly place iron and steel smelting slag powder and phosphate in deionized water respectively, mix them, and stir continuously; secondly, adjust the pH of the mixed solution to alkaline with lye; Liquid is synthesized by hydrothermal method to form silicate apatite; finally, deionized water is washed to neutral to obtain silicate apatite adsorbent, which can adsorb heavy metal ions. The preparation method of the invention is simple, the sources of raw materials are extensive, the environment is friendly, the adsorption effect is excellent, and it is easy to popularize.
Description
技术领域technical field
本发明涉及一种钢铁冶炼矿渣制备硅酸根型磷灰石的制备方法及其在吸附废水中重金属离子中的应用,属于环境保护领域。The invention relates to a method for preparing silicate-type apatite from iron and steel smelting slag and its application in absorbing heavy metal ions in waste water, belonging to the field of environmental protection.
背景技术Background technique
电镀废水是对环境和人类健康危害最大的工业废水之一。电镀通常在强酸溶液中进行,所排放出的铬、镍、铜、锌、铅、银、金等重金属离子进入大气、水、土壤。重金属离子及其化合物能够在农作物、鱼类和兽类等动植物体内累积富集,通过饮水和食物链的积累、生物浓缩、生物放大等作用,对人类产生严重危害。因此,迫切需要开发出新型的环境友好材料,同时有效去除电镀废水中的重金属离子。Electroplating wastewater is one of the most harmful industrial wastewater to the environment and human health. Electroplating is usually carried out in a strong acid solution, and the discharged heavy metal ions such as chromium, nickel, copper, zinc, lead, silver, and gold enter the atmosphere, water, and soil. Heavy metal ions and their compounds can accumulate and enrich in animals and plants such as crops, fish, and animals, and cause serious harm to humans through accumulation in drinking water and food chains, bioconcentration, and biomagnification. Therefore, there is an urgent need to develop new environmentally friendly materials that can effectively remove heavy metal ions from electroplating wastewater.
目前,工业废水中汞、镉、六价铬、总铬、铅及砷排放量分别为0.7吨、16.9吨、34.8吨、131.8吨、71.8吨和109.2吨。重金属废水的处理方法主要包括:化学沉淀法,物理处理法和生物处理法等。(1)物理处理法主要包括吸附法、离子交换法和膜分离法等。活性炭粉体是最常用的吸附剂,具有吸附能力强、去除率高,但由于密度小不易于从水体中分离。离子交换法和膜分离法虽然去除重金属离子效果好,但是回收成本高、设备费昂贵。(2)生物处理法,主要包括生物絮凝法、生物化学法和植物修复法等。生物处理法虽然具有安全无毒、无二次污染等优良特性,但不适用于处理强酸性的电镀废水。(3)化学沉淀法是通过化学反应使重金属离子变成不溶性物质而沉淀分离出来。该方法操作简单方便,在废水处理中得到广泛应用。At present, the emissions of mercury, cadmium, hexavalent chromium, total chromium, lead and arsenic in industrial wastewater are 0.7 tons, 16.9 tons, 34.8 tons, 131.8 tons, 71.8 tons and 109.2 tons respectively. The treatment methods of heavy metal wastewater mainly include: chemical precipitation method, physical treatment method and biological treatment method. (1) Physical treatment methods mainly include adsorption method, ion exchange method and membrane separation method. Activated carbon powder is the most commonly used adsorbent, which has strong adsorption capacity and high removal rate, but it is not easy to separate from water due to its low density. Although the ion exchange method and membrane separation method are effective in removing heavy metal ions, the recovery cost is high and the equipment cost is expensive. (2) Biological treatment, mainly including biological flocculation, biochemical and phytoremediation. Although the biological treatment method has excellent characteristics such as safety, non-toxicity, and no secondary pollution, it is not suitable for the treatment of strongly acidic electroplating wastewater. (3) The chemical precipitation method is to make heavy metal ions into insoluble substances through chemical reactions and precipitate and separate them. The method is simple and convenient to operate, and is widely used in wastewater treatment.
中国专利CN 106984290 A采用静电液滴法及冷凝固浴的方法将海藻酸钠磁性复合微球与壳聚糖复合用于吸附重金属离子,虽然具有较强的吸附性能,但是可操作性差,不宜推广;中国专利CN 105521759 A以鸡蛋壳为原料,将生物质有机植酸为磷源制备出高碳酸根掺杂碳羟基磷灰石吸附剂,在制备过程中添加有机物质,容易对环境造成二次污染;中国专利专利号CN 102908998 A公开了一种黄原酸基打孔葡萄糖凝胶吸附剂的制备方法,该方法制备的凝胶用于吸附重金属,具备吸附容量高,可降解的优点,但是该材料的机械性能差,不易进行大规模利用。Chinese patent CN 106984290 A adopts the method of electrostatic droplet method and cooling solidification bath to combine sodium alginate magnetic composite microspheres with chitosan to adsorb heavy metal ions. Although it has strong adsorption performance, it has poor operability and is not suitable for promotion. ; Chinese patent CN 105521759 A uses egg shells as raw materials, and uses biomass organic phytic acid as a phosphorus source to prepare a high-carbonate doped carbon hydroxyapatite adsorbent. Adding organic substances during the preparation process will easily cause secondary damage to the environment. Pollution; Chinese Patent No. CN 102908998 A discloses a preparation method of a xanthic acid-based perforated glucose gel adsorbent, the gel prepared by the method is used to adsorb heavy metals, and has the advantages of high adsorption capacity and degradability, but The material has poor mechanical properties and is not easy to be used on a large scale.
羟基磷灰石Ca10(PO4)6(OH)2,是磷灰石大家族中的一种典型结构代表,其晶体为六方晶系。分子中的Ca2+容易被Cd2+,Hg2+,Cr2+,Ba2+,Pb2+等重金属离子交换。低结晶质HA的微粉末,其比表面积很大,因此,磷灰石可以作为一种优质的无机离子晶格吸附与交换材料,用于废水治理和有价值元素的回收。磷灰石去除重金属离子的主要的机理包括吸附、表面络合、溶解-沉淀以及重金属离子与晶格中的离子交换作用。一般而言,被吸附放入重金属离子固化在晶格中间,不会产生二次污染。Hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 , is a typical structural representative of the apatite family, and its crystal is hexagonal. Ca 2+ in the molecule is easily exchanged by Cd 2+ , Hg 2+ , Cr 2+ , Ba 2+ , Pb 2+ and other heavy metal ions. The fine powder of low crystallinity HA has a large specific surface area. Therefore, apatite can be used as a high-quality inorganic ion lattice adsorption and exchange material for wastewater treatment and recovery of valuable elements. The main mechanisms for the removal of heavy metal ions by apatite include adsorption, surface complexation, dissolution-precipitation, and ion exchange between heavy metal ions and the crystal lattice. Generally speaking, heavy metal ions are adsorbed and solidified in the middle of the lattice without secondary pollution.
磷灰石的制备方法有多种,主要包括机械化学法、化学沉淀法、水热法、溶胶凝胶法等,其中韩记梅等用Ca(NO3)2和Na3PO4在常压、145℃的条件下水热合成了纳米羟基磷灰石晶体,其组成、结构和形貌与牙无机质十分相似;Earl等以Ca(NO3)2·4H2O和(NH4)2HPO4为原料经水热条件24h合成直径10~60nm,长100~500nm的纳米棒状羟基磷灰石;徐光亮等以CaCO3和CaHPO4·2H2O为前驱体,通过水热条件合成晶粒完整、分散性好、端面粒度在100nm以下的HA粉体。There are many ways to prepare apatite, mainly including mechanochemical method, chemical precipitation method, hydrothermal method, sol-gel method, etc. Among them, Han Jimei et al. used Ca(NO 3 ) 2 and Na 3 PO 4 at normal pressure, 145 Under the condition of ℃, nano - hydroxyapatite crystals were hydrothermally synthesized, and its composition, structure and morphology were very similar to tooth inorganic substances ; Earl et al . The raw materials were subjected to hydrothermal conditions for 24 hours to synthesize nanorod-shaped hydroxyapatite with a diameter of 10-60nm and a length of 100-500nm ; HA powder with good dispersibility and end surface particle size below 100nm.
发明内容Contents of the invention
本发明的目的是以钢铁冶炼矿渣为原料,利用水热合成的方法制备硅酸根型磷灰石,并吸附废水中的重金属离子。本发明制备的硅酸根型磷灰石具有分散性好,粒度均匀,优异的吸附性能,用于吸附废水中的重金属离子。The purpose of the present invention is to use iron and steel smelting slag as raw material to prepare silicate apatite by hydrothermal synthesis, and to absorb heavy metal ions in waste water. The silicate-type apatite prepared by the invention has good dispersibility, uniform particle size and excellent adsorption performance, and is used for adsorbing heavy metal ions in waste water.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明提供了一种由钢铁冶炼矿渣制备硅酸根型磷灰石的方法,其包括如下步骤:The invention provides a method for preparing silicate apatite from iron and steel smelting slag, which comprises the following steps:
将钢铁冶炼矿渣粉末和磷酸盐分别用去离子水溶解后,按照钙元素和磷元素的摩尔比为(1~2):1的比例进行混合后,用碱液调节pH值为碱性;After dissolving iron and steel smelting slag powder and phosphate with deionized water respectively, after mixing according to the molar ratio of calcium element and phosphorus element as (1-2):1, the pH value is adjusted to be alkaline with lye;
进行水热反应后自然冷却至室温,过滤收集沉淀物,并用去离子水洗涤至中性后进行干燥,得到所述硅酸根型磷灰石。After performing the hydrothermal reaction, cool naturally to room temperature, collect the precipitate by filtration, wash with deionized water until neutral, and then dry to obtain the silicate apatite.
作为优选方案,所述钢铁冶炼矿渣中包含有按照重量百分数计的如下组分:As a preferred solution, the iron and steel smelting slag contains the following components by weight percentage:
作为优选方案,所述磷酸盐为磷酸氢二铵、磷酸二氢铵、磷酸氢二钾、磷酸二氢钾、磷酸二氢钠、磷酸氢二钠中的一种或几种。As a preferred solution, the phosphate is one or more of diammonium hydrogen phosphate, ammonium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate, and disodium hydrogen phosphate.
作为优选方案,所述水热反应的温度为120~180℃,水热反应的时间为3~24h。As a preferred solution, the temperature of the hydrothermal reaction is 120-180° C., and the time of the hydrothermal reaction is 3-24 hours.
作为优选方案,所述碱液为氨水、氢氧化钠溶液、氢氧化钾溶液中的至少一种。As a preferred solution, the lye is at least one of ammonia water, sodium hydroxide solution, and potassium hydroxide solution.
一种利用前述的方法制备的硅酸根型磷灰石。A silicate apatite prepared by the aforementioned method.
一种如前述的硅酸根型磷灰石在吸附废水中重金属离子中的用途。A use of the aforementioned silicate-type apatite in adsorbing heavy metal ions in wastewater.
本发明硅酸根型磷灰石Ca10(PO4)x(SiO3)6-x(OH)2是由工厂中的钢铁冶炼矿渣为原料制备,并且有效吸附废水中的重金属离子。即实现了工厂废渣的再次回收利用,又减轻了工业废水中重金属离子对环境的污染,变废为宝。The silicate apatite Ca 10 (PO 4 ) x (SiO 3 ) 6-x (OH) 2 of the invention is prepared from steel smelting slag in a factory as a raw material, and effectively adsorbs heavy metal ions in waste water. That is to say, the recycling of factory waste residues is realized, and the pollution of heavy metal ions in industrial wastewater to the environment is reduced, turning waste into treasure.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、原料来源于工厂废渣,来源广泛,成本低廉,变废为宝,又改善环保问题;1. The raw material comes from factory waste residue, which has a wide range of sources, low cost, turns waste into treasure, and improves environmental protection issues;
2、使用水热合成法制备的硅酸根型磷灰石结晶度低,反应过程无团聚,无需高温灼烧处理,晶格缺陷明显,有利于重金属的去除;2. Silicate-type apatite prepared by hydrothermal synthesis method has low crystallinity, no agglomeration in the reaction process, no need for high-temperature burning treatment, obvious lattice defects, and is conducive to the removal of heavy metals;
3、该硅酸根型磷灰石的制备过程不添加有机模板剂,无毒副作用;3. The preparation process of the silicate-type apatite does not add an organic template agent, and has no toxic and side effects;
4、本发明制备的纳米羟基磷灰石,具有适当的机械性能和良好的可加工型能,处理废水中重金属时,对环境不会造成二次污染,以便于在水处理领域中的广泛应用。4. The nano-hydroxyapatite prepared by the present invention has appropriate mechanical properties and good processability. When treating heavy metals in wastewater, it will not cause secondary pollution to the environment, so that it can be widely used in the field of water treatment .
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为本发明实施例1中钢铁冶炼矿渣的X射线衍射图谱;Fig. 1 is the X-ray diffraction spectrum of iron and steel smelting slag in the embodiment 1 of the present invention;
图2为本发明实施例1以钢铁冶炼矿渣为原料制得的硅酸根型磷灰石的X射线衍射图谱;Fig. 2 is the X-ray diffraction spectrum of the silicate apatite prepared as raw material from iron and steel smelting slag in Example 1 of the present invention;
图3为本发明实施例1的钢铁冶炼矿渣的元素分析图;Fig. 3 is the elemental analysis diagram of the iron and steel smelting slag of embodiment 1 of the present invention;
图4为本发明实施例1中制得的硅酸根型磷灰石吸附铅离子后的扫描电镜图;Fig. 4 is the scanning electron micrograph of silicate-type apatite obtained in Example 1 of the present invention after adsorbing lead ions;
图5为本发明实施例1中制得的硅酸根型磷灰石对不同pH溶液中铅离子的吸附量;Fig. 5 is the amount of adsorption of lead ions in different pH solutions by silicate apatite prepared in Example 1 of the present invention;
图6为本发明实施例1中制得的硅酸根型磷灰石对不同浓度铅离子的吸附量。Fig. 6 is the adsorption amount of silicate apatite prepared in Example 1 of the present invention to different concentrations of lead ions.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
实施例1Example 1
(1)室温下取10g钢铁冶炼矿渣粉末,5.01g磷酸氢二铵(按照Ca/P摩尔比为1.67/1),放入250ml烧杯中,先加入50ml去离子水溶解,并用磁力搅拌器进行搅拌,同时用1mol/L的NaOH溶液调解体系的pH值为10,搅拌30min。(1) Take 10g of iron and steel smelting slag powder and 5.01g of diammonium hydrogen phosphate (according to the Ca/P molar ratio of 1.67/1) at room temperature, put them into a 250ml beaker, first add 50ml of deionized water to dissolve, and use a magnetic stirrer Stir while adjusting the pH of the system to 10 with 1 mol/L NaOH solution, and stir for 30 min.
(2)将混合均匀的溶液转移至高压反应釜中,放入烘箱,进行水热反应,温度为120℃,反应时间为8h。(2) Transfer the uniformly mixed solution to a high-pressure reactor, put it into an oven, and perform a hydrothermal reaction at a temperature of 120° C. and a reaction time of 8 hours.
(3)反应结束后,将高压反应釜从烘箱中取出,自然冷却至室温,过滤洗涤至pH为7.4,得到硅酸根型磷灰石沉淀,在60℃烘箱中干燥,得到样品。(3) After the reaction, the autoclave was taken out of the oven, naturally cooled to room temperature, filtered and washed until the pH was 7.4, and a silicate apatite precipitate was obtained, which was dried in an oven at 60°C to obtain a sample.
对实施例1中的钢铁冶炼矿渣进行表征,得到X射线衍射图谱(XRD)和成分分析图,分别由如图1和图3所示,并且对所制得的硅酸根型磷灰石的形貌和成分进行表征,得到的X射线衍射图谱(XRD),扫描电镜图像(SEM),分别由如图2和图4所示。The iron and steel smelting slag in embodiment 1 is characterized, obtain X-ray diffraction spectrum (XRD) and component analysis figure, are shown in Fig. 1 and Fig. 3 respectively, and the form of the prepared silicate apatite The appearance and composition are characterized, and the obtained X-ray diffraction pattern (XRD) and scanning electron microscope image (SEM) are shown in Figure 2 and Figure 4 respectively.
由图2XRD谱图可知,硅酸根型磷灰石的晶型为六方晶型。由图4SEM图可知,得到的硅酸根型磷灰石具有良好的分散性。It can be seen from the XRD spectrum in Figure 2 that the crystal form of silicate apatite is hexagonal. It can be seen from the SEM image of Figure 4 that the obtained silicate apatite has good dispersibility.
实施例2Example 2
(1)室温下取10g钢铁冶炼矿渣粉末,25.8g十二水合磷酸氢二钠(按照Ca/P摩尔比为1:1,放入250ml烧杯中,先加入50ml去离子水溶解,并用磁力搅拌器进行搅拌,同时用1mol/L的KOH溶液调解体系的pH值为12,搅拌60min。(1) Take 10g of iron and steel smelting slag powder at room temperature, 25.8g of disodium hydrogen phosphate dodecahydrate (according to the Ca/P molar ratio of 1:1, put them into a 250ml beaker, first add 50ml of deionized water to dissolve, and stir with a magnetic force Stir with a device while adjusting the pH of the system to 12 with a 1mol/L KOH solution, and stir for 60 minutes.
(2)将混合均匀的溶液转移至高压反应釜中,放入烘箱,进行水热反应,温度为140℃,反应时间为6h。(2) Transfer the uniformly mixed solution to a high-pressure reactor, put it into an oven, and perform a hydrothermal reaction at a temperature of 140° C. and a reaction time of 6 hours.
(3)反应结束后,将高压反应釜从烘箱中取出,自然冷却至室温,过滤洗涤至pH为7.4,得到硅酸根型磷灰石沉淀,在80℃烘箱中干燥,得到样品。(3) After the reaction, the autoclave was taken out of the oven, cooled naturally to room temperature, filtered and washed until the pH was 7.4, and a silicate apatite precipitate was obtained, which was dried in an oven at 80°C to obtain a sample.
实施例3Example 3
(1)室温下取10g钢铁冶炼矿渣粉末,6.48g二水合磷酸二氢钠(按照Ca/P摩尔比为2:1),放入250ml烧杯中,先加入50ml去离子水溶解,并用磁力搅拌器进行搅拌,同时用1mol/L的KOH溶液调解体系的pH值为14,搅拌60min。(1) Take 10g of iron and steel smelting slag powder and 6.48g of sodium dihydrogen phosphate dihydrate (2:1 according to the molar ratio of Ca/P) at room temperature, put them into a 250ml beaker, first add 50ml of deionized water to dissolve, and stir with a magnetic force Stir with a device while adjusting the pH of the system to 14 with a 1mol/L KOH solution, and stir for 60 minutes.
(2)将混合均匀的溶液转移至高压反应釜中,放入烘箱,进行水热反应,温度为180℃,反应时间为3h。(2) Transfer the uniformly mixed solution to a high-pressure reactor, put it into an oven, and perform a hydrothermal reaction at a temperature of 180° C. and a reaction time of 3 hours.
(3)反应结束后,将高压反应釜从烘箱中取出,自然冷却至室温,过滤洗涤至pH为7.4,得到硅酸根型磷灰石沉淀,在100℃烘箱中干燥,得到样品。(3) After the reaction, the autoclave was taken out of the oven, cooled naturally to room temperature, filtered and washed until the pH was 7.4, and a silicate apatite precipitate was obtained, which was dried in an oven at 100°C to obtain a sample.
实施例4Example 4
(1)室温下取10g钢铁冶炼矿渣粉末,5.17g磷酸二氢铵(按照Ca/P摩尔比为1.6),放入250ml烧杯中,先加入50ml去离子水溶解,并用磁力搅拌器进行搅拌,同时用1mol/L的氨水溶液调解体系的pH值为11,搅拌2h。(1) Take 10g of iron and steel smelting slag powder and 5.17g of ammonium dihydrogen phosphate (1.6 according to the Ca/P molar ratio) at room temperature, put them in a 250ml beaker, add 50ml of deionized water to dissolve, and stir with a magnetic stirrer, At the same time, adjust the pH value of the system to 11 with 1 mol/L ammonia solution, and stir for 2 hours.
(2)将混合均匀的溶液转移至高压反应釜中,放入烘箱,进行水热反应,温度为120℃,反应时间为24h。(2) Transfer the uniformly mixed solution to a high-pressure reactor, put it into an oven, and perform a hydrothermal reaction at a temperature of 120° C. and a reaction time of 24 hours.
(3)反应结束后,将高压反应釜从烘箱中取出,自然冷却至室温,过滤洗涤至pH为7.4,得到硅酸根型磷灰石沉淀,在60℃烘箱中干燥,得到样品。(3) After the reaction, the autoclave was taken out of the oven, naturally cooled to room temperature, filtered and washed until the pH was 7.4, and a silicate apatite precipitate was obtained, which was dried in an oven at 60°C to obtain a sample.
实施例5Example 5
对实施例1所得的硅酸根型磷灰石进行重金属离子的吸附实验:The silicate-type apatite obtained in embodiment 1 is carried out the adsorption experiment of heavy metal ion:
(1)称取硅酸根型磷灰石0.5g,铅离子浓度为400mg/L,pH=4.0的废水,20℃下,500rpm搅拌速率下进行吸附,定时取样,用1.0000mmol/L的EDTA溶液滴定溶液中剩余铅离子的浓度,直到达到吸附平衡。(1) Weigh 0.5g of silicate-type apatite, lead ion concentration is 400mg/L, pH=4.0 waste water, under 20 ℃, under 500rpm stirring rate, carry out adsorption, regularly sample, use EDTA solution of 1.0000mmol/L Titrate the concentration of remaining lead ions in the solution until adsorption equilibrium is reached.
对实施例5吸附铅离子实验所得数据进行了绘图及分析,对铅离子吸附量曲线图如图5所示,相对于现有的吸附材料对废水中重金属的吸附效果,本发明制备的纳米羟基磷灰石对重金属离子的吸附效果有很高的提升。Drawing and analysis are carried out to embodiment 5 adsorption lead ion experiment gained data, to lead ion adsorption curve as shown in Figure 5, with respect to the adsorption effect of existing adsorbent material to heavy metal in waste water, the nano hydroxyl prepared by the present invention The adsorption effect of apatite on heavy metal ions has been greatly improved.
实施例6Example 6
对实施例1所得的硅酸根型磷灰石进行重金属离子的吸附实验:The silicate-type apatite obtained in embodiment 1 is carried out the adsorption experiment of heavy metal ion:
(1)称取硅酸根型磷灰石0.5g,铅离子浓度为800mg/L,pH=5.5的废水,20℃下,500rpm搅拌速率下进行吸附,定时取样,用1.0000mmol/L的EDTA溶液滴定溶液中剩余铅离子的浓度,直到达到吸附平衡。(1) Weigh 0.5g of silicate-type apatite, lead ion concentration is 800mg/L, pH=5.5 waste water, under 20 ℃, under 500rpm stirring rate, carry out adsorption, regularly sample, use EDTA solution of 1.0000mmol/L Titrate the concentration of remaining lead ions in the solution until adsorption equilibrium is reached.
对实施例6吸附铅离子实验所得数据进行了绘图及分析,对铅离子吸附量曲线图如图6所示。The data obtained in the experiment of adsorbing lead ions in Example 6 were drawn and analyzed, and the graph of the adsorption amount of lead ions is shown in FIG. 6 .
综上所述,仅为本发明的较佳实施例而已,并非用来限定本发明实施的范围,凡依本发明权利要求范围所述的形状、构造、特征及精神所为的均等变化与修饰,均应包括于本发明的权利要求范围内。In summary, these are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. All equivalent changes and modifications are made in accordance with the shape, structure, characteristics and spirit described in the scope of the claims of the present invention. , should be included in the scope of the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711256808.6A CN107934976A (en) | 2017-12-04 | 2017-12-04 | Method that silicate type apatite is prepared by smelting iron and steel slag and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711256808.6A CN107934976A (en) | 2017-12-04 | 2017-12-04 | Method that silicate type apatite is prepared by smelting iron and steel slag and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107934976A true CN107934976A (en) | 2018-04-20 |
Family
ID=61948418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711256808.6A Pending CN107934976A (en) | 2017-12-04 | 2017-12-04 | Method that silicate type apatite is prepared by smelting iron and steel slag and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107934976A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114345290A (en) * | 2021-12-13 | 2022-04-15 | 武汉科技大学 | Method for purifying raffinate by utilizing shale vanadium extraction neutralization slag |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101279105A (en) * | 2008-04-21 | 2008-10-08 | 石家庄铁道学院 | Synthesis method of silicon-containing hydroxyapatite artificial bone biomimetic ceramics |
CN103318865A (en) * | 2013-07-05 | 2013-09-25 | 南京理工大学 | Method for synthesizing hydroxyapatite from alkali residue |
CN105439451A (en) * | 2014-08-27 | 2016-03-30 | 济南大学 | Hydroxylapatite crystal glass and preparing method thereof |
CN106044734A (en) * | 2016-06-23 | 2016-10-26 | 宝钢发展有限公司 | Method for preparing nano-hydroxyapatite |
-
2017
- 2017-12-04 CN CN201711256808.6A patent/CN107934976A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101279105A (en) * | 2008-04-21 | 2008-10-08 | 石家庄铁道学院 | Synthesis method of silicon-containing hydroxyapatite artificial bone biomimetic ceramics |
CN103318865A (en) * | 2013-07-05 | 2013-09-25 | 南京理工大学 | Method for synthesizing hydroxyapatite from alkali residue |
CN105439451A (en) * | 2014-08-27 | 2016-03-30 | 济南大学 | Hydroxylapatite crystal glass and preparing method thereof |
CN106044734A (en) * | 2016-06-23 | 2016-10-26 | 宝钢发展有限公司 | Method for preparing nano-hydroxyapatite |
Non-Patent Citations (2)
Title |
---|
刘克军: "含硅羟基磷灰石的制备和体外生物活性研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 * |
唐晓恋 等: "含硅羟基磷灰石的水热合成与结构表征", 《无机化学学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114345290A (en) * | 2021-12-13 | 2022-04-15 | 武汉科技大学 | Method for purifying raffinate by utilizing shale vanadium extraction neutralization slag |
CN114345290B (en) * | 2021-12-13 | 2023-08-15 | 武汉科技大学 | A method for purifying raffinate by using shale to extract vanadium and neutralize slag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xiong et al. | Highly enhanced adsorption performance to uranium (VI) by facile synthesized hydroxyapatite aerogel | |
Li et al. | Synthesis and application of amine-functionalized MgFe2O4-biochar for the adsorption and immobilization of Cd (II) and Pb (II) | |
CN111203180B (en) | Magnetic biochar composite adsorbent and preparation method and application thereof | |
Zhang et al. | Enhanced adsorption of sulfamethoxazole from aqueous solution by Fe-impregnated graphited biochar | |
Zhou et al. | Biochars with excellent Pb (II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization | |
Ma et al. | Enhanced adsorption of cadmium from aqueous solution by amino modification biochar and its adsorption mechanism insight | |
Sun et al. | Treatment of Pb (II) pollution in livestock wastewater by MgFe2O4 modified manure-biochar derived from livestock itself: special role of endogenous dissolved organic matter and P species | |
Yang et al. | Removal of lead from aqueous solutions by ferric activated sludge-based adsorbent derived from biological sludge | |
Shi et al. | A novel heat-treated humic acid/MgAl-layered double hydroxide composite for efficient removal of cadmium: Fabrication, performance and mechanisms | |
CN108706561B (en) | Method for preparing high-purity iron phosphate by using pyrite cinder | |
Zhu et al. | Strontium-doped hydroxyapatite as an efficient adsorbent for Cd (II) removal from wastewater: Performance, kinetics, and mechanism | |
WO2013126477A1 (en) | Biochar/metal composites, methods of making biochar/metal composites, and methods of removing contaminants from water | |
Avram et al. | Hydroxyapatite for removal of heavy metals from wastewater | |
Zhang et al. | Synthesis of Mg-decorated carbon nanocomposites from mesocarbon microbeads (MCMB) graphite: application for wastewater treatment | |
Wang et al. | Spongy porous CuFe Prussian blue deposited MXene nanosheets for quick removal of cesium ions from wastewater and seawater | |
Guo et al. | Carbon fiber supported and N-doped carbon encapsulated nZVI for synergistically adsorbing and reducing uranium | |
Peng et al. | A study of adsorption behaviour of Cu (II) on hydroxyapatite-coated-limestone/chitosan composite | |
Shang et al. | Mixed solvent fabrication of tobermorite and the fixation of heavy metals in water and soil | |
Li et al. | Adsorption, recovery, and regeneration of Cd by magnetic phosphate nanoparticles | |
US20250018364A1 (en) | Modified biochar/coal lignites and their use in phosphate remediation and as solid amendments | |
Wang et al. | Utilizing different types of biomass materials to modify steel slag for the preparation of composite materials used in the adsorption and solidification of Pb in solutions and soil | |
TW201838929A (en) | Water treatment method, magnesium agent for water treatment, and method for producing magnesium agent for water treatment | |
Saed et al. | Influence of acid activation of a mixture of illite, koalinite, and chlorite clays on the adsorption of methyl violet 6B dye | |
Shang et al. | Immobilization of Pb2+ and Cd2+ on the novel calcium/magnesium silicate and their transformation in the presence of phosphate | |
Wang et al. | Highly efficient uranium (VI) capture by magnesium oxide loaded lotus seedpod-derived biochar via a hydrothermal and pyrolytic coupling process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Dong Xiaodan Inventor after: Tong Min Inventor after: Guo Yaping Inventor after: Feng Yutao Inventor after: Lu Jiawei Inventor after: Wen Xi Inventor before: Tong Min Inventor before: Guo Yaping Inventor before: Feng Yutao Inventor before: Lu Jiawei Inventor before: Wen Xi |
|
CB03 | Change of inventor or designer information | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20180702 Address after: 200439 a A006 room, No. 2816, Yixian Road, Baoshan District, Shanghai. Applicant after: Bao Group Environmental Resources Technology Co., Ltd. Applicant after: Shanghai Normal University Address before: 200439 a A006 room, No. 2816, Yixian Road, Baoshan District, Shanghai. Applicant before: Bao Group Environmental Resources Technology Co., Ltd. |
|
TA01 | Transfer of patent application right | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180420 |
|
WD01 | Invention patent application deemed withdrawn after publication |