CN107916267A - A kind of high amylopectin starch biosynthesis recombination CBI and its application - Google Patents
A kind of high amylopectin starch biosynthesis recombination CBI and its application Download PDFInfo
- Publication number
- CN107916267A CN107916267A CN201711009605.7A CN201711009605A CN107916267A CN 107916267 A CN107916267 A CN 107916267A CN 201711009605 A CN201711009605 A CN 201711009605A CN 107916267 A CN107916267 A CN 107916267A
- Authority
- CN
- China
- Prior art keywords
- starch
- gbssi
- glgc
- cbi
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1241—Nucleotidyltransferases (2.7.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
- C12Y204/01021—Starch synthase (2.4.1.21)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/07—Nucleotidyltransferases (2.7.7)
- C12Y207/07027—Glucose-1-phosphate adenylyltransferase (2.7.7.27), i.e. ADP-glucose pyrophosphorylase
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Nutrition Science (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明公开了一种高支链淀粉生物合成重组基因CBI及其应用,其核苷酸序列如SEQID NO:1所示,获得既可抑制直链淀粉合成,又可增强淀粉含量的重组基因,提供一种高支链淀粉生物合成重组基因CBI及其应用,本发明从大肠杆菌JM109‑3突变株中分离获得了腺苷二磷酸葡萄糖焦磷酸化酶编码基因的glgC55,从马铃薯分离获得了与淀粉粒结合的淀粉合成酶编码基因GBSSIcDNA和其启动子DNA。
The invention discloses a high amylopectin biosynthesis recombinant gene CBI and its application. Its nucleotide sequence is shown in SEQ ID NO: 1. A recombinant gene that can inhibit amylose synthesis and enhance starch content can be obtained, providing a A high amylopectin biosynthesis recombinant gene CBI and its application, the present invention is isolated from Escherichia coli JM109‑3 mutant strain and obtained the glgC55 encoding gene of adenosine diphosphate glucose pyrophosphorylase, obtained from potato and combined with starch granules Starch synthase encoding gene GBSSI cDNA and its promoter DNA.
Description
技术领域technical field
本发明属于生物医药技术领域,本发明公开了一种高支链淀粉生物合成重组基因CBI及其应用。The invention belongs to the technical field of biomedicine and discloses a high amylopectin biosynthesis recombinant gene CBI and its application.
背景技术Background technique
淀粉是仅次于纤维素、目前存在最为普遍、价格最为低廉的光能聚合载体之一;淀粉组成单一、易于储藏、用途广泛,是用于建材、纺织、造纸和石油开采的重要工业原料,尤其是其储藏的化学能易于再转化利用,为此,在战略高度重新认识淀粉方兴未艾。Starch is one of the most common and cheapest photopolymerizable carriers next to cellulose. Starch has a single composition, is easy to store, and has a wide range of uses. It is an important industrial raw material for building materials, textiles, papermaking, and oil extraction. In particular, the chemical energy stored in it is easy to convert and utilize again. For this reason, a new understanding of starch at a strategic level is in the ascendant.
淀粉来自植物种子(如水稻、小麦和玉米等)、块茎(如马铃薯等)等,因食物成分和淀粉特性等原因,马铃薯淀粉是广泛接受和使用的工业原料;我国马铃薯产区淀粉出粉率(生产每公斤淀粉所需块茎量)为1/(7-8),而发达国家为1/(3-4),生产效率低下,其原因是我国产区淀粉含量仅为15%-18%。Starch comes from plant seeds (such as rice, wheat, corn, etc.), tubers (such as potatoes, etc.), etc. Due to food composition and starch characteristics, potato starch is a widely accepted and used industrial raw material; the starch yield of potato production areas in my country (The amount of tubers required to produce per kilogram of starch) is 1/(7-8), while in developed countries it is 1/(3-4), and the production efficiency is low. The reason is that the starch content in my country's production areas is only 15%-18%. .
育种是改良或获得品种的基本途径,其依据的原理是孟德尔和摩尔根的遗传原理,杂交是实现性状决定基因重组的基本途径,在欧美马铃薯杂交育种获得了目前80%以上广泛种植的品种,其中,用于淀粉加工目的的品种的淀粉含量均为20%以上。Breeding is the basic way to improve or obtain varieties. It is based on the genetic principles of Mendel and Morgan. Hybridization is the basic way to achieve trait-determined gene recombination. In European and American potato crossbreeding, more than 80% of the currently widely planted varieties have been obtained. , wherein the starch content of the varieties used for starch processing purpose is more than 20%.
在西欧,苏格兰农业科学咨询机构官方(爱丁堡)负责维护的欧洲马铃薯品种数据库,库中收集并详细记载了杂交育种获得品种的相关专利;HZPC、Jalving、Averis等是西欧主要的育种公司,其育种创制的马铃薯品种Agria、Desiree、Bintje、Lady Rosetta等被广泛栽培。In Western Europe, the Scottish Agricultural Science Advisory Agency (Edinburgh) is responsible for maintaining the European potato variety database, which collects and records in detail the relevant patents of varieties obtained by hybrid breeding; HZPC, Jalving, Averis, etc. are the main breeding companies in Western Europe. The created potato varieties Agria, Desiree, Bintje, Lady Rosetta, etc. are widely cultivated.
由北美联合培育的Russet系列品种广泛应用,由此产生的专利包括Pat.No.5,500,365,Pat.No.5,387,756,Pat.No.5,789,657,Pat.No.5,503,999,Pat.No.5,589,612,Pat.No.5,510,253,Pat.No.5,304,730,Pat.No.5,382,429,Pat.No.5,503,999,Pat.No.5,648,249,Pat.No.5,312,912,Pat.No.5,498,533,Pat.No.5,276,268,Pat.No.4,900,676,Pat.No.5,633,434,Pat.No.4,970,168。The Russet series of varieties jointly bred by North America are widely used, and the resulting patents include Pat. .5,510,253, Pat.No.5,304,730, Pat.No.5,382,429, Pat.No.5,503,999, Pat.No.5,648,249, Pat.No.5,312,912, Pat.No.5,498,533, Pat.No.5,276,268, Pat.No.4,900,676 , Pat. No. 5,633,434, Pat. No. 4,970,168.
近年,在国际市场对淀粉巨大需求的驱动下,高出粉率、高粘度等高品质淀粉更是炙手可热,过去十多年,国际化工巨头、如荷兰Avbe和德国BASF等纷纷投资于淀粉品质改良的育种研究,在取得了许多育种成果,其中具有代表性的是获得了基因工程改良的马铃薯品种Amflora。In recent years, driven by the huge demand for starch in the international market, high-quality starch with high flour extraction rate and high viscosity has become even more popular. In the past ten years, international chemical giants, such as Avbe in the Netherlands and BASF in Germany, have invested in starch quality improvement. The breeding research in China has achieved many breeding results, among which the potato variety Amflora improved by genetic engineering is obtained.
Amflora块茎淀粉中支链淀粉含量在95%以上,由Amflora加工的淀粉,只需传统马铃薯淀粉用量的五分之一,即可达到同样的使用效果;迫于自然主义者的压力,欧盟多年来一直抵制在西欧种植转基因作物,但鉴于Amflora淀粉的巨大诱惑,BASF公司2010获欧盟授权,批准其在欧洲种植Amflora。The amylopectin content in Amflora tuber starch is more than 95%, and the starch processed by Amflora only needs one-fifth of the amount of traditional potato starch to achieve the same use effect; under the pressure of naturalists, the European Union has BASF has been resisting the planting of genetically modified crops in Western Europe, but in view of the huge temptation of Amflora starch, BASF was authorized by the European Union in 2010 to plant Amflora in Europe.
淀粉不仅是人类生存所需食物的成分,由淀粉生产的燃料乙醇正在成为动力能源之一,因此,淀粉也是人类活动所需能源的组成部分,鉴于人们对淀粉含有的能量寄予的厚望,未来对淀粉的巨大需求显而易见,大幅增加植物淀粉积累,过去是、今天更是人类面临的重大课题。Starch is not only a component of food for human survival, but fuel ethanol produced from starch is becoming one of the power sources. Therefore, starch is also a component of energy for human activities. In view of people's high expectations for the energy contained in starch, the future will be The huge demand for starch is obvious. Significantly increasing the accumulation of starch in plants has been and is a major issue facing mankind in the past and today.
淀粉由两类葡萄糖苷聚合物组成,一是葡萄糖alfa-1,4线性连接占绝大部分的直链淀粉,二是在alfa-1,4连接链有多处alfa-1,6分支连接的支链淀粉;直接参与淀粉的生物合成的主要酶有:腺苷二磷酸葡萄糖焦磷酸化酶(AGPase.EC 2.7.7.27))、可溶性淀粉合成酶(SSS)、与淀粉粒结合的淀粉合成酶(GBSS)、淀粉分支酶(BE)、淀粉去分支酶(DBE)。Starch is composed of two types of glucoside polymers, one is amylose in which glucose alfa-1,4 linear links account for the vast majority, and the other is amylose with multiple alfa-1,6 branch links in the alfa-1,4 linking chain Amylopectin; the main enzymes directly involved in the biosynthesis of starch are: adenosine diphosphate glucose pyrophosphorylase (AGPase.EC 2.7.7.27)), soluble starch synthase (SSS), and starch synthase combined with starch granules (GBSS), starch branching enzyme (BE), starch debranching enzyme (DBE).
细菌AGPase是由glgC基因编码的同源四聚体,高等植物的AGPase是异源四聚体(异源四亚基复合体),两个相同的大亚基和两个相同的小亚基,小亚基(SS)行使AGPase的代谢功能,大亚基(LS)主要调控AGPase活性,变构因子诱导的异构调控是AGPase主要的调控形式。Bacterial AGPase is a homotetramer encoded by the glgC gene, and AGPase in higher plants is a heterotetramer (heterologous four-subunit complex), with two identical large subunits and two identical small subunits, The small subunit (SS) performs the metabolic function of AGPase, the large subunit (LS) mainly regulates the activity of AGPase, and the heterogeneous regulation induced by allosteric factors is the main form of regulation of AGPase.
细菌AGPase同源四聚体的单个亚基、植物AGPase异源四聚体的小亚基在其以寡聚体状态存在时,其N端的代谢基团行使ADP-葡萄糖合成的功能,即以磷酸葡萄糖和ATP为底物,合成ADP-葡萄糖,ADP-葡萄糖是alfa-1,4或alfa-1,6糖苷链延伸的底物。When the single subunit of the bacterial AGPase homotetramer and the small subunit of the plant AGPase heterotetramer exist in an oligomer state, the metabolic group at the N-terminus performs the function of ADP-glucose synthesis, that is, the phosphoric acid Glucose and ATP are used as substrates to synthesize ADP-glucose, which is the substrate for alfa-1,4 or alfa-1,6 glycoside chain extension.
大肠杆菌K12突变菌株618中AGPase亚基G336D突变使其AGPase活力提高33%,在35S启动子驱动下,表达618菌株AGPase编码基因glgC16马铃薯体内,AGPase活力和块茎淀粉含量提高30%以上,表达G336D突变glgC木薯体内,使其AGPase活力提高70%,块根淀粉含量提高2倍以上。The AGPase subunit G336D mutation in the E. coli K12 mutant strain 618 increased its AGPase activity by 33%. Under the drive of the 35S promoter, the AGPase coding gene glgC16 of the 618 strain was expressed. In potatoes, the AGPase activity and tuber starch content increased by more than 30%, and G336D was expressed Mutating glgC in cassava can increase its AGPase activity by 70% and its root starch content by more than 2 times.
研究业已表明,植物AGPase小亚基以寡聚体形式存在时表现活性,推动淀粉合成,当两小亚基第82位半胱氨酸间形成分子内二硫键(二聚体)时AGPase失活,抑制淀粉合成;众多变构因子影响植物AGPase小亚基第82位半胱氨酸的氧化还原状态,使其对调控敏感。Studies have shown that the plant AGPase small subunit exhibits activity when it exists in the form of an oligomer, and promotes starch synthesis. Activity, inhibiting starch synthesis; many allosteric factors affect the redox state of cysteine 82 in the small subunit of plant AGPase, making it sensitive to regulation.
细菌AGPase取代植物AGPase,未见AGPase代谢亚基二聚体形成,淀粉合成不受抑制,这也是glgC16马铃薯体内表达提高AGPase活力的原因。植物体内AGPase编码基因转录、AGPase活力和淀粉合成三者中,AGPase表达水平和其活力水平变化弹性强提高植物AGPase活力是增加淀粉生物合成的途径。Bacterial AGPase replaced plant AGPase, no AGPase metabolic subunit dimer formation was observed, and starch synthesis was not inhibited, which is why the expression of glgC16 in potato enhanced the activity of AGPase. Among the AGPase encoding gene transcription, AGPase activity and starch synthesis in plants, the expression level of AGPase and the change of its activity level are highly elastic. Improving plant AGPase activity is the way to increase starch biosynthesis.
然而,在进一步实验中发现,用Patatin启动子驱动glgC16在马铃薯体内表达,虽然转化株系体内的AGPase活力显著增强,但块茎淀粉含量和对照无显著差异,即glgC16植物体内表达结果无法再现。其中可能原因包括glgC16自身和启动子等方面。However, in further experiments, it was found that the expression of glgC16 in potato plants was driven by the Patatin promoter. Although the AGPase activity in the transformed lines was significantly enhanced, the starch content of tubers was not significantly different from that of the control, that is, the expression results of glgC16 in plants could not be reproduced. The possible reasons include glgC16 itself and the promoter.
目前,改变直、支链淀粉的比例,主要是通过对GBSS、SSS和SBE及DBE等酶的操作来实现的。利用反义RNA技术,马铃薯体内表达反义的GBSSI,导致GBSSI活性下降或丧失,进而导致马铃薯块茎中直链淀粉含量减少70%-100%。At present, changing the ratio of amylose and amylopectin is mainly realized by operating enzymes such as GBSS, SSS, SBE and DBE. Using the antisense RNA technology, the antisense GBSSI is expressed in the potato body, resulting in a decrease or loss of GBSSI activity, which in turn leads to a 70%-100% reduction in amylose content in potato tubers.
相反,在无直链淀粉的马铃薯块茎中表达GBSSI基因,互补直链淀粉合成的缺乏。将含第一个内含子的Wx cDNA反向连接在Wx和玉米Adh1启动子并导入水稻中,在转基因水稻胚乳中直链淀粉的含量下降,同时在未成熟的胚乳中内源Wx mRNA水平也降低了,使淀粉品质发生改变。In contrast, the expression of the GBSSI gene in amylose-free potato tubers complements the lack of amylose synthesis. The Wx cDNA containing the first intron was reverse-linked to the Wx and maize Adh1 promoters and introduced into rice, the content of amylose in the transgenic rice endosperm decreased, and the endogenous Wx mRNA level in the immature endosperm Also reduced, so that starch quality changes.
反义RNA能与其正义mRNA互补结合,使其编码的蛋白质不能合成,从而抑制其功能的发挥。反义RNA的优势如下:⑴反义RNA抑制特异基因表达。⑵低丰度的反义RNA同样可以产生高效的阻抑作用。⑶反义RNA不能翻译产生蛋白质,具有高的安全性。⑷技术操作简单易行,适用范围广。Antisense RNA can complement its sense mRNA, so that the encoded protein cannot be synthesized, thereby inhibiting its function. The advantages of antisense RNA are as follows: (1) Antisense RNA inhibits specific gene expression. (2) Low-abundance antisense RNA can also produce high-efficiency repression. (3) Antisense RNA cannot be translated to produce protein, which has high safety. ⑷ The technical operation is simple and easy, and the application range is wide.
GBSSI反义RNA抑制GBSSI的表达,获得减少直链淀粉合成或只合成支链淀粉,但并未增强淀粉生物合成和增加淀粉的积累量。GBSSI antisense RNA inhibited the expression of GBSSI, obtained reduced amylose synthesis or only synthesized amylopectin, but did not enhance starch biosynthesis and increase starch accumulation.
发明内容Contents of the invention
本发明的目的在于克服上述技术存在的缺陷,获得既可抑制直链淀粉合成,又可增强淀粉含量的重组基因,提供一种高支链淀粉生物合成重组基因CBI及其应用,本发明从大肠杆菌JM109-3突变株中分离获得了腺苷二磷酸葡萄糖焦磷酸化酶编码基因的glgC55(GenBank:AY943834),从马铃薯分离获得了与淀粉粒结合的淀粉合成酶编码基因GBSSIcDNA(DQ387451)和其启动子DNA。The purpose of the present invention is to overcome the defects of the above-mentioned technology, obtain a recombinant gene that can inhibit amylose synthesis and enhance starch content, and provide a high amylopectin biosynthesis recombinant gene CBI and its application. The glgC55 gene encoding adenosine diphosphate glucose pyrophosphorylase (GenBank: AY943834) was isolated from the -3 mutant strain, and the starch synthase encoding gene GBSSIcDNA (DQ387451) and its promoter combined with starch granules were isolated from potato DNA.
glgC55编码431个氨基酸组成的AGPase亚基(AAY18580),其中有4处特异突变,它们分别是K39E,V71A,I248V和K304E,前两者出现在寡聚亚基N端代谢基团的Rossmann折叠区域内,后两者出现在寡聚亚基C端异构调控和寡聚化的LbH基团内。glgC55 encodes an AGPase subunit (AAY18580) consisting of 431 amino acids, in which there are 4 specific mutations, they are K39E, V71A, I248V and K304E, the former two appear in the Rossmann fold region of the N-terminal metabolic group of the oligomeric subunit The latter two occur within the C-terminal heterogeneously regulated and oligomerized LbH groups of the oligomeric subunits.
本发明运用glgC55、GBSSIcDNA和其启动子DNA,构建了35S:glgC::GBSSI:anti-GBSSI重组基因,重组基因在目标植物体内表达,可实现提高淀粉生物合成的同时,增加支链淀粉组分的含量。The present invention uses glgC55, GBSSIcDNA and its promoter DNA to construct a 35S:glgC::GBSSI:anti-GBSSI recombinant gene, which can be expressed in the target plant to increase starch biosynthesis and increase amylopectin components content.
本发明具备以下特征,1)35S:glgC::GBSSI:anti-GBSSI由35S:glgC和GBSSIP:anti-GBSSI两部分组成;2)35S:glgC::GBSSI:anti-GBSSI植物体内表达可使AGPase活力比对照提高70%;3)35S:glgC::GBSSI:anti-GBSSI植物体内表达可使马铃薯块茎直链淀粉减少至10%(对照为20%);4)35S:glgC::GBSSI:anti-GBSSI植物体内表达可减少昼夜周期对淀粉生物合成的调控;5)35S:glgC::GBSSI:anti-GBSSI植物体内表达可使马铃薯块茎淀粉含量高于对照26%以上,淀粉粘度高于对照35%以上。The present invention has the following features: 1) 35S:glgC::GBSSI:anti-GBSSI is composed of 35S:glgC and GBSSIP:anti-GBSSI; 2) 35S:glgC::GBSSI:anti-GBSSI expressed in plants can make AGPase Vitality increased by 70% compared with the control; 3) 35S:glgC::GBSSI:anti-GBSSI plant expression can reduce potato tuber amylose to 10% (control is 20%); 4) 35S:glgC::GBSSI:anti -GBSSI expression in plants can reduce the regulation of starch biosynthesis by diurnal cycle; 5) 35S:glgC::GBSSI:anti-GBSSI expression in plants can make the starch content of potato tubers 26% higher than that of the control, and the starch viscosity is 35% higher than that of the control %above.
其具体技术方案为:Its specific technical plan is:
一种高支链淀粉生物合成重组基因CBI,其核苷酸序列如SEQ ID NO:1所示。A high amylopectin biosynthesis recombinant gene CBI, the nucleotide sequence of which is shown in SEQ ID NO:1.
一种高支链淀粉生物合成重组基因CBI在淀粉生物合成过程中的应用。Application of a high amylopectin biosynthesis recombinant gene CBI in the process of starch biosynthesis.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
经体内外多次反复不同宿主基因型实验表明,35S:glgC::GBSSI:anti-GBSSI植物体内表达可同时提高AGPase活力,增加贮藏器官淀粉积累,提高淀粉粘度,且不需在其末端添加转运肽编码序列,克服只有反义GBSSI表达不能增加淀粉积累的不足。Repeated experiments with different host genotypes in vivo and in vitro showed that the expression of 35S:glgC::GBSSI:anti-GBSSI in plants can simultaneously increase the activity of AGPase, increase the accumulation of starch in storage organs, and increase the viscosity of starch without adding translocation at its end Peptide coding sequence, overcoming the deficiency that only antisense GBSSI expression cannot increase starch accumulation.
附图说明Description of drawings
图1是CBI重组基因示意图。Figure 1 is a schematic diagram of the CBI recombinant gene.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明的技术方案作进一步详细地说明。The technical solution of the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
目的glgC获得Purpose glgC get
按照Lee等的方法提取大肠杆菌JM109基因组DNA,以其为模板,按照《分子克隆实验指南》p672-683的方法,以glgC-F:5’-gagttagccatggttagtttagag-3’,glgC-R:5’-aaagatctctgaacatacatg-3’.为引物,在95℃预变性4min、95℃变性30sec、53℃退火45sec、72℃延伸1min、反应30个循环、最后72℃延伸10min、4℃保存的反应条件下进行PCR,PCR产物纯化回收(Promega;Wizard SV Gel and PCR Clean-Up System)后,用回收产物和pGEM-T载体(promega,pGEM-T Vector Systems,A1360)建立连接反应,按照pGEM-T载体说明书的方法,将连接产物转化DH5α(Takara公司)感受态细胞,将转化后的感受态细胞均匀涂布于含氨苄青霉素的LB固体琼脂平板上,37培养12小时后挑选白色菌落,接种于含有氨苄青霉素的液体LB培养基中,振荡培养12小时。按照《分子克隆实验指南》p19-23的方法,提取菌液质粒DNA,充分洗涤后,用NcoI和BglII双酶切鉴定,鉴定正确的单克隆所含质粒为pC-glgC,扩大培养含pC-glgC重组菌,并对pC-glgC中目的glgC测序,测序结果在GenBank注册,其注册号为AY943834。According to the method of Lee et al., the genomic DNA of Escherichia coli JM109 was extracted, and it was used as a template, and glgC-F: 5'-gagttagccatggttaggtttagag-3', glgC-R: 5'- aaagatctctgaacatacatg-3'. is the primer, and PCR is performed under the reaction conditions of pre-denaturation at 95°C for 4min, denaturation at 95°C for 30sec, annealing at 53°C for 45sec, extension at 72°C for 1min, reaction for 30 cycles, final extension at 72°C for 10min, and storage at 4°C. After the PCR product was purified and recovered (Promega; Wizard SV Gel and PCR Clean-Up System), a ligation reaction was established with the recovered product and the pGEM-T vector (promega, pGEM-T Vector Systems, A1360), according to the instructions of the pGEM-T vector Methods: Transform the ligation product into DH5α (Takara company) competent cells, spread the transformed competent cells evenly on the LB solid agar plate containing ampicillin, select white colonies after culturing for 12 hours at 37°C, and inoculate them on the plate containing ampicillin In the liquid LB medium, shake culture for 12 hours. According to the method of "Molecular Cloning Experiment Guide" p19-23, extract the plasmid DNA of the bacterial liquid, wash it thoroughly, and identify it with NcoI and BglII double enzyme digestion. The plasmid contained in the correct single clone is identified as pC-glgC. glgC recombinant bacteria, and the target glgC in pC-glgC was sequenced, and the sequencing results were registered in GenBank with the registration number AY943834.
GBSSI启动子的获得Acquisition of the GBSSI promoter
按照《分子克隆实验指南》p672-683的方法,CTAB方法提取马铃薯基因组DNA,并其为模板,以PH-F:5’-tccttccttttagcagtgtatcaat-3’,PH-R:5’-gaacttgatctttgtgggt-3’为引物,设置95℃预变性4min、95℃变性30sec、53℃退火45sec、72℃延伸1min、反应30个循环、最后72℃延伸10min、4℃保存的反应条件进行PCR,PCR产物纯化回收(Promega;WizardSV Gel and PCR Clean-Up System)后,用回收产物和pGEM-T载体(promega,pGEM-TVectorSystems,A1360)建立连接反应,按照pGEM-T载体说明书的方法,将连接产物转化DH5α(Takara公司)感受态细胞,将转化后的感受态细胞均匀涂布于含氨苄青霉素的LB固体琼脂平板上,37培养12小时后挑选白色菌落,接种于含有氨苄青霉素的液体LB培养基中,振荡培养12小时。按照《分子克隆实验指南》p19-23的方法,提取菌液质粒DNA,充分洗涤后,《分子克隆实验指南》p237-259的方法,用NcoI和BglII(Takara公司)双没切鉴定,鉴定正确的单克隆所含质粒为pG-GBSSIP,扩大培养含pG-GBSSIP重组菌,并对pG-GBSSIP中目的GBSSIP测序,正确GBSSIP序列在GenBank注册基因AY948720。According to the method of "Molecular Cloning Experiment Guide" p672-683, CTAB method extracted potato genomic DNA, and used it as a template, using PH-F: 5'-tccttccttttagcagtgtatcaat-3', PH-R: 5'-gaacttgatctttgtgggt-3' as For primers, set the reaction conditions of pre-denaturation at 95°C for 4min, denaturation at 95°C for 30sec, annealing at 53°C for 45sec, extension at 72°C for 1min, reaction for 30 cycles, final extension at 72°C for 10min, and storage at 4°C for PCR. The PCR products were purified and recovered (Promega ; WizardSV Gel and PCR Clean-Up System), use the recovered product and the pGEM-T carrier (promega, pGEM-TVectorSystems, A1360) to establish a ligation reaction, and according to the method of the pGEM-T carrier manual, the ligation product is transformed into DH5α (Takara company ) Competent cells, spread the transformed competent cells evenly on the LB solid agar plate containing ampicillin, select white colonies after culturing for 12 hours at 37°C, inoculate them in the liquid LB medium containing ampicillin, and culture with shaking for 12 hours Hour. According to the method of "Molecular Cloning Experiment Guide" p19-23, extract the plasmid DNA of the bacterial liquid, after fully washing, use the method of "Molecular Cloning Experiment Guide" p237-259, use NcoI and BglII (Takara company) double cut identification, the identification is correct The plasmid contained in the single clone was pG-GBSSIP, and the recombinant bacteria containing pG-GBSSIP were expanded and cultivated, and the target GBSSIP in pG-GBSSIP was sequenced. The correct GBSSIP sequence was registered in GenBank as gene AY948720.
GBSSI cDNA的获得Acquisition of GBSSI cDNA
按照RNA提取试剂盒(Amresco公司,K312-50RXN)说明书,提取马铃薯叶片总RNA,以其为模板,以HE-F:5’-gccaaacttcactagacacc-3’、HE-R:5’-ttgatgggtatgagaagcc-3’为引物,用cDNA Synthesis试剂盒(Takara公司,6130)说明书完成RT-PCR,PCR产物纯化回收(Promega;Wizard SV Gel and PCR Clean-Up System)后,用回收产物和pGEM-T载体(promega,pGEM-T Vector Systems,A1360)建立连接反应,按照pGEM-T载体说明书的方法,将连接产物转化DH5α(Takara公司)感受态细胞,将转化后的感受态细胞均匀涂布于含氨苄青霉素的LB固体琼脂平板上,37培养12小时后挑选白色菌落,接种于含有氨苄青霉素的液体LB培养基中,振荡培养12小时。按照《分子克隆实验指南》p19-23的方法,提取菌液质粒DNA,充分洗涤后,用NcoI和EcoR I双酶切鉴定,鉴定正确的单克隆所含质粒为pG-GBSSI,扩大培养含pG-GBSSI重组菌,并对pG-GBSSI中目的GBSSI测序,测序结果在GenBank注册,其注册号为DQ387451。According to the instructions of the RNA extraction kit (Amresco, K312-50RXN), the total RNA of potato leaves was extracted, using it as a template, HE-F: 5'-gccaaacttcactagacacc-3', HE-R: 5'-ttgatgggtatgagaagcc-3' As primers, RT-PCR was completed with cDNA Synthesis kit (Takara Company, 6130) instructions, and after the PCR product was purified and recovered (Promega; Wizard SV Gel and PCR Clean-Up System), the recovered product and pGEM-T vector (promega, pGEM-T Vector Systems, A1360) to establish the ligation reaction, according to the method of the pGEM-T vector manual, the ligation product was transformed into DH5α (Takara company) competent cells, and the transformed competent cells were evenly spread on LB containing ampicillin On the solid agar plate, after 12 hours of culture at 37, white colonies were selected, inoculated in liquid LB medium containing ampicillin, and cultured with shaking for 12 hours. According to the method of p19-23 in the "Guidelines for Molecular Cloning Experiments", extract the plasmid DNA from the bacterial liquid, wash it thoroughly, and use NcoI and EcoR I to double digest and identify it. The plasmid contained in the correct single clone is identified as pG-GBSSI, and the expanded culture contains pG -GBSSI recombinant bacteria, and the target GBSSI in pG-GBSSI was sequenced, and the sequencing result was registered in GenBank, and its registration number was DQ387451.
重组35S:glgC获得Recombinant 35S:glgC obtained
LB液体培养基分别培养含有pG-glgC和pC-0380的大肠杆菌,分别提取pG-glgC和pC-0380质粒DNA,按照《分子克隆实验指南》p237-259的方法,分别建立酶切反应,用NcoI和BglII酶切pG-glgC,纯化回收glgC DNA片段;用NcoI和BglII酶切pC-0380,纯化回收pC-0380载体框架DNA片段;按照T4DNA连接酶(Takara公司D2011A)说明书的方法,建立连接反应,将glgC连接于35S启动子下游;按照《分子克隆实验指南》p976-982的方法,将连接产物转化大肠杆菌DH5α(Takara公司)感受态细胞。将转化后的感受态细胞均匀涂布于含氨苄青霉素的LB固体琼脂平板上,37培养12小时后挑选菌落,接种于含有氨苄青霉素的液体LB培养基中,振荡培养12小时。按照《分子克隆实验指南》p19-23的方法,提取菌液质粒DNA,充分洗涤后,《分子克隆实验指南》p237-259的方法,用NcoI和BglII(Takara公司)双没切鉴定,鉴定正确的单克隆所含质粒为pC-glgC,扩大培养含pC-GP重组菌,并对pC-glgC中目的glgC测序,获得序列正确pC-glgC,其中包含重组基因35S:glgC。Escherichia coli containing pG-glgC and pC-0380 were cultured in LB liquid medium, and pG-glgC and pC-0380 plasmid DNA were extracted respectively, and enzyme digestion reactions were respectively established according to the method p237-259 of the "Molecular Cloning Experiment Guide", and used Digest pG-glgC with NcoI and BglII, purify and recover the glgC DNA fragment; digest pC-0380 with NcoI and BglII, purify and recover the pC-0380 vector frame DNA fragment; establish the connection according to the instructions of T4 DNA ligase (Takara D2011A) For the reaction, glgC was connected downstream of the 35S promoter; according to the method of "Molecular Cloning Experiment Guide" p976-982, the connection product was transformed into Escherichia coli DH5α (Takara Company) competent cells. Spread the transformed competent cells evenly on the LB solid agar plate containing ampicillin, select colonies after culturing for 12 hours at 37°C, inoculate in the liquid LB medium containing ampicillin, and culture with shaking for 12 hours. According to the method of "Molecular Cloning Experiment Guide" p19-23, extract the plasmid DNA of the bacterial liquid, after fully washing, use the method of "Molecular Cloning Experiment Guide" p237-259, use NcoI and BglII (Takara company) double cut identification, the identification is correct The plasmid contained in the single clone was pC-glgC, and the recombinant bacteria containing pC-GP were expanded and cultured, and the target glgC in pC-glgC was sequenced to obtain the correct sequence pC-glgC, which contained the recombinant gene 35S:glgC.
GBSSIP:anti-GBSSI cDNA构建GBSSIP: anti-GBSSI cDNA construction
将pG-GBSSIP和表达载体pET-28(c)分别用NcoI和SacI双酶切,目的片段和载体分别回收、纯化后连接,得到重组质粒pE-Gp,经PstI和XbaI双酶切得到约1100bp片段,HindIII单酶切得到1000bp的片段。证明GBSSI启动子已经连接到pET-28(c)的多克隆位点MCS上,重组质粒pE-Gp。Digest pG-GBSSIP and the expression vector pET-28(c) with NcoI and SacI, respectively. The target fragment and the vector were recovered, purified and ligated to obtain the recombinant plasmid pE-Gp, which was digested with PstI and XbaI to obtain about 1100bp Fragment, HindIII single enzyme digestion to obtain a 1000bp fragment. Prove that the GBSSI promoter has been connected to the multiple cloning site MCS of pET-28(c), and the recombinant plasmid pE-Gp.
提取质粒pE-Gp,PstI和XbaI双酶切后回收、纯化小片段,大约为1.1kb。同时用PstI和XbaI双酶切pC-glgC质粒DNA,回收大片段,约13kb。T4连接酶连接16h后转化大肠杆菌JM109感受态细胞中。在涂有IPTG/X-gal/Kan的固体琼脂平板上挑取白色菌落,提取质粒DNA,用PstI和XbaI双酶切得到的小片段大约有1.2kb,与目的片段大小相符。同时用HindIII酶切鉴定,得到三个片段,大片段与载体大小相当,另两条片段大小分别约为1600bp和900bp,与预期结果相符。证实GBSSI启动子连接在pC-glgC载体MCS的PstI和XbaI之间。得到的重组质粒命名为pC-gGp’。Extract the plasmid pE-Gp, recover and purify the small fragment after double digestion with PstI and XbaI, about 1.1kb. At the same time, pC-glgC plasmid DNA was digested with PstI and XbaI to recover a large fragment, about 13kb. T4 ligase was connected for 16 hours and then transformed into Escherichia coli JM109 competent cells. Pick the white colony on the solid agar plate coated with IPTG/X-gal/Kan, extract the plasmid DNA, and use PstI and XbaI to digest the small fragment with about 1.2kb, which is consistent with the size of the target fragment. At the same time, three fragments were identified by digestion with HindIII, the large fragment was equivalent to the size of the vector, and the other two fragments were about 1600bp and 900bp in size, which were in line with the expected results. It was confirmed that the GBSSI promoter was linked between PstI and XbaI of the pC-glgC vector MCS. The resulting recombinant plasmid was named pC-gGp'.
重组基因35S:glgC::GBSSI:anti-GBSSI获得Recombinant gene 35S:glgC::GBSSI:anti-GBSSI obtained
提取pG-GBSSI和pC-gGp’的质粒DNA,分别用ScaI和XbaI双酶切,回收、纯化目的片段和载体,连接并转化大肠杆菌JM109,挑取单菌落,提取质粒,用ScaI和XbaI双酶切得到约1000bp的片段,同时用PstI单酶切可得到约2000bp片段,证实了在该重组质粒中含有GBSSI启动子启动的glgC、GBSSI启动子启动的GBSSI cDNA,获得重组质粒pCB1,其中含有目的基因35S:glgC::GBSSI:anti-GBSSI,详见附图1。Extract the plasmid DNA of pG-GBSSI and pC-gGp', digest with ScaI and XbaI respectively, recover and purify the target fragment and vector, connect and transform Escherichia coli JM109, pick a single colony, extract the plasmid, double digest with ScaI and XbaI A fragment of about 1000bp was obtained by enzyme digestion, and a fragment of about 2000bp was obtained by single digestion with PstI. It was confirmed that the recombinant plasmid contained glgC initiated by the GBSSI promoter and GBSSI cDNA initiated by the GBSSI promoter, and the recombinant plasmid pCB1 was obtained, which contained For the target gene 35S:glgC::GBSSI:anti-GBSSI, see Figure 1 for details.
重组基因功能检测Recombinant gene function detection
按照Visser等的方法,以马铃薯无菌苗直径2-4mm茎段为外植体,用农杆菌介导途径转化目的基因35S:glgC和GBSSIP:glgC于马铃薯体内;PCR阳性转化株系,经过Southern杂交(北京美莱博医学科技有限公司,法地高辛标记试剂盒,地高辛杂交检测试剂盒)获得单拷贝插入株系,RT-PCR和Northern杂交(北京美莱博医学科技有限公司,法地高辛标记试剂盒,地高辛杂交检测试剂盒)鉴定目的基因是否转录,用Yao等的方法测定AGPase活力,用淀粉测试盒(BioAssay公司,EnzyChrom Starch Assay Kit)测定块茎淀粉含量,块茎直链淀粉含量按照Hovenkamp-Hermelink等的方法进行;充分洗净且干燥的淀粉,制成4%(w/v)悬浮液,依据3mm(上海申谊玻璃制品有限公司)毛细管粘度计法测定淀粉粘度。According to the method of Visser et al., the stem section of sterile potato seedlings with a diameter of 2-4mm was used as explants, and the target gene 35S:glgC and GBSSIP:glgC were transformed into potatoes by the Agrobacterium-mediated pathway; PCR-positive transformation lines were subjected to Southern Hybridization (Beijing Milebo Medical Technology Co., Ltd., Fadigoxigenin Labeling Kit, Digoxigenin Hybridization Detection Kit) to obtain a single-copy insertion line, RT-PCR and Northern hybridization (Beijing Milebo Medical Technology Co., Ltd., Digoxigenin Labeling Kit (Digoxigenin Labeling Kit, Digoxigenin Hybridization Detection Kit) to identify whether the target gene is transcribed, the AGPase activity is measured by the method of Yao et al., the starch content of the tuber is measured with the starch test box (BioAssay company, EnzyChrom Starch Assay Kit), the tuber The content of amylose is carried out according to the method of Hovenkamp-Hermelink et al.; the fully washed and dried starch is made into a 4% (w/v) suspension, and the starch is determined according to the 3mm (Shanghai Shenyi Glass Products Co., Ltd.) capillary viscometer method viscosity.
通过PCR等方法,在体外条件下通过点突变实现本发明所用glgC55编码蛋白质中的4个突变,获得glgC55同样的DNA序列;另外,本发明用技术方案中描述的酶切连接获得35S:glgC::GBSSI:anti-GBSSI重组基因,通过与此不同的其它酶切连接,也可获得重组基因35S:glgC和GBSSI:glgC。Through methods such as PCR, 4 mutations in the protein encoded by glgC55 used in the present invention are realized by point mutation under in vitro conditions, and the same DNA sequence of glgC55 is obtained; in addition, the present invention obtains 35S:glgC: The :GBSSI:anti-GBSSI recombinant gene can also obtain the recombinant gene 35S:glgC and GBSSI:glgC by joining with other restriction enzymes.
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。The above is only a preferred specific embodiment of the present invention, and the scope of protection of the present invention is not limited thereto. Any person familiar with the technical field within the technical scope disclosed in the present invention can obviously obtain the simplicity of the technical solution. Changes or equivalent replacements all fall within the protection scope of the present invention.
序列表sequence listing
<110> 宁夏大学<110> Ningxia University
<120> 一种高支链淀粉生物合成重组基因CBI及其应用<120> A high amylopectin biosynthesis recombinant gene CBI and its application
<160> 1<160> 1
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 4067<211> 4067
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
agctctccca ctaggtcgac ctgcaggcgg ccgcgaattc actagtgatt gccaaacttc 60agctctccca ctaggtcgac ctgcaggcgg ccgcgaattc actagtgatt gccaaacttc 60
actagacacc aaatcaacct tgtcacagat aggactcagg aaccatactc tgactcacaa 120actagacacc aaatcaacct tgtcacagat aggactcagg aaccatactc tgactcacaa 120
tggtttaagg gctgttaaca agcttgatgg gctccaatca agaactaata ctaaggtaac 180tggtttaagg gctgttaaca agcttgatgg gctccaatca agaactaata ctaaggtaac 180
acccaagatg gcatccagaa ctgagaccaa gagacctgga tgctcagcta ccattgtttg 240acccaagatg gcatccagaa ctgagaccaa gagacctgga tgctcagcta ccattgtttg 240
tggaaaggga atgaacttga tctttgtggg tactgaggtt ggtccttgga gcaaaactgg 300tggaaaggga atgaacttga tctttgtggg tactgaggtt ggtccttgga gcaaaactgg 300
tggactaggt gatgttcttg gtggactacc accagccctt gcagcccgcg gacatcgggt 360tggactaggt gatgttcttg gtggactacc accagccctt gcagcccgcg gacatcgggt 360
aatgacaata tccccccgtt atgaccaata caaagatact tgggatacta gcgttgcggt 420aatgacaata tccccccgtt atgaccaata caaagatact tgggatacta gcgttgcggt 420
tgaggtcaaa gttggagaca gcattgaaat tgttcgtttc tttcactgct ataaacgtgg 480tgaggtcaaa gttggagaca gcattgaaat tgttcgtttc tttcactgct ataaacgtgg 480
ggttgatcgt gtttttgttg accacccaat gttcttggag aaagtttggg gtaaaactgg 540ggttgatcgt gtttttgttg accacccaat gttcttggag aaagtttggg gtaaaactgg 540
ttcaaaaatc tatggcccca aagctggact agattatctg gacaatgaac ttaggttcag 600ttcaaaaatc tatggcccca aagctggact agattatctg gacaatgaac ttaggttcag 600
cttgttgtgt caagcagccc tagaggcacc taaagttttg aatttgaaca gtagcaacta 660cttgttgtgt caagcagccc tagaggcacc taaagttttg aatttgaaca gtagcaacta 660
cttctcagga ccatatggag aggatgttct ctttcattgc caatgattgg cacacagctc 720cttctcagga ccatatggag aggatgttct ctttcattgc caatgattgg cacacagctc 720
tcattccttg ctacttgaag tcaatgtacc agtccagagg aatctatttg aatgccaagg 780tcattccttg ctacttgaag tcaatgtacc agtccagagg aatctatttg aatgccaagg 780
tcgctttctg catccataac attgcctacc aaggccgatt ttctttctct gacttccctc 840tcgctttctg catccataac attgcctacc aaggccgatt ttctttctct gacttccctc 840
ttctcaatct tcctgatgaa ttcaggggtt cttttgattt cattgatgga tatgagaagc 900ttctcaatct tcctgatgaa ttcaggggtt cttttgattt cattgatgga tatgagaagc 900
caatcgaatt cccgcggcta ccatggtata tctccttctt aaagttaaac aaaattattt 960caatcgaatt cccgcggcta ccatggtata tctccttctt aaagttaaac aaaattattt 960
ctagaaataa ttttgtttaa ctttaagaag gagatatacc atggcggccg cgggaattcg 1020ctagaaataa ttttgtttaa ctttaagaag gagatatacc atggcggccg cgggaattcg 1020
attacccaca aagatcaagt tcactccctt tccacaaaca atggtagctg agcatccagg 1080attacccaca aagatcaagt tcactccctt tccacaaaca atggtagctg agcatccagg 1080
tctcttggtc tcagttctgg atgccatctt gggtgttacc ttagtattag ttcttgattg 1140tctcttggtc tcagttctgg atgccatctt gggtgttacc ttagtattag ttcttgattg 1140
gagcccatca agcttgttaa cagcccttaa accattgtga gtcagagtat ggttcctgag 1200gagcccatca agcttgttaa cagcccttaa accattgtga gtcagagtat ggttcctgag 1200
tcctatctgt gacaaggttg atttggtgtc tagtgaagtt tggcttcttg acacaaagtg 1260tcctatctgt gacaaggttg attggtgtc tagtgaagtt tggcttcttg acacaaagtg 1260
gtgtgaagct gtgatgcttg ccatgtgatg tgtcgtctac aaaaagggga atctaccaga 1320gtgtgaagct gtgatgcttg ccatgtgatg tgtcgtctac aaaaagggga atctaccaga 1320
gaataagcta cagatgaaca agaacaaaac agaaattgat ttctgagaag aagaagaaga 1380gaataagcta cagatgaaca agaacaaaac agaaattgat ttctgagaag aagaagaaga 1380
agaggaagca ttcacattta tcaccgatta cacagtaggc aagagaatca aaatcagaat 1440agaggaagca ttcacattta tcaccgatta cacagtaggc aagagaatca aaatcagaat 1440
agatgatatg agatatgaaa caacgtttat acaccataac acgattcata atagaatgta 1500agatgatatg agatatgaaa caacgtttat acaccataac acgattcata atagaatgta 1500
gggaaacatg catgagatca gaaataatta gaggagatga gtaaaagtta ccacttgttg 1560gggaaacatg catgagatca gaaataatta gaggagatga gtaaaagtta ccacttgttg 1560
agctgtgtga gtgagtgagt gagtgagtga gtgtgagaat gaggaggtgc ctgccttatt 1620agctgtgtga gtgagtgagt gagtgagtga gtgtgagaat gaggaggtgc ctgccttatt 1620
agtagcaggt ttcagtgaca cgtgtcaaga gaataacggg tggctatccc ttagcggaag 1680agtagcaggt ttcagtgaca cgtgtcaaga gaataacggg tggctatccc ttagcggaag 1680
gcaactgtgg acactgtatt atagggaaat gctcatcgac agtattgtgg gccctctctt 1740gcaactgtgg acactgtatt atagggaaat gctcatcgac agtattgtgg gccctctctt 1740
tgttgattca cggctggact tcaacttggg ccttgcaatg ggcccctccg gttctgtctc 1800tgttgattca cggctggact tcaacttggg ccttgcaatg ggcccctccg gttctgtctc 1800
ctagtatcta aaaagctaaa ccaactccct cctaccgcta ccacttgaca ttcctatgtc 1860ctagtatcta aaaagctaaa ccaactccct cctaccgcta ccacttgaca ttcctatgtc 1860
tcgtgttaat taaattatta ttatagtaat aaaaaataat atctaatgta ctggtactgg 1920tcgtgttaat taaattatta ttatagtaat aaaaaataat atctaatgta ctggtactgg 1920
tccctccact agaattttgt tgcatttttt agtattaaga ttgagatgca tggttctatt 1980tccctccact agaattttgt tgcatttttt agtattaaga ttgagatgca tggttctatt 1980
acaaaattga tacctgcagg catgcaagct tggcactggc cgtcgtttta caacgtcgtg 2040acaaaattga tacctgcagg catgcaagct tggcactggc cgtcgtttta caacgtcgtg 2040
actgggaaaa ccctggcgtt acccaactta atcgccttgc agcacatccc cctttcgcca 2100actgggaaaa ccctggcgtt acccaactta atcgccttgc agcacatccc cctttcgcca 2100
gctggcgtaa tagcgaagag gcccgcaccg atcgcccttc ccaacagttg cgcagcctga 2160gctggcgtaa tagcgaagag gcccgcaccg atcgcccttc ccaacagttg cgcagcctga 2160
atggcgaatg ctagagcagc ttgagcttgg atcagattgt cgtttcccgc cttcagttta 2220atggcgaatg ctagagcagc ttgagcttgg atcagattgt cgtttcccgc cttcagttta 2220
gcttcatgga gtcaaagatt caaatagagg acctaacaga actcgccgta aagactggcg 2280gcttcatgga gtcaaagatt caaatagagg acctaacaga actcgccgta aagactggcg 2280
aacagttcat acagagtctc ttacgactca atgacaagaa gaaaatcttc gtcaacatgg 2340aacagttcat acagagtctc ttacgactca atgacaagaa gaaaatcttc gtcaacatgg 2340
tggagcacga cacacttgtc tactccaaaa atatcaaaga tacagtctca gaagaccaaa 2400tggagcacga cacacttgtc tactccaaaa atatcaaaga tacagtctca gaagaccaaa 2400
gggcaattga gacttttcaa caaagggtaa tatccggaaa cctcctcgga ttccattgcc 2460gggcaattga gacttttcaa caaagggtaa tatccggaaa cctcctcgga ttccattgcc 2460
cagctatctg tcactttatt gtgaagatag tggaaaagga aggtggctcc tacaaatgcc 2520cagctatctg tcactttat gtgaagatag tggaaaagga aggtggctcc tacaaatgcc 2520
atcattgcga taaaggaaag gccatcgttg aagatgcctc tgccgacagt ggtcccaaag 2580atcattgcga taaaggaaag gccatcgttg aagatgcctc tgccgacagt ggtcccaaag 2580
atggaccccc acccacgagg agcatcgtgg aaaaagaaga cgttccaacc acgtcttcaa 2640atggaccccc accacgagg agcatcgtgg aaaaagaaga cgttccaacc acgtcttcaa 2640
agcaagtgga ttgatgtgat atctccactg acgtaaggga tgacgcacaa tcccactatc 2700agcaagtgga ttgatgtgat atctccactg acgtaaggga tgacgcacaa tcccactatc 2700
cttcgcaaga cccttcctct atncataagg aagttcattt catttggaga gaacacgggg 2760cttcgcaaga cccttcctct atncataagg aagttcattt catttggaga gaacacgggg 2760
gactcttgac catggttagt ttagagaaga acgatcactt aatgttggcg cgccagctgc 2820gactcttgac catggttagt ttagagaaga acgatcactt aatgttggcg cgccagctgc 2820
cattgaaatc tgttgccctg atactggcgg gaggacgtgg tacccgcctg aaggatttaa 2880cattgaaatc tgttgccctg atactggcgg gaggacgtgg tacccgcctg aaggatttaa 2880
ccaatgagcg agcaaaaccg gccgtacact tcggcggtaa gttccgcatt atcgactttg 2940ccaatgagcg agcaaaaccg gccgtacact tcggcggtaa gttccgcatt atcgactttg 2940
cgctgtctaa ctgcatcaac tccgggatcc gtcgtatggg cgcgatcacc cagtaccagt 3000cgctgtctaa ctgcatcaac tccgggatcc gtcgtatggg cgcgatcacc cagtaccagt 3000
cccacactct ggtgcagcac attcagcgcg gctggtcatt cttcaatgaa gaaatgaacg 3060cccacactct ggtgcagcac attcagcgcg gctggtcatt cttcaatgaa gaaatgaacg 3060
agtttgtcga tctgctgcca gcacagcaga gaatgaaagg ggaaaactgg tatcgcggca 3120agtttgtcga tctgctgcca gcacagcaga gaatgaaagg ggaaaactgg tatcgcggca 3120
ccgcagatgc ggtcacccaa aacctcgaca ttatccgccg ttataaagcg gaatacgtgg 3180ccgcagatgc ggtcacccaa aacctcgaca ttatccgccg ttataaagcg gaatacgtgg 3180
tgatcctggc gggcgaccat atctacaagc aagactactc gcgtatgctt atcgatcacg 3240tgatcctggc gggcgaccat atctacaagc aagactactc gcgtatgctt atcgatcacg 3240
tcgaaaaagg cgcacgttgc accgttgctt gtatgccagt accgattgaa gaagcctccg 3300tcgaaaaagg cgcacgttgc accgttgctt gtatgccagt accgattgaa gaagcctccg 3300
catttggcgt tatggcggtt gatgagaacg ataaaattat cgaattcgtt gaaaaacctg 3360catttggcgt tatggcggtt gatgagaacg ataaaattat cgaattcgtt gaaaaacctg 3360
ctaacccgcc gtcaatgccg aacgatccga gcaaatctct ggcgagtatg ggtatctacg 3420ctaacccgcc gtcaatgccg aacgatccga gcaaatctct ggcgagtatg ggtatctacg 3420
tctttgacgc cgactatctg tatgaactgc tggaagaaga cgatcgcgat gagaactcca 3480tctttgacgc cgactatctg tatgaactgc tggaagaaga cgatcgcgat gagaactcca 3480
gccacgactt tggcaaagat ttgattccca aggtcaccga agccggtctg gcctatgcgc 3540gccacgactt tggcaaagat ttgattccca aggtcaccga agccggtctg gcctatgcgc 3540
acccgttccc gctctcttgc gtacaatccg acccggatgc cgagccgtac tggcgcgatg 3600acccgttccc gctctcttgc gtacaatccg acccggatgc cgagccgtac tggcgcgatg 3600
tgggtacgct ggaagcttac tggaaagcga acctcgatct ggcctctgtg gtgccggaac 3660tgggtacgct ggaagcttac tggaaagcga acctcgatct ggcctctgtg gtgccggaac 3660
tggatatgta cgatcgcaat tggccaattc gcacctacaa tgaatcatta ccgccagcga 3720tggatatgta cgatcgcaat tggccaattc gcacctacaa tgaatcatta ccgccagcga 3720
aattcgtgca ggatcgctcc ggtagccacg ggatgaccct taactcactg gtttccggcg 3780aattcgtgca ggatcgctcc ggtagccacg ggatgaccct taactcactg gtttccggcg 3780
gttgtgtgat ctccggttcg gtggtggtgc agtccgttct gttctcgcgc gttcgcgtga 3840gttgtgtgat ctccggttcg gtggtggtgc agtccgttct gttctcgcgc gttcgcgtga 3840
attcattctg caacattgat tccgccgtat tgttaccgga agtatgggta ggtcgctcgt 3900attcattctg caacattgat tccgccgtat tgttaccgga agtatgggta ggtcgctcgt 3900
gccgtctgcg ccgctgcgtc atcgatcgtg cttgtgttat tccggaaggc atggtgattg 3960gccgtctgcg ccgctgcgtc atcgatcgtg cttgtgttat tccggaaggc atggtgattg 3960
gtgaaaacgc agaggaagat gcacgtcgtt tctatcgttc agaagaaggc atcgtgctgg 4020gtgaaaacgc agaggaagat gcacgtcgtt tctatcgttc agaagaaggc atcgtgctgg 4020
taacgcgcga aatgctacgg aagttagggc ataaacagga gcgataa 4067taacgcgcga aatgctacgg aagttaggc ataaacagga gcgataa 4067
Claims (2)
- A kind of 1. high amylopectin starch biosynthesis recombination CBI, it is characterised in that its nucleotide sequence such as SEQ ID NO:1 It is shown.
- 2. applications of the high amylopectin starch biosynthesis recombination CBI during Starch biosynthase described in claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711009605.7A CN107916267A (en) | 2017-10-25 | 2017-10-25 | A kind of high amylopectin starch biosynthesis recombination CBI and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711009605.7A CN107916267A (en) | 2017-10-25 | 2017-10-25 | A kind of high amylopectin starch biosynthesis recombination CBI and its application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107916267A true CN107916267A (en) | 2018-04-17 |
Family
ID=61894911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711009605.7A Pending CN107916267A (en) | 2017-10-25 | 2017-10-25 | A kind of high amylopectin starch biosynthesis recombination CBI and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107916267A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108949612A (en) * | 2018-06-11 | 2018-12-07 | 中国科学院微生物研究所 | One plant of escherichia coli and its application |
CN116769002A (en) * | 2023-08-11 | 2023-09-19 | 云南师范大学 | Transcription factor StERF75 and its use in regulating potato amylopectin synthesis |
CN118325860A (en) * | 2024-05-21 | 2024-07-12 | 内蒙古工业大学 | A potato starch synthase |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5349123A (en) * | 1990-12-21 | 1994-09-20 | Calgene, Inc. | Glycogen biosynthetic enzymes in plants |
EP0791066A1 (en) * | 1994-11-10 | 1997-08-27 | Hoechst Schering AgrEvo GmbH | Dna molecules that code for enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing said molecules |
-
2017
- 2017-10-25 CN CN201711009605.7A patent/CN107916267A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5349123A (en) * | 1990-12-21 | 1994-09-20 | Calgene, Inc. | Glycogen biosynthetic enzymes in plants |
EP0791066A1 (en) * | 1994-11-10 | 1997-08-27 | Hoechst Schering AgrEvo GmbH | Dna molecules that code for enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing said molecules |
Non-Patent Citations (4)
Title |
---|
YAO,X等: "Solanum tuberosum granule-bound starch synthase mRNA,partial cds,Accession ID:DQ387451.1", 《GENBANK数据库》 * |
崔雪琼: "重组glgC基因增加块茎淀粉生物合成研究", 《万方学位论文数据库》 * |
田波等: "《植物基因工程》", 31 January 1996, 山东科学技术出版社 * |
石晶等: "不同启动子驱动glgC在马铃薯体内的表达研究", 《西北植物学报》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108949612A (en) * | 2018-06-11 | 2018-12-07 | 中国科学院微生物研究所 | One plant of escherichia coli and its application |
CN116769002A (en) * | 2023-08-11 | 2023-09-19 | 云南师范大学 | Transcription factor StERF75 and its use in regulating potato amylopectin synthesis |
CN116769002B (en) * | 2023-08-11 | 2023-11-03 | 云南师范大学 | Transcription factor StERF75 and application thereof in regulating synthesis of potato amylopectin |
CN118325860A (en) * | 2024-05-21 | 2024-07-12 | 内蒙古工业大学 | A potato starch synthase |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pfister et al. | Formation of starch in plant cells | |
Liu et al. | Identification and characterization of a novel Waxy allele from a Yunnan rice landrace | |
EP0719338B1 (en) | Combination of dna sequences which enable the formation of modified starch in plant cells and plants, processes for the production of these plants | |
US7153674B2 (en) | Nucleic acid molecules encoding enzymes having fructosyl polymerase activity | |
CA2212560C (en) | Expression of sucrose phosphorylase in plants | |
AU2006233795B2 (en) | High-phosphate starch | |
AU699552B2 (en) | DNA sequences coding for enzymes capable of facilitating the synthesis of linear alpha-1,4 glucans in plants, fungi and microorganisms | |
US5349123A (en) | Glycogen biosynthetic enzymes in plants | |
US20040107461A1 (en) | Glucan chain length domains | |
KR20010043457A (en) | Nucleic acid molecules which code for enzymes derived from wheat and which are involved in the synthesis of starch | |
PT1786908E (en) | Plants with increased plastidic activity of r3 starch-phosphorylating enzyme | |
KR20010043458A (en) | Nucleic acid molecules which code for enzymes derived from wheat and which are involved in the synthesis of starch | |
EA025360B1 (en) | Plants with modified starch metabolism | |
CN105349559A (en) | Application of corn ZmWx gene in increase of corn yield and improvement of grain characteristics | |
Wang et al. | Isolation and sequencing of tomato fruit sucrose synthase cDNA | |
CN107916267A (en) | A kind of high amylopectin starch biosynthesis recombination CBI and its application | |
CN1875105B (en) | Wheat and starch having altered branching enzyme activity and starch products obtained therefrom | |
CA2218361A1 (en) | Soluble solids modification using sucrose phosphate synthase encoding sequences | |
Park et al. | Characterization and expression analysis of the starch synthase gene family in grain amaranth (Amaranthus cruentus L.) | |
Yan et al. | The gene encoding starch synthase IIc exists in maize and wheat | |
Wang et al. | The maize plastidic thioredoxin F-type gene ZmTrxF increases starch accumulation in transgenic Arabidopsis | |
US20160312237A1 (en) | Transgenic Plant | |
Wang et al. | Constitutive expression of StAATP, a potato plastidic ATP/ADP transporter gene, increases starch content in transgenic Arabidopsis | |
CN107699582A (en) | A kind of starch quality improvement recombination GBSSIP:GlgC and its application | |
CN105061570A (en) | Plant starch synthesized related protein IbSSI, coded gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180417 |
|
RJ01 | Rejection of invention patent application after publication |