CN107911195B - 一种基于cva的咬尾卷积码信道译码方法 - Google Patents
一种基于cva的咬尾卷积码信道译码方法 Download PDFInfo
- Publication number
- CN107911195B CN107911195B CN201710979858.0A CN201710979858A CN107911195B CN 107911195 B CN107911195 B CN 107911195B CN 201710979858 A CN201710979858 A CN 201710979858A CN 107911195 B CN107911195 B CN 107911195B
- Authority
- CN
- China
- Prior art keywords
- decoding
- state
- maximum
- metric value
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000008569 process Effects 0.000 claims abstract description 10
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000013507 mapping Methods 0.000 claims description 3
- 238000010295 mobile communication Methods 0.000 abstract description 4
- 238000004891 communication Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0059—Convolutional codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/23—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using convolutional codes, e.g. unit memory codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/39—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
- H03M13/41—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
- H03M13/413—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors tail biting Viterbi decoding
Landscapes
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Error Detection And Correction (AREA)
Abstract
本发明请求保护一种基于CVA的咬尾卷积码信道译码方法,涉及到移动通信技术领域。为降低译码复杂度,提高译码效率,本发明提出了一种基于循环维特比算法(Circular Viterbi Algorithm,CVA)的译码算法,根据接收到信息序列的似然比信息来确定出可靠性最高的译码起始位置,从该起始位置开始进行修正的维特比译码,通过加比选过程,删除不可能的状态位置,经过几次迭代搜索后,幸存路径会收敛到较少的幸存状态,选择最大度量值的状态作为最终译码的起始位置,根据其相对应的幸存路径估计出译码结果。该算法具有更快的收敛速度,译码效率得到了进一步提高,降低了译码时延。
Description
技术领域
本发明属于移动通信的信道编译码技术领域,特别涉及到LTE中PBCH解码的咬尾卷积码译码方法。
背景技术
随着通信技术的发展,数字通信逐步取代模拟通信成为通信技术的主流。然而,数字信息在信道中传输时,会受到噪声的干扰,误码的产生总是不可避免的。为了在已知信噪比的情况下达到一定的误码率指标,在合理设计基带信号,选择调制、解调方式,并采用频域均衡或时域均衡措施的基础上,还应该采用差错控制编码等信道编码技术,使误码率进一步降低。卷积码和分组码是差错控制编码的两种主要形式,在编码器复杂度相同的情况下,卷积码的性能优于分组码,因此卷积码被应用在许多无线通信的标准中。
自卷积码被发明以来,它一直作为一种高效的信道编码技术应用在通信系统中。LTE系统作为3GPP标准化组织提出的无线空口技术演进,目前正在全球范围内得到大力的发展和部署,该系统需要实现更高的带宽、更大的容量、更高的数据传输速率、更低的传输时延、更低的运营成本、同时为满足用户对于广播及多播业务等实时业务的高速率需求,LTE系统在信道编码过程中根据不同传输信道采用了Turbo编码和咬尾卷积码编码,其中咬尾卷积编码主要用于广播信道PBCH、上下行的控制信道信息DCI、UCI编码过程,并且对于不同类型的传输信道和控制信道使用的编码方案和编码速率也有所不同。咬尾卷积码编码过程首先会用到咬尾技术,即保证格形起始和结尾在同一个状态,这就需要将被编码的数据块的最后几个比特作为寄存器的初始状态。
采用咬尾方式编码的卷积码不仅消除了用已知比特初始化编码器所导致的误码率损失,同时咬尾结构可以对所有的信息比特提供相同的保护能力。正是因为咬尾卷积码的这些优点,它被广泛应用在各种通信系统中,作为控制信令的编码方式。对于较短的信息序列,咬尾编码对码率的保护是很可观的,比如LTE中广播信道,在加了循环冗余检验比特之后共有40比特,这40比特的信息序列如果不用咬尾编码技术,码率损失将达到13%。目前采用咬尾卷积码作为控制信道编码方式通信标准的系统有:EDGE、WIMAX和LTE等。
咬尾卷积码虽然有很多优点,但是对于译码器来说,由于不知道译码的起始状态和终止状态,基于维特比算法的最优译码方案实现过于复杂,而基于循环维特比译码方法在达到最大迭代次数前,可能已检测出最优咬尾路径,多余的迭代造成了译码时延的加长和资源的浪费。目前还没有实用的基于循环维特比算法的最优译码方案,基于以上问题,本发明设计出了一种基于CVA的咬尾卷积码信道译码方法,适合工程实际应用。
发明内容
本发明旨在解决以上现有技术的问题。提出了一种可以在低复杂度下实现咬尾卷积码最优译码的基于CVA的咬尾卷积码信道译码方法。本发明的技术方案如下:
一种基于CVA的咬尾卷积码信道译码方法,其包括以下步骤:
101、输入数据流,根据接收到数据流信息序列的似然比信息,确定出可靠性最高的译码起始位置,从该起始位置开始进行修正的维特比译码;
102、执行第i次迭代译码,到达每个状态有2条路径,分别计算到达每个状态的2条分支之间的分支度量值,选择最优的一个,此过程成为加比选操作。通过加比选过程并更新译码参数,删除不可能的状态,开始下次迭代译码。
103、经过几次迭代搜索后,根据迭代停止准则,选择最大度量值的状态作为最终译码的起始位置,依据最终起始位置和对应的网格路径,估计出译码结果。
式中(l+Q)L=(l+Q)modL,其中Q是待确定的量,在具体应用中将根据不同的码字选择合适的值,当Q为接受序列的长度,此时每个位置的可靠度完全一样,那么译码从头开始。
进一步的,所述步骤101还包括初始化的步骤,i=0, 其中,表示第i次迭代中,状态sj的度量值,j为译码器状态数,j=1,2,3...2v,v是移位寄存器的个数,表示最优路径的度量值,表示执行一次译码后状态sj的度量值的净增量。
维特比Viterbi算法采用接收码元条件概率的乘积的最大值作为估计序列,采用对数似然函数来表示为其中,y表示码字序列经过传输映射的结果,r表示接收端得到的序列,简化上式中的对数函数求和运算,可以定义如下码元度量其中,令
此种情况下,Viterbi算法中的码元度量值就是在编码网格上选择与接收序列r之间汉明距离最小的码字作为译码输出。
本发明的优点及有益效果如下:
本发明设计了一种迭代停止准则,通过统计当前迭代完成时各状态度量值的净增量大于存储的最大度量值的数量num(i),若num(i)<=num(i-1),则停止迭代;否则继续迭代直到达到最大迭代次数。这样当译码提前完成时,减小了译码延时,提高了译码效率。
附图说明
图1是本发明的咬尾卷积码译码流程图;
图2生成多项式为(7,5)的卷积码编译码格形图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、详细地描述。所描述的实施例仅仅是本发明的一部分实施例。
本发明解决上述技术问题的技术方案是:
本发明所述的一种基于CVA的咬尾卷积码信道译码方法适用于现有移动通信系统(如EDGE、LTE、WIMAX),也适用于下一代移动通信系统中咬尾卷积码译码。根据接收到的信息序列,通过迭代对不可能的起始状态逐一排除,最终寻找到最优咬尾路径。本发明所述译码方法通过对循环陷阱的有效处理,加快了译码器的收敛速度,同时算法简单、易于实现,有重要应用价值。
一种基于CVA的咬尾卷积码信道译码方法,其特征在于,包括以下步骤:
式中(l+Q)L=(l+Q)modL,其中Q是待确定的量,在具体应用中将根据不同的码字选择合适的值。当Q值越小时,可靠度的作用越明显;由于接受序列服从正态分布,因此当Q值越大时,由式计算得到的每个位置的可靠度越接近;极限情况是Q为接受序列的长度,此时每个位置的可靠度完全一样,那么译码从头开始。
Viterbi算法采用接收码元条件概率的乘积的最大值作为估计序列,采用对数似然函数来表示为其中,y表示码字序列经过传输映射的结果,r表示接收端得到的序列。简化上式中的对数函数求和运算,可以定义如下码元度量其中,令
此种情况下,Viterbi算法中的码元度量值就是在编码网格上选择与接收序列r之间汉明距离最小的码字作为译码输出。
Step5.统计第i次迭代各状态度量值净增量大于上次迭代状态净增量最大值的状态数量num(i),即若num(i)<=num(i-1),则停止迭代,输出最大似然的咬尾路径所对应的译码结果;否则,从净增量大于最大度量值的状态继续迭代译码,其它起始状态舍去。
Step6.执行下一次迭代,重复Step3、4、5。
咬尾卷积码是指用输入的信息序列的尾比特初始化寄存器,这样编码的初始状态和结束状态相同,通过减小冗余比特从而提高了编码效率,通常用八进制来表示编码器(n,k,m)的生成多项式,(n,k,m)表示输入k比特,输出n比特,移位寄存器个数为m。如图2所示,给出了(2,1,2)卷积码的网格图,生产多项式为(7,5),输入1比特生成2比特的编码信息,码率为1/2,格形图的每个位置有2m种状态,输入0时状态转移对应的是上支路,输入1时状态转移对应的是下支路,输出的编码结果如图2右边所示。
实施例子:
S3.开始执行维特比译码,通过步进加比选操作,每个位置的各状态选择度量值最大值所在的状态,并保存相应的路径信息,译码结束后,检查出度量值最大的咬尾路径,并将其度量值设为最优路径度量值,其相对应的路径设为最优咬尾路径,并将各状态的度量值设为下次迭代的初始度量值。
S5.每次迭代译码结束后,检测各状态度量值净增量大于上次迭代状态净增量最大值的状态数量num(i),即的状态数。若num(i)>num(i-1),则继续进行迭代译码过程,否则,停止迭代,此时的最大度量值所在的状态即为最大咬尾路径的起始状态,根据相应的咬尾路径估计出译码序列。
由于循环维特比译码可能在达到最大迭代次数前,就已经检测出了最优咬尾路径,之后的迭代都是不必要的,本发明所述的一种基于CVA的咬尾卷积码信道译码方法的迭代停止准则可以很好的避开这种循环陷阱,提高了译码效率。
以上这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明的记载的内容之后,技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明权利要求所限定的范围。
Claims (1)
1.一种基于CVA的咬尾卷积码信道译码方法,其特征在于,包括以下步骤:
101、输入数据流,根据接收到数据流信息序列的似然比信息,确定出可靠性最高的译码起始位置,从该起始位置开始进行修正的维特比译码;
102、执行第i次迭代译码,到达每个状态有2条路径,分别计算到达每个状态的2条分支之间的分支度量值,选择最优的一个,此过程为加比选操作,通过加比选过程并更新译码参数,删除不可能的状态,开始下次迭代译码;
103、经过几次迭代搜索后,根据迭代停止准则,选择最大度量值的状态作为最终译码的起始位置,依据最终起始位置和对应的网格路径,估计出译码结果;
式中(l+Q)L=(l+Q)modL,其中Q是待确定的量,在具体应用中将根据不同的码字选择合适的值,当Q为接收序列的长度,此时每个位置的可靠度完全一样,那么译码从头开始;
所述步骤101还包括初始化的步骤,i=0,其中,表示第i次迭代中,状态sj的度量值,j为译码器的状态数,j=1,2,3...2v,v是移位寄存器的个数,表示最优路径的度量值,表示执行一次迭代译码后状态sj的度量值的净增量;
维特比Viterbi算法采用接收码元条件概率的乘积的最大值作为估计序列,采用对数似然函数来表示为其中,y表示码字序列经过传输映射的结果,r表示接收端得到的序列,简化上式中的对数函数求和运算,可以定义如下码元度量其中,令b=-logε,此种情况下,Viterbi算法中的码元度量值就是在编码网格上选择与接收序列r之间汉明距离最小的码字;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710979858.0A CN107911195B (zh) | 2017-10-19 | 2017-10-19 | 一种基于cva的咬尾卷积码信道译码方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710979858.0A CN107911195B (zh) | 2017-10-19 | 2017-10-19 | 一种基于cva的咬尾卷积码信道译码方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107911195A CN107911195A (zh) | 2018-04-13 |
CN107911195B true CN107911195B (zh) | 2020-03-17 |
Family
ID=61840656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710979858.0A Active CN107911195B (zh) | 2017-10-19 | 2017-10-19 | 一种基于cva的咬尾卷积码信道译码方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107911195B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110798231B (zh) * | 2018-08-02 | 2024-01-30 | 北京小米松果电子有限公司 | 咬尾卷积码的译码方法、装置及存储介质 |
CN109861695B (zh) * | 2019-02-22 | 2023-06-20 | 北京芯盾集团有限公司 | 利用码本进行卷积码译码的方法 |
CN110278055B (zh) * | 2019-06-03 | 2021-11-23 | 京信网络系统股份有限公司 | 咬尾卷积编码处理方法、装置和通信设备 |
CN111510160A (zh) * | 2020-05-13 | 2020-08-07 | 中国人民解放军军事科学院战争研究院 | 一种截断卷积编码优化构造方法 |
CN112217609B (zh) * | 2020-10-14 | 2022-11-01 | 紫光展锐(重庆)科技有限公司 | 通信译码方法、设备、装置及存储介质 |
CN112290957B (zh) * | 2020-10-24 | 2023-06-09 | 西北工业大学 | 一种正交时频扩展的咬尾Turbo编译码通信方法 |
CN115514379A (zh) * | 2022-09-16 | 2022-12-23 | 深圳华海尖兵科技有限公司 | 提高短波数据传输鲁棒性的方法和装置 |
CN119135190B (zh) * | 2024-11-14 | 2025-04-18 | 北京奥康银华科技有限公司 | 一种基于路径优化的卷积码节能译码方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5881075A (en) * | 1996-03-18 | 1999-03-09 | Samsung Electronics Co., Ltd. | Viterbi decoder |
CN1832390A (zh) * | 2005-03-07 | 2006-09-13 | 松下电器产业株式会社 | 用于多天线自适应传输中基于可靠度估计的重传方法 |
CN102638277A (zh) * | 2011-02-11 | 2012-08-15 | 联芯科技有限公司 | 一种咬尾卷积码译码方法及装置 |
CN102891690A (zh) * | 2011-07-19 | 2013-01-23 | 上海无线通信研究中心 | 一种咬尾卷积码译码方法 |
CN102904668A (zh) * | 2011-07-27 | 2013-01-30 | 杰脉通信技术(上海)有限公司 | 一种用于lte的快速pbch解码方法 |
-
2017
- 2017-10-19 CN CN201710979858.0A patent/CN107911195B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5881075A (en) * | 1996-03-18 | 1999-03-09 | Samsung Electronics Co., Ltd. | Viterbi decoder |
CN1832390A (zh) * | 2005-03-07 | 2006-09-13 | 松下电器产业株式会社 | 用于多天线自适应传输中基于可靠度估计的重传方法 |
CN102638277A (zh) * | 2011-02-11 | 2012-08-15 | 联芯科技有限公司 | 一种咬尾卷积码译码方法及装置 |
CN102891690A (zh) * | 2011-07-19 | 2013-01-23 | 上海无线通信研究中心 | 一种咬尾卷积码译码方法 |
CN102904668A (zh) * | 2011-07-27 | 2013-01-30 | 杰脉通信技术(上海)有限公司 | 一种用于lte的快速pbch解码方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107911195A (zh) | 2018-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107911195B (zh) | 一种基于cva的咬尾卷积码信道译码方法 | |
EP2595321A1 (en) | Tail-biting convolutional decoding apparatus and decoding method | |
CN104579369A (zh) | 一种Turbo迭代译码方法和译码装置 | |
CN107659318B (zh) | 一种自适应的极化码译码方法 | |
CN106330207A (zh) | 基于Turbo‑SCMA系统的联合检测译码算法 | |
CN103354483B (zh) | 通用的高性能Radix-4SOVA译码器及其译码方法 | |
US10680749B2 (en) | Early-termination of decoding convolutional codes | |
CN102891690B (zh) | 一种咬尾卷积码译码方法 | |
CN106254030A (zh) | 无速率Spinal码的双向编译码方法 | |
CN108134612B (zh) | 纠正同步与替代错误的级联码的迭代译码方法 | |
CN101969308B (zh) | 咬尾卷积码的译码方法及装置 | |
CN110730011A (zh) | 一种基于部分叠加的递归分组马尔可夫叠加编码方法 | |
WO2012163135A1 (zh) | 一种信道译码方法及译码器 | |
CN103634015B (zh) | 咬尾码的最大似然译码算法 | |
CN105375934A (zh) | 一种针对咬尾卷积码的Viterbi解码器及解码方法 | |
CN101257315A (zh) | 双二进制Turbo码停止迭代译码的方法 | |
CN108471341B (zh) | 一种卷积编解码的方法 | |
CN114499548B (zh) | 一种译码方法、装置及存储介质 | |
Abubeker et al. | Maximum likelihood DE coding of convolutional codes using viterbi algorithm with improved error correction capability | |
CN113114278B (zh) | 双二进制Turbo译码实现方法、系统、设备及应用 | |
CN108400788A (zh) | Turbo译码的硬件实现方法 | |
CN103701475B (zh) | 移动通信系统中8比特运算字长Turbo码的译码方法 | |
Zhu et al. | An improved decoding of tail-biting convolutional codes for LTE systems | |
CN107342775B (zh) | 删余卷积码的维特比译码方法 | |
TWI569584B (zh) | 採用動態調整因子的解碼方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |