[go: up one dir, main page]

CN107894707B - Internet intelligent flower wall sunlight simulation control method and system thereof - Google Patents

Internet intelligent flower wall sunlight simulation control method and system thereof Download PDF

Info

Publication number
CN107894707B
CN107894707B CN201711292125.6A CN201711292125A CN107894707B CN 107894707 B CN107894707 B CN 107894707B CN 201711292125 A CN201711292125 A CN 201711292125A CN 107894707 B CN107894707 B CN 107894707B
Authority
CN
China
Prior art keywords
module
processing layer
node
data
watering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711292125.6A
Other languages
Chinese (zh)
Other versions
CN107894707A (en
Inventor
廖志贤
罗妥
刘唐慧美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Normal University
Original Assignee
Guangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Normal University filed Critical Guangxi Normal University
Priority to CN201711292125.6A priority Critical patent/CN107894707B/en
Publication of CN107894707A publication Critical patent/CN107894707A/en
Application granted granted Critical
Publication of CN107894707B publication Critical patent/CN107894707B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/0275Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using fuzzy logic only

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明提供一种互联网智能花墙阳光模拟控制方法及其系统,属于花墙装置领域,本发明的智能调光算法,引入了现实各地的光照、温度、湿度信息,通过随机混沌函数产生的控制信号,将能体现白天黑夜、阴雨天和四季相关的效果,同时又具备自身的随机特性,营造一种室内日然光照的效果。本发明控制方法,利用随机混沌方法,采用数字控制手段,对系统状态变量进行精准采集,解决现有技术和产品在运行过程中的精度低问题。对于强非线性、动态、干扰源复杂的系统,本发明的控制方法具有更大的优势。本发明利用太阳能电池片发电一方面可以在断电或者长时间出差家中需要断电时保障系统的正常工作,另一方面适应当前能源发展的节能环保和低碳的需求。

Figure 201711292125

The invention provides an Internet intelligent flower wall sunlight simulation control method and its system, which belong to the field of flower wall devices. The intelligent dimming algorithm of the present invention introduces the illumination, temperature, and humidity information of various places in reality, and generates a control signal through a random chaotic function. It will be able to reflect the effects of day and night, rainy days and four seasons, and at the same time have its own random characteristics, creating an indoor daylight effect. The control method of the present invention utilizes the random chaos method and digital control means to accurately collect system state variables, thereby solving the problem of low precision in the operation process of the prior art and products. For systems with strong nonlinearity, dynamics and complex interference sources, the control method of the present invention has greater advantages. The invention uses solar cells to generate electricity, on the one hand, it can ensure the normal operation of the system when the power is cut off or at home for a long time on a business trip, and on the other hand, it meets the needs of energy saving, environmental protection and low carbon in the current energy development.

Figure 201711292125

Description

一种互联网智能花墙阳光模拟控制方法及其系统An Internet intelligent flower wall sunlight simulation control method and system thereof

技术领域technical field

本发明涉及室内花墙控制领域,特别是涉及一种互联网智能花墙阳光模拟控制方法及其系统。The invention relates to the field of indoor flower wall control, in particular to an internet intelligent flower wall sunlight simulation control method and system thereof.

背景技术Background technique

随着人们物质生活的提高,对生活品质的要求也越来越高,室内养植花墙变得越来越广泛。但是由于室内环境缺乏自然光照、雨水等环境,而且快节奏的生活让养植花墙变得不那么容易,如何在花费精力不多的情况下,实现植物的茁壮生长,成为眼下养花人士的一个重要问题。目前,我国在开发、利用太阳能电池片方面发展最快、潜力最大,但是太阳能电池片走进人们日常生活的却不多,特别是结合太阳能电池片新能源和互联网技术设计实现智能化的花墙控制系统,在国内外并未得到广泛的应用。如何合理利用太阳能电池片、互联网技术实现室内养植,进行应用创新,让室内养殖变得简单,是一项重要的研究课题。With the improvement of people's material life, the requirements for the quality of life are getting higher and higher, and indoor flower walls are becoming more and more extensive. However, due to the lack of natural light, rain and other environments in the indoor environment, and the fast-paced life makes it not so easy to plant flower walls, how to achieve the vigorous growth of plants without spending much energy has become a challenge for flower growers. important question. At present, my country has the fastest development and the greatest potential in the development and utilization of solar cells, but not many solar cells have entered people's daily life, especially the combination of solar cell new energy and Internet technology design to realize intelligent flower wall control The system has not been widely used at home and abroad. How to rationally use solar cells and Internet technology to realize indoor cultivation, carry out application innovation, and make indoor cultivation simple is an important research topic.

发明内容Contents of the invention

本发明提供一种互联网智能花墙阳光模拟控制方法及其系统,解决现有人们室内花墙的光照和水分不能远程控制和控制不精准的技术问题。The invention provides an Internet intelligent flower wall sunlight simulation control method and system thereof, which solves the existing technical problems that the light and moisture of indoor flower walls cannot be remotely controlled and the control is inaccurate.

本发明通过以下技术方案解决上述问题:The present invention solves the above problems through the following technical solutions:

一种互联网智能花墙阳光模拟控制方法,包括云端服务器、浇水水泵模块、智能调光模块、传感器模块和控制器模块,云端服务器存储植物生产环境数据和世界各个地区的环境数据,浇水水泵模块用于浇水,智能调光模块用于调节光照,传感器模块感应花墙的生产环境,其特征在于:控制方法包括如下步骤:An Internet intelligent flower wall sunlight simulation control method, including cloud server, watering water pump module, intelligent dimming module, sensor module and controller module, cloud server stores plant production environment data and environmental data of various regions in the world, watering water pump module It is used for watering, the intelligent dimming module is used for adjusting the light, and the sensor module senses the production environment of the flower wall. It is characterized in that: the control method includes the following steps:

步骤1:控制器模块通过有线或者无线向云端服务器获取相应的植物生产环境数据和世界各个地区光照x1、温度x2、湿度x3信息;Step 1: The controller module obtains the corresponding plant production environment data and the information of light x 1 , temperature x 2 and humidity x 3 in various regions of the world from the cloud server through wired or wireless;

步骤2:传感器模块采集花墙的光照xh1、温度xh2、湿度xh3信息传给控制器模块,控制器模块把采集的光照xh1、温度xh2、湿度xh3信息与步骤1中采集的世界各个地区光照x1、温度x2、湿度x3信息和相应的植物生产环境数据进行预处理;Step 2: The sensor module collects the light x h1 , temperature x h2 , and humidity x h3 information of the flower wall and sends them to the controller module. The controller module combines the collected light x h1 , temperature x h2 , and humidity x h3 with the information collected in step 1 Preprocess the information of light x 1 , temperature x 2 , humidity x 3 and the corresponding plant production environment data in various regions of the world;

步骤2.1:首先构造合成函数

Figure GDA0004166583930000021
其中,/>
Figure GDA0004166583930000022
为qj的合成函数,i表示节点号,j表示信号的标号,n表示第n处理层,qj表示输入的待合成信息,/>
Figure GDA0004166583930000023
表示xhj序列的总体方差,/>
Figure GDA0004166583930000024
是xhj序列的总体均值,/>
Figure GDA0004166583930000025
表示qhj序列的总体方差,N为信号的个数,xhj表示为光照,根据j的值来确定;Step 2.1: First construct the composite function
Figure GDA0004166583930000021
where, />
Figure GDA0004166583930000022
is the synthesis function of q j , i represents the node number, j represents the label of the signal, n represents the nth processing layer, q j represents the input information to be synthesized, />
Figure GDA0004166583930000023
Indicates the population variance of the x hj sequence, />
Figure GDA0004166583930000024
is the population mean of the x hj sequence, />
Figure GDA0004166583930000025
Represents the overall variance of the q hj sequence, N is the number of signals, and x hj represents the illumination, which is determined according to the value of j;

步骤2.2:进行数据预处理,得到一层输出量,Step 2.2: Perform data preprocessing to obtain a layer of output,

Figure GDA0004166583930000026
Figure GDA0004166583930000026

其中,fi (1)表示第一处理层的第i节点的输入量,

Figure GDA0004166583930000027
表示第一处理层的第i节点的输出量,/>
Figure GDA0004166583930000028
表示第一处理层第i节点的系数常量,xj表示第一处理层的输入变量、/>
Figure GDA0004166583930000029
表示第一处理层处理后的输出值字母l只是用于标识,没有具体含义,/>
Figure GDA00041665839300000210
表示第一处理层的输入,j表示信号的标号;Among them, f i (1) represents the input amount of the i-th node of the first processing layer,
Figure GDA0004166583930000027
Indicates the output of the i-th node of the first processing layer, />
Figure GDA0004166583930000028
Indicates the coefficient constant of the i-th node of the first processing layer, x j represents the input variable of the first processing layer, />
Figure GDA0004166583930000029
Indicates that the output value of the first processing layer is processed. The letter l is only used for identification and has no specific meaning. />
Figure GDA00041665839300000210
Represents the input of the first processing layer, and j represents the label of the signal;

步骤3:在第二处理层进行随机模糊化计算,得到二层输出量,具体过程为:Step 3: Perform random fuzzy calculation in the second processing layer to obtain the output of the second layer. The specific process is:

Figure GDA0004166583930000031
Figure GDA0004166583930000031

其中,

Figure GDA0004166583930000032
表示第二处理层的输入,fi (2)表示第二处理层的第i节点的输入量,
Figure GDA00041665839300000312
表示第二处理层的第i节点的输出量,/>
Figure GDA0004166583930000033
第二处理层第i节点的系数常量,rand()是利用数字信号处理器的随机数产生函数;in,
Figure GDA0004166583930000032
Represents the input of the second processing layer, f i (2) represents the input amount of the i-th node of the second processing layer,
Figure GDA00041665839300000312
Indicates the output of the i-th node of the second processing layer, />
Figure GDA0004166583930000033
The coefficient constant of the i-th node of the second processing layer, rand () is to utilize the random number generating function of the digital signal processor;

步骤4:进行第三层处理,得到三层输出量,Step 4: Carry out the third layer of processing to obtain the output of the third layer,

Figure GDA0004166583930000034
Figure GDA0004166583930000034

其中,

Figure GDA0004166583930000035
表示第三处理层的输入,fi (3)表示第三处理层的第i节点的输入量,
Figure GDA0004166583930000036
表示第三处理层的第i节点的输出量,/>
Figure GDA0004166583930000037
第三处理层第i节点的系数常量;in,
Figure GDA0004166583930000035
Represents the input of the third processing layer, f i (3) represents the input amount of the i-th node of the third processing layer,
Figure GDA0004166583930000036
Indicates the output of the i-th node of the third processing layer, />
Figure GDA0004166583930000037
The coefficient constant of the i-th node in the third processing layer;

步骤5:第四处理层模糊推理计算,得到四层输出量:Step 5: Fuzzy inference calculation of the fourth processing layer to obtain the output of the four layers:

Figure GDA0004166583930000038
Figure GDA0004166583930000038

其中,

Figure GDA0004166583930000039
表示第四处理层的输入,fi (4)表示第四处理层的第i节点的输入量,
Figure GDA00041665839300000310
表示第四处理层的第i节点的输出量,/>
Figure GDA00041665839300000311
第四处理层第i节点的系数常量;in,
Figure GDA0004166583930000039
Represents the input of the fourth processing layer, f i (4) represents the input amount of the i-th node of the fourth processing layer,
Figure GDA00041665839300000310
Indicates the output of the i-th node of the fourth processing layer, />
Figure GDA00041665839300000311
The coefficient constant of the i-th node in the fourth processing layer;

步骤6:输出控制信号,具体过程为,Step 6: output the control signal, the specific process is,

Figure GDA0004166583930000041
Figure GDA0004166583930000041

其中,

Figure GDA0004166583930000042
表示第五处理层的输入,fi (5)表示第五处理层的第i节点的输入量,
Figure GDA0004166583930000043
表示第五处理层的第i节点的输出量,/>
Figure GDA0004166583930000044
第五处理层第i节点的系数常量;in,
Figure GDA0004166583930000042
Represents the input of the fifth processing layer, f i (5) represents the input amount of the i-th node of the fifth processing layer,
Figure GDA0004166583930000043
Indicates the output of the i-th node in the fifth processing layer, />
Figure GDA0004166583930000044
The coefficient constant of the i-th node in the fifth processing layer;

步骤7:通过上述产生光照数据o(5),将其转换成占空比信号,转换方法如下:

Figure GDA0004166583930000045
其中,C是选取的固定值,D为本地装置的PWM控制信号,控制led的亮度;Step 7: Convert the illumination data o (5) to a duty cycle signal through the above-mentioned generation, and the conversion method is as follows:
Figure GDA0004166583930000045
Wherein, C is a selected fixed value, and D is a PWM control signal of the local device to control the brightness of the led;

步骤8:传感器模块的温湿度传感器获取湿度数据,然后与预先设定温度值相减,得到的输出放大K0倍后传送至累加器,同时,湿度数据被送至周总湿度运算、月总湿度运算、年总湿度运算,进行计算后,分别乘以系数K1、K2和K3,然后分别送至累加器,累加器对所有输入信号进行累加后输出到浇水水泵模块,控制浇水水泵模块进行浇水,完成花墙阳光模拟控制。Step 8: The temperature and humidity sensor of the sensor module obtains the humidity data, and then subtracts it from the preset temperature value, and the obtained output is amplified by K 0 times and then sent to the accumulator. At the same time, the humidity data is sent to the weekly total humidity calculation, monthly total Humidity calculation, annual total humidity calculation, after calculation, multiplied by coefficients K 1 , K 2 and K 3 respectively, and then sent to the accumulator respectively, the accumulator accumulates all input signals and outputs to the watering pump module to control watering The water pump module performs watering and completes the sunlight simulation control of the flower wall.

所述步骤1中相应的植物生产环境数据为每一种植物对应最适合的生产的环境数据,环境数据包括温度、湿度和光照。The corresponding plant production environment data in the step 1 is the most suitable production environment data corresponding to each plant, and the environment data includes temperature, humidity and light.

一种互联网智能花墙阳光模拟控制系统,包括远程控制中心、云端服务器、物联网模块、控制中心、浇水水泵模块、智能调光模块、传感器模块、DC/DC模块、蓄电池和太阳能电池片;An Internet intelligent flower wall sunlight simulation control system, including a remote control center, a cloud server, an Internet of Things module, a control center, a watering pump module, an intelligent dimming module, a sensor module, a DC/DC module, a battery and solar cells;

所述太阳能电池片的输出端经DC/DC模块与蓄电池连接;所述DC/DC模块浇水水泵模块、智能调光模块和物联网模块连接供电;所述远程控制中心与控制中心连接供用户远程控制或监管花墙;云端服务器经物联网模块与控制中心连接提供植物生产环境数据和世界各个地区的环境数据;控制中心用于数据运算和控制水水泵模块和智能调光模块对花墙进行生产管理;所述传感器模块与控制中心连接,用于采集花墙的环境数据。The output end of the solar cells is connected to the storage battery through the DC/DC module; the DC/DC module is connected to the water pump module, the intelligent dimming module and the Internet of Things module to supply power; the remote control center is connected to the control center for users Remotely control or supervise the flower wall; the cloud server is connected to the control center through the Internet of Things module to provide plant production environment data and environmental data in various regions of the world; the control center is used for data calculation and control of the water pump module and intelligent dimming module for production management of the flower wall ; The sensor module is connected with the control center for collecting environmental data of the flower wall.

所述控制中心包括智能浇水模块、智能调光算法模块和物联网算法模块;所述智能浇水模块的信号输出端与水水泵模块连接,用于接收采集的湿度数据和云端服务器传来的植物生产湿度数据并进行运算,把运算的数据转为控制信号控制水水泵模块浇水;智能调光算法模块与智能调光模块连接,用于运算花墙的植物光照并控制智能调光模块调节光照;物联网算法模块与物联网模块连接,用于接收云端服务器传入的数据,并对数据进行筛选和提取,把提取的数据传给智能浇水模块和智能调光算法模块。The control center includes an intelligent watering module, an intelligent dimming algorithm module, and an Internet of Things algorithm module; the signal output end of the intelligent watering module is connected to the water pump module for receiving collected humidity data and data from the cloud server. Plants produce humidity data and perform calculations, and convert the calculated data into control signals to control the watering of the water pump module; the intelligent dimming algorithm module is connected to the intelligent dimming module, which is used to calculate the plant light of the flower wall and control the intelligent dimming module to adjust the light The Internet of Things algorithm module is connected with the Internet of Things module to receive data from the cloud server, filter and extract the data, and transmit the extracted data to the intelligent watering module and the intelligent dimming algorithm module.

本发明的优点与效果是:Advantage and effect of the present invention are:

本发明通过智能调光算法,引入了现实各地的光照、温度、湿度信息,通过随机混沌函数产生的控制信号,将能体现白天黑夜、阴雨天和四季相关的效果,同时又具备自身的随机特性,营造一种室内日然光照的效果;同时利用随机混沌方法,采用数字控制手段,对系统状态变量进行精准采集,解决现有技术和产品在运行过程中的精度低问题;对于强非线性、动态、干扰源复杂的系统,本发明的控制方法具有更大的优势。本发明利用太阳能电池片发电一方面可以在断电或者长时间出差家中需要断电时保障系统的正常工作,另一方面适应当前能源发展的节能环保和低碳的需求,符合当前生活理念。The present invention introduces the illumination, temperature and humidity information of various places in reality through the intelligent dimming algorithm, and the control signal generated by the random chaotic function will be able to reflect the effects related to day and night, rainy days and four seasons, and at the same time have its own random characteristics , to create an indoor natural lighting effect; at the same time, using the stochastic chaos method and digital control means to accurately collect the system state variables to solve the problem of low precision in the operation process of existing technologies and products; for strong nonlinear, For dynamic systems with complex interference sources, the control method of the present invention has greater advantages. The invention uses solar cells to generate electricity, on the one hand, it can guarantee the normal operation of the system when the power is cut off or when the power is cut off at home for a long time on a business trip;

附图说明Description of drawings

图1为本发明算法流程图。Fig. 1 is the algorithm flow chart of the present invention.

图2为本发明方法原理图。Fig. 2 is a schematic diagram of the method of the present invention.

图3为本发明系统框图。Fig. 3 is a system block diagram of the present invention.

具体实施方式Detailed ways

以下结合实施例对本发明作进一步说明。The present invention will be further described below in conjunction with embodiment.

一种互联网智能花墙阳光模拟控制方法及其系统,如图1所示,包括云端服务器、浇水水泵模块、智能调光模块、传感器模块和控制器模块。云端服务器存储植物生产环境数据和世界各个地区的环境数据。浇水水泵模块用于浇水,智能调光模块用于调节光照。传感器模块感应花墙的生产环境。控制方法包括如下步骤:An Internet intelligent flower wall sunlight simulation control method and its system, as shown in Figure 1, include a cloud server, a watering pump module, an intelligent dimming module, a sensor module and a controller module. The cloud server stores the plant production environment data and the environment data of various regions in the world. The watering pump module is used for watering, and the intelligent dimming module is used for adjusting light. The sensor module senses the production environment of the flower wall. The control method comprises the steps of:

步骤1:控制器模块通过有线或者无线向云端服务器获取相应的植物生产环境数据和世界各个地区光照x1、温度x2、湿度x3信息。本发明智能调光算法利用随机混沌算法产生光照数据,转换成本地装置的PWM控制信号,控制led的亮度。将云端服务器存储的世界各地的光照x1、温度x2、湿度x3信息,通过物联网通信链路发送到用户端的花墙控制系统。Step 1: The controller module obtains corresponding plant production environment data and information of light x 1 , temperature x 2 , and humidity x 3 in various regions of the world from the cloud server through wired or wireless. The intelligent dimming algorithm of the present invention uses a random chaotic algorithm to generate illumination data, converts it into a PWM control signal of a local device, and controls the brightness of the LED. The light x 1 , temperature x 2 , and humidity x 3 information stored in the cloud server around the world are sent to the flower wall control system at the user end through the communication link of the Internet of Things.

步骤2:传感器模块采集花墙的光照xh1、温度xh2、湿度xh3信息传给控制器模块,控制器模块把采集的光照xh1、温度xh2、湿度xh3信息与步骤1中采集的世界各个地区光照x1、温度x2、湿度x3信息和相应的植物生产环境数据进行预处理,此处称为第一处理层。Step 2: The sensor module collects the light x h1 , temperature x h2 , and humidity x h3 information of the flower wall and sends them to the controller module. The controller module combines the collected light x h1 , temperature x h2 , and humidity x h3 with the information collected in step 1 The light x 1 , temperature x 2 , humidity x 3 information of each region in the world and the corresponding plant production environment data are preprocessed, which is called the first processing layer here.

步骤2.1:首先构造合成函数

Figure GDA0004166583930000061
其中,/>
Figure GDA0004166583930000062
为qj的合成函数,i表示节点号,j表示信号的标号,n表示第n处理层,qj表示输入的待合成信息,/>
Figure GDA0004166583930000063
表示xhj序列的总体方差,/>
Figure GDA0004166583930000064
是xhj序列的总体均值,/>
Figure GDA0004166583930000065
表示qhj序列的总体方差,N为信号的个数,xhj表示为光照,根据j的值来确定。Step 2.1: First construct the composite function
Figure GDA0004166583930000061
where, />
Figure GDA0004166583930000062
is the synthesis function of q j , i represents the node number, j represents the label of the signal, n represents the nth processing layer, q j represents the input information to be synthesized, />
Figure GDA0004166583930000063
Indicates the population variance of the x hj sequence, />
Figure GDA0004166583930000064
is the population mean of the x hj sequence, />
Figure GDA0004166583930000065
Represents the overall variance of the q hj sequence, N is the number of signals, and x hj represents the illumination, which is determined according to the value of j.

步骤2.2:进行数据预处理,得到一层输出量,Step 2.2: Perform data preprocessing to obtain a layer of output,

Figure GDA0004166583930000066
Figure GDA0004166583930000066

其中,fi (1)表示第一处理层的第i节点的输入量,

Figure GDA0004166583930000067
表示第一处理层的第i节点的输出量,/>
Figure GDA0004166583930000068
表示第一处理层第i节点的系数常量,xj表示第一处理层的输入变量、/>
Figure GDA0004166583930000071
表示第一处理层处理后的输出值字母l只是用于标识,没有具体含义,/>
Figure GDA0004166583930000072
表示第一处理层的输入,j表示信号的标号。Among them, f i (1) represents the input amount of the i-th node of the first processing layer,
Figure GDA0004166583930000067
Indicates the output of the i-th node of the first processing layer, />
Figure GDA0004166583930000068
Indicates the coefficient constant of the i-th node of the first processing layer, x j represents the input variable of the first processing layer, />
Figure GDA0004166583930000071
Indicates that the output value of the first processing layer is processed. The letter l is only used for identification and has no specific meaning. />
Figure GDA0004166583930000072
Indicates the input of the first processing layer, and j indicates the label of the signal.

步骤3:在第二处理层进行随机模糊化计算,得到二层输出量,具体过程为:Step 3: Perform random fuzzy calculation in the second processing layer to obtain the output of the second layer. The specific process is:

Figure GDA0004166583930000073
Figure GDA0004166583930000073

其中,

Figure GDA0004166583930000074
表示第二处理层的输入,fi (2)表示第二处理层的第i节点的输入量,
Figure GDA0004166583930000075
表示第二处理层的第i节点的输出量,/>
Figure GDA0004166583930000076
第二处理层第i节点的系数常量,rand()是利用数字信号处理器的随机数产生函数。in,
Figure GDA0004166583930000074
Represents the input of the second processing layer, f i (2) represents the input amount of the i-th node of the second processing layer,
Figure GDA0004166583930000075
Indicates the output of the i-th node of the second processing layer, />
Figure GDA0004166583930000076
The coefficient constant of the i-th node in the second processing layer, rand() is a random number generation function using a digital signal processor.

步骤4:进行第三层处理,得到三层输出量,Step 4: Carry out the third layer of processing to obtain the output of the third layer,

Figure GDA0004166583930000077
Figure GDA0004166583930000077

其中,

Figure GDA0004166583930000078
表示第三处理层的输入,fi (3)表示第三处理层的第i节点的输入量,
Figure GDA0004166583930000079
表示第三处理层的第i节点的输出量,/>
Figure GDA00041665839300000710
第三处理层第i节点的系数常量。in,
Figure GDA0004166583930000078
Represents the input of the third processing layer, f i (3) represents the input amount of the i-th node of the third processing layer,
Figure GDA0004166583930000079
Indicates the output of the i-th node of the third processing layer, />
Figure GDA00041665839300000710
Coefficient constant of the i-th node in the third processing layer.

步骤5:第四处理层模糊推理计算,得到四层输出量:Step 5: Fuzzy inference calculation of the fourth processing layer to obtain the output of the four layers:

Figure GDA0004166583930000081
Figure GDA0004166583930000081

其中,fi (4)表示第四处理层的第i节点的输入量,

Figure GDA0004166583930000082
表示第四处理层的第i节点的输出量,/>
Figure GDA0004166583930000083
第四处理层第i节点的系数常量。Among them, f i (4) represents the input amount of the i-th node of the fourth processing layer,
Figure GDA0004166583930000082
Indicates the output of the i-th node of the fourth processing layer, />
Figure GDA0004166583930000083
The coefficient constant of the i-th node in the fourth processing layer.

步骤6:输出控制信号,具体过程为,Step 6: output the control signal, the specific process is,

Figure GDA0004166583930000084
Figure GDA0004166583930000084

其中,

Figure GDA0004166583930000085
表示第五处理层的输入,fi (5)表示第五处理层的第i节点的输入量,
Figure GDA0004166583930000086
表示第五处理层的第i节点的输出量,/>
Figure GDA0004166583930000087
第五处理层第i节点的系数常量。in,
Figure GDA0004166583930000085
Represents the input of the fifth processing layer, f i (5) represents the input amount of the i-th node of the fifth processing layer,
Figure GDA0004166583930000086
Indicates the output of the i-th node in the fifth processing layer, />
Figure GDA0004166583930000087
The coefficient constant of node i in the fifth processing layer.

步骤7:通过上述产生光照数据o(5),将其转换成占空比信号,转换方法如下:

Figure GDA0004166583930000088
其中,C是选取的固定值,D为本地装置的PWM控制信号,控制led的亮度。Step 7: Convert the illumination data o (5) to a duty cycle signal through the above-mentioned generation, and the conversion method is as follows:
Figure GDA0004166583930000088
Among them, C is the selected fixed value, and D is the PWM control signal of the local device to control the brightness of the led.

步骤8:传感器模块的温湿度传感器获取湿度数据,然后与预先设定温度值相减,得到的输出放大K0倍后传送至累加器,同时,湿度数据被送至周总湿度运算、月总湿度运算、年总湿度运算,进行计算后,分别乘以系数K1、K2和K3,然后分别送至累加器,累加器对所有输入信号进行累加后输出到浇水水泵模块,控制浇水水泵模块进行浇水,完成花墙阳光模拟控制。Step 8: The temperature and humidity sensor of the sensor module obtains the humidity data, and then subtracts it from the preset temperature value, and the obtained output is amplified by K 0 times and then sent to the accumulator. At the same time, the humidity data is sent to the weekly total humidity calculation, monthly total Humidity calculation, annual total humidity calculation, after calculation, multiplied by coefficients K 1 , K 2 and K 3 respectively, and then sent to the accumulator respectively, the accumulator accumulates all input signals and outputs to the watering pump module to control watering The water pump module performs watering and completes the sunlight simulation control of the flower wall.

本发明智能光伏花墙控制系统包括远程控制中心、控制中心、太阳能电池片模块、LED补光模块、供电模块、浇水模块,太阳能电池片模块控制中心和LED灯补光模块依次双相连接,浇水模块和控制中心连接,供电模块连接控制中心、太阳能电池片模块、LED补光模块,供电模块和浇水模块连接,控制中心通过无线传输(WiFi、蓝牙等)连接远程控制中心,太阳能电池片模块、LED补光模块、浇水模块、供电模块安装于室内,根据室内的湿度和光照强度适时进行浇水和补光,使植物在无人看护的情况下更好生长。The intelligent photovoltaic flower wall control system of the present invention includes a remote control center, a control center, a solar cell module, an LED supplementary light module, a power supply module, and a watering module. The water module is connected to the control center, the power supply module is connected to the control center, solar cell module, LED supplementary light module, the power supply module is connected to the watering module, the control center is connected to the remote control center through wireless transmission (WiFi, Bluetooth, etc.), and the solar cell The module, LED supplementary light module, watering module, and power supply module are installed indoors. Watering and supplementary light are carried out in a timely manner according to the indoor humidity and light intensity, so that plants can grow better without supervision.

光源照射到太阳能电池片电池板后,通过DC-DC充电控制器一方面给整个系统供电;另一方面给蓄电池储备电能,使其在阴天和夜间都能工作。After the light source irradiates the solar cell panel, the DC-DC charge controller supplies power to the whole system on the one hand; on the other hand, it stores electric energy for the battery so that it can work in cloudy days and at night.

stm32作为整个系统的控制核心,控制各个模块,保障系统的准确高效运行。利用光照强度传感器和温湿度传感器对单片机反馈给浇灌系统和光照系统,保障花墙的浇水和光照,为植物的生长提供优良的环境定时器作为定时系统,通过单片机定时定量的给植物浇水。显示系统可以显示当前植物的生长状况,包括土壤湿度、光照情况等。无线传输系统一方面控制对室外光照的采集和反馈,另一方面可以实时监控植物的生长。As the control core of the whole system, stm32 controls each module to ensure the accurate and efficient operation of the system. The light intensity sensor and temperature and humidity sensor are used to feed back the watering system and the lighting system to the single-chip microcomputer to ensure the watering and light of the flower wall, and provide an excellent environmental timer for the growth of plants as a timing system, and water the plants regularly and quantitatively through the single-chip microcomputer. The display system can display the current growth status of plants, including soil moisture, light conditions, etc. On the one hand, the wireless transmission system controls the collection and feedback of outdoor light, and on the other hand, it can monitor the growth of plants in real time.

通过温湿度传感器获取湿度数据,然后与设定温度值相减,得到的输出放大K0倍后传送至累加器,同时,湿度数据被送至周总湿度运算、月总湿度运算、年总湿度运算,进行计算后,分别乘以系数K1、K2和K3,然后分别送至累加器,累加器对所有输入信号进行累加后输出到浇水水泵模块,控制浇水水泵模块进行浇水。The humidity data is obtained by the temperature and humidity sensor, and then subtracted from the set temperature value. The obtained output is amplified by K 0 times and sent to the accumulator. At the same time, the humidity data is sent to the weekly total humidity calculation, monthly total humidity calculation, and annual total humidity. After calculation, multiply the coefficients K 1 , K 2 and K 3 respectively, and then send them to the accumulator respectively. The accumulator accumulates all the input signals and outputs them to the watering pump module to control the watering pump module for watering .

见图1,本发明智能调光算法的流程是,算法开始后,云端服务器将世界各地的光照、温度、湿度信息发送到用户端的花墙控制系统。接着运行第一处理层,用本地的传感器采集的光照、温度、湿度信息构造合成函数,进行信号合成,方法如下:As shown in Fig. 1, the flow of the intelligent dimming algorithm of the present invention is that after the algorithm starts, the cloud server sends the light, temperature, and humidity information from all over the world to the flower wall control system at the user end. Then run the first processing layer, use the light, temperature, and humidity information collected by the local sensor to construct a synthesis function, and perform signal synthesis. The method is as follows:

Figure GDA0004166583930000091
Figure GDA0004166583930000091

然后,第二处理层,进行随机模糊化计算。接着运行第三处理层计算,运算方法如下:Then, the second processing layer performs random fuzzing calculations. Then run the calculation of the third processing layer, the operation method is as follows:

Figure GDA0004166583930000101
Figure GDA0004166583930000101

然后运行第四处理层计算结束后,输出控制信号:Then, after the calculation of the fourth processing layer is completed, the control signal is output:

Figure GDA0004166583930000102
输出控制信号由智能调光模块控制LED灯进行花墙的灯管系统控制。
Figure GDA0004166583930000102
The output control signal is controlled by the intelligent dimming module to control the LED lamp to control the lamp system of the flower wall.

一种互联网智能花墙阳光模拟控制系统,其特征在于:包括远程控制中心、云端服务器、物联网模块、控制中心、浇水水泵模块、智能调光模块、传感器模块、DC/DC模块、蓄电池和太阳能电池片。An Internet intelligent flower wall sunlight simulation control system is characterized in that it includes a remote control center, a cloud server, an Internet of Things module, a control center, a watering pump module, an intelligent dimming module, a sensor module, a DC/DC module, a storage battery and a solar energy Cell.

所述太阳能电池片的输出端经DC/DC模块与蓄电池连接。所述DC/DC模块浇水水泵模块、智能调光模块和物联网模块连接供电。远程控制中心与控制中心连接供用户远程控制或监管花墙。云端服务器经物联网模块与控制中心连接提供植物生产环境数据和世界各个地区的环境数据。控制中心用于数据运算和控制水水泵模块和智能调光模块对花墙进行生产管理。传感器模块与控制中心连接,用于采集花墙的环境数据。The output end of the solar cells is connected to the storage battery through the DC/DC module. The DC/DC module watering pump module, the intelligent dimming module and the Internet of Things module are connected to supply power. The remote control center is connected with the control center for users to remotely control or supervise the flower wall. The cloud server is connected to the control center through the Internet of Things module to provide plant production environment data and environmental data in various regions of the world. The control center is used for data calculation and control of the water pump module and the intelligent dimming module to manage the production of the flower wall. The sensor module is connected with the control center to collect environmental data of the flower wall.

所述控制中心包括智能浇水模块、智能调光算法模块和物联网算法模块;所述智能浇水模块的信号输出端与水水泵模块连接,用于接收采集的湿度数据和云端服务器传来的植物生产湿度数据并进行运算,把运算的数据转为控制信号控制水水泵模块浇水;智能调光算法模块与智能调光模块连接,用于运算花墙的植物光照并控制智能调光模块调节光照;物联网算法模块与物联网模块连接,用于接收云端服务器传入的数据,并对数据进行筛选和提取,把提取的数据传给智能浇水模块和智能调光算法模块。The control center includes an intelligent watering module, an intelligent dimming algorithm module, and an Internet of Things algorithm module; the signal output end of the intelligent watering module is connected to the water pump module for receiving collected humidity data and data from the cloud server. Plants produce humidity data and perform calculations, and convert the calculated data into control signals to control the watering of the water pump module; the intelligent dimming algorithm module is connected to the intelligent dimming module, which is used to calculate the plant light of the flower wall and control the intelligent dimming module to adjust the light The Internet of Things algorithm module is connected with the Internet of Things module to receive data from the cloud server, filter and extract the data, and transmit the extracted data to the intelligent watering module and the intelligent dimming algorithm module.

其中太阳能电池片优选单晶硅或多晶硅、柔性薄膜太阳能电池片电池,DC/DC模块优选同步整流升降压变换器,浇水水泵模块优选电动水泵,智能调光模块采用LED灯驱动功率电路进行组合设计,物联网模块采用NB-IoT模块组网,智能调光模块、智能浇水算法、智能调光算法全部以程序的形式封装在CPU及其存储器内。太阳能电池片通过功率电感电连接到DC/DC模块的输入端,DC/DC模块的一个输出端电连接到蓄电池,另一个输出端分别电连接到浇水水泵模块、智能调光模块和物联网模块的输入端。Among them, solar cells are preferably monocrystalline silicon or polycrystalline silicon, and flexible thin-film solar cell batteries, DC/DC modules are preferably synchronous rectification buck-boost converters, watering pump modules are preferably electric water pumps, and intelligent dimming modules use LED lights to drive power circuits Combined design, the IoT module adopts NB-IoT module networking, and the intelligent dimming module, intelligent watering algorithm, and intelligent dimming algorithm are all packaged in the CPU and its memory in the form of programs. The solar cells are electrically connected to the input terminal of the DC/DC module through the power inductor, one output terminal of the DC/DC module is electrically connected to the battery, and the other output terminal is electrically connected to the watering pump module, the intelligent dimming module and the Internet of Things respectively. input of the module.

DC/DC模块实用型号为WRF0505S-W55的电源模块,用于给电池充电,

Figure GDA0004166583930000111
模块、智能调光模块、物联网模块供电。The practical model of the DC/DC module is the power module WRF0505S-W55, which is used to charge the battery.
Figure GDA0004166583930000111
module, intelligent dimming module, and IoT module power supply.

浇水水泵模块给花进行浇水,智能调光模块对光进行调节,给花进行光合作用。物联网模块主要为通信模块,为4G模块或者WIFI模块,用于获取外部数据或者外部网络对整个装置进行控制。The watering pump module waters the flowers, and the intelligent dimming module adjusts the light to perform photosynthesis for the flowers. The IoT module is mainly a communication module, which is a 4G module or a WIFI module, which is used to obtain external data or control the entire device from an external network.

以上已对本发明创造的较佳实施例进行了具体说明,但本发明并不限于实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请的范围内。The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the embodiments. Those skilled in the art can also make various equivalent modifications or replacements without violating the spirit of the present invention. , these equivalent modifications or replacements are included within the scope of the present application.

Claims (4)

1.一种互联网智能花墙阳光模拟控制方法,包括云端服务器、浇水水泵模块、智能调光模块、传感器模块和控制器模块,云端服务器存储植物生产环境数据和世界各个地区的环境数据,浇水水泵模块用于浇水,智能调光模块用于调节光照,传感器模块感应花墙的生产环境,其特征在于:控制方法包括如下步骤:1. An Internet intelligent flower wall sunlight simulation control method, including cloud server, watering pump module, intelligent dimming module, sensor module and controller module, cloud server stores plant production environment data and environmental data in various regions of the world, watering The water pump module is used for watering, the intelligent dimming module is used for adjusting the light, and the sensor module senses the production environment of the flower wall. It is characterized in that the control method includes the following steps: 步骤1:控制器模块通过有线或者无线向云端服务器获取相应的植物生产环境数据和世界各个地区光照x1、温度x2、湿度x3信息;Step 1: The controller module obtains the corresponding plant production environment data and the information of light x 1 , temperature x 2 and humidity x 3 in various regions of the world from the cloud server through wired or wireless; 步骤2:传感器模块采集花墙的光照xh1、温度xh2、湿度xh3信息传给控制器模块,控制器模块把采集的光照xh1、温度xh2、湿度xh3信息与步骤1中采集的世界各个地区光照x1、温度x2、湿度x3信息和相应的植物生产环境数据进行预处理;Step 2: The sensor module collects the light x h1 , temperature x h2 , and humidity x h3 information of the flower wall and sends them to the controller module. The controller module combines the collected light x h1 , temperature x h2 , and humidity x h3 with the information collected in step 1 Preprocess the information of light x 1 , temperature x 2 , humidity x 3 and the corresponding plant production environment data in various regions of the world; 步骤2.1:首先构造合成函数
Figure FDA0004196087080000011
其中,/>
Figure FDA0004196087080000012
为qj的合成函数,i表示节点号,j表示信号的标号,n表示第n处理层,qj表示输入的待合成信息,
Figure FDA0004196087080000013
表示xhj序列的总体方差,/>
Figure FDA0004196087080000014
是xhj序列的总体均值,
Figure FDA0004196087080000015
表示qh j序列的总体方差,N为信号的个数,xhj表示为光照,根据j的值来确定;
Step 2.1: First construct the composite function
Figure FDA0004196087080000011
where, />
Figure FDA0004196087080000012
is the synthesis function of q j , i represents the node number, j represents the label of the signal, n represents the nth processing layer, q j represents the input information to be synthesized,
Figure FDA0004196087080000013
Indicates the population variance of the x hj sequence, />
Figure FDA0004196087080000014
is the population mean of the x hj sequence,
Figure FDA0004196087080000015
Represents the overall variance of the q h j sequence, N is the number of signals, x hj represents the illumination, and is determined according to the value of j;
步骤2.2:进行数据预处理,得到一层输出量,Step 2.2: Perform data preprocessing to obtain a layer of output,
Figure FDA0004196087080000021
Figure FDA0004196087080000021
其中,fi (1)表示第一处理层的第i节点的输入量,
Figure FDA0004196087080000022
表示第一处理层的第i节点的输出量,/>
Figure FDA0004196087080000023
表示第一处理层第i节点的系数常量,xj表示第一处理层的输入变量、/>
Figure FDA0004196087080000024
表示第一处理层处理后的输出值字母l只是用于标识,没有具体含义,/>
Figure FDA0004196087080000025
表示第一处理层的输入,j表示信号的标号;
Among them, f i (1) represents the input amount of the i-th node of the first processing layer,
Figure FDA0004196087080000022
Indicates the output of the i-th node of the first processing layer, />
Figure FDA0004196087080000023
Indicates the coefficient constant of the i-th node of the first processing layer, x j represents the input variable of the first processing layer, />
Figure FDA0004196087080000024
Indicates that the output value of the first processing layer is processed. The letter l is only used for identification and has no specific meaning. />
Figure FDA0004196087080000025
Represents the input of the first processing layer, and j represents the label of the signal;
步骤3:在第二处理层进行随机模糊化计算,得到二层输出量,具体过程为:Step 3: Perform random fuzzy calculation in the second processing layer to obtain the output of the second layer. The specific process is:
Figure FDA0004196087080000026
Figure FDA0004196087080000026
其中,
Figure FDA0004196087080000027
表示第二处理层的输入,fi (2)表示第二处理层的第i节点的输入量,/>
Figure FDA0004196087080000028
表示第二处理层的第i节点的输出量,/>
Figure FDA0004196087080000029
第二处理层第i节点的系数常量,rand()是利用数字信号处理器的随机数产生函数;
in,
Figure FDA0004196087080000027
Represents the input of the second processing layer, f i (2) represents the input amount of the i-th node of the second processing layer, />
Figure FDA0004196087080000028
Indicates the output of the i-th node of the second processing layer, />
Figure FDA0004196087080000029
The coefficient constant of the i-th node of the second processing layer, rand () is to utilize the random number generating function of the digital signal processor;
步骤4:进行第三层处理,得到三层输出量,Step 4: Carry out the third layer of processing to obtain the output of the third layer,
Figure FDA0004196087080000031
Figure FDA0004196087080000031
其中,
Figure FDA0004196087080000032
表示第三处理层的输入,fi (3)表示第三处理层的第i节点的输入量,/>
Figure FDA0004196087080000033
表示第三处理层的第i节点的输出量,/>
Figure FDA0004196087080000034
第三处理层第i节点的系数常量;
in,
Figure FDA0004196087080000032
Represents the input of the third processing layer, f i (3) represents the input amount of the i-th node of the third processing layer, />
Figure FDA0004196087080000033
Indicates the output of the i-th node of the third processing layer, />
Figure FDA0004196087080000034
The coefficient constant of the i-th node in the third processing layer;
步骤5:第四处理层模糊推理计算,得到四层输出量:Step 5: Fuzzy inference calculation of the fourth processing layer to obtain the output of the four layers:
Figure FDA0004196087080000035
Figure FDA0004196087080000035
其中,fi (4)表示第四处理层的第i节点的输入量,
Figure FDA0004196087080000036
表示第四处理层的第i节点的输出量,/>
Figure FDA0004196087080000037
第四处理层第i节点的系数常量;
Among them, f i (4) represents the input amount of the i-th node of the fourth processing layer,
Figure FDA0004196087080000036
Indicates the output of the i-th node of the fourth processing layer, />
Figure FDA0004196087080000037
The coefficient constant of the i-th node in the fourth processing layer;
步骤6:输出控制信号,具体过程为,Step 6: output the control signal, the specific process is,
Figure FDA0004196087080000038
Figure FDA0004196087080000038
其中,
Figure FDA0004196087080000039
表示第五处理层的输入,fi (5)表示第五处理层的第i节点的输入量,/>
Figure FDA00041960870800000310
表示第五处理层的第i节点的输出量,/>
Figure FDA00041960870800000311
第五处理层第i节点的系数常量;
in,
Figure FDA0004196087080000039
Represents the input of the fifth processing layer, f i (5) represents the input amount of the i-th node of the fifth processing layer, />
Figure FDA00041960870800000310
Indicates the output of the i-th node in the fifth processing layer, />
Figure FDA00041960870800000311
The coefficient constant of the i-th node in the fifth processing layer;
步骤7:通过上述产生光照数据o(5),将其转换成占空比信号,转换方法如下:
Figure FDA0004196087080000041
其中,C是选取的固定值,D为本地装置的PWM控制信号,控制led的亮度;
Step 7: Convert the illumination data o (5) to a duty cycle signal through the above-mentioned generation, and the conversion method is as follows:
Figure FDA0004196087080000041
Wherein, C is a selected fixed value, and D is a PWM control signal of the local device to control the brightness of the led;
步骤8:传感器模块的温湿度传感器获取湿度数据,然后与预先设定温度值相减,得到的输出放大K0倍后传送至累加器,同时,湿度数据被送至周总湿度运算、月总湿度运算、年总湿度运算,进行计算后,分别乘以系数K1、K2和K3,然后分别送至累加器,累加器对所有输入信号进行累加后输出到浇水水泵模块,控制浇水水泵模块进行浇水,完成花墙阳光模拟控制。Step 8: The temperature and humidity sensor of the sensor module obtains the humidity data, and then subtracts it from the preset temperature value, and the obtained output is amplified by K 0 times and then sent to the accumulator. At the same time, the humidity data is sent to the weekly total humidity calculation, monthly total Humidity calculation, annual total humidity calculation, after calculation, multiplied by coefficients K 1 , K 2 and K 3 respectively, and then sent to the accumulator respectively, the accumulator accumulates all input signals and outputs to the watering pump module to control watering The water pump module performs watering and completes the sunlight simulation control of the flower wall.
2.根据权利要求1所述的一种互联网智能花墙阳光模拟控制方法,其特征在于:所述步骤1中相应的植物生产环境数据为每一种植物对应最适合的生产的环境数据,环境数据包括温度、湿度和光照。2. A kind of Internet intelligent flower wall sunlight simulation control method according to claim 1, is characterized in that: the corresponding plant production environment data in the described step 1 is the environment data of each kind of plant corresponding most suitable production, environment data Including temperature, humidity and light. 3.基于权利要求1所述的一种互联网智能花墙阳光模拟控制系统,其特征在于:包括远程控制中心、云端服务器、物联网模块、控制中心、浇水水泵模块、智能调光模块、传感器模块、DC/DC模块、蓄电池和太阳能电池片;3. A kind of Internet intelligent flower wall sunlight simulation control system based on claim 1, characterized in that: it includes a remote control center, a cloud server, an Internet of Things module, a control center, a watering pump module, an intelligent dimming module, and a sensor module , DC/DC modules, batteries and solar cells; 所述太阳能电池片的输出端经DC/DC模块与蓄电池连接;所述DC/DC模块、浇水水泵模块、智能调光模块和物联网模块连接供电;所述远程控制中心与控制中心连接供用户远程控制或监管花墙;云端服务器经物联网模块与控制中心连接提供植物生产环境数据和世界各个地区的环境数据;控制中心用于数据运算和控制浇水水泵模块和智能调光模块对花墙进行生产管理;所述传感器模块与控制中心连接,用于采集花墙的环境数据。The output end of the solar cells is connected to the storage battery through the DC/DC module; the DC/DC module, the watering pump module, the intelligent dimming module and the Internet of Things module are connected to supply power; the remote control center is connected to the control center for power supply. Users remotely control or supervise the flower wall; the cloud server is connected to the control center through the Internet of Things module to provide plant production environment data and environmental data in various regions of the world; the control center is used for data calculation and control of watering pump modules and intelligent dimming modules Production management; the sensor module is connected with the control center for collecting environmental data of the flower wall. 4.根据权利要求3所述的一种互联网智能花墙阳光模拟控制系统,其特征在于:所述控制中心包括智能浇水模块、智能调光算法模块和物联网算法模块;所述智能浇水模块的信号输出端与浇水水泵模块连接,用于接收采集的湿度数据和云端服务器传来的植物生产湿度数据并进行运算,把运算的数据转为控制信号控制浇水水泵模块浇水;智能调光算法模块与智能调光模块连接,用于运算花墙的植物光照并控制智能调光模块调节光照;物联网算法模块与物联网模块连接,用于接收云端服务器传入的数据,并对数据进行筛选和提取,把提取的数据传给智能浇水模块和智能调光算法模块。4. A kind of Internet intelligent flower wall sunshine simulation control system according to claim 3, is characterized in that: described control center comprises intelligent watering module, intelligent dimming algorithm module and Internet of Things algorithm module; Described intelligent watering module The signal output end of the signal is connected to the watering pump module, which is used to receive the collected humidity data and the plant production humidity data from the cloud server and perform calculations, and convert the calculated data into control signals to control the watering of the watering pump module; intelligent adjustment The optical algorithm module is connected with the intelligent dimming module, which is used to calculate the plant illumination of the flower wall and control the intelligent dimming module to adjust the illumination; the IoT algorithm module is connected with the IoT module, which is used to receive the data from the cloud server and perform data processing on the data. Filter and extract, and pass the extracted data to the intelligent watering module and the intelligent dimming algorithm module.
CN201711292125.6A 2017-12-08 2017-12-08 Internet intelligent flower wall sunlight simulation control method and system thereof Expired - Fee Related CN107894707B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711292125.6A CN107894707B (en) 2017-12-08 2017-12-08 Internet intelligent flower wall sunlight simulation control method and system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711292125.6A CN107894707B (en) 2017-12-08 2017-12-08 Internet intelligent flower wall sunlight simulation control method and system thereof

Publications (2)

Publication Number Publication Date
CN107894707A CN107894707A (en) 2018-04-10
CN107894707B true CN107894707B (en) 2023-05-26

Family

ID=61807689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711292125.6A Expired - Fee Related CN107894707B (en) 2017-12-08 2017-12-08 Internet intelligent flower wall sunlight simulation control method and system thereof

Country Status (1)

Country Link
CN (1) CN107894707B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109618471A (en) * 2019-01-28 2019-04-12 顺德职业技术学院 A dimming system and its control method
CN110107144A (en) * 2019-05-21 2019-08-09 张崇玺 The method of the light steel villa simulation true environment of plantation inhabitation one and its light steel villa
CN111739463A (en) * 2020-06-10 2020-10-02 湖南人文科技学院 A kind of LED display screen control method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317872A (en) * 2004-04-30 2005-11-10 Harison Toshiba Lighting Corp Control device for simulated sunlight irradiation device
CN205862176U (en) * 2016-04-01 2017-01-04 王东来 A kind of wisdom greenhouse environment monitoring device based on Internet of Things
CN206671924U (en) * 2016-12-05 2017-11-24 天津云拓网络科技有限公司 A kind of intelligent plant maintenance and management control system based on technology of Internet of things

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160234009A1 (en) * 2015-02-08 2016-08-11 Wenhua Li Chaotic Baseband Modulation Hopping Based Post-Quantum Physical-Layer Encryption

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317872A (en) * 2004-04-30 2005-11-10 Harison Toshiba Lighting Corp Control device for simulated sunlight irradiation device
CN205862176U (en) * 2016-04-01 2017-01-04 王东来 A kind of wisdom greenhouse environment monitoring device based on Internet of Things
CN206671924U (en) * 2016-12-05 2017-11-24 天津云拓网络科技有限公司 A kind of intelligent plant maintenance and management control system based on technology of Internet of things

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王军平,陈全世,田光宇.随机模糊神经网络及在随机混沌时间序列预测中的应用.西安交通大学学报.2003,(第10期),第991-994页. *

Also Published As

Publication number Publication date
CN107894707A (en) 2018-04-10

Similar Documents

Publication Publication Date Title
CN102271422B (en) WSN-based photovoltaic greenhouse monitoring system and construction method thereof
Chen et al. Design of intelligent control system for agricultural greenhouses based on adaptive improved genetic algorithm for multi-energy supply system
CN201153424Y (en) Plant ecological planting shed system with functions of wind energy and solar photovoltaic supplementary illumination
CN102626043B (en) New energy closed-loop type comprehensive energy-saving system applied to agricultural ecological greenhouses
CN204989939U (en) Intelligent greenhouse governing system
CN101801130B (en) Remote intelligent distributed control system and method for solar energy power generating streetlamp
CN102388772B (en) Control device of solar photovoltaic generating system for controlling temperature and humidity of vegetable greenhouses
CN102694391A (en) Day-ahead optimal scheduling method for wind-solar storage integrated power generation system
Balaji et al. Solar powered auto irrigation system
CN106054841B (en) Photovoltaic agricultural greenhouse control system based on " internet+"
CN107894707B (en) Internet intelligent flower wall sunlight simulation control method and system thereof
CN113966680B (en) Plant light supplementing method, system, device, equipment and storage medium
JP2015065387A (en) Field management device and field management system
CN112882403A (en) Comprehensive intelligent energy management and control system based on Internet of things
CN107172793B (en) An intelligent supplementary light device and light adjustment method for agricultural greenhouses based on compound control
CN202041835U (en) A photovoltaic greenhouse monitoring system based on WSN
CN103916071B (en) A kind of uniform output intelligent control system of wind light mutual complementing power generation and method
CN203167720U (en) Automatic greenhouse control system based on photovoltaic power generation
CN206977769U (en) A kind of agricultural greenhouse Intelligent supplemental lighting equipment based on complex controll
CN101908177A (en) Method for regulating and controlling carbon emission of users by using intelligent power grid
CN205176549U (en) Wireless detecting system of energy -saving green house
CN209376306U (en) Intelligent greenhouse based on solar photovoltaic
CN205105829U (en) Green house based on solar electric system
CN104793670B (en) Control method of temperature and humidity control system in greenhouse
CN103607829A (en) Intelligent network type plant growth LED lamp capable of adjusting light quality automatically

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20230526

CF01 Termination of patent right due to non-payment of annual fee