[go: up one dir, main page]

CN107887480B - Preparation method of light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer - Google Patents

Preparation method of light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer Download PDF

Info

Publication number
CN107887480B
CN107887480B CN201710890572.5A CN201710890572A CN107887480B CN 107887480 B CN107887480 B CN 107887480B CN 201710890572 A CN201710890572 A CN 201710890572A CN 107887480 B CN107887480 B CN 107887480B
Authority
CN
China
Prior art keywords
gallium nitride
nitride layer
layer
organic particles
undoped gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710890572.5A
Other languages
Chinese (zh)
Other versions
CN107887480A (en
Inventor
郭炳磊
王群
葛永晖
吕蒙普
胡加辉
李鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Semitek Zhejiang Co Ltd
Original Assignee
HC Semitek Zhejiang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Semitek Zhejiang Co Ltd filed Critical HC Semitek Zhejiang Co Ltd
Priority to CN201710890572.5A priority Critical patent/CN107887480B/en
Publication of CN107887480A publication Critical patent/CN107887480A/en
Application granted granted Critical
Publication of CN107887480B publication Critical patent/CN107887480B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/018Bonding of wafers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/815Bodies having stress relaxation structures, e.g. buffer layers

Landscapes

  • Led Devices (AREA)

Abstract

本发明公开了一种发光二极管外延片的制备方法及发光二极管外延片,属于半导体技术领域。方法包括:在层叠在衬底上的缓冲层上生长第一未掺杂氮化镓层;在第一未掺杂氮化镓层上形成胶体晶体薄膜,胶体晶体薄膜包括阵列排列的多个有机颗粒;在多个有机颗粒上和多个有机颗粒之间沉积氧化物薄膜;对多个有机颗粒进行加热,多个有机颗粒在温度升高的过程中分解成气体从氧化物薄膜和第一未掺杂氮化镓层之间排出,第一未掺杂氮化镓层和氧化物薄膜之间形成阵列排列的多个空腔;在氧化物薄膜上生长第二未掺杂氮化镓层;在第二未掺杂氮化镓层上依次生长N型氮化镓层、多量子阱层、电子阻挡层和P型氮化镓层,形成外延片。本发明提高了外延片的一致性。

The present invention discloses a method for preparing a light-emitting diode epitaxial wafer and a light-emitting diode epitaxial wafer, belonging to the field of semiconductor technology. The method comprises: growing a first undoped gallium nitride layer on a buffer layer stacked on a substrate; forming a colloidal crystal film on the first undoped gallium nitride layer, the colloidal crystal film comprising a plurality of organic particles arranged in an array; depositing an oxide film on and between the plurality of organic particles; heating the plurality of organic particles, the plurality of organic particles decomposing into gas during the temperature increase process and being discharged from between the oxide film and the first undoped gallium nitride layer, and forming a plurality of cavities arranged in an array between the first undoped gallium nitride layer and the oxide film; growing a second undoped gallium nitride layer on the oxide film; and sequentially growing an N-type gallium nitride layer, a multi-quantum well layer, an electron blocking layer and a P-type gallium nitride layer on the second undoped gallium nitride layer to form an epitaxial wafer. The present invention improves the consistency of the epitaxial wafer.

Description

一种发光二极管外延片的制备方法及发光二极管外延片Method for preparing light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer

技术领域technical field

本发明涉及半导体技术领域,特别涉及一种发光二极管外延片的制备方法及发光二极管外延片。The invention relates to the technical field of semiconductors, in particular to a method for preparing a light-emitting diode epitaxial wafer and the light-emitting diode epitaxial wafer.

背景技术Background technique

发光二极管(英文:Light Emitting Diode,简称:LED)是利用半导体的PN结电致发光原理制成的一种半导体发光器件。外延片是发光二极管制备过程中的初级成品。Light Emitting Diode (English: Light Emitting Diode, referred to as: LED) is a semiconductor light emitting device made by using the principle of semiconductor PN junction electroluminescence. The epitaxial wafer is the primary product in the process of manufacturing light-emitting diodes.

现有的外延片包括蓝宝石衬底以及依次层叠在蓝宝石衬底上的缓冲层、未掺杂氮化镓层、N型氮化镓层、多量子阱层、电子阻挡层和P型氮化镓层。N型氮化镓层提供的电子和P型氮化镓层提供的空穴可以在电流的驱动下注入多量子阱层复合发光。The existing epitaxial wafer includes a sapphire substrate and a buffer layer, an undoped gallium nitride layer, an n-type gallium nitride layer, a multi-quantum well layer, an electron blocking layer and a p-type gallium nitride layer stacked on the sapphire substrate in sequence. Floor. The electrons provided by the N-type gallium nitride layer and the holes provided by the P-type gallium nitride layer can be injected into the multi-quantum well layer to recombine and emit light under the drive of current.

在实现本发明的过程中,发明人发现现有技术至少存在以下问题:In the process of realizing the present invention, the inventor finds that there are at least the following problems in the prior art:

蓝宝石与氮化镓之间存在较大的晶格失配(16.9%),在蓝宝石衬底上沉积氮化镓材料形成外延片,外延片底部蓝宝石和氮化镓的交界处会存在较大的晶格失配,晶格失配产生的位错和应力会随着氮化镓的继续沉积而在氮化镓内延伸,影响电子和空穴复合发光的多量子阱层的生长质量。由于生长条件的细小差异都会造成外延片底部晶格失配产生的位错和应力不同,因此各个外延片中多量子阱层的生长质量通常都不同,而外延片的光电性能主要由多量子阱层决定,所以各个外延片的光电性能也会不同,导致外延片的一致性较差。There is a large lattice mismatch (16.9%) between sapphire and gallium nitride. Deposit gallium nitride material on the sapphire substrate to form an epitaxial wafer. There will be a large gap between the sapphire and gallium nitride at the bottom of the epitaxial wafer. Lattice mismatch, the dislocation and stress generated by the lattice mismatch will extend in GaN as GaN continues to be deposited, affecting the growth quality of the multi-quantum well layer in which electrons and holes recombine and emit light. Since small differences in growth conditions will cause different dislocations and stresses generated by lattice mismatch at the bottom of the epitaxial wafers, the growth quality of the multi-quantum well layer in each epitaxial wafer is usually different, and the photoelectric performance of the epitaxial wafer is mainly determined by the multi-quantum well layer. The layer is determined, so the photoelectric properties of each epitaxial wafer will also be different, resulting in poor consistency of the epitaxial wafer.

发明内容SUMMARY OF THE INVENTION

为了解决现有技术发光二极管外延片的一致性较差的问题,本发明实施例提供了一种发光二极管外延片的制备方法及发光二极管外延片。所述技术方案如下:In order to solve the problem of poor consistency of the light-emitting diode epitaxial wafer in the prior art, the embodiment of the present invention provides a preparation method of the light-emitting diode epitaxial wafer and the light-emitting diode epitaxial wafer. Described technical scheme is as follows:

一方面,本发明实施例提供了一种发光二极管外延片的制备方法,所述制备方法包括:On the one hand, an embodiment of the present invention provides a method for preparing a light-emitting diode epitaxial wafer, the preparation method comprising:

在层叠在衬底上的缓冲层上生长第一未掺杂氮化镓层;growing a first undoped gallium nitride layer on the buffer layer stacked on the substrate;

在所述第一未掺杂氮化镓层上形成胶体晶体薄膜,所述胶体晶体薄膜包括阵列排列在所述第一未掺杂氮化镓层上的多个有机颗粒;forming a colloidal crystal thin film on the first undoped gallium nitride layer, the colloidal crystal thin film comprising a plurality of organic particles arranged in an array on the first undoped gallium nitride layer;

在所述多个有机颗粒上和所述多个有机颗粒之间沉积氧化物薄膜;depositing an oxide film on and between the plurality of organic particles;

对所述多个有机颗粒进行加热,所述多个有机颗粒在温度升高的过程中分解成气体从所述氧化物薄膜和所述第一未掺杂氮化镓层之间排出,所述第一未掺杂氮化镓层和所述氧化物薄膜之间形成阵列排列的多个空腔;heating the plurality of organic particles, the plurality of organic particles are decomposed into gas and discharged from between the oxide film and the first undoped gallium nitride layer during the process of temperature rise, the A plurality of cavities arranged in an array are formed between the first undoped gallium nitride layer and the oxide film;

在所述氧化物薄膜上生长第二未掺杂氮化镓层;growing a second undoped gallium nitride layer on the oxide film;

在所述第二未掺杂氮化镓层上依次生长N型氮化镓层、多量子阱层、电子阻挡层和P型氮化镓层,形成外延片。An N-type GaN layer, a multi-quantum well layer, an electron blocking layer and a P-type GaN layer are sequentially grown on the second undoped GaN layer to form an epitaxial wafer.

可选地,所述制备方法还包括:Optionally, the preparation method also includes:

将激光作用在所述氧化物薄膜内,利用所述多个空腔将所述第一未掺杂氮化镓层和所述第二未掺杂氮化镓层分离;applying a laser to the oxide film, using the plurality of cavities to separate the first undoped gallium nitride layer from the second undoped gallium nitride layer;

对所述第一未掺杂氮化镓层进行刻蚀,直到所述第一未掺杂氮化镓层的表面为平面,得到层叠有缓冲层的衬底。Etching the first undoped gallium nitride layer until the surface of the first undoped gallium nitride layer is flat to obtain a substrate stacked with a buffer layer.

可选地,所述在层叠在衬底上的缓冲层上生长第一未掺杂氮化镓层,包括:Optionally, the growing the first undoped gallium nitride layer on the buffer layer stacked on the substrate includes:

提供一层叠有缓冲层的衬底;providing a substrate stacked with a buffer layer;

在所述缓冲层上生长第一未掺杂氮化镓层。A first undoped gallium nitride layer is grown on the buffer layer.

可选地,所述在层叠在衬底上的缓冲层上生长第一未掺杂氮化镓层,包括:Optionally, the growing the first undoped gallium nitride layer on the buffer layer stacked on the substrate includes:

在衬底上生长缓冲层;growing a buffer layer on the substrate;

在所述缓冲层上生长第一未掺杂氮化镓层。A first undoped gallium nitride layer is grown on the buffer layer.

可选地,所述在所述第一未掺杂氮化镓层上形成胶体晶体薄膜,所述胶体晶体薄膜包括阵列排列在所述第一未掺杂氮化镓层上的多个有机颗粒,包括:Optionally, forming a colloidal crystal film on the first undoped gallium nitride layer, the colloidal crystal film comprising a plurality of organic particles arranged in an array on the first undoped gallium nitride layer ,include:

将前驱体分散在溶剂中发生反应,生成所述有机颗粒;Dispersing the precursor in a solvent and reacting to generate the organic particles;

对所述溶剂进行蒸发,所述有机颗粒在所述溶剂蒸发诱导产生的毛细作用下呈阵列排列,形成所述胶体晶体薄膜。The solvent is evaporated, and the organic particles are arranged in an array under the capillary action induced by the evaporation of the solvent to form the colloidal crystal film.

可选地,所述有机颗粒的直径为0.5μm~1.8μm。Optionally, the diameter of the organic particles is 0.5 μm˜1.8 μm.

优选地,所述有机颗粒的材料采用聚苯乙烯。Preferably, the material of the organic particles is polystyrene.

可选地,所述氧化物薄膜的材料采用氧化铝或者氧化锌。Optionally, the oxide film is made of aluminum oxide or zinc oxide.

可选地,所述氧化物薄膜的厚度为0.5nm~50nm。Optionally, the thickness of the oxide film is 0.5nm-50nm.

另一方面,本发明实施例提供了一种发光二极管外延片,所述发光二极管外延片包括衬底依次层叠在所述衬底上的缓冲层、N型氮化镓层、多量子阱层、电子阻挡层和P型氮化镓层,所述发光二极管外延片还包括层叠在所述缓冲层和所述N型氮化镓层之间的第一未掺杂氮化镓层、胶体晶体薄膜、氧化物薄膜和第二未掺杂氮化镓层,所述第一未掺杂氮化镓层设置在所述缓冲层上,所述胶体晶体薄膜包括阵列排列在所述第一未掺杂氮化镓层上的多个有机颗粒,所述氧化物薄膜设置在所述多个有机颗粒上和所述多个有机颗粒之间,所述第二未掺杂氮化镓层设置在所述氧化物薄膜上。On the other hand, an embodiment of the present invention provides a light-emitting diode epitaxial wafer, the light-emitting diode epitaxial wafer includes a buffer layer, an N-type gallium nitride layer, a multi-quantum well layer, and a substrate sequentially stacked on the substrate. An electron blocking layer and a P-type gallium nitride layer, the light-emitting diode epitaxial wafer also includes a first undoped gallium nitride layer and a colloidal crystal film stacked between the buffer layer and the N-type gallium nitride layer , an oxide thin film and a second undoped gallium nitride layer, the first undoped gallium nitride layer is arranged on the buffer layer, and the colloidal crystal thin film includes an array arranged on the first undoped gallium nitride layer a plurality of organic particles on the gallium nitride layer, the oxide thin film is arranged on the plurality of organic particles and between the plurality of organic particles, and the second undoped gallium nitride layer is arranged on the oxide film.

本发明实施例提供的技术方案带来的有益效果是:The beneficial effects brought by the technical solution provided by the embodiments of the present invention are:

通过在未掺杂氮化镓层中先形成包括阵列排列的多个有机颗粒的胶体晶体薄膜,并在胶体晶体薄膜上沉积氧化物薄膜,再对多个有机颗粒进行加热,使有机颗粒在温度升高的过程中分解成气体排出,从而在未掺杂氮化镓层中的氧化物薄膜处形成阵列排列的多个空腔,从而在外延片形成之后,将激光作用在氧化物薄膜内,利用空腔即可将未掺杂氮化镓层分成两个部分,层叠有缓冲层的衬底所在的部分进行修饰之后,即可进行其它外延片的生长。由于各个外延片生长的底层(层叠有缓冲层的衬底)是同一个,因此各个外延片中蓝宝石和氮化镓之间的晶格失配所产生的影响也是相同的,从而避免由于晶格失配的不同而最终导致外延片的光电性能不同,提高了外延片的一致性。另外,本发明还可以减少后续对衬底进行减薄和研磨的工序,实现更为简单,耗费的时间更短,同时也能避免衬底减薄过程中存在的应力释放的问题,提高了外延片加工的质量,降低生产成本,提高产出效率。By first forming a colloidal crystal film including a plurality of organic particles arranged in an array in the undoped gallium nitride layer, and depositing an oxide film on the colloidal crystal film, and then heating the multiple organic particles, the organic particles are heated at a temperature During the rising process, it is decomposed into gas and discharged, thereby forming multiple cavities arranged in an array at the oxide film in the undoped gallium nitride layer, so that after the formation of the epitaxial wafer, the laser acts on the oxide film, The undoped gallium nitride layer can be divided into two parts by using the cavity, and after the part where the substrate with the buffer layer is stacked is modified, other epitaxial wafers can be grown. Since the bottom layer of each epitaxial wafer (the substrate with the buffer layer stacked) is the same, the influence of the lattice mismatch between sapphire and gallium nitride in each epitaxial wafer is also the same, thereby avoiding the crystal lattice The difference in mismatch eventually leads to different photoelectric properties of the epitaxial wafer, which improves the consistency of the epitaxial wafer. In addition, the present invention can also reduce the subsequent process of thinning and grinding the substrate, which is simpler to implement and takes less time. At the same time, it can also avoid the problem of stress release in the process of substrate thinning and improve the efficiency of epitaxy. Improve the quality of chip processing, reduce production costs and improve output efficiency.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.

图1是本发明实施例一提供的一种发光二极管外延片的制备方法的流程图;Fig. 1 is a flowchart of a method for preparing a light-emitting diode epitaxial wafer provided by Embodiment 1 of the present invention;

图2a-图2g是本发明实施例一提供的制备方法执行过程中发光二极管外延片的结构示意图;Fig. 2a-Fig. 2g are structural schematic diagrams of light-emitting diode epitaxial wafers during the execution of the preparation method provided by Embodiment 1 of the present invention;

图3是本发明实施例二提供的一种发光二极管外延片的制备方法的流程图;Fig. 3 is a flowchart of a method for preparing a light-emitting diode epitaxial wafer provided by Embodiment 2 of the present invention;

图4是本发明实施例三提供的一种发光二极管外延片的结构示意图。FIG. 4 is a schematic structural view of a light-emitting diode epitaxial wafer provided by Embodiment 3 of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the implementation manner of the present invention will be further described in detail below in conjunction with the accompanying drawings.

实施例一Example 1

本发明实施例提供了一种发光二极管外延片的制备方法,参见图1,该制备方法包括:An embodiment of the present invention provides a method for preparing a light-emitting diode epitaxial wafer, as shown in FIG. 1 , the preparation method includes:

步骤101:在衬底上生长缓冲层。Step 101: growing a buffer layer on a substrate.

具体地,衬底可以采用[0001]晶向的蓝宝石。Specifically, the substrate can be sapphire with [0001] crystal orientation.

可选地,在步骤101之前,该制备方法还可以包括:Optionally, before step 101, the preparation method may also include:

控制温度为1000℃~1200℃,将衬底在氢气气氛中退火8分钟,并进行氮化处理,以清洁衬底。The temperature is controlled at 1000° C. to 1200° C., the substrate is annealed in a hydrogen atmosphere for 8 minutes, and nitriding treatment is performed to clean the substrate.

具体地,该步骤101可以包括:Specifically, this step 101 may include:

控制温度为400℃~600℃,压力为400Torr~600Torr,在衬底上生长厚度为15nm~35nm的氮化镓层,形成缓冲层。The temperature is controlled at 400° C. to 600° C., the pressure is 400 Torr to 600 Torr, and a gallium nitride layer with a thickness of 15 nm to 35 nm is grown on the substrate to form a buffer layer.

可选地,在步骤101之后,该制备方法还可以包括:Optionally, after step 101, the preparation method may further include:

控制温度为1000℃~1200℃,压力为400Torr~600Torr,持续时间为5分钟~10分钟,对缓冲层进行原位退火处理。The temperature is controlled to be 1000° C. to 1200° C., the pressure is 400 Torr to 600 Torr, and the duration is 5 minutes to 10 minutes, and an in-situ annealing treatment is performed on the buffer layer.

步骤102:在缓冲层上生长第一未掺杂氮化镓层。Step 102: growing a first undoped GaN layer on the buffer layer.

具体地,该步骤102可以包括:Specifically, this step 102 may include:

控制温度为1000℃~1100℃,压力为100torr~500torr,在缓冲层上生长厚度为0.1μm~1μm的第一未掺杂氮化镓层。The temperature is controlled at 1000° C. to 1100° C., the pressure is 100 torr to 500 torr, and a first undoped gallium nitride layer with a thickness of 0.1 μm to 1 μm is grown on the buffer layer.

需要说明的是,步骤101~步骤102为在层叠在衬底上的缓冲层上生长第一未掺杂氮化镓层的一种实现方式,主要应用在第一次形成外延片的时候。图2a为在层叠在衬底上的缓冲层上生长第一未掺杂氮化镓层之后外延片的结构示意图。其中,10为衬底,20为缓冲层,31为第一未掺杂氮化镓层。如图2a所示,缓冲层20、第一未掺杂氮化镓层31依次层叠在衬底10上。It should be noted that steps 101 to 102 are an implementation manner of growing a first undoped gallium nitride layer on a buffer layer stacked on a substrate, which is mainly applied when forming an epitaxial wafer for the first time. Fig. 2a is a schematic structural view of an epitaxial wafer after growing a first undoped gallium nitride layer on a buffer layer stacked on a substrate. Wherein, 10 is a substrate, 20 is a buffer layer, and 31 is a first undoped gallium nitride layer. As shown in FIG. 2 a , the buffer layer 20 and the first undoped gallium nitride layer 31 are sequentially stacked on the substrate 10 .

步骤103:在第一未掺杂氮化镓层上形成胶体晶体薄膜,胶体晶体薄膜包括阵列排列在第一未掺杂氮化镓层上的多个有机颗粒。Step 103: forming a colloidal crystal film on the first undoped GaN layer, the colloidal crystal film including a plurality of organic particles arranged in an array on the first undoped GaN layer.

图2b为步骤103执行之后外延片的结构示意图。其中,41为胶体晶体薄膜中的有机颗粒。如图2b所示,多个有机颗粒41均匀分布在第一未掺杂氮化镓层31上。FIG. 2b is a schematic diagram of the structure of the epitaxial wafer after step 103 is performed. Among them, 41 is the organic particle in the colloidal crystal film. As shown in FIG. 2 b , a plurality of organic particles 41 are uniformly distributed on the first undoped GaN layer 31 .

需要说明的是,缓冲层和第一未掺杂氮化镓层的生长是将衬底放入金属有机化合物化学气相沉淀(英文:Metal-organic Chemical Vapor Deposition,简称:MOCVD)反应腔内进行的,在形成胶体晶体薄膜时,需要先将衬底冷却至室温,再将衬底从MOCVD反应腔内取出,然后才在第一未掺杂氮化镓层上形成胶体晶体薄膜。It should be noted that the growth of the buffer layer and the first undoped gallium nitride layer is carried out by placing the substrate in a Metal-organic Chemical Vapor Deposition (English: Metal-organic Chemical Vapor Deposition, referred to as: MOCVD) reaction chamber. , when forming the colloidal crystal thin film, the substrate needs to be cooled to room temperature first, and then the substrate is taken out from the MOCVD reaction chamber, and then the colloidal crystal thin film is formed on the first undoped gallium nitride layer.

可选地,该步骤103可以包括:Optionally, this step 103 may include:

将前驱体分散在溶剂中发生反应,生成有机颗粒;Disperse the precursor in a solvent and react to generate organic particles;

对溶剂进行蒸发,有机颗粒在溶剂蒸发诱导产生的毛细作用下呈阵列排列,形成胶体晶体薄膜。The solvent is evaporated, and the organic particles are arranged in an array under the capillary action induced by solvent evaporation to form a colloidal crystal film.

通过上述步骤,即可形成胶体晶体薄膜。在实际应用中,也可以采用其它实现方式,如施加产生静电力的电场,形成胶体晶体薄膜,本发明并不限制于此。Through the above steps, the colloidal crystal thin film can be formed. In practical applications, other implementation methods may also be used, such as applying an electric field that generates electrostatic force to form a colloidal crystal film, and the present invention is not limited thereto.

可选地,有机颗粒的直径可以为0.5μm~1.8μm。若有机颗粒的直径小于0.5μm,则后续可能无法有效将第一未掺杂氮化镓层和第二未掺杂氮化镓层分离;若有机颗粒的直径大于1.8μm,则可能造成第一未掺杂氮化镓层在有机颗粒分解成气体排出之后即与氧化物薄膜分离,进而无法在氧化物薄膜上沉积第二未掺杂氮化镓层。Optionally, the diameter of the organic particles may be 0.5 μm˜1.8 μm. If the diameter of the organic particles is less than 0.5 μm, it may not be possible to effectively separate the first undoped gallium nitride layer from the second undoped gallium nitride layer; if the diameter of the organic particles is greater than 1.8 μm, it may cause the first The undoped GaN layer is separated from the oxide film after the organic particles are decomposed into gas and discharged, so that the second undoped GaN layer cannot be deposited on the oxide film.

优选地,有机颗粒的材料可以采用聚苯乙烯。一方面由聚苯乙烯形成的有机颗粒的直径可以满足0.5μm~1.8μm的要求,另一方面聚苯乙烯为胶体晶体薄膜的常用材料,获取成本低。Preferably, the material of the organic particles can be polystyrene. On the one hand, the diameter of the organic particles formed by polystyrene can meet the requirements of 0.5 μm to 1.8 μm; on the other hand, polystyrene is a common material for colloidal crystal films, and the acquisition cost is low.

步骤104:在多个有机颗粒上和多个有机颗粒之间沉积氧化物薄膜。Step 104: Deposit an oxide film on and between the organic particles.

图2c为步骤104执行之后外延片的结构示意图。其中,50为氧化物薄膜。如图2c所示,氧化物薄膜50沉积在多个有机颗粒41上和多个有机颗粒41之间。FIG. 2c is a schematic diagram of the structure of the epitaxial wafer after step 104 is performed. Among them, 50 is an oxide film. As shown in FIG. 2 c , an oxide film 50 is deposited on and between the plurality of organic particles 41 .

可选地,该步骤104可以包括:Optionally, this step 104 may include:

采用原子层沉积技术在多个有机颗粒上和多个有机颗粒之间沉积氧化物薄膜。An oxide thin film is deposited on and between a plurality of organic particles by atomic layer deposition technology.

可选地,氧化物薄膜的材料可以采用氧化铝或者氧化锌,从而在室温下即可制备,避免破坏有机颗粒。Optionally, aluminum oxide or zinc oxide can be used as a material for the oxide film, so that it can be prepared at room temperature and avoid damage to organic particles.

可选地,氧化物薄膜的厚度可以为0.5nm~50nm,以确保能够实现第一未掺杂氮化镓层和第二未掺杂氮化镓层的分离。Optionally, the thickness of the oxide film may be 0.5nm˜50nm, so as to ensure the separation of the first undoped GaN layer and the second undoped GaN layer.

步骤105:对多个有机颗粒进行加热,多个有机颗粒在温度升高的过程中分解成气体从氧化物薄膜和第一未掺杂氮化镓层之间排出,第一未掺杂氮化镓层和氧化物薄膜之间形成阵列排列的多个空腔。Step 105: heating a plurality of organic particles, the plurality of organic particles are decomposed into gases during the temperature rise process and discharged from between the oxide film and the first undoped gallium nitride layer, the first undoped gallium nitride layer Multiple cavities arranged in an array are formed between the gallium layer and the oxide film.

图2d为步骤105执行之后外延片的结构示意图。其中,42为空腔。如图2d所示,有机颗粒41已分解成气体排出,留下空腔42,各个空腔42呈阵列排列在第一未掺杂氮化镓层31上。FIG. 2d is a schematic diagram of the structure of the epitaxial wafer after step 105 is performed. Wherein, 42 is a cavity. As shown in FIG. 2 d , the organic particles 41 have been decomposed into gas and discharged, leaving cavities 42 , and each cavity 42 is arranged in an array on the first undoped GaN layer 31 .

需要说明的是,在空腔形成之后,可以先对衬底等各层的表面进行清洁,再将衬底放入MOCVD反应腔内进行后续的生长。It should be noted that after the cavity is formed, the surface of each layer such as the substrate can be cleaned first, and then the substrate can be placed in the MOCVD reaction chamber for subsequent growth.

步骤106:在氧化物薄膜上生长第二未掺杂氮化镓层。Step 106: growing a second undoped GaN layer on the oxide film.

图2e为步骤106执行之后外延片的结构示意图。其中,32为第二未掺杂氮化镓层。如图2e所示,第二未掺杂氮化镓层32沉积在氧化物薄膜50上。FIG. 2e is a schematic diagram of the structure of the epitaxial wafer after step 106 is performed. Wherein, 32 is the second undoped gallium nitride layer. As shown in FIG. 2 e , a second undoped gallium nitride layer 32 is deposited on the oxide film 50 .

可选地,第一未掺杂氮化镓层的生长条件可以与第二未掺杂氮化镓层的生长条件相同,生长条件包括生长温度和生长压力。Optionally, the growth conditions of the first undoped GaN layer can be the same as the growth conditions of the second undoped GaN layer, and the growth conditions include growth temperature and growth pressure.

可选地,第一未掺杂氮化镓层的厚度可以与第二未掺杂氮化镓层的厚度相同。Optionally, the thickness of the first undoped GaN layer may be the same as that of the second undoped GaN layer.

具体地,该步骤106可以包括:Specifically, this step 106 may include:

控制温度为1000℃~1100℃,压力为100torr~500torr,在氧化物薄膜上生长厚度为0.1μm~1μm的第二未掺杂氮化镓层。The temperature is controlled at 1000° C. to 1100° C., the pressure is 100 torr to 500 torr, and a second undoped gallium nitride layer with a thickness of 0.1 μm to 1 μm is grown on the oxide film.

步骤107:在第二未掺杂氮化镓层上依次生长N型氮化镓层、多量子阱层、电子阻挡层和P型氮化镓层,形成外延片。Step 107: growing an N-type GaN layer, a multi-quantum well layer, an electron blocking layer and a P-type GaN layer sequentially on the second undoped GaN layer to form an epitaxial wafer.

图2f为步骤107执行之后外延片的结构示意图。其中,60为N型氮化镓层,70为多量子阱层,80为电子阻挡层,90为P型氮化镓层。如图2f所示,N型氮化镓层60、多量子阱层70、电子阻挡层80和P型氮化镓层90依次层叠在第二未掺杂氮化镓层32上。FIG. 2f is a schematic diagram of the structure of the epitaxial wafer after step 107 is performed. Wherein, 60 is an N-type gallium nitride layer, 70 is a multi-quantum well layer, 80 is an electron blocking layer, and 90 is a P-type gallium nitride layer. As shown in FIG. 2 f , the N-type GaN layer 60 , the multi-quantum well layer 70 , the electron blocking layer 80 and the P-type GaN layer 90 are sequentially stacked on the second undoped GaN layer 32 .

具体地,该步骤107可以包括:Specifically, this step 107 may include:

控制温度为1000℃~1200℃,压力为100torr~500torr,在第二未掺杂氮化镓层上生长厚度为1μm~5μm、掺杂浓度为1018cm-3~1019cm-3的N型氮化镓层;Controlling the temperature at 1000°C to 1200°C and the pressure at 100torr to 500torr, growing N with a thickness of 1 μm to 5 μm and a doping concentration of 10 18 cm -3 to 10 19 cm -3 on the second undoped gallium nitride layer type gallium nitride layer;

控制压力为100torr~500torr,在N型氮化镓层上交替生长厚度为3nm的铟镓氮层和厚度为9nm~20nm的氮化镓层,铟镓氮层的生长温度为720℃~829℃,氮化镓层的生长温度为850℃~959℃,氮化镓层的数量与铟镓氮层的数量相同,铟镓氮层的数量为5个~15个,形成多量子阱层;The control pressure is 100torr~500torr, and the indium gallium nitride layer with a thickness of 3nm and the gallium nitride layer with a thickness of 9nm~20nm are alternately grown on the N-type gallium nitride layer, and the growth temperature of the indium gallium nitride layer is 720℃~829℃ , the growth temperature of the gallium nitride layer is 850°C to 959°C, the number of the gallium nitride layer is the same as the number of the indium gallium nitride layer, and the number of the indium gallium nitride layer is 5 to 15, forming a multi-quantum well layer;

控制温度为850℃~1080℃,压力为200torr~500torr,在多量子阱层上生长厚度为50nm~150nm的P型AlyGa1-yN层(0.1<y<0.5),形成电子阻挡层;Control the temperature at 850°C to 1080°C and the pressure at 200torr to 500torr, and grow a P-type Al y Ga 1-y N layer (0.1<y<0.5) with a thickness of 50nm to 150nm on the multi-quantum well layer to form an electron blocking layer ;

控制温度为750℃~1080℃,压力为200torr~500torr,在电子阻挡层上生长厚度为100nm~200nm的P型氮化镓层;Control the temperature at 750°C to 1080°C and the pressure at 200torr to 500torr, and grow a P-type gallium nitride layer with a thickness of 100nm to 200nm on the electron blocking layer;

控制温度为850℃~1050℃,压力为100torr~300torr,继续生长厚度为5nm~300nm的P型氮化镓层。The temperature is controlled at 850° C. to 1050° C., the pressure is 100 torr to 300 torr, and the P-type gallium nitride layer with a thickness of 5 nm to 300 nm is continuously grown.

可选地,在步骤107之后,该制备方法还可以包括:Optionally, after step 107, the preparation method may also include:

控制温度为650℃~850℃,持续时间为5分钟~15分钟,在氮气气氛中进行退火处理。The temperature is controlled at 650° C. to 850° C., the duration is 5 minutes to 15 minutes, and the annealing treatment is performed in a nitrogen atmosphere.

需要说明的是,在本实施例中,控制温度、压力均是指控制生长外延片的反应腔中的温度、压力。实现时以三甲基镓或三甲基乙作为镓源,高纯氮气作为氮源,三甲基铟作为铟源,三甲基铝作为铝源,N型掺杂剂选用硅烷,P型掺杂剂选用二茂镁。It should be noted that, in this embodiment, controlling temperature and pressure both refer to controlling the temperature and pressure in the reaction chamber for growing epitaxial wafers. When it is realized, trimethylgallium or trimethylethyl is used as the gallium source, high-purity nitrogen is used as the nitrogen source, trimethylindium is used as the indium source, trimethylaluminum is used as the aluminum source, the N-type dopant is silane, and the P-type dopant is silane. Miscellaneous agent selects dichloromagnesium for use.

步骤108:将激光作用在氧化物薄膜内,利用多个空腔将第一未掺杂氮化镓层和第二未掺杂氮化镓层分离。Step 108 : applying a laser to the oxide film, using a plurality of cavities to separate the first undoped GaN layer and the second undoped GaN layer.

图2g为步骤108执行之后外延片的结构示意图。如图2g所示,激光作用之后,氧化物薄膜50裂开,第一未掺杂氮化镓层31和第二未掺杂氮化镓层32分离,同时第一未掺杂氮化镓层31和第二未掺杂氮化镓层32上均有部分氧化物薄膜50残留。FIG. 2g is a schematic diagram of the structure of the epitaxial wafer after step 108 is performed. As shown in Figure 2g, after the laser action, the oxide film 50 is split, the first undoped gallium nitride layer 31 and the second undoped gallium nitride layer 32 are separated, and the first undoped gallium nitride layer 31 and the second undoped GaN layer 32 have part of the oxide film 50 remaining.

步骤109:对第一未掺杂氮化镓层进行刻蚀,直到第一未掺杂氮化镓层的表面为平面,得到层叠有缓冲层的衬底。Step 109: Etching the first undoped GaN layer until the surface of the first undoped GaN layer is flat, to obtain a substrate stacked with buffer layers.

在实际应用中,由于分离的位置通常不会刚好在界面处,因此需要对第一未掺杂氮化镓层的表面进行修饰,使其平整。而修饰之后,可能会有部分第一未掺杂氮化镓层保留,也可能所有第一未掺杂氮化镓层都被刻蚀掉。In practical applications, since the separation position is usually not exactly at the interface, it is necessary to modify the surface of the first undoped gallium nitride layer to make it flat. After modification, part of the first undoped GaN layer may remain, or all of the first undoped GaN layer may be etched away.

需要说明的是,步骤108~步骤109为可选步骤。在形成外延片之后,由于氧化物薄膜和第一未掺杂氮化镓层之间设有多个空腔,将激光作用在氧化物薄膜内,即可很容易地将第一未掺杂氮化镓层和第二未掺杂氮化镓层分离,即外延片被分成两个部分:一个部分包括第一未掺杂氮化镓层、缓冲层和衬底,另一部分包括第二未掺杂氮化镓层、N型氮化镓层、多量子阱层、电子阻挡层和P型氮化镓层。It should be noted that steps 108 to 109 are optional steps. After the epitaxial wafer is formed, since there are multiple cavities between the oxide film and the first undoped gallium nitride layer, the first undoped nitrogen The gallium nitride layer and the second undoped gallium nitride layer are separated, that is, the epitaxial wafer is divided into two parts: one part includes the first undoped gallium nitride layer, buffer layer and substrate, and the other part includes the second undoped gallium nitride layer A heterogallium nitride layer, an N-type GaN layer, a multi-quantum well layer, an electron blocking layer and a P-type GaN layer.

其中,第二未掺杂氮化镓层所在的部分包括外延片发光所需的基本结构(N型氮化镓层、多量子阱层和P型氮化镓层),可进行后续加工制成发光二极管;第一未掺杂氮化镓层所在的部分为外延片生长的底层结构(包括衬底和缓冲层),蓝宝石和氮化镓之间的晶格失配已经产生,如果在这个层叠有缓冲层的衬底上进行其它外延片的生长,那么所有外延片中晶格失配产生的位错和应力是相同的,进而所有外延片中多量子阱层的生长质量不会由于生长条件的细小差异而不同,从而避免各个外延片的光电性能不同,提高了外延片的一致性。Among them, the part where the second undoped gallium nitride layer is located includes the basic structure (N-type gallium nitride layer, multi-quantum well layer and P-type gallium nitride layer) required for the epitaxial wafer to emit light, which can be made by subsequent processing. Light-emitting diode; the part where the first undoped gallium nitride layer is located is the underlying structure of epitaxial wafer growth (including the substrate and buffer layer), and the lattice mismatch between sapphire and gallium nitride has already occurred. If in this stack If other epitaxial wafers are grown on a substrate with a buffer layer, then the dislocations and stresses generated by lattice mismatch in all epitaxial wafers are the same, and the growth quality of multiple quantum well layers in all epitaxial wafers will not be affected by the growth conditions. The small differences of the epitaxial wafers are different, so as to avoid the different photoelectric properties of each epitaxial wafer and improve the consistency of the epitaxial wafers.

本发明实施例通过在未掺杂氮化镓层中先形成包括阵列排列的多个有机颗粒的胶体晶体薄膜,并在胶体晶体薄膜上沉积氧化物薄膜,再对多个有机颗粒进行加热,使有机颗粒在温度升高的过程中分解成气体排出,从而在未掺杂氮化镓层中的氧化物薄膜处形成阵列排列的多个空腔,从而在外延片形成之后,将激光作用在氧化物薄膜内,利用空腔即可将未掺杂氮化镓层分成两个部分,层叠有缓冲层的衬底所在的部分进行修饰之后,即可进行其它外延片的生长。由于各个外延片生长的底层(层叠有缓冲层的衬底)是同一个,因此各个外延片中蓝宝石和氮化镓之间的晶格失配所产生的影响也是相同的,从而避免由于晶格失配的不同而最终导致外延片的光电性能不同,提高了外延片的一致性。In the embodiment of the present invention, a colloidal crystal film including a plurality of organic particles arranged in an array is first formed in the undoped gallium nitride layer, and an oxide film is deposited on the colloidal crystal film, and then the plurality of organic particles are heated, so that The organic particles are decomposed into gases and discharged during the temperature rise, thereby forming multiple cavities arranged in an array at the oxide film in the undoped gallium nitride layer, so that after the formation of the epitaxial wafer, the laser acts on the oxide film. In the object thin film, the undoped gallium nitride layer can be divided into two parts by using the cavity, and after the part where the substrate with the buffer layer is stacked is modified, the growth of other epitaxial wafers can be carried out. Since the bottom layer of each epitaxial wafer (the substrate with the buffer layer stacked) is the same, the influence of the lattice mismatch between sapphire and gallium nitride in each epitaxial wafer is also the same, thereby avoiding the crystal lattice The difference in mismatch eventually leads to different photoelectric properties of the epitaxial wafer, which improves the consistency of the epitaxial wafer.

另外,本发明还可以减少后续对衬底进行减薄和研磨的工序,实现更为简单,耗费的时间更短,同时也能避免衬底减薄过程中存在的应力释放的问题,提高了外延片加工的质量,降低生产成本,提高产出效率。In addition, the present invention can also reduce the subsequent process of thinning and grinding the substrate, which is simpler to implement and takes less time. At the same time, it can also avoid the problem of stress release in the process of substrate thinning and improve the efficiency of epitaxy. Improve the quality of chip processing, reduce production costs and improve output efficiency.

实施例二Embodiment 2

本发明实施例提供了一种发光二极管外延片的制备方法,参见图3,该制备方法包括:An embodiment of the present invention provides a method for preparing a light-emitting diode epitaxial wafer, as shown in FIG. 3 , the preparation method includes:

步骤201:提供一层叠有缓冲层的衬底。Step 201: providing a substrate laminated with a buffer layer.

具体地,该步骤201可以采用实施例一中步骤108和步骤109得到的层叠有缓冲层的衬底。Specifically, in step 201, the substrate obtained in step 108 and step 109 in the first embodiment with a buffer layer laminated thereon can be used.

步骤202:在缓冲层上生长第一未掺杂氮化镓层。Step 202: growing a first undoped GaN layer on the buffer layer.

具体地,如果步骤201中层叠在衬底上的缓冲层上没有第一未掺杂氮化镓层,则该步骤202可以与实施例一中的步骤102相同,在此不再详述。如果步骤201中层叠在衬底上的缓冲层上还层叠有第一未掺杂氮化镓层,则可以相应减少生长的第一未掺杂氮化镓层的厚度,使步骤202中生长的第一未掺杂氮化镓的厚度和缓冲层上层叠的第一未掺杂氮化镓层的厚度之和,等于步骤102中生长的第一未掺杂氮化镓层的厚度。Specifically, if there is no first undoped gallium nitride layer on the buffer layer stacked on the substrate in step 201, then this step 202 can be the same as step 102 in Embodiment 1, and will not be described in detail here. If the first undoped gallium nitride layer is also laminated on the buffer layer stacked on the substrate in step 201, the thickness of the grown first undoped gallium nitride layer can be correspondingly reduced, so that the grown in step 202 The sum of the thickness of the first undoped GaN layer and the thickness of the first undoped GaN layer stacked on the buffer layer is equal to the thickness of the first undoped GaN layer grown in step 102 .

需要说明的是,步骤201~步骤202即为不同于步骤101~步骤102的另一种实现在层叠在衬底上的缓冲层上生长第一未掺杂氮化镓层的方式,可以应用在除第一次形成的外延片之外的所有外延片的形成过程中。It should be noted that steps 201 to 202 are different from steps 101 to 102 to realize the growth of the first undoped gallium nitride layer on the buffer layer stacked on the substrate, which can be applied in During the formation of all epitaxial wafers except the first epitaxial wafers formed.

步骤203:在第一未掺杂氮化镓层上形成胶体晶体薄膜,胶体晶体薄膜包括阵列排列在第一未掺杂氮化镓层上的多个有机颗粒。Step 203: forming a colloidal crystal thin film on the first undoped GaN layer, the colloidal crystal thin film including a plurality of organic particles arrayed on the first undoped GaN layer.

具体地,该步骤203可以与实施例一中的步骤103相同,在此不再详述。Specifically, this step 203 may be the same as step 103 in the first embodiment, and will not be described in detail here.

步骤204:在多个有机颗粒上和多个有机颗粒之间沉积氧化物薄膜。Step 204: Deposit an oxide film on and between the organic particles.

具体地,该步骤204可以与实施例一中的步骤104相同,在此不再详述。Specifically, this step 204 may be the same as step 104 in the first embodiment, and will not be described in detail here.

步骤205:对多个有机颗粒进行加热,多个有机颗粒在温度升高的过程中分解成气体从氧化物薄膜和第一未掺杂氮化镓层之间排出,第一未掺杂氮化镓层和氧化物薄膜之间形成阵列排列的多个空腔。Step 205: heating a plurality of organic particles, the plurality of organic particles are decomposed into gases during the temperature rise process and discharged from between the oxide film and the first undoped gallium nitride layer, the first undoped gallium nitride layer Multiple cavities arranged in an array are formed between the gallium layer and the oxide film.

具体地,该步骤205可以与实施例一中的步骤105相同,在此不再详述。Specifically, this step 205 may be the same as step 105 in the first embodiment, and will not be described in detail here.

步骤206:在氧化物薄膜上生长第二未掺杂氮化镓层。Step 206: growing a second undoped GaN layer on the oxide film.

具体地,该步骤206可以与实施例一中的步骤106相同,在此不再详述。Specifically, the step 206 may be the same as the step 106 in the first embodiment, and will not be described in detail here.

步骤207:在第二未掺杂氮化镓层上依次生长N型氮化镓层、多量子阱层、电子阻挡层和P型氮化镓层,形成外延片。Step 207: growing an N-type GaN layer, a multi-quantum well layer, an electron blocking layer and a P-type GaN layer sequentially on the second undoped GaN layer to form an epitaxial wafer.

具体地,该步骤207可以与实施例一中的步骤107相同,在此不再详述。Specifically, this step 207 may be the same as step 107 in the first embodiment, and will not be described in detail here.

步骤208:将激光作用在氧化物薄膜内,利用多个空腔将第一未掺杂氮化镓层和第二未掺杂氮化镓层分离。Step 208 : applying a laser to the oxide film, and using a plurality of cavities to separate the first undoped GaN layer and the second undoped GaN layer.

具体地,该步骤208可以与实施例一中的步骤108相同,在此不再详述。Specifically, the step 208 may be the same as the step 108 in the first embodiment, and will not be described in detail here.

步骤209:对第一未掺杂氮化镓层进行刻蚀,直到第一未掺杂氮化镓层的表面为平面,得到层叠有缓冲层的衬底。Step 209: Etching the first undoped GaN layer until the surface of the first undoped GaN layer is flat to obtain a substrate stacked with buffer layers.

具体地,该步骤209可以与实施例一中的步骤109相同,在此不再详述。Specifically, this step 209 may be the same as step 109 in Embodiment 1, and will not be described in detail here.

可以理解地,在步骤209执行之后,可以再次执行201~步骤207形成外延片,接着执行步骤208和步骤209得到层叠有缓冲层的衬底,又可以再一次执行步骤201~步骤207形成外延片,然后执行步骤208和步骤209得到层叠有缓冲层的衬底,……,如此循环,直到完成所有外延片的制作。It can be understood that after step 209 is performed, steps 201 to 207 can be performed again to form an epitaxial wafer, and then steps 208 and 209 can be performed to obtain a substrate laminated with a buffer layer, and steps 201 to 207 can be performed again to form an epitaxial wafer , and then perform step 208 and step 209 to obtain a substrate laminated with a buffer layer, ..., and so on, until all epitaxial wafers are manufactured.

实施例三Embodiment 3

本发明实施例提供了一种发光二极管外延片,可以采用上述实施例一或实施例二提供的制备方法制备而成。具体地,参见图4,该发光二极管外延片包括衬底依次层叠在衬底上的缓冲层、第一未掺杂氮化镓层、胶体晶体薄膜、氧化物薄膜、第二未掺杂氮化镓层、N型氮化镓层、多量子阱层、电子阻挡层和P型氮化镓层。The embodiment of the present invention provides a light-emitting diode epitaxial wafer, which can be prepared by the preparation method provided in the above-mentioned embodiment 1 or embodiment 2. Specifically, referring to FIG. 4, the light-emitting diode epitaxial wafer includes a buffer layer, a first undoped gallium nitride layer, a colloidal crystal film, an oxide film, a second undoped gallium nitride layer, and a second undoped gallium nitride layer stacked on the substrate in sequence. Gallium layer, N-type GaN layer, multiple quantum well layer, electron blocking layer and P-type GaN layer.

在本实施例中,胶体晶体薄膜包括阵列排列在第一未掺杂氮化镓层上的多个有机颗粒,氧化物薄膜设置在多个有机颗粒上和多个有机颗粒之间。In this embodiment, the colloidal crystal thin film includes a plurality of organic particles arrayed on the first undoped gallium nitride layer, and the oxide thin film is disposed on and between the plurality of organic particles.

可选地,有机颗粒的直径可以为0.5μm~1.8μm。若有机颗粒的直径小于0.5μm,则后续可能无法有效将第一未掺杂氮化镓层和第二未掺杂氮化镓层分离;若有机颗粒的直径大于1.8μm,则可能造成第一未掺杂氮化镓层在有机颗粒分解成气体排出之后即与氧化物薄膜分离,进而无法在氧化物薄膜上沉积第二未掺杂氮化镓层。Optionally, the diameter of the organic particles may be 0.5 μm˜1.8 μm. If the diameter of the organic particles is less than 0.5 μm, it may not be possible to effectively separate the first undoped gallium nitride layer from the second undoped gallium nitride layer; if the diameter of the organic particles is greater than 1.8 μm, it may cause the first The undoped GaN layer is separated from the oxide film after the organic particles are decomposed into gas and discharged, so that the second undoped GaN layer cannot be deposited on the oxide film.

优选地,有机颗粒的材料可以采用聚苯乙烯。一方面由聚苯乙烯形成的有机颗粒的直径可以满足0.5μm~1.8μm的要求,另一方面聚苯乙烯为胶体晶体薄膜的常用材料,获取成本低。Preferably, the material of the organic particles can be polystyrene. On the one hand, the diameter of the organic particles formed by polystyrene can meet the requirements of 0.5 μm to 1.8 μm; on the other hand, polystyrene is a common material for colloidal crystal films, and the acquisition cost is low.

可选地,氧化物薄膜的材料可以采用氧化铝或者氧化锌。Optionally, aluminum oxide or zinc oxide may be used as a material for the oxide film.

可选地,氧化物薄膜的厚度可以为0.5nm~50nm,以确保能够实现第一未掺杂氮化镓层和第二未掺杂氮化镓层的分离。Optionally, the thickness of the oxide film may be 0.5nm˜50nm, so as to ensure the separation of the first undoped GaN layer and the second undoped GaN layer.

具体地,衬底为蓝宝石衬底。缓冲层可以为氮化镓层,也可以为氮化铝层。量子阱可以为铟镓氮层,量子垒可以为氮化镓层,也可以为铝镓氮层。电子阻挡层可以为P型掺杂的AlyGa1-yN层,0.1<y<0.5。Specifically, the substrate is a sapphire substrate. The buffer layer can be a gallium nitride layer or an aluminum nitride layer. The quantum well can be an indium gallium nitride layer, and the quantum barrier can be a gallium nitride layer or an aluminum gallium nitride layer. The electron blocking layer may be a P-type doped AlyGa1 -yN layer, 0.1<y<0.5.

可选地,缓冲层的厚度可以为15nm~35nm。Optionally, the thickness of the buffer layer may be 15nm-35nm.

可选地,未掺杂氮化镓层的厚度可以为1μm~5μm。Optionally, the thickness of the undoped gallium nitride layer may be 1 μm˜5 μm.

可选地,N型氮化镓层的厚度可以为1μm~5μm。Optionally, the thickness of the N-type gallium nitride layer may be 1 μm˜5 μm.

可选地,N型氮化镓层中N型掺杂剂的掺杂浓度可以为1018cm-3~1019cm-3Optionally, the doping concentration of the N-type dopant in the N-type GaN layer may be 10 18 cm -3 -10 19 cm -3 .

可选地,量子阱的厚度可以为2nm~3nm。Optionally, the thickness of the quantum well can be 2nm-3nm.

可选地,量子垒的厚度可以为9nm~20nm。Optionally, the thickness of the quantum barrier may be 9nm-20nm.

可选地,量子垒的层数与量子阱相同,量子阱的数量可以为5个~15个。Optionally, the number of layers of the quantum barrier is the same as that of the quantum wells, and the number of quantum wells may be 5-15.

可选地,电子阻挡层的厚度可以为50nm~150nm。Optionally, the thickness of the electron blocking layer may be 50nm˜150nm.

可选地,P型氮化镓层的厚度可以为105nm~500nm。Optionally, the thickness of the P-type gallium nitride layer may be 105nm˜500nm.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.

Claims (9)

1.一种发光二极管外延片的制备方法,其特征在于,所述制备方法包括:1. a preparation method of light-emitting diode epitaxial wafer, is characterized in that, described preparation method comprises: 在层叠在衬底上的缓冲层上生长第一未掺杂氮化镓层;growing a first undoped gallium nitride layer on the buffer layer stacked on the substrate; 在所述第一未掺杂氮化镓层上形成胶体晶体薄膜,所述胶体晶体薄膜包括阵列排列在所述第一未掺杂氮化镓层上的多个有机颗粒,所述有机颗粒的直径为0.5μm~1.8μm;A colloidal crystal thin film is formed on the first undoped gallium nitride layer, the colloidal crystal thin film includes a plurality of organic particles arranged in an array on the first undoped gallium nitride layer, the organic particles The diameter is 0.5μm~1.8μm; 在所述多个有机颗粒上和所述多个有机颗粒之间沉积氧化物薄膜;depositing an oxide film on and between the plurality of organic particles; 对所述多个有机颗粒进行加热,所述多个有机颗粒在温度升高的过程中分解成气体从所述氧化物薄膜和所述第一未掺杂氮化镓层之间排出,所述第一未掺杂氮化镓层和所述氧化物薄膜之间形成阵列排列的多个空腔;heating the plurality of organic particles, the plurality of organic particles are decomposed into gas and discharged from between the oxide film and the first undoped gallium nitride layer during the process of temperature rise, the A plurality of cavities arranged in an array are formed between the first undoped gallium nitride layer and the oxide film; 在所述氧化物薄膜上生长第二未掺杂氮化镓层;growing a second undoped gallium nitride layer on the oxide film; 在所述第二未掺杂氮化镓层上依次生长N型氮化镓层、多量子阱层、电子阻挡层和P型氮化镓层,形成外延片。An N-type GaN layer, a multi-quantum well layer, an electron blocking layer and a P-type GaN layer are sequentially grown on the second undoped GaN layer to form an epitaxial wafer. 2.根据权利要求1所述的制备方法,其特征在于,所述制备方法还包括:2. preparation method according to claim 1, is characterized in that, described preparation method also comprises: 将激光作用在所述氧化物薄膜内,利用所述多个空腔将所述第一未掺杂氮化镓层和所述第二未掺杂氮化镓层分离;applying a laser to the oxide film, using the plurality of cavities to separate the first undoped gallium nitride layer from the second undoped gallium nitride layer; 对所述第一未掺杂氮化镓层进行刻蚀,直到所述第一未掺杂氮化镓层的表面为平面,得到层叠有缓冲层的衬底。Etching the first undoped gallium nitride layer until the surface of the first undoped gallium nitride layer is flat to obtain a substrate stacked with a buffer layer. 3.根据权利要求1或2所述的制备方法,其特征在于,所述在层叠在衬底上的缓冲层上生长第一未掺杂氮化镓层,包括:3. The preparation method according to claim 1 or 2, wherein the growing the first undoped gallium nitride layer on the buffer layer stacked on the substrate comprises: 提供一层叠有缓冲层的衬底;providing a substrate stacked with a buffer layer; 在所述缓冲层上生长第一未掺杂氮化镓层。A first undoped gallium nitride layer is grown on the buffer layer. 4.根据权利要求1或2所述的制备方法,其特征在于,所述在层叠在衬底上的缓冲层上生长第一未掺杂氮化镓层,包括:4. The preparation method according to claim 1 or 2, wherein the growing the first undoped gallium nitride layer on the buffer layer stacked on the substrate comprises: 在衬底上生长缓冲层;growing a buffer layer on the substrate; 在所述缓冲层上生长第一未掺杂氮化镓层。A first undoped gallium nitride layer is grown on the buffer layer. 5.根据权利要求1或2所述的制备方法,其特征在于,所述在所述第一未掺杂氮化镓层上形成胶体晶体薄膜,所述胶体晶体薄膜包括阵列排列在所述第一未掺杂氮化镓层上的多个有机颗粒,包括:5. The preparation method according to claim 1 or 2, characterized in that, the colloidal crystal film is formed on the first undoped gallium nitride layer, and the colloidal crystal film includes arrays arranged on the first gallium nitride layer. A plurality of organic particles on an undoped gallium nitride layer, including: 将前驱体分散在溶剂中发生反应,生成所述有机颗粒;Dispersing the precursor in a solvent and reacting to generate the organic particles; 对所述溶剂进行蒸发,所述有机颗粒在所述溶剂蒸发诱导产生的毛细作用下呈阵列排列,形成所述胶体晶体薄膜。The solvent is evaporated, and the organic particles are arranged in an array under the capillary action induced by the evaporation of the solvent to form the colloidal crystal film. 6.根据权利要求3所述的制备方法,其特征在于,所述有机颗粒的材料采用聚苯乙烯。6. The preparation method according to claim 3, characterized in that, the material of the organic particles is polystyrene. 7.根据权利要求1或2所述的制备方法,其特征在于,所述氧化物薄膜的材料采用氧化铝或者氧化锌。7. The preparation method according to claim 1 or 2, characterized in that the material of the oxide film is aluminum oxide or zinc oxide. 8.根据权利要求1或2所述的制备方法,其特征在于,所述氧化物薄膜的厚度为0.5nm~50nm。8. The preparation method according to claim 1 or 2, characterized in that the thickness of the oxide film is 0.5nm-50nm. 9.一种发光二极管外延片,所述发光二极管外延片包括衬底依次层叠在所述衬底上的缓冲层、N型氮化镓层、多量子阱层、电子阻挡层和P型氮化镓层,其特征在于,所述发光二极管外延片还包括层叠在所述缓冲层和所述N型氮化镓层之间的第一未掺杂氮化镓层、胶体晶体薄膜、氧化物薄膜和第二未掺杂氮化镓层,所述第一未掺杂氮化镓层设置在所述缓冲层上,所述胶体晶体薄膜包括阵列排列在所述第一未掺杂氮化镓层上的多个有机颗粒,所述有机颗粒的直径为0.5μm~1.8μm,所述氧化物薄膜设置在所述多个有机颗粒上和所述多个有机颗粒之间,所述第二未掺杂氮化镓层设置在所述氧化物薄膜上。9. A light-emitting diode epitaxial wafer, said light-emitting diode epitaxial wafer comprising a buffer layer, an N-type gallium nitride layer, a multi-quantum well layer, an electron blocking layer and a P-type nitride nitride layer stacked on the substrate in sequence. Gallium layer, characterized in that the light-emitting diode epitaxial wafer further includes a first undoped gallium nitride layer, a colloidal crystal film, and an oxide film stacked between the buffer layer and the N-type gallium nitride layer and a second undoped gallium nitride layer, the first undoped gallium nitride layer is disposed on the buffer layer, and the colloidal crystal thin film includes an array arranged on the first undoped gallium nitride layer A plurality of organic particles on the organic particles, the diameter of the organic particles is 0.5 μm to 1.8 μm, the oxide film is arranged on the plurality of organic particles and between the plurality of organic particles, the second undoped A heterogallium nitride layer is disposed on the oxide film.
CN201710890572.5A 2017-09-27 2017-09-27 Preparation method of light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer Active CN107887480B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710890572.5A CN107887480B (en) 2017-09-27 2017-09-27 Preparation method of light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710890572.5A CN107887480B (en) 2017-09-27 2017-09-27 Preparation method of light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer

Publications (2)

Publication Number Publication Date
CN107887480A CN107887480A (en) 2018-04-06
CN107887480B true CN107887480B (en) 2019-08-02

Family

ID=61780893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710890572.5A Active CN107887480B (en) 2017-09-27 2017-09-27 Preparation method of light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer

Country Status (1)

Country Link
CN (1) CN107887480B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111128687B (en) * 2019-12-30 2022-05-06 镓特半导体科技(上海)有限公司 Preparation method of self-supporting gallium nitride layer
CN112038461B (en) * 2020-07-17 2021-11-05 华灿光电(苏州)有限公司 Light emitting diode epitaxial wafer, light emitting diode chip and preparation method of light emitting diode epitaxial wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1617298A (en) * 2004-11-17 2005-05-18 金芃 Quasi aluminium nitride and quasi gallium nitride base growing substrate and method for growing on alumimium nitride ceramic sheet
CN102456721A (en) * 2010-10-17 2012-05-16 金木子 Gallium nitride-based chip with ceramic substrate and manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649287B2 (en) * 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1617298A (en) * 2004-11-17 2005-05-18 金芃 Quasi aluminium nitride and quasi gallium nitride base growing substrate and method for growing on alumimium nitride ceramic sheet
CN102456721A (en) * 2010-10-17 2012-05-16 金木子 Gallium nitride-based chip with ceramic substrate and manufacturing method

Also Published As

Publication number Publication date
CN107887480A (en) 2018-04-06

Similar Documents

Publication Publication Date Title
US8878233B2 (en) Compound semiconductor devices and methods of fabricating the same
CN108336203B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and its manufacturing method
CN110112269B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN109671813B (en) GaN-based light emitting diode epitaxial wafer and preparation method thereof
CN109346576B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN109860358B (en) Gallium nitride-based light emitting diode epitaxial wafer and preparation method thereof
CN108447952B (en) A kind of light-emitting diode epitaxial wafer and preparation method thereof
CN108198920A (en) Light emitting diode epitaxial wafer and preparation method thereof
CN109860359A (en) A kind of gallium nitride based LED epitaxial slice and preparation method thereof
CN108847435A (en) A kind of LED epitaxial slice and preparation method thereof
CN109786530B (en) GaN-based light emitting diode epitaxial wafer and preparation method thereof
CN109065679A (en) A kind of LED epitaxial slice and its manufacturing method
CN109346568A (en) A kind of light-emitting diode epitaxial wafer and preparation method thereof
CN107887480B (en) Preparation method of light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer
TW201318209A (en) Method for manufacturing optoelectronic semiconductor wafer and optoelectronic semiconductor wafer
CN109273571B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and manufacturing method thereof
CN107658374B (en) Epitaxial wafer of light emitting diode and preparation method thereof
CN108281514A (en) A kind of preparation method of LED epitaxial slice
CN109065682A (en) A kind of LED epitaxial slice and its manufacturing method
CN109192826B (en) A kind of LED epitaxial slice and preparation method thereof
CN107482093B (en) Epitaxial wafer of light emitting diode and preparation method thereof
CN116978992A (en) Light emitting diode and preparation method thereof
CN109686823A (en) A kind of gallium nitride based LED epitaxial slice and preparation method thereof
CN109768130A (en) A kind of gallium nitride based LED epitaxial slice and preparation method thereof
CN111525003B (en) An epitaxy method for growing blue light-emitting diodes on m-plane gallium nitride substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant