[go: up one dir, main page]

CN107879450A - Water-soluble ter-polymers molecular brush anionic dye catches sedimentation agent and preparation method thereof and its application - Google Patents

Water-soluble ter-polymers molecular brush anionic dye catches sedimentation agent and preparation method thereof and its application Download PDF

Info

Publication number
CN107879450A
CN107879450A CN201711127245.0A CN201711127245A CN107879450A CN 107879450 A CN107879450 A CN 107879450A CN 201711127245 A CN201711127245 A CN 201711127245A CN 107879450 A CN107879450 A CN 107879450A
Authority
CN
China
Prior art keywords
water
parts
side chain
sedimentation agent
pdmc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711127245.0A
Other languages
Chinese (zh)
Other versions
CN107879450B (en
Inventor
刘锋
陈燕舞
刘祥军
霍应鹏
洪丹
张浥琨
郭志杰
唐秋实
彭琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Jiuzhou Longteng Scientific And Technological Achievement Transformation Co ltd
Original Assignee
Shunde Vocational and Technical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shunde Vocational and Technical College filed Critical Shunde Vocational and Technical College
Priority to CN201711127245.0A priority Critical patent/CN107879450B/en
Publication of CN107879450A publication Critical patent/CN107879450A/en
Application granted granted Critical
Publication of CN107879450B publication Critical patent/CN107879450B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/021Block or graft polymers containing only sequences of polymers of C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/30Nature of the water, waste water, sewage or sludge to be treated from the textile industry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及一种水溶性三元聚合物分子刷阴离子染料捕捉沉降剂及其制备方法及其应用,特点是由聚合物主链聚羟乙基丙烯酰胺、阳离子型高分子侧链末端含羧基的聚甲基丙烯酰氧乙基三甲基氯化铵、功能高分子侧链前驱体聚合物末端含羧基的聚N‑乙烯基甲酰胺、水、催化剂即N‑羟基琥珀酰亚胺、1‑乙基‑3‑(3‑二甲胺基丙基)碳二亚胺碘甲烷盐、氢氧化钾、1,2‑环己二胺四乙酸二酐及二硫化碳制备水溶性三元聚合物分子刷阴离子染料捕捉沉降剂,并将水溶性三元聚合物分子刷阴离子染料捕捉沉降剂用于处理染料合成或染整过程中排放出的染料废水或艺术涂料废水。其具有捕集能力好,沉降速度快,能处理络合型重金属离子,能在数秒内捕获阴离子染料及络合型重金属离子,10秒内快速生长成大的聚集体沉淀,快速实现分离染料等优点。The invention relates to a water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent and its preparation method and application. Polymethacryloyloxyethyltrimethylammonium chloride, functional polymer side chain precursor poly N-vinyl formamide with carboxyl group at the end of the polymer, water, catalyst namely N-hydroxysuccinimide, 1- Ethyl‑3‑(3‑dimethylaminopropyl)carbodiimide iodide, potassium hydroxide, 1,2‑cyclohexanediaminetetraacetic dianhydride and carbon disulfide to prepare water-soluble ternary polymer molecular brushes The anionic dye capture and sedimentation agent is used to treat the dye wastewater or art paint wastewater discharged from the dye synthesis or dyeing and finishing process. It has good trapping ability, fast settling speed, can handle complexed heavy metal ions, can capture anionic dyes and complexed heavy metal ions within a few seconds, quickly grow into large aggregates and precipitate within 10 seconds, and quickly realize the separation of dyes, etc. advantage.

Description

水溶性三元聚合物分子刷阴离子染料捕捉沉降剂及其制备方 法及其应用Water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent and preparation method thereof law and its application

技术领域technical field

本发明属于水处理技术及高分子功能材料领域,具体涉及一种水溶性三元聚合物分子刷阴离子染料捕捉沉降剂及其制备方法及其应用,其主要在染料合成或染整过程中排放出的染料废水或艺术涂料废水中应用,能实现同时除去染料废水的阴离子染料及络合型重金属离子。The invention belongs to the field of water treatment technology and polymer functional materials, and specifically relates to a water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent and its preparation method and application. It is mainly discharged during the dye synthesis or dyeing and finishing process. It can be used in dye wastewater or art paint wastewater, and can simultaneously remove anionic dyes and complexed heavy metal ions in dye wastewater.

背景技术Background technique

近些年来,我国每年污水排放量达390多亿吨,其中工业污水占51% ,而染料废水又占总工业废水排放量的35%,而且还以1%的速度在逐年增加。染料废水主要来自于染料合成及染料使用企业,由合成或染整过程中排放出的染料、助剂等组成。随着印染工业的飞速发展,我国是纺织品生产和加工大国,纺织品出口额已多年来列居世界首位,每年的染料生产量达1.5×105吨,其中大约10%~15%的染料会直接随废水排入水体中,染料废水已成为水体重要污染源之一。为加强纺织染整工业水污染控制,2012年,环境保护部和国家质量监督检验检疫总局联合修订发布了《纺织染整工业水污染物排放标准》(GB 4287-2012)。根据新的排放标准,采用传统的处理技术,很多印染企业无法达到新的国家排放标准,出现很多偷排放现象,发生了严重的水体环境污染事件。总体来说,目前的染料废水处理技术还无法达到国家排放标准,急需新材料和新技术的研发解决目前企业排放问题。染料废水具有极强的污染感,且有色水体会影响日光照射,不利于水生生物的生长,一般的生化法很难对其进行处理。染料废水的排放量也很大,而且排放具有间歇性,水质也不稳定,属于难治理废水。In recent years, my country's annual sewage discharge has reached more than 39 billion tons, of which industrial sewage accounts for 51%, while dye wastewater accounts for 35% of the total industrial wastewater discharge, and it is increasing at a rate of 1% year by year. Dye wastewater mainly comes from dye synthesis and dye use enterprises, and is composed of dyes and auxiliaries discharged during the synthesis or dyeing and finishing process. With the rapid development of the printing and dyeing industry, China is a big country in textile production and processing. The export volume of textiles has ranked first in the world for many years. The annual production of dyes reaches 1.5×10 5 tons, of which about 10% to 15% of the dyes will be directly produced. With the wastewater discharged into the water body, the dye wastewater has become one of the important pollution sources of the water body. In order to strengthen the control of water pollution in the textile dyeing and finishing industry, in 2012, the Ministry of Environmental Protection and the General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China jointly revised and issued the Discharge Standard of Water Pollutants in the Textile Dyeing and Finishing Industry (GB 4287-2012). According to the new discharge standards, many printing and dyeing enterprises could not meet the new national discharge standards by adopting traditional treatment technologies, and many illegal discharges occurred, resulting in serious water pollution incidents. Generally speaking, the current dye wastewater treatment technology cannot meet the national discharge standards, and the research and development of new materials and new technologies are urgently needed to solve the current discharge problems of enterprises. Dye wastewater has a strong sense of pollution, and the colored water will affect the sunlight, which is not conducive to the growth of aquatic organisms. It is difficult to treat it with general biochemical methods. The discharge of dye wastewater is also large, and the discharge is intermittent, and the water quality is unstable, which is difficult to treat.

传统的废水处理方法有物化法、化学混凝法、物理吸附法、生化法、电化学法等。化学混凝法是在染料废水中加入混凝剂,使污染物形成胶粒,通过混凝沉淀或气浮,从而去除废水中的污染物。混凝沉淀法是实际应用中最广泛的。混凝法能同时去除染料污染物和其他的大分子悬浮污染物。对废水的处理效果主要取决于混凝剂的结构性质。目前使用的混凝剂主要有无机混凝剂和有机高分子混凝剂。无机混凝剂主要以铝盐和铁盐为主,对以胶体或悬浮态存在于废水中的染料有较好的混凝效果,但是对于水溶性染料中分子量较小的,混凝效果则比较差。有机高分子混凝剂分子量大,溶入水中后分散为巨大数量的线性分子,对水中的胶体悬浮粒子的吸附架桥能力强。有机高分子混凝剂性质稳定,残渣少,对pH值要求较宽,其中最有代表性的就是聚丙烯酰胺。但聚丙烯酰胺化学结构较为单一,存在着对染料分子捕捉能力较差,沉降速度较慢,无法处理络合型重金属离子等问题。Traditional wastewater treatment methods include physical and chemical methods, chemical coagulation methods, physical adsorption methods, biochemical methods, and electrochemical methods. The chemical coagulation method is to add a coagulant to the dye wastewater to make the pollutants form colloidal particles, and remove the pollutants in the wastewater through coagulation precipitation or air flotation. The coagulation-sedimentation method is the most widely used in practice. Coagulation can simultaneously remove dye pollutants and other macromolecular suspended pollutants. The treatment effect of wastewater mainly depends on the structural properties of the coagulant. Currently used coagulants mainly include inorganic coagulants and organic polymer coagulants. Inorganic coagulants are mainly aluminum salts and iron salts, which have a good coagulation effect on dyes that exist in colloidal or suspended states in wastewater, but for water-soluble dyes with small molecular weights, the coagulation effect is relatively low. Difference. The organic polymer coagulant has a large molecular weight and is dispersed into a huge number of linear molecules after being dissolved in water. It has a strong ability to adsorb and bridge colloidal suspended particles in water. The organic polymer coagulant has stable properties, less residue, and a wide range of pH requirements, and the most representative one is polyacrylamide. However, the chemical structure of polyacrylamide is relatively simple, and there are problems such as poor ability to capture dye molecules, slow sedimentation speed, and inability to deal with complexed heavy metal ions.

发明内容Contents of the invention

本发明的目的是克服现有技术的不足而提供一种水溶性三元聚合物分子刷阴离子染料捕捉沉降剂及其制备方法及其应用,捕集能力好,沉降速度快,能处理络合型重金属离子,能在数秒内捕获阴离子染料及络合型重金属离子,10秒内快速生长成大的聚集体沉淀,快速实现分离染料。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent and its preparation method and application, which has good trapping ability, fast sedimentation speed, and can handle complex type Heavy metal ions can capture anionic dyes and complexed heavy metal ions in a few seconds, grow into large aggregates and precipitate within 10 seconds, and quickly realize the separation of dyes.

为了达到上述目的,本发明的水溶性三元聚合物分子刷阴离子染料捕捉沉降剂的技术方案是这样实现的,其特征在于包括1~10份的聚合物主链聚羟乙基丙烯酰胺(PHEMAA)、20~100份的阳离子型高分子侧链末端含羧基的聚甲基丙烯酰氧乙基三甲基氯化铵(PDMC-COOH)、5~40份的功能高分子侧链前驱体聚合物末端含羧基的聚N-乙烯基甲酰胺(PNVF-COOH)、100~500份的水、1~5份的催化剂即N-羟基琥珀酰亚胺(NHS)、1~5份的1-乙基-3-(3-二甲胺基丙基)碳二亚胺碘甲烷盐(EDC·CH3I)、1~10份的氢氧化钾、1~20份的1,2-环己二胺四乙酸二酐(CDTAD)及1~10份的二硫化碳;以上均为质量份数。In order to achieve the above-mentioned purpose, the technical scheme of the water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent of the present invention is realized in this way, it is characterized in that including 1~10 parts of polymer main chain polyhydroxyethyl acrylamide (PHEMAA ), 20-100 parts of polymethacryloyloxyethyltrimethylammonium chloride (PDMC-COOH) containing carboxyl groups at the end of the cationic polymer side chain, 5-40 parts of functional polymer side chain precursor polymerization Carboxyl-containing poly N-vinylformamide (PNVF-COOH), 100 to 500 parts of water, 1 to 5 parts of catalyst N-hydroxysuccinimide (NHS), 1 to 5 parts of 1- Ethyl-3-(3-dimethylaminopropyl) carbodiimide iodomethane salt (EDC CH 3 I), 1-10 parts of potassium hydroxide, 1-20 parts of 1,2-cyclohexyl Diaminetetraacetic dianhydride (CDTAD) and 1-10 parts of carbon disulfide; the above are parts by mass.

在本技术方案中,所述聚合物主链聚羟乙基丙烯酰胺(PHEMAA)通过普通自由基聚合或可控活性聚合法合成PHEMAA聚合物主链;In this technical solution, the polymer main chain polyhydroxyethylacrylamide (PHEMAA) is synthesized by ordinary free radical polymerization or controlled living polymerization to synthesize the PHEMAA polymer main chain;

所述阳离子型高分子侧链PDMC-COOH主要采用偶氮二氰基戊酸为引发剂通过普通自由基聚合法合成末端含羧基的聚甲基丙烯酰氧乙基三甲基氯化铵(PDMC-COOH)聚合物;The cationic polymer side chain PDMC-COOH mainly uses azodicyanovaleric acid as an initiator to synthesize polymethacryloyloxyethyltrimethylammonium chloride (PDMC -COOH) polymer;

所述功能高分子侧链前驱体聚合物PNVF-COOH主要采用偶氮二氰基戊酸为引发剂通过普通自由基聚合合成末端含羧基的聚N-乙烯基甲酰胺(PNVF-COOH)聚合物;The functional polymer side chain precursor polymer PNVF-COOH mainly uses azodicyanovaleric acid as the initiator to synthesize poly N-vinylformamide (PNVF-COOH) polymer with carboxyl group at the end through ordinary free radical polymerization ;

所述1,2-环己二胺四乙酸二酐(CDTAD)的合成方法是:将5~20份的1,2-环己二胺四乙酸和5~20份乙酸酐溶解于10~30份的2-甲基吡啶中,控制于50~70℃,反应20~40小时,获得1,2-环己二胺四乙酸二酐。The synthesis method of the 1,2-cyclohexanediaminetetraacetic dianhydride (CDTAD) is: dissolving 5-20 parts of 1,2-cyclohexanediaminetetraacetic acid and 5-20 parts of acetic anhydride in 10-30 Parts of 2-picoline, controlled at 50-70°C, reacted for 20-40 hours to obtain 1,2-cyclohexanediaminetetraacetic dianhydride.

为了达到上述目的,本发明的水溶性三元聚合物分子刷阴离子染料捕捉沉降剂的制备方法的技术方案是这样实现的,其特征在于将1~10份的聚合物主链聚羟乙基丙烯酰胺(PHEMAA)、20~100份的阳离子型高分子侧链末端含羧基的聚甲基丙烯酰氧乙基三甲基氯化铵(PDMC-COOH)和5~40份的功能高分子侧链前驱体聚合物末端含羧基的聚N-乙烯基甲酰胺(PNVF-COOH)混合溶于100~500份的水里,加入1~5份的催化剂即N-羟基琥珀酰亚胺(NHS)和1~5份的1-乙基-3-(3-二甲胺基丙基)碳二亚胺碘甲烷盐(EDC·CH3I),控温于50~80℃,进行酯化反应10~70小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚N-乙烯基甲酰胺)(PHEMAA-g-(PDMC-r-PNVF));再加入1~10份的氢氧化钾,控温于50~80℃,进行水解反应12~48小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚乙烯胺)(PHEMAA-g-(PDMC-r-PVA));再加入1~20份的1,2-环己二胺四乙酸二酐(CDTAD),进行酰基化反应5~24小时,酰化度范围控制为60~99%,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚乙烯胺基环己二胺四乙酸钠-无规-聚乙烯胺)(PHEMAA-g-(PDMC-r-PVACDTANa-r-PVA));再加入1~10份的二硫化碳,控温于20~40℃,进行加成反应1~3小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚乙烯胺基环己二胺四乙酸钠-无规-聚乙烯胺基二硫代氨基甲酸钠)(PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS2Na))即水溶性三元聚合物分子刷阴离子染料捕捉沉降剂;以上均为质量份数。In order to achieve the above-mentioned purpose, the technical scheme of the preparation method of the water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent of the present invention is realized in this way, it is characterized in that 1~10 parts of polymer main chain polyhydroxyethyl propylene Amide (PHEMAA), 20-100 parts of polymethacryloyloxyethyltrimethylammonium chloride (PDMC-COOH) containing carboxyl groups at the end of cationic polymer side chains and 5-40 parts of functional polymer side chains The poly N-vinylformamide (PNVF-COOH) containing carboxyl groups at the end of the precursor polymer is mixed and dissolved in 100 to 500 parts of water, and 1 to 5 parts of the catalyst, namely N-hydroxysuccinimide (NHS) and 1-5 parts of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide iodomethane salt (EDC CH 3 I), temperature controlled at 50-80°C, carry out esterification reaction for 10 ~70 hours, polyhydroxyethylacrylamide-graft-(polymethacryloxyethyltrimethylammonium chloride-random-polyN-vinylformamide) (PHEMAA-g-(PDMC- r-PNVF)); then add 1 to 10 parts of potassium hydroxide, control the temperature at 50 to 80°C, and carry out the hydrolysis reaction for 12 to 48 hours to obtain polyhydroxyethylacrylamide-graft-(polymethacryloyl Oxyethyltrimethylammonium chloride-random-polyethyleneamine) (PHEMAA-g-(PDMC-r-PVA)); then add 1 to 20 parts of 1,2-cyclohexanediaminetetraacetic dianhydride (CDTAD), carry out the acylation reaction for 5 to 24 hours, and the range of the degree of acylation is controlled at 60 to 99%, to obtain polyhydroxyethylacrylamide-graft-(polymethacryloyloxyethyltrimethylammonium chloride -random-polyethyleneaminocyclohexanediamine sodium tetraacetate-random-polyethyleneamine) (PHEMAA-g-(PDMC-r-PVACDTANa-r-PVA)); then add 1 to 10 parts of carbon disulfide, The temperature is controlled at 20-40°C, and the addition reaction is carried out for 1-3 hours to obtain polyhydroxyethylacrylamide-graft-(polymethacryloyloxyethyltrimethylammonium chloride-random-polyethyleneamine Sodium cyclohexanediamine tetraacetate-random-sodium polyvinylaminodithiocarbamate) (PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS 2 Na)) is a water-soluble ternary polymer molecular brush Anionic dye capture and sedimentation agent; the above are parts by mass.

在本技术方案中,所述聚羟乙基丙烯酰胺(PHEMAA)的聚合度为10~200,所述阳离子型高分子侧链PDMC-COOH及功能高分子侧链前驱体聚合物PNVF-COOH的聚合度均为10~200,阳离子型高分子侧链PDMC的接枝率为1~70%、螯合型高分子侧链PVACDTANa的接枝率1~20%及助沉降高分子侧链PVACS2Na的接枝率为1~5%。In this technical solution, the polymerization degree of the polyhydroxyethylacrylamide (PHEMAA) is 10-200, and the cationic polymer side chain PDMC-COOH and the functional polymer side chain precursor polymer PNVF-COOH The degree of polymerization is 10-200, the grafting rate of cationic polymer side chain PDMC is 1-70%, the grafting rate of chelating polymer side chain PVACDTANA is 1-20%, and the polymer side chain PVACS 2 The grafting rate of Na is 1 to 5%.

为了达到上述目的,本发明的水溶性三元聚合物分子刷阴离子染料捕捉沉降剂的应用的技术方案是这样实现的,其特征在于将0.1~1份的水溶性三元聚合物分子刷阴离子染料捕捉沉降剂加入到100~1000份的废水中,常温下搅拌1~5分钟,调节pH至2~5,废水中阴离子染料分子与水溶性三元聚合物分子刷阴离子染料捕捉沉降剂的阳离子型侧链PDMC发生静电吸附,废水中重金属离子与水溶性三元聚合物分子刷阴离子染料捕捉沉降剂的螯合型侧链PVACDTANa发生螯合吸附,再加入0.01~0.1份的助沉降剂,常温下搅拌1分钟,助沉降剂的金属离子快速与水溶性三元聚合物分子刷阴离子染料捕捉沉降剂的助沉降侧链PVACS2Na发生化学沉淀反应,10秒内生成粒径大于100μm的絮体沉淀,可快速实现去除废水中的阴离子染料及络合型重金属离子,出水无色,达到国家排放标准,以上均为质量份数。In order to achieve the above-mentioned purpose, the technical scheme of the application of the water-soluble ternary polymer molecular brush anionic dye catching and sedimentation agent of the present invention is realized in this way, it is characterized in that 0.1~1 part of water-soluble ternary polymer molecular brush anionic dye The capture and sedimentation agent is added to 100 to 1000 parts of wastewater, stirred at room temperature for 1 to 5 minutes, and the pH is adjusted to 2 to 5. The anionic dye molecules in the wastewater and the water-soluble ternary polymer molecules brush the cationic dye capture and sedimentation agent. The side chain PDMC is electrostatically adsorbed, and the heavy metal ions in the wastewater and the chelating side chain PVACDTANA of the water-soluble ternary polymer molecular brush anionic dye capture the sedimentation agent undergo chelation adsorption, and then add 0.01 to 0.1 parts of the auxiliary sedimentation agent. Stir for 1 minute, the metal ions of the settling agent quickly react with the water-soluble ternary polymer molecular brush anionic dye to capture the settling side chain PVACS 2 Na of the settling agent, and produce floc precipitation with a particle size greater than 100 μm within 10 seconds , can quickly realize the removal of anionic dyes and complexed heavy metal ions in wastewater, and the effluent is colorless, meeting the national discharge standards. The above are parts by mass.

在本技术方案中,所述助沉降剂为氯化钙、硫酸镁、氯化亚铁、三氯化铁、三氯化铝的一种或两种以上的任意组合。In this technical solution, the settling aid is one or any combination of two or more of calcium chloride, magnesium sulfate, ferrous chloride, ferric chloride, and aluminum trichloride.

本发明与现有技术相比,具有如下的优点及效果:Compared with the prior art, the present invention has the following advantages and effects:

1、本发明解决了传统合成类高分子染料絮凝剂结构单一及捕捉性能差的缺陷,本发明含有三种不同功能的高分子侧链,阳离子型高分子侧链PDMC对阴离子染料具有很好的静电吸附能力,螯合型侧链PVACDTANa对重金属离子发生螯合吸附,在助沉降高分子侧链PVACS2Na的协同作用下,PVACS2Na高分子侧链与助沉降剂金属离子快速发生化学沉淀反应,达到高效捕捉及快速沉降功能;1. The present invention solves the defects of single structure and poor capture performance of traditional synthetic polymer dye flocculants. The present invention contains three polymer side chains with different functions, and the cationic polymer side chain PDMC has a good effect on anionic dyes. Electrostatic adsorption capacity, the chelating side chain PVCDTANa chelates and adsorbs heavy metal ions, and under the synergistic effect of the sedimentation-assisting polymer side chain PVACS 2 Na, the PVACS 2 Na polymer side chain and the sedimentation-assisting agent metal ions undergo rapid chemical precipitation reaction to achieve efficient capture and rapid sedimentation;

2、本发明具有沉降速度的技术优势,能在少量助沉降剂下,发生沉淀反应,快速生成大的聚集体,产生的污泥量少。2. The present invention has the technical advantage of settling speed, and can produce a settling reaction with a small amount of auxiliary settling agent, quickly form large aggregates, and generate a small amount of sludge.

3、本发明具有双重功能,能同时捕捉阴离子染料及络合型重金属离子,解决了传统絮凝剂无法处理染料废水中络合型重金属离子问题。3. The invention has dual functions, which can simultaneously capture anionic dyes and complexed heavy metal ions, and solve the problem that traditional flocculants cannot treat complexed heavy metal ions in dye wastewater.

具体实施方式Detailed ways

下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。以下实施例中所涉及的份数均是质量份数。The present invention will be further described in detail below in conjunction with examples, but the embodiments of the present invention are not limited thereto. The parts involved in the following examples are all parts by mass.

实施例一Embodiment one

其是一种水溶性三元聚合物分子刷阴离子染料捕捉沉降剂,由以下步骤制备得到:It is a water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent, which is prepared by the following steps:

步骤一 PHEMAA聚合物主链的合成Synthesis of Step 1 PHEMAA Polymer Main Chain

取2份的偶氮二异丁腈引发剂、50份的羟乙基丙烯酰胺(HEMAA)、400的份甲醇,在氮气保护下75℃进行聚合反应1小时,得到聚合度(DP)为20的聚羟乙基丙烯酰胺(PHEMAA);Take 2 parts of azobisisobutyronitrile initiator, 50 parts of hydroxyethylacrylamide (HEMAA), and 400 parts of methanol, and carry out polymerization reaction at 75°C for 1 hour under the protection of nitrogen to obtain a degree of polymerization (DP) of 20 Polyhydroxyethylacrylamide (PHEMAA);

步骤二 阳离子型高分子侧链PDMC-COOH和功能高分子侧链前驱体聚合物PNVF-COOH的合成Step 2 Synthesis of cationic polymer side chain PDMC-COOH and functional polymer side chain precursor polymer PNVF-COOH

阳离子型高分子侧链PDMC-COOH的合成:取2份的偶氮二氰基戊酸引发剂、150份的甲基丙烯酰氧乙基三甲基氯化铵(DMC)和50份的水,在氮气保护下70℃进行自由基聚合反应16小时,得到聚合度(DP)为180的PDMC-COOH;Synthesis of cationic polymer side chain PDMC-COOH: Take 2 parts of azodicyanovaleric acid initiator, 150 parts of methacryloyloxyethyltrimethylammonium chloride (DMC) and 50 parts of water , under the protection of nitrogen, carry out free radical polymerization reaction at 70°C for 16 hours, and obtain PDMC-COOH with a degree of polymerization (DP) of 180;

功能高分子侧链前驱体聚合物PNVF-COOH的合成:取2份的偶氮二氰基戊酸引发剂、100份的N-乙烯基甲酰胺(NVF)和40份的水,在氮气保护下70℃进行自由基聚合反应13小时,得到聚合度(DP)为190的PNVF-COOH;Synthesis of functional polymer side chain precursor polymer PNVF-COOH: take 2 parts of azodicyanovaleric acid initiator, 100 parts of N-vinylformamide (NVF) and 40 parts of water, under nitrogen protection Free radical polymerization was carried out at 70°C for 13 hours to obtain PNVF-COOH with a degree of polymerization (DP) of 190;

步骤三 合成1,2-环己二胺四乙酸二酐(CDTAD)Step 3 Synthesis of 1,2-cyclohexanediaminetetraacetic dianhydride (CDTAD)

将9份的1,2-环己二胺四乙酸和9份的乙酸酐溶解于10份的2-甲基吡啶中,控制于50℃,反应20小时,获得1,2-环己二胺四乙酸二酐;Dissolve 9 parts of 1,2-cyclohexanediamine tetraacetic acid and 9 parts of acetic anhydride in 10 parts of 2-picoline, control at 50°C, and react for 20 hours to obtain 1,2-cyclohexanediamine Tetraacetic dianhydride;

步骤四 合成PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS2Na)Step 4 Synthesis of PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS 2 Na)

将步骤一中所得到的1份的聚羟乙基丙烯酰胺(PHEMAA)与步骤二中所得到的20份的阳离子型高分子侧链PDMC-COOH和10份的功能高分子侧链前驱体聚合物PNVF-COOH混合溶于100份的水里,加入1份的催化剂即N-羟基琥珀酰亚胺(NHS)和1份的1-乙基-3-(3-二甲胺基丙基)碳二亚胺碘甲烷盐(EDC·CH3I),控温于50℃,进行酯化反应70小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚N-乙烯基甲酰胺)(PHEMAA-g-(PDMC-r-PNVF));再加1份的氢氧化钾,控温于80℃,对接枝于聚合物主链的功能高分子侧链前驱体聚合物(PNVF),进行水解反应48小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚乙烯胺)(PHEMAA-g-(PDMC-r-PVA));再加入步骤三中合成的8份的1,2-环己二胺四乙酸二酐(CDTAD),酰基化反应24小时,酰化度为80%,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚乙烯胺基环己二胺四乙酸钠-无规-聚乙烯胺)(PHEMAA-g-(PDMC-r-PVACDTANa-r-PVA));再加入2份的二硫化碳,控温于40℃,进行加成反应1小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚乙烯胺基环己二胺四乙酸钠-无规-聚乙烯胺基二硫代氨基甲酸钠)(PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS2Na))即水溶性三元聚合物分子刷阴离子染料捕捉沉降剂。采用元素分析仪及核磁共振仪分别测定PDMC、 PVACDTANa和PVACS2Na侧链的接枝率分别为18%、8%和2%。Polymerize 1 part of polyhydroxyethylacrylamide (PHEMAA) obtained in step 1 with 20 parts of cationic polymer side chain PDMC-COOH and 10 parts of functional polymer side chain precursor obtained in step 2 The substance PNVF-COOH is mixed and dissolved in 100 parts of water, and 1 part of the catalyst is N-hydroxysuccinimide (NHS) and 1 part of 1-ethyl-3-(3-dimethylaminopropyl) Carbodiimide iodomethane salt (EDC·CH 3 I), temperature controlled at 50°C, esterification reaction was carried out for 70 hours to obtain polyhydroxyethylacrylamide-graft-(polymethacryloyloxyethyltrimethyl ammonium chloride-random-poly N-vinyl formamide) (PHEMAA-g-(PDMC-r-PNVF)); add 1 part of potassium hydroxide, control the temperature at 80°C, and graft on the polymerization The functional macromolecule side chain precursor polymer (PNVF) of the main chain of the substance was hydrolyzed for 48 hours to obtain polyhydroxyethylacrylamide-graft-(polymethacryloyloxyethyltrimethylammonium chloride- random-polyethyleneamine) (PHEMAA-g-(PDMC-r-PVA)); then add 8 parts of 1,2-cyclohexanediaminetetraacetic dianhydride (CDTAD) synthesized in step 3, acylation reaction After 24 hours, the degree of acylation was 80%, and polyhydroxyethylacrylamide-graft-(polymethacryloyloxyethyltrimethylammonium chloride-random-polyethyleneaminocyclohexanediamine tetraacetic acid Sodium-random-polyvinylamine) (PHEMAA-g-(PDMC-r-PVACDTANa-r-PVA)); then add 2 parts of carbon disulfide, control the temperature at 40°C, and perform addition reaction for 1 hour to obtain polyhydroxy Ethylacrylamide-graft-(polymethacryloxyethyltrimethylammonium chloride-random-polyvinylaminocyclohexanediamine tetraacetate sodium-random-polyvinylaminodithioamino Sodium formate) (PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS 2 Na)) is a water-soluble terpolymer molecular brush anionic dye capture and sedimentation agent. The grafting rates of side chains of PDMC, PVACDTANa and PVACS 2 Na were determined by elemental analyzer and NMR to be 18%, 8% and 2%, respectively.

在本实施例中,水溶性三元聚合物分子刷阴离子染料捕捉沉降剂的应用In this embodiment, the application of water-soluble ternary polymer molecular brush anionic dye capture sedimentation agent

取本实施例的水溶性三元聚合物分子刷阴离子染料捕捉沉降剂做染料废水测试,取100份的含刚果红100 mg/L废水,添加0.1份的水溶性三元聚合物分子刷阴离子染料捕捉沉降剂,常温下搅拌1分钟,采用0.1 mol/L盐酸调节废水pH值到2.0,再加入0.01份的助沉降剂氯化钙,常温下搅拌1分钟,9秒内生成粒径大于130μm的絮体沉淀。过滤,采用紫外吸收分光光度计测定滤液中刚果红浓度为0.04 mg/L,脱除效率大于99%。Take the water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent of this embodiment to do the dye wastewater test, take 100 parts of waste water containing Congo red 100 mg/L, add 0.1 part of water-soluble ternary polymer molecular brush anionic dye Catch the sedimentation agent, stir for 1 minute at room temperature, adjust the pH value of the wastewater to 2.0 with 0.1 mol/L hydrochloric acid, then add 0.01 part of calcium chloride as a sedimentation aid, stir for 1 minute at room temperature, and generate particles with a particle size greater than 130 μm within 9 seconds floc precipitation. After filtration, the Congo red concentration in the filtrate was measured by an ultraviolet absorption spectrophotometer to be 0.04 mg/L, and the removal efficiency was greater than 99%.

实施例二Embodiment two

其一种水溶性三元聚合物分子刷阴离子染料捕捉沉降剂,由以下步骤制备得到:Its water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent is prepared by the following steps:

步骤一 PHEMAA聚合物主链的合成Synthesis of Step 1 PHEMAA Polymer Main Chain

取1份的偶氮二异丁腈引发剂、400份的羟乙基丙烯酰胺(HEMAA)、40的份甲醇,在氮气保护下75℃进行聚合反应1小时,得到聚合度(DP)为190的聚羟乙基丙烯酰胺(PHEMAA);Take 1 part of azobisisobutyronitrile initiator, 400 parts of hydroxyethylacrylamide (HEMAA), and 40 parts of methanol, and carry out polymerization reaction at 75°C for 1 hour under the protection of nitrogen to obtain a degree of polymerization (DP) of 190 Polyhydroxyethylacrylamide (PHEMAA);

步骤二 阳离子型高分子侧链PDMC-COOH和功能高分子侧链前驱体聚合物PNVF-COOH的合成Step 2 Synthesis of cationic polymer side chain PDMC-COOH and functional polymer side chain precursor polymer PNVF-COOH

阳离子型高分子侧链PDMC-COOH的合成:取1份的偶氮二氰基戊酸引发剂、300份的甲基丙烯酰氧乙基三甲基氯化铵(DMC)和200份的水,在氮气保护下70℃进行自由基聚合反应8小时,得到聚合度(DP)为110的PDMC-COOH;Synthesis of cationic polymer side chain PDMC-COOH: Take 1 part of azodicyanovaleric acid initiator, 300 parts of methacryloyloxyethyltrimethylammonium chloride (DMC) and 200 parts of water , under the protection of nitrogen, carry out free radical polymerization at 70°C for 8 hours, and obtain PDMC-COOH with a degree of polymerization (DP) of 110;

功能高分子侧链前驱体聚合物PNVF-COOH的合成:取1份的偶氮二氰基戊酸引发剂、300份的N-乙烯基甲酰胺(NVF)和100份的水,在氮气保护下65℃进行自由基聚合反应5小时,得到聚合度(DP)为130的PNVF-COOH;Synthesis of functional polymer side chain precursor polymer PNVF-COOH: take 1 part of azodicyanovaleric acid initiator, 300 parts of N-vinylformamide (NVF) and 100 parts of water, under nitrogen protection Free radical polymerization was carried out at 65°C for 5 hours to obtain PNVF-COOH with a degree of polymerization (DP) of 130;

步骤三 合成1,2-环己二胺四乙酸二酐(CDTAD)Step 3 Synthesis of 1,2-cyclohexanediaminetetraacetic dianhydride (CDTAD)

将15份的1,2-环己二胺四乙酸和15份乙酸酐溶解于20份的2-甲基吡啶中,控制于60℃,反应30小时,获得1,2-环己二胺四乙酸二酐;Dissolve 15 parts of 1,2-cyclohexanediamine tetraacetic acid and 15 parts of acetic anhydride in 20 parts of 2-picoline, control at 60°C, and react for 30 hours to obtain 1,2-cyclohexanediamine tetraacetic acid Acetic dianhydride;

步骤四 合成PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS2Na)Step 4 Synthesis of PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS 2 Na)

将步骤一中所得到的2份的聚羟乙基丙烯酰胺(PHEMAA)与步骤二中所得到的50份的阳离子型高分子侧链PDMC-COOH和20份的功能高分子侧链前驱体聚合物PNVF-COOH混合溶于300份的水里,加入4份的催化剂即N-羟基琥珀酰亚胺(NHS)和4份的1-乙基-3-(3-二甲胺基丙基)碳二亚胺碘甲烷盐(EDC·CH3I),控温于60℃,进行酯化反应40小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚N-乙烯基甲酰胺)(PHEMAA-g-(PDMC-r-PNVF));再加5份的氢氧化钾,控温于70℃,对接枝于聚合物主链的功能高分子侧链前驱体聚合物(PNVF),进行水解反应36小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚乙烯胺)(PHEMAA-g-(PDMC-r-PVA));再加入步骤三中合成的15份的1,2-环己二胺四乙酸二酐(CDTAD),酰基化反应12小时,酰化度为83%,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚乙烯胺基环己二胺四乙酸钠-无规-聚乙烯胺)(PHEMAA-g-(PDMC-r-PVACDTANa-r-PVA));再加入6份的二硫化碳,控温于30℃,进行加成反应2小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚乙烯胺基环己二胺四乙酸钠-无规-聚乙烯胺基二硫代氨基甲酸钠)(PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS2Na)) 即水溶性三元聚合物分子刷阴离子染料捕捉沉降剂。采用元素分析仪及核磁共振仪分别测定PDMC、 PVACDTANa和PVACS2Na侧链的接枝率分别为65%、19%和4%。Polymerize 2 parts of polyhydroxyethylacrylamide (PHEMAA) obtained in step 1 with 50 parts of cationic polymer side chain PDMC-COOH and 20 parts of functional polymer side chain precursor obtained in step 2 Mix and dissolve PNVF-COOH in 300 parts of water, add 4 parts of catalyst, namely N-hydroxysuccinimide (NHS) and 4 parts of 1-ethyl-3-(3-dimethylaminopropyl) Carbodiimide iodomethane salt (EDC·CH 3 I), temperature controlled at 60°C, esterification reaction was carried out for 40 hours to obtain polyhydroxyethylacrylamide-graft-(polymethacryloyloxyethyltrimethyl ammonium chloride-random-poly N-vinyl formamide) (PHEMAA-g-(PDMC-r-PNVF)); add 5 parts of potassium hydroxide, control the temperature at 70°C, and graft on the polymerization The functional polymer side chain precursor polymer (PNVF) of the main chain was hydrolyzed for 36 hours to obtain polyhydroxyethylacrylamide-graft-(polymethacryloyloxyethyltrimethylammonium chloride- random-polyethyleneamine) (PHEMAA-g-(PDMC-r-PVA)); then add 15 parts of 1,2-cyclohexanediaminetetraacetic dianhydride (CDTAD) synthesized in step 3, acylation reaction After 12 hours, the degree of acylation was 83%, and polyhydroxyethylacrylamide-graft-(polymethacryloyloxyethyltrimethylammonium chloride-random-polyethyleneaminocyclohexanediamine tetraacetic acid Sodium-random-polyvinylamine) (PHEMAA-g-(PDMC-r-PVACDTANa-r-PVA)); then add 6 parts of carbon disulfide, control the temperature at 30°C, and perform addition reaction for 2 hours to obtain polyhydroxy Ethylacrylamide-graft-(polymethacryloxyethyltrimethylammonium chloride-random-polyvinylaminocyclohexanediamine tetraacetate sodium-random-polyvinylaminodithioamino Sodium formate) (PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS 2 Na)) is a water-soluble terpolymer molecular brush anionic dye capture and sedimentation agent. The grafting ratios of side chains of PDMC, PVACDTANa and PVACS 2 Na were measured by elemental analyzer and nuclear magnetic resonance, respectively, to be 65%, 19% and 4%.

在本实施例中,水溶性三元聚合物分子刷阴离子染料捕捉沉降剂的应用In this embodiment, the application of water-soluble terpolymer molecular brush anionic dye capture sedimentation agent

取本实施例的水溶性三元聚合物分子刷阴离子染料捕捉沉降剂做染料废水测试,取500份的含甲基红100 mg/L、Cu2+ 离子3 mg/L和柠檬酸0.2 mg/L废水,添加0.5份的水溶性三元聚合物分子刷阴离子染料捕捉沉降剂,常温下搅拌3分钟,采用0.1 mol/L盐酸调节废水pH值到3.0,再加入0.05份的助沉降剂氯化镁,常温下搅拌1分钟,7秒内生成粒径大于180μm的絮体沉淀。过滤,采用紫外吸收分光光度计测定滤液中甲基红浓度为0.08 mg/L,采用原子吸收分光光度计测定滤液中Cu2+浓度为0.02 mg/L,脱除效率大于99%。Take the water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent of this embodiment to do the dye wastewater test, get 500 parts of methyl red 100 mg/L, Cu 2+ ion 3 mg/L and citric acid 0.2 mg/L L waste water, add 0.5 parts of water-soluble ternary polymer molecular brush anionic dyes to catch and settle, stir at room temperature for 3 minutes, use 0.1 mol/L hydrochloric acid to adjust the pH value of the waste water to 3.0, then add 0.05 parts of auxiliary settling agent magnesium chloride, After stirring for 1 minute at room temperature, floc precipitation with a particle size greater than 180 μm is formed within 7 seconds. Filtration, the concentration of methyl red in the filtrate measured by ultraviolet absorption spectrophotometer was 0.08 mg/L, the concentration of Cu 2+ in the filtrate measured by atomic absorption spectrophotometer was 0.02 mg/L, and the removal efficiency was greater than 99%.

实施例三Embodiment Three

其一种水溶性三元聚合物分子刷阴离子染料捕捉沉降剂,由以下步骤制备得到:Its water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent is prepared by the following steps:

步骤一 PHEMAA聚合物主链的合成Synthesis of Step 1 PHEMAA Polymer Main Chain

取2份的2-溴异丁酸乙酯引发剂、3份CuBr及3份的4,4-联2-甲基吡啶(BPy)、200份的羟乙基丙烯酰胺(HEMAA)、200的份甲醇,在氮气保护下50℃进行聚合反应3小时,得到聚合度(DP)为100的聚羟乙基丙烯酰胺(PHEMAA);Take 2 parts of ethyl 2-bromoisobutyrate initiator, 3 parts of CuBr and 3 parts of 4,4-linked 2-picoline (BPy), 200 parts of hydroxyethylacrylamide (HEMAA), 200 parts of Parts of methanol were polymerized at 50°C for 3 hours under the protection of nitrogen to obtain polyhydroxyethylacrylamide (PHEMAA) with a degree of polymerization (DP) of 100;

步骤二 阳离子型高分子侧链PDMC-COOH和功能高分子侧链前驱体聚合物PNVF-COOH的合成Step 2 Synthesis of cationic polymer side chain PDMC-COOH and functional polymer side chain precursor polymer PNVF-COOH

阳离子型高分子侧链PDMC-COOH的合成:取2份的偶氮二氰基戊酸引发剂、100份的甲基丙烯酰氧乙基三甲基氯化铵(DMC)和100份的水,在氮气保护下40℃进行自由基聚合反应2小时,得到聚合度(DP)为60的PDMC-COOH;Synthesis of cationic polymer side chain PDMC-COOH: Take 2 parts of azodicyanovaleric acid initiator, 100 parts of methacryloyloxyethyltrimethylammonium chloride (DMC) and 100 parts of water , carry out free radical polymerization at 40°C for 2 hours under the protection of nitrogen, and obtain PDMC-COOH with a degree of polymerization (DP) of 60;

功能高分子侧链前驱体聚合物PNVF-COOH的合成:取3份的偶氮二氰基戊酸引发剂、200份的N-乙烯基甲酰胺(NVF)和200份的水,在氮气保护下45℃进行自由基聚合反应7小时,得到聚合度(DP)为70的PNVF-COOH;Synthesis of functional polymer side chain precursor polymer PNVF-COOH: take 3 parts of azodicyanovaleric acid initiator, 200 parts of N-vinylformamide (NVF) and 200 parts of water, under nitrogen protection Free radical polymerization was carried out at 45°C for 7 hours to obtain PNVF-COOH with a degree of polymerization (DP) of 70;

步骤三 合成1,2-环己二胺四乙酸二酐(CDTAD)Step 3 Synthesis of 1,2-cyclohexanediaminetetraacetic dianhydride (CDTAD)

将20份的1,2-环己二胺四乙酸和20份的乙酸酐溶解于30份的2-甲基吡啶中,控制于70℃,反应40小时,获得1,2-环己二胺四乙酸二酐;Dissolve 20 parts of 1,2-cyclohexanediaminetetraacetic acid and 20 parts of acetic anhydride in 30 parts of 2-picoline, control at 70°C, and react for 40 hours to obtain 1,2-cyclohexanediamine Tetraacetic dianhydride;

步骤四 合成PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS2Na)Step 4 Synthesis of PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS 2 Na)

将步骤一中所得到的3份的聚羟乙基丙烯酰胺(PHEMAA)与步骤二中所得到的100份的阳离子型高分子侧链PDMC-COOH和40份的功能高分子侧链前驱体聚合物PNVF-COOH混合溶于500份的水里,加入3份的催化剂即N-羟基琥珀酰亚胺(NHS)和3份的1-乙基-3-(3-二甲胺基丙基)碳二亚胺碘甲烷盐(EDC·CH3I),控温于80℃,进行酯化反应20小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚N-乙烯基甲酰胺)(PHEMAA-g-(PDMC-r-PNVF));再加10份的氢氧化钾,控温于50℃,对接枝于聚合物主链的功能高分子侧链前驱体聚合物(PNVF),进行水解反应12小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚乙烯胺)(PHEMAA-g-(PDMC-r-PVA));再加入步骤三中合成的20份的1,2-环己二胺四乙酸二酐(CDTAD),酰基化反应6小时,酰化度控制为67%,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚乙烯胺基环己二胺四乙酸钠-无规-聚乙烯胺)(PHEMAA-g-(PDMC-r-PVACDTANa-r-PVA));再加入10份二硫化碳,控温于20℃,进行加成反应3小时,获得聚羟乙基丙烯酰胺-接枝-(聚甲基丙烯酰氧乙基三甲基氯化铵-无规-聚乙烯胺基环己二胺四乙酸钠-无规-聚乙烯胺基二硫代氨基甲酸钠)(PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS2Na)) 即水溶性三元聚合物分子刷阴离子染料捕捉沉降剂。采用元素分析仪及核磁共振仪分别测定PDMC、 PVACDTANa和PVACS2Na侧链的接枝率分别为48%、10%和5%。Polymerize 3 parts of polyhydroxyethylacrylamide (PHEMAA) obtained in step 1 with 100 parts of cationic polymer side chain PDMC-COOH and 40 parts of functional polymer side chain precursor obtained in step 2 Mix and dissolve PNVF-COOH in 500 parts of water, add 3 parts of catalysts, namely N-hydroxysuccinimide (NHS) and 3 parts of 1-ethyl-3-(3-dimethylaminopropyl) Carbodiimide iodomethane salt (EDC·CH 3 I), temperature controlled at 80°C, esterification reaction was carried out for 20 hours to obtain polyhydroxyethylacrylamide-graft-(polymethacryloyloxyethyltrimethyl ammonium chloride-random-poly N-vinyl formamide) (PHEMAA-g-(PDMC-r-PNVF)); add 10 parts of potassium hydroxide, control the temperature at 50°C, and graft on the polymerization The functional macromolecule side chain precursor polymer (PNVF) of the main chain of the substance was hydrolyzed for 12 hours to obtain polyhydroxyethylacrylamide-graft-(polymethacryloyloxyethyltrimethylammonium chloride- random-polyethyleneamine) (PHEMAA-g-(PDMC-r-PVA)); then add 20 parts of 1,2-cyclohexanediaminetetraacetic dianhydride (CDTAD) synthesized in step 3, acylation reaction After 6 hours, the degree of acylation was controlled at 67%, and polyhydroxyethylacrylamide-graft-(polymethacryloyloxyethyltrimethylammonium chloride-random-polyethyleneaminocyclohexanediamine tetra Sodium acetate-random-polyvinylamine) (PHEMAA-g-(PDMC-r-PVACDTANa-r-PVA)); then add 10 parts of carbon disulfide, control the temperature at 20°C, and perform addition reaction for 3 hours to obtain polyhydroxy Ethylacrylamide-graft-(polymethacryloxyethyltrimethylammonium chloride-random-polyvinylaminocyclohexanediamine tetraacetate sodium-random-polyvinylaminodithioamino Sodium formate) (PHEMAA-g-(PDMC-r-PVACDTANa-r-PVACS 2 Na)) is a water-soluble terpolymer molecular brush anionic dye capture and sedimentation agent. The grafting ratios of side chains of PDMC, PVACDTANa and PVACS 2 Na were determined by elemental analyzer and NMR to be 48%, 10% and 5%, respectively.

在本实施例中,水溶性三元聚合物分子刷阴离子染料捕捉沉降剂的应用In this embodiment, the application of water-soluble ternary polymer molecular brush anionic dye capture sedimentation agent

取本实施例的水溶性三元聚合物分子刷阴离子染料捕捉沉降剂做染料废水测试,取1000份含甲基橙100 mg/L、Pb2+ 离子3 mg/L和柠檬酸0.2 mg/L废水,添加1.0份的水溶性三元聚合物分子刷阴离子染料捕捉沉降剂,常温下搅拌5分钟,采用0.1 mol/L盐酸调节废水pH值到5.0,再加入0.1份的助沉降剂氯化铝,常温下搅拌1分钟,3秒内生成粒径大于400μ m的絮体沉淀,过滤,采用紫外吸收分光光度计测定滤液中甲基橙浓度为0.03 mg/L,采用原子吸收分光光度计测定滤液中Pb2+浓度为0.01 mg/L,脱除效率大于99%。Take the water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent of this embodiment to do the dye wastewater test, get 1000 parts containing methyl orange 100 mg/L, Pb 2+ ion 3 mg/L and citric acid 0.2 mg/L For wastewater, add 1.0 parts of water-soluble ternary polymer molecular brush anionic dye capture and sedimentation agent, stir at room temperature for 5 minutes, use 0.1 mol/L hydrochloric acid to adjust the pH value of wastewater to 5.0, and then add 0.1 parts of aluminum chloride as a sedimentation aid , stirred at normal temperature for 1 minute, and within 3 seconds, the floc precipitation with a particle size greater than 400 μm was generated, filtered, and the concentration of methyl orange in the filtrate was measured by an ultraviolet absorption spectrophotometer to be 0.03 mg/L, and the filtrate was measured by an atomic absorption spectrophotometer. The concentration of Pb 2+ in the medium is 0.01 mg/L, and the removal efficiency is greater than 99%.

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.

Claims (6)

1. a kind of water-soluble ter-polymers molecular brush anionic dye catches sedimentation agent, it is characterised in that including 1~10 part Main polymer chain poly-hydroxyethyl acrylamide(PHEMAA), 20~100 parts cationic high-molecular side chain terminal it is carboxylic Polymethyl acyloxyethyl trimethyl ammonium chloride(PDMC-COOH), 5~40 parts of functional polymer side chain precursor polymer The carboxylic polyvinylformamide in end(PNVF-COOH), 100~500 parts water, 1~5 part of catalyst be N- hydroxyls Succinimide (NHS), 1~5 part of 1- ethyls -3- (3- dimethylamino-propyls) carbodiimide iodomethane salt (EDCCH3I)、 1~10 part of potassium hydroxide, 1~20 part of 1,2- 1,2-diaminocyclohexane tetraacetic acids dianhydride (CDTAD) and 1~10 part of carbon disulfide; It is mass fraction above.
2. water-soluble ter-polymers molecular brush anionic dye according to claim 1 catches sedimentation agent, its feature exists In:
The main polymer chain poly-hydroxyethyl acrylamide(PHEMAA)Pass through general radical polymerization or controllable living polymerization Synthesize PHEMAA main polymer chains;
It is common free that the cationic high-molecular side chain PDMC-COOH mainly uses azo dicyano valeric acid to pass through for initiator Base polymerization synthesizes the carboxylic polymethyl acyloxyethyl trimethyl ammonium chloride in end(PDMC-COOH)Polymer;
The functional polymer side chain precursor polymer PNVF-COOH mainly uses azo dicyano valeric acid to pass through for initiator The general radical polymerization synthesis carboxylic polyvinylformamide in end(PNVF-COOH)Polymer;
The synthetic method of the 1,2- 1,2-diaminocyclohexane tetraacetic acids dianhydride (CDTAD) is:By 5~20 parts of 1,2- cyclohexanediamine tetrems Acid and 5~20 parts of acetic anhydrides are dissolved in 10~30 parts of 2- picolines, are controlled in 50~70 DEG C, are reacted 20~40 hours, Obtain 1,2- 1,2-diaminocyclohexane tetraacetic acid dianhydrides.
3. a kind of water-soluble ter-polymers molecular brush anionic dye catches the preparation method of sedimentation agent, it is characterised in that by 1 ~10 parts of main polymer chain poly-hydroxyethyl acrylamide(PHEMAA), 20~100 parts of cationic high-molecular side chain terminal Carboxylic polymethyl acyloxyethyl trimethyl ammonium chloride(PDMC-COOH)Before 5~40 parts of functional polymer side chain Drive the carboxylic polyvinylformamide of body polymer ends(PNVF-COOH)Mixing is dissolved in 100~500 parts of water, is added Enter 1~5 part of catalyst i.e. n-hydroxysuccinimide (NHS) and 1~5 part 1- ethyls -3- (3- dimethylamino-propyls) carbon Diimine iodomethane salt (EDCCH3I), temperature control carries out esterification 10~70 hours in 50~80 DEG C, obtains poly-hydroxyethyl Acrylamide-grafting-(Polymethyl acyloxyethyl trimethyl ammonium chloride-random-polyvinylformamide)(PHEMAA- g-(PDMC-r-PNVF));1~10 part of potassium hydroxide is added, it is small that reaction 12~48 is hydrolyzed in 50~80 DEG C in temperature control When, obtain poly-hydroxyethyl acrylamide-grafting-(Polymethyl acyloxyethyl trimethyl ammonium chloride-random-polyvinylamine) (PHEMAA-g-(PDMC-r-PVA));1~20 part of CDTA dianhydride (CDTAD) is added, carries out acyl group Change reaction 5~24 hours, acylation degree scope control is 60~99%, obtains poly-hydroxyethyl acrylamide-grafting-(Polymethyl Acyloxyethyl trimethyl ammonium chloride-random-polyvinylamine basic ring hexamethylene tetraacetic acid sodium-is random-polyvinylamine)(PHEMAA-g- (PDMC-r-PVACDTANa-r-PVA));1~10 part of carbon disulfide is added, temperature control carries out addition reaction in 20~40 DEG C 1~3 hour, obtain poly-hydroxyethyl acrylamide-grafting-(Polymethyl acyloxyethyl trimethyl ammonium chloride-random-poly- second Enamine basic ring hexamethylene tetraacetic acid sodium-random-polyethylene amido nabam)(PHEMAA-g-(PDMC-r- PVACDTANa-r-PVACS2Na it is)) that water-soluble ter-polymers molecular brush anionic dye catches sedimentation agent;It is matter above Measure number.
4. water-soluble ter-polymers molecular brush anionic dye according to claim 3 catches the preparation side of sedimentation agent Method, it is characterised in that the poly-hydroxyethyl acrylamide(PHEMAA)The degree of polymerization be 10~200, the cationic high-molecular Side chain PDMC-COOH and functional polymer side chain precursor polymer the PNVF-COOH degree of polymerization are 10~200, cation Type polymer side chain PDMC grafting rate is 1~70%, chelating type polymer side chain PVACDTANa grafting rate 1~20% and helped Settle polymer side chain PVACS2Na grafting rate is 1~5%.
5. a kind of water-soluble ter-polymers molecular brush anionic dye catches the application of sedimentation agent, it is characterised in that by 0.1~1 The water-soluble ter-polymers molecular brush anionic dye of part catches sedimentation agent and is added in 100~1000 parts of waste water, normal temperature Lower stirring 1~5 minute, adjusts pH to 2~5, in waste water anionic dye molecule and water-soluble ter-polymers molecular brush the moon from Electrostatic Absorption occurs for the cationic side chain PDMC that sub- dyestuff catches sedimentation agent, and heavy metal ions in wastewater is gathered with water-soluble ternary Chelating absorption occurs for the chelating type side chain PVACDTANa that adduct molecule brush anionic dye catches sedimentation agent, add 0.01~ 0.1 part is helped sedimentation agent, is stirred 1 minute under normal temperature, help the metal ion of sedimentation agent quickly with water-soluble ter-polymers molecule Brush anionic dye catches helping for sedimentation agent and settles side chain PVACS2Chemical precipitation reaction occurs for Na, and generation particle diameter is more than in 10 seconds 100 μm of flco precipitation, can quickly realize the anionic dye and solvay-type heavy metal ion removed in waste water, go out water colorless, Reach discharging standards, be mass fraction above.
6. water-soluble ter-polymers molecular brush anionic dye according to claim 5 catches the application of sedimentation agent, its Be characterised by it is described help sedimentation agent for calcium chloride, magnesium sulfate, frerrous chloride, ferric trichloride, alchlor it is one or two kinds of with On any combination.
CN201711127245.0A 2017-11-15 2017-11-15 Water-soluble quaternary polymer molecular brush anionic dye capturing settling agent and preparation method and application thereof Active CN107879450B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711127245.0A CN107879450B (en) 2017-11-15 2017-11-15 Water-soluble quaternary polymer molecular brush anionic dye capturing settling agent and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711127245.0A CN107879450B (en) 2017-11-15 2017-11-15 Water-soluble quaternary polymer molecular brush anionic dye capturing settling agent and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN107879450A true CN107879450A (en) 2018-04-06
CN107879450B CN107879450B (en) 2020-09-01

Family

ID=61777102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711127245.0A Active CN107879450B (en) 2017-11-15 2017-11-15 Water-soluble quaternary polymer molecular brush anionic dye capturing settling agent and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN107879450B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432907A (en) * 1979-09-10 1984-02-21 Analytical Radiation Corporation Diamine acid fluorescent chelates
US20050053736A1 (en) * 2001-03-12 2005-03-10 G. Frederick Hutter Cationic colloidal dispersion polymers for ink jet coatings
CN101195664A (en) * 2006-12-06 2008-06-11 新疆大学 Preparation method of organic-inorganic composite semi-interpenetrating network structure superabsorbent
CN101397354A (en) * 2007-09-30 2009-04-01 中国科学院理化技术研究所 Hydrophobic modified cationic block polyacrylamide and its synthesis method and application
CN102030482A (en) * 2010-10-13 2011-04-27 中国科学院化学研究所 Method for preparing nanometer patterning bipolymer brush
CN105498726A (en) * 2015-12-17 2016-04-20 山东大学 High-adsorptivity heavy metal ion chelating agent containing dithiocar-bamate structure and preparation method thereof
CN106430499A (en) * 2016-09-28 2017-02-22 顺德职业技术学院 Preparation method of binary polymer molecule brush heavy metal chelating agent
CN106467327A (en) * 2016-09-28 2017-03-01 顺德职业技术学院 The preparation method of ter-polymers molecular brush heavy metal chelating agent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432907A (en) * 1979-09-10 1984-02-21 Analytical Radiation Corporation Diamine acid fluorescent chelates
US20050053736A1 (en) * 2001-03-12 2005-03-10 G. Frederick Hutter Cationic colloidal dispersion polymers for ink jet coatings
CN101195664A (en) * 2006-12-06 2008-06-11 新疆大学 Preparation method of organic-inorganic composite semi-interpenetrating network structure superabsorbent
CN101397354A (en) * 2007-09-30 2009-04-01 中国科学院理化技术研究所 Hydrophobic modified cationic block polyacrylamide and its synthesis method and application
CN102030482A (en) * 2010-10-13 2011-04-27 中国科学院化学研究所 Method for preparing nanometer patterning bipolymer brush
CN105498726A (en) * 2015-12-17 2016-04-20 山东大学 High-adsorptivity heavy metal ion chelating agent containing dithiocar-bamate structure and preparation method thereof
CN106430499A (en) * 2016-09-28 2017-02-22 顺德职业技术学院 Preparation method of binary polymer molecule brush heavy metal chelating agent
CN106467327A (en) * 2016-09-28 2017-03-01 顺德职业技术学院 The preparation method of ter-polymers molecular brush heavy metal chelating agent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XUE QIN ET AL.: ""Antifouling performance of nano-sized spherical poly(N-hydroxyethylacrylamide) brush"", 《COLLOIDS AND SURFACES B:BIOINTERFACES》 *
王立君: ""聚羟乙基丙烯酰胺螯合树脂合成及其对铜离子吸附性研究"", 《化工生产与技术》 *

Also Published As

Publication number Publication date
CN107879450B (en) 2020-09-01

Similar Documents

Publication Publication Date Title
Sun et al. Performance evaluation of chitosan-based flocculants with good pH resistance and high heavy metals removal capacity
Lou et al. Synthesis of a terpolymer based on chitosan and lignin as an effective flocculant for dye removal
CN111573802B (en) Hydrophobic modified organic/inorganic composite flocculant and preparation method and application thereof
CN106495305B (en) A kind of cationic composite magnetic flocculant and its application in the treatment of waste water
CN105668752A (en) Preparing method for sulfhydrylation polyacrylamide heavy metal flocculant
CN107879451B (en) Water-soluble quaternary polymer molecular brush cationic dye capturing settling agent and preparation method and application thereof
CN107892372B (en) Water-soluble pentapolymer molecular brush dye capture sedimentation agent and preparation method and application thereof
CN107857330B (en) Water-soluble ternary chelate polymer molecular brush cationic dye trapping agent, and preparation method and application thereof
CN107828064B (en) Efficient dye flocculant and preparation method and application thereof
CN107698001B (en) Cationic dye flocculant and its application
CN107879450A (en) Water-soluble ter-polymers molecular brush anionic dye catches sedimentation agent and preparation method thereof and its application
CN107828063B (en) Water-soluble quaternary chelate polymer molecular brush dye scavenger and preparation method and application thereof
Hua et al. The performance of quaternary-ammonium chitosan in wastewater treatment: The overlooked role of solubility
CN116177707A (en) A kind of nano quick-sedimentation agent for accelerating sludge settlement, preparation method and application
CN107828062B (en) Water-soluble ternary cationic polymer molecular brush dye capture sedimentation agent and preparation method and application thereof
CN107936178B (en) Environmentally friendly konjac glucomannan-based dye capture and sedimentation agent and preparation method and application thereof
CN107903398B (en) Water-soluble quaternary polymer molecular brush dye capturing settling agent and preparation method and application thereof
Liu et al. The preparation of gallic acid-grafted cationic chitosan as effective salt-tolerant flocculants
CN107915297B (en) Water-soluble ternary anionic polymer molecular brush dye capturing settling agent and preparation method and application thereof
CN107902739B (en) Water-soluble ternary chelating polymer molecular brush anionic dye trapping agent, and preparation method and application thereof
CN107903356A (en) Konjaku modified cation dyestuff flocculant and preparation method thereof and its application
CN107879453A (en) New chelant type heavy metal chelating agent and its synthetic method and its application
CN107879452B (en) High-performance biomass-based dye scavenger, preparation method and application thereof
CN107902740B (en) Environment-friendly dye chelating trapping agent and preparation method and application thereof
CN107828020A (en) Environmentally friendly konjak portuguese gansu polyose glycosyl dye of positive ion capturing settling agent and preparation method and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230802

Address after: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd.

Address before: 528300, Desheng Road, Daliang street, Shunde District, Guangdong, Foshan

Patentee before: SHUNDE POLYTECHNIC