[go: up one dir, main page]

CN107844213B - touch sensing unit - Google Patents

touch sensing unit Download PDF

Info

Publication number
CN107844213B
CN107844213B CN201710854361.6A CN201710854361A CN107844213B CN 107844213 B CN107844213 B CN 107844213B CN 201710854361 A CN201710854361 A CN 201710854361A CN 107844213 B CN107844213 B CN 107844213B
Authority
CN
China
Prior art keywords
touch
sensor
sensing unit
piezoelectric material
touch sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710854361.6A
Other languages
Chinese (zh)
Other versions
CN107844213A (en
Inventor
文景河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Co Ltd filed Critical Samsung Display Co Ltd
Publication of CN107844213A publication Critical patent/CN107844213A/en
Application granted granted Critical
Publication of CN107844213B publication Critical patent/CN107844213B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

A touch sensing unit is disclosed. The touch sensing unit includes a touch sensor, a sensor line, a piezoelectric region, and a touch sensor controller. The touch sensors are arranged in an island shape. The sensor lines are connected to the touch sensors. The piezoelectric regions overlap the touch sensor and are arranged in an island shape. The touch sensor controller receives a voltage from the piezoelectric region when the piezoelectric region receives the pressure and determines a magnitude of the pressure based on the voltage.

Description

触摸感测单元touch sensing unit

于2016年9月20日提交的名称为“显示装置(Display Device)”的第10-2016-0120130号韩国专利申请通过引用全部包含于此。Korean Patent Application No. 10-2016-0120130, filed on Sep. 20, 2016, entitled "Display Device", is hereby incorporated by reference in its entirety.

技术领域technical field

在此描述的一个或更多个实施例涉及一种触摸感测单元。One or more embodiments described herein relate to a touch sensing unit.

背景技术Background technique

笔记本电脑、移动电话、便携式多媒体播放器、平板个人电脑和其它电子装置具有显示器,所述显示器中的一些显示器随附有用于检测用户手指或触控笔的位置的触摸屏。Laptops, mobile phones, portable multimedia players, tablet personal computers, and other electronic devices have displays, some of which are accompanied by touch screens for detecting the position of a user's finger or stylus.

发明内容SUMMARY OF THE INVENTION

根据一个或更多个实施例,触摸感测单元包括:基底;触摸传感器,位于基底上并以岛形状布置;传感器线,连接到触摸传感器;压电区,与触摸传感器叠置并以岛形状布置;以及触摸传感器控制器,在压电区接收压力时从压电区接收电压,并基于电压确定压力的大小。压电区可以直接接触触摸传感器。According to one or more embodiments, a touch sensing unit includes: a substrate; a touch sensor on the substrate and arranged in an island shape; a sensor line connected to the touch sensor; a piezoelectric region overlapping the touch sensor and in an island shape and a touch sensor controller that receives a voltage from the piezoelectric region when the piezoelectric region receives pressure, and determines a magnitude of the pressure based on the voltage. The piezoelectric area can directly contact the touch sensor.

触摸感测单元可以包括涂覆触摸传感器和压电区的绝缘层。触摸感测单元可以包括位于绝缘层上的共电极,其中,共电极与压电区叠置。压电区可以包括聚偏氟乙烯(PVDF)聚合物、碳纳米管(CNT)/PVDF、ZnO纳米线、无铅Mn掺杂的(K0.5,Na0.5)NbO3、PZT、Pb(Zr,Ti)O3和Pb(Zr1-xTix)O3中的至少一种。压电区可以具有大约80%或更大的透光性。The touch sensing unit may include an insulating layer coating the touch sensor and the piezoelectric region. The touch sensing unit may include a common electrode on the insulating layer, wherein the common electrode overlaps the piezoelectric region. The piezoelectric region may include polyvinylidene fluoride (PVDF) polymer, carbon nanotube (CNT)/PVDF, ZnO nanowires, lead-free Mn-doped (K 0.5 , Na 0.5 )NbO 3 , PZT, Pb(Zr, At least one of Ti)O 3 and Pb(Zr 1-x Ti x )O 3 . The piezoelectric region may have a light transmittance of about 80% or more.

随着距端子部的距离增大,可以增大压电区的尺寸。触摸感测单元可以包括:弹性层,位于触摸传感器与压电区之间;以及绝缘层,涂覆压电区。触摸感测单元可以包括位于绝缘层上的共电极,其中,共电极与压电区叠置。触摸传感器可以接收从压电区产生的电压的AC分量,而不是DC分量。可以一体地形成触摸传感器和传感器线。As the distance from the terminal portion increases, the size of the piezoelectric region can be increased. The touch sensing unit may include: an elastic layer between the touch sensor and the piezoelectric region; and an insulating layer coating the piezoelectric region. The touch sensing unit may include a common electrode on the insulating layer, wherein the common electrode overlaps the piezoelectric region. The touch sensor can receive the AC component of the voltage generated from the piezoelectric region, rather than the DC component. The touch sensor and the sensor line may be integrally formed.

根据一个或更多个其它实施例,触摸感测单元包括:基底;触摸传感器,位于基底上并包括传输电极和接收电极;传感器线,连接到接收电极;压电区,与接收电极叠置并以岛形状布置;以及触摸传感器控制器,在压力施加到压电区时通过接收电极接收由压电区产生的电压,并确定压力的大小。压电区可以直接接触接收电极。According to one or more other embodiments, a touch sensing unit includes: a substrate; a touch sensor on the substrate and including a transmission electrode and a reception electrode; a sensor wire connected to the reception electrode; a piezoelectric region overlapping the reception electrode and are arranged in an island shape; and a touch sensor controller receives a voltage generated by the piezoelectric region through a receiving electrode when pressure is applied to the piezoelectric region, and determines the magnitude of the pressure. The piezoelectric region may be in direct contact with the receiving electrode.

触摸感测单元可以包括与压电区叠置的共电极,其中,共电极与压电区绝缘。压电区可以包括聚偏氟乙烯(PVDF)聚合物、碳纳米管(CNT)/PVDF、ZnO纳米线、无铅Mn掺杂的(K0.5,Na0.5)NbO3、PZT、Pb(Zr,Ti)O3和Pb(Zr1-xTix)O3中的至少一种。随着距端子部的距离增大,可以增大压电区的尺寸。The touch sensing unit may include a common electrode overlapping the piezoelectric region, wherein the common electrode is insulated from the piezoelectric region. The piezoelectric region may include polyvinylidene fluoride (PVDF) polymer, carbon nanotube (CNT)/PVDF, ZnO nanowires, lead-free Mn-doped (K 0.5 , Na 0.5 )NbO 3 , PZT, Pb(Zr, At least one of Ti)O 3 and Pb(Zr 1-x Ti x )O 3 . As the distance from the terminal portion increases, the size of the piezoelectric region can be increased.

触摸感测单元可以包括:弹性层,位于接收电极与压电区之间;以及绝缘层,涂覆压电区。弹性层可以包括第一弹性层和第二弹性层,第一弹性层的弹性模量和第二弹性层的弹性模量可以彼此不同。The touch sensing unit may include: an elastic layer between the receiving electrode and the piezoelectric region; and an insulating layer coating the piezoelectric region. The elastic layer may include a first elastic layer and a second elastic layer, and the elastic modulus of the first elastic layer and the elastic modulus of the second elastic layer may be different from each other.

触摸感测单元可以包括位于绝缘层上的共电极,其中,共电极与压电区叠置。接收电极可以接收由压电区产生的电压的AC分量,而不是DC分量。The touch sensing unit may include a common electrode on the insulating layer, wherein the common electrode overlaps the piezoelectric region. The receiving electrodes may receive the AC component of the voltage produced by the piezoelectric region, rather than the DC component.

附图说明Description of drawings

通过参照附图对示例性实施例进行详细地描述,特征对本领域技术人员而言将变得明显,在附图中:Features will become apparent to those skilled in the art from the detailed description of exemplary embodiments with reference to the accompanying drawings, in which:

图1示出了一种类型的显示装置;Figure 1 shows one type of display device;

图2示出了一种类型的触摸传感器控制器;Figure 2 shows one type of touch sensor controller;

图3示出了触摸感测单元的实施例;Figure 3 shows an embodiment of a touch sensing unit;

图4示出了沿图3中的剖面线I-I'的视图;Figure 4 shows a view along section line II' in Figure 3;

图5A和图5B示出了触摸感测单元的操作的示例;5A and 5B illustrate an example of the operation of the touch sensing unit;

图6示出了触摸感测单元的另一实施例;Figure 6 shows another embodiment of a touch sensing unit;

图7A和图7B示出了触摸感测单元的操作的其它示例;7A and 7B illustrate other examples of the operation of the touch sensing unit;

图8示出了通过压力传感器产生电压的实施例;FIG. 8 shows an embodiment of generating a voltage by a pressure sensor;

图9A至图9C示出了压力传感器的操作的示例;9A-9C illustrate an example of the operation of the pressure sensor;

图10示出了触摸传感器控制器的实施例;Figure 10 shows an embodiment of a touch sensor controller;

图11示出了触摸传感器的操作的实施例;Figure 11 illustrates an embodiment of the operation of a touch sensor;

图12A示出了触摸传感器图案的另一实施例,图12B示出了触摸传感器图案的操作的另一实施例;FIG. 12A shows another embodiment of a touch sensor pattern, and FIG. 12B shows another embodiment of the operation of the touch sensor pattern;

图13示出了触摸传感器图案的另一实施例;以及Figure 13 shows another embodiment of a touch sensor pattern; and

图14示出了触摸传感器图案的另一实施例。Figure 14 shows another embodiment of a touch sensor pattern.

具体实施方式Detailed ways

参照附图描述了示例实施例;然而,示例实施例可以以不同的形式来实施,并且不应被解释为局限于在此阐述的实施例。相反,提供这些实施例使得本公开将是彻底的和完整的,并将把示例性实施方式传达给本领域技术人员。可以结合实施例(或其一部分)以形成另外的实施例。Example embodiments have been described with reference to the accompanying drawings; however, example embodiments may be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will convey exemplary embodiments to those skilled in the art. Embodiments (or portions thereof) may be combined to form further embodiments.

在附图中,为了清楚说明,可以夸大层和区域的尺寸。还将理解的是,当层或元件被称作“在”另一层或基底“上”,该层或元件可以直接在所述另一层或基底上,或者也可以存在中间层。另外,将理解的是,当层被称作“在”另一层“下方”时,该层可以直接在所述另一层下方,也可以存在一个或更多个中间层。另外,还将理解的是,当层被称作“在”两个层之间时,该层可以是所述两个层之间的唯一的层,或者也可以存在一个或更多个中间层。同样的附图标记始终表示同样的元件。In the drawings, the dimensions of layers and regions may be exaggerated for clarity of illustration. It will also be understood that when a layer or element is referred to as being "on" another layer or substrate, it can be directly on the other layer or substrate, or intervening layers may also be present. In addition, it will be understood that when a layer is referred to as being "under" another layer, it can be directly under the other layer, and one or more intervening layers may also be present. In addition, it will also be understood that when a layer is referred to as being "between" two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present . The same reference numbers refer to the same elements throughout.

当元件被称作“连接”或“结合”到另一元件时,该元件可以直接连接或结合到所述另一元件,或者在有一个或更多个中间元件置于其间的情况下间接连接或结合到所述另一元件。另外,当元件被称作“包括”组件时,除非存在不同的公开,否则这表示该元件还可以包括另外的组件,而不是排除另外的组件。When an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or be indirectly connected with one or more intervening elements interposed therebetween or incorporated into the other element. Additionally, when an element is referred to as "comprising" a component, unless a different disclosure exists, this means that the element can also include the additional component, rather than exclude the additional component.

图1示出了一种类型的显示装置,所述显示装置包括:显示面板300、扫描驱动器400、数据驱动器500、触摸传感器、结合到显示面板300的触摸传感器控制器700以及用于控制扫描驱动器400和数据驱动器500的信号控制器600。FIG. 1 shows a type of display device including a display panel 300, a scan driver 400, a data driver 500, a touch sensor, a touch sensor controller 700 coupled to the display panel 300, and a scan driver for controlling the display panel 300. 400 and the signal controller 600 of the data driver 500 .

显示面板300包括多条扫描信号线G1至Gn、多条数据线D1至Dm以及连接到扫描信号线G1至Gn和数据线D1至Dm的多个像素Px。显示面板300可以包括嵌入其中的触摸感测单元,触摸感测单元包括连接到传感器线SL1至SLp并以矩阵形式布置的触摸传感器Ts。触摸传感器Ts和传感器线SL1至SLp可以一体地形成。包括触摸传感器Ts的单独的触摸感测单元可以附着到显示面板300的前表面部分。The display panel 300 includes a plurality of scan signal lines G1 to Gn, a plurality of data lines D1 to Dm, and a plurality of pixels Px connected to the scan signal lines G1 to Gn and the data lines D1 to Dm. The display panel 300 may include a touch sensing unit embedded therein, the touch sensing unit including the touch sensors Ts connected to the sensor lines SL1 to SLp and arranged in a matrix form. The touch sensor Ts and the sensor lines SL1 to SLp may be integrally formed. A separate touch sensing unit including the touch sensor Ts may be attached to the front surface portion of the display panel 300 .

扫描信号线G1至Gn基本上在行方向上延伸,并传输栅极信号,栅极信号包括用于导通诸如连接到每个像素Px的薄膜晶体管(“TFT”)的开关元件的栅极导通电压和能够截止开关元件的栅极截止电压。The scan signal lines G1 to Gn extend substantially in the row direction and transmit gate signals including gate conduction for turning on switching elements such as thin film transistors (“TFTs”) connected to each pixel Px voltage and gate-off voltage capable of turning off the switching element.

数据线D1至Dm基本上在列方向上延伸,并在连接到每个像素Px的开关元件导通时传输数据电压。The data lines D1 to Dm extend substantially in the column direction, and transmit data voltages when the switching elements connected to each pixel Px are turned on.

每个像素Px在空间上布置为发射多种原色之一的光。在一种情况下,多个像素Px可以随着时间显示原色。因此,可以通过在空间和时间方面将原色结合来表示期望的颜色。可以将共电压和数据电压施加到每个像素Px。Each pixel Px is spatially arranged to emit light of one of a plurality of primary colors. In one case, multiple pixels Px may display primary colors over time. Therefore, a desired color can be represented by combining the primary colors in space and time. A common voltage and a data voltage can be applied to each pixel Px.

信号控制器600从外部图形处理单元接收输入图像信号R、G和B以及一个或更多个控制信号CONT(例如,水平同步信号、垂直同步信号、时钟信号、数据使能信号等)。信号控制器600根据显示面板300的操作条件基于图像信号R、G和B以及控制信号CONT处理图像信号R、G和B,并产生和输出图像数据DAT、栅极控制信号CONT1、数据控制信号CONT2和时钟信号。信号控制器600也将同步信号Sync输出到触摸传感器控制器700。The signal controller 600 receives input image signals R, G, and B and one or more control signals CONT (eg, a horizontal synchronization signal, a vertical synchronization signal, a clock signal, a data enable signal, etc.) from an external graphics processing unit. The signal controller 600 processes the image signals R, G, and B based on the image signals R, G, and B and the control signal CONT according to operating conditions of the display panel 300, and generates and outputs the image data DAT, the gate control signal CONT1, the data control signal CONT2 and clock signal. The signal controller 600 also outputs the synchronization signal Sync to the touch sensor controller 700 .

栅极控制信号CONT1包括用于指示扫描的起始的扫描起始脉冲垂直信号STV和用于产生栅极导通电压的时钟脉冲垂直信号CPV。扫描起始脉冲垂直信号STV的输出周期与一帧(或刷新率)一致。栅极控制信号CONT1还可以包括限定栅极导通电压的持续时间的输出使能信号OE。The gate control signal CONT1 includes a scan start pulse vertical signal STV for instructing the start of scanning and a clock pulse vertical signal CPV for generating a gate-on voltage. The output period of the scanning start pulse vertical signal STV corresponds to one frame (or refresh rate). The gate control signal CONT1 may also include an output enable signal OE that defines the duration of the gate-on voltage.

数据控制信号CONT2包括水平起始信号和负载信号。水平起始信号指示用于一行中的像素的图像数据DAT的传输的起始。负载信号指示将对应的数据电压传输到数据线D1至Dm。The data control signal CONT2 includes a horizontal start signal and a load signal. The horizontal start signal indicates the start of the transfer of the image data DAT for the pixels in one line. The load signal instructs the transmission of the corresponding data voltages to the data lines D1 to Dm.

扫描驱动器400根据栅极控制信号CONT1将栅极导通电压和栅极截止电压施加到扫描信号线G1至Gn。The scan driver 400 applies a gate-on voltage and a gate-off voltage to the scan signal lines G1 to Gn according to the gate control signal CONT1.

数据驱动器500从信号控制器600接收数据控制信号CONT2和图像数据DAT,基于来自灰度级电压产生器的灰度级电压将图像数据DAT转换成数据电压,并将数据电压施加到数据线D1至Dm。数据电压可以包括正极性的数据电压和负极性的数据电压。可以基于帧、行和/或列来交替地施加正极性和负极性的数据电压。The data driver 500 receives the data control signal CONT2 and the image data DAT from the signal controller 600, converts the image data DAT into data voltages based on the gray-scale voltages from the gray-scale voltage generator, and applies the data voltages to the data lines D1 to Dm. The data voltages may include data voltages of positive polarity and data voltages of negative polarity. Data voltages of positive and negative polarities may be alternately applied on a frame, row, and/or column basis.

传感器线SL1至SLp基本上在行方向或列方向上延伸,并连接到各个触摸传感器Ts以传输触摸检测信号和传感器信号。触摸传感器Ts可以以自电容方式基于触摸产生传感器信号。触摸传感器Ts可以从传感器线SL1至SLp接收触摸检测信号,并通过传感器线SL1至SLp将反映由于外部物体(例如,手指或触控笔)的触摸而引起的电容变化的传感器信号输出到触摸传感器控制器700。The sensor lines SL1 to SLp extend substantially in the row direction or the column direction, and are connected to the respective touch sensors Ts to transmit touch detection signals and sensor signals. The touch sensor Ts may generate sensor signals based on touch in a self-capacitance manner. The touch sensor Ts may receive touch detection signals from the sensor lines SL1 to SLp, and output a sensor signal reflecting a capacitance change due to a touch of an external object (eg, a finger or a stylus) to the touch sensor through the sensor lines SL1 to SLp Controller 700.

另外,触摸传感器Ts可以以互电容方法基于触摸产生传感器信号。互电容型的触摸传感器Ts包括触摸传输电极Tx和触摸接收电极Rx。触摸传输电极Tx是用于传输触摸检测信号的传感器电极,触摸接收电极Rx是用于接收触摸检测信号以产生传感器信号的电极。In addition, the touch sensor Ts may generate a sensor signal based on a touch in a mutual capacitance method. The mutual capacitance type touch sensor Ts includes a touch transmission electrode Tx and a touch reception electrode Rx. The touch transmission electrodes Tx are sensor electrodes for transmitting touch detection signals, and the touch reception electrodes Rx are electrodes for receiving touch detection signals to generate sensor signals.

图2示出了将触摸传感器控制器700施加到自电容型的触摸传感器Ts。触摸传感器控制器700产生并传输将被施加到触摸传感器Ts的触摸检测信号,并且从触摸传感器Ts接收传感器信号以产生触摸信息。FIG. 2 shows the application of the touch sensor controller 700 to the touch sensor Ts of the self-capacitance type. The touch sensor controller 700 generates and transmits a touch detection signal to be applied to the touch sensor Ts, and receives the sensor signal from the touch sensor Ts to generate touch information.

触摸传感器控制器700包括时序产生单元710、信号产生和/或处理单元720、信号收发器730和复用器740。时序产生单元710基于来自信号控制器600的同步信号Sync产生并输出扫描使能信号TSE。信号产生和/或处理单元720基于扫描使能信号TSE产生并输出触摸检测信号TSS。信号收发器730将触摸检测信号TSS转换成模拟信号。复用器740将触摸检测信号TSS选择性地施加到传感器线SL1至SLp。The touch sensor controller 700 includes a timing generation unit 710 , a signal generation and/or processing unit 720 , a signal transceiver 730 and a multiplexer 740 . The timing generation unit 710 generates and outputs the scan enable signal TSE based on the synchronization signal Sync from the signal controller 600 . The signal generation and/or processing unit 720 generates and outputs the touch detection signal TSS based on the scan enable signal TSE. The signal transceiver 730 converts the touch detection signal TSS into an analog signal. The multiplexer 740 selectively applies the touch detection signal TSS to the sensor lines SL1 to SLp.

由触摸引起的电容变化可以通过传感器线SL1至SLp作为来自触摸传感器Ts的感测信号而输出。传感器信号通过复用器740和信号收发器730传输到信号产生和/或处理单元720。信号产生和/或处理单元720对传感器信号进行解码并将传感器信号与触摸检测信号TSS进行比较,以产生触摸信息(例如,存在触摸输入或触摸位置)。例如,当手指触摸触摸传感器Ts时,传感器信号的振幅可以小于触摸检测信号TSS的振幅。信号产生和/或处理单元720可以计算电压差以确定是否已经发生触摸。The capacitance change caused by the touch may be output as a sensing signal from the touch sensor Ts through the sensor lines SL1 to SLp. The sensor signals are transmitted to the signal generation and/or processing unit 720 through the multiplexer 740 and the signal transceiver 730 . The signal generation and/or processing unit 720 decodes the sensor signal and compares the sensor signal with the touch detection signal TSS to generate touch information (eg, presence of touch input or touch location). For example, when a finger touches the touch sensor Ts, the amplitude of the sensor signal may be smaller than that of the touch detection signal TSS. The signal generation and/or processing unit 720 may calculate the voltage difference to determine whether a touch has occurred.

图3示出了触摸感测单元的实施例,图4是沿图3的线I-I'截取的剖视图。参照图3和图4,触摸感测单元包括基底810、触摸传感器Ts、压力传感器Ps、绝缘层840和保护层850。基底810可以是透明玻璃基底、塑料基底或显示装置的前基底。FIG. 3 illustrates an embodiment of a touch sensing unit, and FIG. 4 is a cross-sectional view taken along line II′ of FIG. 3 . 3 and 4 , the touch sensing unit includes a substrate 810 , a touch sensor Ts, a pressure sensor Ps, an insulating layer 840 and a protective layer 850 . The substrate 810 may be a transparent glass substrate, a plastic substrate, or a front substrate of a display device.

触摸传感器Ts可以以自电容方式使用一个触摸传感器Ts来检测触摸。触摸传感器Ts位于基底810上,布置在第一方向和第二方向(例如,X方向和Y方向)上,并分别连接到传感器线SL1至SLp。触摸传感器控制器700通过传感器线SL1至SLp连接到触摸传感器Ts。从触摸传感器Ts输出的传感器信号可以例如通过基底下方的端子部被施加到触摸传感器控制器700。The touch sensor Ts may use one touch sensor Ts in a self-capacitance manner to detect touch. The touch sensors Ts are located on the substrate 810, are arranged in the first and second directions (eg, the X direction and the Y direction), and are connected to the sensor lines SL1 to SLp, respectively. The touch sensor controller 700 is connected to the touch sensor Ts through the sensor lines SL1 to SLp. The sensor signal output from the touch sensor Ts may be applied to the touch sensor controller 700 through a terminal portion under the substrate, for example.

压力传感器Ps位于触摸传感器Ts上。压力传感器Ps的下部可以直接接触触摸传感器Ts的上部,并可以具有比触摸传感器Ts的面积小的面积。压力传感器Ps可以包括例如压电元件。压电元件包括第一电极831、压电层832和第二电极833。一个压电元件可以不与另一压电元件连接,可以例如以岛形状布置,并且可以彼此独立。The pressure sensor Ps is located on the touch sensor Ts. The lower portion of the pressure sensor Ps may directly contact the upper portion of the touch sensor Ts, and may have an area smaller than that of the touch sensor Ts. The pressure sensor Ps may include, for example, a piezoelectric element. The piezoelectric element includes a first electrode 831 , a piezoelectric layer 832 and a second electrode 833 . One piezoelectric element may not be connected to another piezoelectric element, may be arranged in an island shape, for example, and may be independent of each other.

第一电极831接触触摸传感器Ts的上表面,并电连接压电层832和触摸传感器Ts。第一电极831可以包括透明导电材料,例如,氧化铟锡(ITO)、氧化铟锌(IZO)或碳纳米管(CNT)。The first electrode 831 contacts the upper surface of the touch sensor Ts, and electrically connects the piezoelectric layer 832 and the touch sensor Ts. The first electrode 831 may include a transparent conductive material, eg, indium tin oxide (ITO), indium zinc oxide (IZO), or carbon nanotubes (CNT).

第一电极831上的压电层832包括通过压力产生电的压电材料的叠层。压电元件是使用压电现象的电压产生元件,例如,当压电层832由于外部压力收缩或膨胀时,由压电层832的内部应力的变化引起极化并产生电压。压电层832可以是例如包括聚偏氟乙烯(PVDF)聚合物、碳纳米管(CNT)/PVDF、ZnO纳米线、无铅Mn掺杂的(K0.5,Na0.5)NbO3、PZT、Pb(Zr,Ti)O3或PbZr1-xTixO3的膜。在一个实施例中,压电层832可以包括在厚度方向上层叠的多个层。压电层832可以具有例如大约80μm或更小的厚度,并可以具有透光性。在一个实施例中,压电层832的厚度可以为大约10μm或更小。The piezoelectric layer 832 on the first electrode 831 includes a stack of piezoelectric materials that generate electricity through pressure. The piezoelectric element is a voltage generating element using a piezoelectric phenomenon, for example, when the piezoelectric layer 832 contracts or expands due to external pressure, polarization is caused by a change in the internal stress of the piezoelectric layer 832 and a voltage is generated. Piezoelectric layer 832 may be, for example, a polymer including polyvinylidene fluoride (PVDF), carbon nanotube (CNT)/PVDF, ZnO nanowires, lead-free Mn doped (K 0.5 , Na 0.5 )NbO 3 , PZT, Pb (Zr,Ti)O 3 or PbZr 1-x Ti x O 3 films. In one embodiment, the piezoelectric layer 832 may include a plurality of layers stacked in the thickness direction. The piezoelectric layer 832 may have a thickness of, for example, about 80 μm or less, and may have light transmittance. In one embodiment, the thickness of piezoelectric layer 832 may be about 10 μm or less.

第二电极833位于压电层832上,并可以包括例如透明导电材料。The second electrode 833 is located on the piezoelectric layer 832 and may include, for example, a transparent conductive material.

绝缘层840位于压电元件上,可以用来将基底810附着到保护层850,并可以涂覆压电元件的上表面和侧表面。在一个实施例中,绝缘层840可以包括具有优异的弹性的聚二甲基硅氧烷(PDMS)。The insulating layer 840 is on the piezoelectric element, can be used to attach the substrate 810 to the protective layer 850, and can coat the upper and side surfaces of the piezoelectric element. In one embodiment, the insulating layer 840 may include polydimethylsiloxane (PDMS) having excellent elasticity.

保护层850保护触摸传感器Ts和压力传感器Ps,并向用户提供触摸表面。保护层850可以包括柔性膜以允许外部施加的压力有效地传输到压力传感器Ps。在一个实施例中,保护层850可以包括玻璃涂覆膜或硬涂覆膜。当基底810是显示装置的前基底时,保护层850可以包括例如偏振膜。The protective layer 850 protects the touch sensor Ts and the pressure sensor Ps, and provides a touch surface to the user. The protective layer 850 may include a flexible film to allow externally applied pressure to be effectively transmitted to the pressure sensor Ps. In one embodiment, the protective layer 850 may include a glass coating film or a hard coating film. When the substrate 810 is the front substrate of the display device, the protective layer 850 may include, for example, a polarizing film.

在图3中,传感器线SL1至SLp的长度根据例如基底上的触摸传感器Ts的位置而不同。随着传感器线SL1至SLp的长度增大,传感器信号会通过电压降衰减。触摸传感器Ts的面积可以随着端子部与触摸传感器Ts之间的距离增大而成比例地增加。可以通过调整触摸传感器Ts的面积来抵消基于传感器线SL1至SLp的长度偏差的电压降,使得触摸传感器控制器700可以基于传感器位置来检测触摸位置而不校正电压降。In FIG. 3 , the lengths of the sensor lines SL1 to SLp differ depending on, for example, the positions of the touch sensors Ts on the substrate. As the length of the sensor lines SL1 to SLp increases, the sensor signal is attenuated by the voltage drop. The area of the touch sensor Ts may increase proportionally as the distance between the terminal portion and the touch sensor Ts increases. The voltage drop based on the length deviation of the sensor lines SL1 to SLp can be offset by adjusting the area of the touch sensor Ts, so that the touch sensor controller 700 can detect the touch position based on the sensor position without correcting the voltage drop.

另外,随着端子部与触摸传感器Ts之间的距离增大,触摸传感器Ts上的压力传感器Ps的尺寸也可以成比例地增大。可以基于压力传感器Ps的位置检测压力而无需校正。这可以例如通过调整压力传感器Ps的面积比来实现。可以通过面积校正来减少由触摸传感器控制器700处理的数据的量,使得可以更加快速地检测触摸位置和压力。In addition, as the distance between the terminal portion and the touch sensor Ts increases, the size of the pressure sensor Ps on the touch sensor Ts can also increase proportionally. The pressure can be detected without correction based on the position of the pressure sensor Ps. This can be achieved, for example, by adjusting the area ratio of the pressure sensor Ps. The amount of data processed by the touch sensor controller 700 can be reduced by area correction, so that the touch position and pressure can be detected more quickly.

图5A和图5B示出了触摸感测单元的操作的示例。5A and 5B illustrate an example of the operation of the touch sensing unit.

参照图5A,当触摸物体(例如,手指)靠近或触摸触摸感测单元的前表面时,触摸电容器形成在由触摸传感器Ts与触摸物体之间的虚线所指示的路径上。触摸传感器控制器700将包括多个脉冲波的触摸检测信号施加到触摸传感器Ts,并基于施加的触摸检测信号检测触摸传感器的传感器信号。当不发生触摸时,根据基于触摸感测单元和触摸传感器Ts的结构确定的RC延迟基于施加的触摸检测信号来检测预定的传感器信号电压。5A , when a touch object (eg, a finger) approaches or touches the front surface of the touch sensing unit, a touch capacitor is formed on a path indicated by a dotted line between the touch sensor Ts and the touch object. The touch sensor controller 700 applies a touch detection signal including a plurality of pulse waves to the touch sensor Ts, and detects a sensor signal of the touch sensor based on the applied touch detection signal. When a touch does not occur, a predetermined sensor signal voltage is detected based on the applied touch detection signal according to an RC delay determined based on the structures of the touch sensing unit and the touch sensor Ts.

在示例性实施例中,当如图5A中所示发生外部触摸时,在触摸物体与触摸传感器Ts之间形成触摸电容器。触摸电容器增大RC延迟,并且相对于基本上相同的触摸检测信号,检测较小的电压作为触摸传感器Ts的传感器信号。触摸传感器控制器700可以检测传感器信号的变化,并确定触摸传感器Ts处发生的触摸。In an exemplary embodiment, when an external touch occurs as shown in FIG. 5A , a touch capacitor is formed between the touch object and the touch sensor Ts. The touch capacitor increases the RC delay and detects a smaller voltage as the sensor signal of the touch sensor Ts with respect to substantially the same touch detection signal. The touch sensor controller 700 can detect changes in sensor signals and determine a touch that occurs at the touch sensor Ts.

参照图5B,触摸物体可以通过向绝缘层施加压力而使基底向下变形。通过外部施加的压力在压力传感器Ps的相对电极之间产生电势差。压力传感器Ps的产生的电压作为传感器信号通过连接到触摸传感器Ts的传感器线SL1至SLp被传输到触摸传感器控制器700。压力传感器Ps的产生的电压可以具有比触摸操作中检测的传感器信号大的值。触摸传感器控制器700可以分析传感器信号的电压以确定施加的压力的位置和大小。Referring to FIG. 5B , the touching object may deform the substrate downward by applying pressure to the insulating layer. A potential difference is generated between the opposing electrodes of the pressure sensor Ps by an externally applied pressure. The generated voltage of the pressure sensor Ps is transmitted as a sensor signal to the touch sensor controller 700 through the sensor lines SL1 to SLp connected to the touch sensor Ts. The generated voltage of the pressure sensor Ps may have a larger value than the sensor signal detected in the touch operation. The touch sensor controller 700 may analyze the voltage of the sensor signal to determine the location and magnitude of the applied pressure.

图6示出了互电容型的触摸感测单元的实施例。参照图6,该触摸感测单元的触摸传感器Ts包括触摸传输电极Tx和触摸接收电极Rx。触摸传输电极Tx沿面板的一个方向延伸,并面对平行于触摸传输电极Tx的延伸方向布置的触摸接收电极Rx。八个触摸接收电极Rx示出在图6中以与一个触摸传输电极Tx对应。触摸传输电极Tx和触摸接收电极Rx的数量可以例如基于触摸感测单元的触摸分辨率而在其它实施例中不同。FIG. 6 shows an embodiment of a mutual capacitance type touch sensing unit. Referring to FIG. 6 , the touch sensor Ts of the touch sensing unit includes a touch transmission electrode Tx and a touch reception electrode Rx. The touch transfer electrodes Tx extend in one direction of the panel and face the touch receiving electrodes Rx arranged parallel to the extending direction of the touch transfer electrodes Tx. Eight touch reception electrodes Rx are shown in FIG. 6 to correspond to one touch transmission electrode Tx. The number of touch transmission electrodes Tx and touch reception electrodes Rx may be different in other embodiments, eg, based on the touch resolution of the touch sensing unit.

触摸接收电极Rx可以通过传感器线SL1至SLp连接到触摸传感器控制器700。触摸传感器控制器700可以基于施加到触摸传输电极Tx的触摸检测信号确定与触摸对应的触摸传感器Ts,并可以分析从触摸接收电极Rx检测的传感器信号。The touch receiving electrodes Rx may be connected to the touch sensor controller 700 through the sensor lines SL1 to SLp. The touch sensor controller 700 may determine the touch sensor Ts corresponding to the touch based on the touch detection signal applied to the touch transmission electrode Tx, and may analyze the sensor signal detected from the touch reception electrode Rx.

图7A和图7B示出了触摸感测单元的操作的示例。7A and 7B illustrate an example of the operation of the touch sensing unit.

参照图7A,互电容器型的触摸感测单元包括基底810、触摸传输电极Tx、触摸接收电极Rx、压力传感器Ps、绝缘层840和保护层850。触摸传输电极Tx和触摸接收电极Rx位于基底810上的基本上同一表面上,并在平面上彼此面对。触摸传输电极Tx和触摸接收电极Rx可以形成在包括基本上相同的材料的基本上同一层上。电极材料的示例可以包括诸如氧化铟锡(ITO)和氧化铟锌(IZO)的透明导电氧化物(TCO)、诸如银纳米线(AgNW)的导电纳米线以及金属网。7A , the mutual capacitor type touch sensing unit includes a substrate 810 , a touch transmission electrode Tx, a touch reception electrode Rx, a pressure sensor Ps, an insulating layer 840 and a protective layer 850 . The touch transmission electrodes Tx and the touch reception electrodes Rx are located on substantially the same surface on the substrate 810 and face each other on a plane. The touch transmission electrodes Tx and the touch reception electrodes Rx may be formed on substantially the same layer including substantially the same material. Examples of electrode materials may include transparent conductive oxides (TCO) such as indium tin oxide (ITO) and indium zinc oxide (IZO), conductive nanowires such as silver nanowires (AgNW), and metal meshes.

压力传感器Ps位于触摸接收电极Rx上,并可以包括压电元件。压电元件包括第一电极831、压电层832和第二电极833。一个压电元件不连接到另一压电元件,并彼此独立地以岛形状布置。The pressure sensor Ps is located on the touch receiving electrode Rx, and may include a piezoelectric element. The piezoelectric element includes a first electrode 831 , a piezoelectric layer 832 and a second electrode 833 . One piezoelectric element is not connected to the other piezoelectric element, and is arranged in an island shape independently of each other.

为了电连接压电层832和触摸传感器Ts,压电元件的第一电极831接触触摸传感器Ts的上表面。第一电极831可以包括例如氧化铟锡(ITO)、氧化铟锌(IZO)或碳纳米管(CNT)的透明导电材料。In order to electrically connect the piezoelectric layer 832 and the touch sensor Ts, the first electrode 831 of the piezoelectric element contacts the upper surface of the touch sensor Ts. The first electrode 831 may include a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), or carbon nanotube (CNT).

压电元件基于外部压力在第一电极831与第二电极833之间产生电压差。压电元件可以例如通过层叠诸如聚偏氟乙烯(PVDF)聚合物、碳纳米管(CNT)/PVDF、ZnO纳米线、无铅Mn掺杂的(K0.5,Na0.5)NbO3、PZT、Pb(Zr,Ti)O3和PbZr1-xTixO3的压电材料来形成。压电元件可以通过层叠压电材料来直接形成在电极上。当以沉积方法形成时,压电元件可以在不使用第一电极831的情况下直接沉积在触摸接收电极Rx上。The piezoelectric element generates a voltage difference between the first electrode 831 and the second electrode 833 based on the external pressure. Piezoelectric elements can be made, for example, by stacking polymers such as polyvinylidene fluoride (PVDF), carbon nanotubes (CNT)/PVDF, ZnO nanowires, lead-free Mn-doped (K 0.5 , Na 0.5 )NbO 3 , PZT, Pb (Zr,Ti)O 3 and PbZr 1-x Ti x O 3 piezoelectric materials. Piezoelectric elements can be formed directly on electrodes by laminating piezoelectric materials. When formed in a deposition method, the piezoelectric element may be directly deposited on the touch receiving electrode Rx without using the first electrode 831 .

绝缘层840位于压电元件上,并可以将基底810附着到保护层850。绝缘层840可以包括例如具有优异的透光性的粘合剂或具有优异的弹性的聚二甲基硅氧烷(PDMS)。The insulating layer 840 is on the piezoelectric element and may attach the substrate 810 to the protective layer 850 . The insulating layer 840 may include, for example, an adhesive having excellent light transmittance or polydimethylsiloxane (PDMS) having excellent elasticity.

保护层850保护触摸传感器Ts和压力传感器Ps,并向用户提供触摸表面。保护层850可以包括柔性膜以允许外部施加的压力有效地传输到压力传感器Ps。在一个实施例中,保护层850可以包括例如玻璃涂覆膜或硬涂覆膜的膜。当基底810是显示装置的前基底时,保护层850可以包括例如偏振膜。The protective layer 850 protects the touch sensor Ts and the pressure sensor Ps, and provides a touch surface to the user. The protective layer 850 may include a flexible film to allow externally applied pressure to be effectively transmitted to the pressure sensor Ps. In one embodiment, the protective layer 850 may include a film such as a glass-coated film or a hard-coated film. When the substrate 810 is the front substrate of the display device, the protective layer 850 may include, for example, a polarizing film.

为了检测触摸动作,触摸传输电极Tx传输脉冲波作为将通过电容器传输的触摸检测信号。当不做出触摸动作时,充电电压可以以从触摸传输电极Tx传输到触摸接收电极Rx的触摸检测信号为基础。充电电压可以被设定为参考电压。In order to detect a touch action, the touch transmission electrode Tx transmits a pulse wave as a touch detection signal to be transmitted through a capacitor. When no touch action is made, the charging voltage may be based on the touch detection signal transmitted from the touch transmission electrode Tx to the touch reception electrode Rx. The charging voltage can be set as a reference voltage.

当用户如图7A中接触保护层850时,触摸电容器形成在触摸传输电极Tx与触摸物体之间。触摸检测信号的从触摸传输电极Tx输出的部分会通过触摸电容器泄露。因此,位置检测信号不会根据泄露的量而全部传输到触摸接收电极Rx。因此,传输到触摸接收电极Rx的触摸检测信号可以具有比未触摸状态下的充电电压小的电压。When a user touches the protective layer 850 as shown in FIG. 7A , a touch capacitor is formed between the touch transfer electrode Tx and the touch object. A portion of the touch detection signal output from the touch transfer electrode Tx may leak through the touch capacitor. Therefore, the position detection signal is not entirely transmitted to the touch receiving electrode Rx according to the amount of leakage. Therefore, the touch detection signal transmitted to the touch reception electrode Rx may have a smaller voltage than the charging voltage in the untouched state.

触摸传感器控制器700可以基于施加到触摸接收电极Rx的传感器信号与参考电压的比较来检测触摸的位置。当在如图7B中输入触摸之后施加压力时,在触摸接收电极Rx上方的压力传感器Ps的相对电极之间产生电势差。图7B示出了在电极与触摸接收电极Rx接触的方向上在压力传感器Ps中产生正电压。The touch sensor controller 700 may detect the position of the touch based on the comparison of the sensor signal applied to the touch receiving electrode Rx and the reference voltage. When a pressure is applied after a touch is input as in FIG. 7B , a potential difference is generated between the opposing electrodes of the pressure sensor Ps above the touch receiving electrode Rx. FIG. 7B shows that a positive voltage is generated in the pressure sensor Ps in the direction in which the electrodes are in contact with the touch receiving electrodes Rx.

图8示出了根据示例性实施例的由压力传感器产生电压的示例,更具体地,示出了根据施加到触摸传感器Ts和位于触摸传感器Ts上方的压力传感器Ps的触摸的大小在压力传感器Ps中产生的压力传感器电压Vf的幅值的示例。FIG. 8 illustrates an example of generating a voltage by a pressure sensor according to an exemplary embodiment, and more particularly, illustrates the voltage generated by the pressure sensor Ps according to the size of the touch applied to the touch sensor Ts and the pressure sensor Ps located above the touch sensor Ts. An example of the magnitude of the pressure sensor voltage Vf produced in .

参照图8,部分A示出了仅在触摸感测单元的表面上发生触摸的状态的示例。触摸传感器Ts可以检测部分A中发生触摸的位置。在这样的示例性实施例中,没有额外的压力施加到压力传感器Ps。因此,压力传感器电压Vf可以被检测为大约0V。Referring to FIG. 8 , part A shows an example of a state in which a touch occurs only on the surface of the touch sensing unit. The touch sensor Ts can detect the position in the part A where a touch occurs. In such an exemplary embodiment, no additional pressure is applied to the pressure sensor Ps. Therefore, the pressure sensor voltage Vf can be detected as about 0V.

部分B示出了用户以相对弱的力按压触摸感测单元的表面的状态的示例。触摸感测单元的前表面包括柔性基底或保护膜。触摸感测单元的前表面的一部分由于用户的弱按压力向内凹陷。因此,向压力传感器Ps施加相对弱的压力。压力传感器Ps产生与弱的外部压力对应的相对低的压力传感器电压Vf。Part B shows an example of a state in which the user presses the surface of the touch sensing unit with a relatively weak force. The front surface of the touch sensing unit includes a flexible substrate or protective film. A portion of the front surface of the touch sensing unit is recessed inward due to a weak pressing force of the user. Therefore, a relatively weak pressure is applied to the pressure sensor Ps. The pressure sensor Ps generates a relatively low pressure sensor voltage Vf corresponding to a weak external pressure.

部分C示出了用户以相对强的力按压触摸感测单元的表面的状态的示例。触摸感测单元的前表面由于用户的强按压力而变形,并向压力传感器Ps施加强压力。压力传感器Ps产生与强外部压力对应的相对高的压力传感器电压Vf。Section C shows an example of a state in which the user presses the surface of the touch sensing unit with a relatively strong force. The front surface of the touch sensing unit is deformed by the user's strong pressing force, and applies a strong pressure to the pressure sensor Ps. The pressure sensor Ps generates a relatively high pressure sensor voltage Vf corresponding to a strong external pressure.

图8示意性地示出了由压力产生的压力传感器电压Vf的幅值。从外部实际测量的压力传感器电压Vf可以根据连接电路的构造进行改变。在一个实施例中,压力传感器Ps具有至少一个电极不连接到另一条布线的结构。因此,触摸传感器控制器可以通过触摸接收电极Rx检测压力传感器电压Vf的AC分量。例如,触摸传感器控制器可以检测由按压引起的电压变化。因此,可以通过去除压力传感器电压Vf的DC分量来阻挡由外围电子装置引起的偏移噪声。FIG. 8 schematically shows the magnitude of the pressure sensor voltage Vf generated by the pressure. The pressure sensor voltage Vf actually measured from the outside can be changed according to the configuration of the connection circuit. In one embodiment, the pressure sensor Ps has a structure in which at least one electrode is not connected to another wiring. Therefore, the touch sensor controller can detect the AC component of the pressure sensor voltage Vf through the touch receiving electrode Rx. For example, a touch sensor controller can detect voltage changes caused by pressing. Therefore, offset noise caused by peripheral electronic devices can be blocked by removing the DC component of the pressure sensor voltage Vf.

图9A、图9B和图9C示出了基于互电容型的触摸感测单元的等效电路图的根据示例性实施例的压力传感器的操作。9A , 9B and 9C illustrate the operation of a pressure sensor according to an exemplary embodiment based on an equivalent circuit diagram of a mutual capacitance type touch sensing unit.

图9A示出了在用户不进行触摸的情况下触摸感测单元的操作电路图的示例。参照图9A,用作触摸检测信号的AC电力从触摸传感器控制器输出。互电容器Cm(例如,寄生电容器)可以形成在彼此面对且彼此相对的触摸传输电极Tx与触摸接收电极Rx之间。连接到触摸接收电极Rx的触摸传感器控制器检测触摸接收电极Rx的传感器信号电压VRXFIG. 9A shows an example of an operation circuit diagram of the touch sensing unit in the case where the user does not touch. Referring to FIG. 9A, AC power used as a touch detection signal is output from the touch sensor controller. Mutual capacitors Cm (eg, parasitic capacitors) may be formed between the touch transmission electrodes Tx and the touch reception electrodes Rx facing and opposing each other. The touch sensor controller connected to the touch receiving electrode Rx detects the sensor signal voltage V RX of the touch receiving electrode Rx.

触摸检测信号可以施加到触摸传输电极Tx,以通过互电容器Cm传输到触摸接收电极Rx。基于根据触摸感测单元的结构和材料确定的电阻分量的RC延迟和互电容器Cm的电容来确定触摸接收电极Rx的传感器信号电压VRXThe touch detection signal may be applied to the touch transmission electrode Tx to be transmitted to the touch reception electrode Rx through the mutual capacitor Cm. The sensor signal voltage VRX of the touch receiving electrode Rx is determined based on the RC delay of the resistance component and the capacitance of the mutual capacitor Cm determined according to the structure and material of the touch sensing unit.

图9B示出了在进行触摸的状态下触摸感测单元的操作电路图的示例。参照图9B,触摸电容器Ct形成在触摸传输电极Tx与触摸物体之间,并与互电容器Cm分离。触摸传输电极Tx的一部分触摸检测信号可以流过触摸电容器Ct。随着一部分触摸检测信号传输到触摸电容器Ct,施加到触摸接收电极Rx的传感器信号电压VRX可以被检测为小于图9A的传感器信号电压VRX。触摸传感器控制器可以通过检测传感器信号电压VRX来检测每个触摸传感器的触摸状态。FIG. 9B shows an example of an operation circuit diagram of the touch sensing unit in a state where a touch is made. Referring to FIG. 9B , the touch capacitor Ct is formed between the touch transfer electrode Tx and the touch object, and is separated from the mutual capacitor Cm. A part of the touch detection signal of the touch transfer electrode Tx may flow through the touch capacitor Ct. As a part of the touch detection signal is transmitted to the touch capacitor Ct, the sensor signal voltage VRX applied to the touch receiving electrode Rx may be detected to be smaller than the sensor signal voltage VRX of FIG. 9A . The touch sensor controller can detect the touch state of each touch sensor by detecting the sensor signal voltage V RX .

图9C示出了触摸感测单元的操作电路图的示例,其中,压力施加到触摸感测单元以从压力传感器产生电压。参照图9C,形成在触摸传输电极Tx与触摸物体之间的触摸电容器Ct继续保持。例如,随着触摸传输电极Tx与触摸物体之间的距离变窄,可以增大触摸电容器Ct的尺寸。9C shows an example of an operating circuit diagram of a touch sensing unit in which pressure is applied to the touch sensing unit to generate a voltage from the pressure sensor. Referring to FIG. 9C , the touch capacitor Ct formed between the touch transfer electrode Tx and the touch object continues to be maintained. For example, as the distance between the touch transfer electrode Tx and the touch object is narrowed, the size of the touch capacitor Ct can be increased.

在外部地施加有压力的压力传感器Ps的相对的端部电极之间产生电势差,并输出压力传感器电压Vf。压力传感器Ps的一个电极直接连接到触摸接收电极Rx,压力传感器电压Vf施加到互电容器Cm的一个端子。压力传感器电压Vf可以大于处于未触摸的状态下的传感器信号。A potential difference is generated between the opposing end electrodes of the pressure sensor Ps to which pressure is applied externally, and a pressure sensor voltage Vf is output. One electrode of the pressure sensor Ps is directly connected to the touch receiving electrode Rx, and the pressure sensor voltage Vf is applied to one terminal of the mutual capacitor Cm. The pressure sensor voltage Vf may be greater than the sensor signal in an untouched state.

因为压电元件产生DC电压,所以压力传感器电压Vf在电路图中表示为DC电力。然而,根据示例性实施例的压力传感器Ps具有其一个电极与电容器串联连接到共电极的结构。开路形成在DC电源上。闭路形成在AC电路上。因此,仅压力传感器电压Vf的AC分量(例如,电压波动分量)可以传输到触摸接收电极Rx。Because the piezoelectric element generates a DC voltage, the pressure sensor voltage Vf is represented as DC power in the circuit diagram. However, the pressure sensor Ps according to the exemplary embodiment has a structure in which one electrode is connected to the common electrode in series with the capacitor. An open circuit is formed on the DC power supply. A closed circuit is formed on the AC circuit. Therefore, only the AC component (eg, the voltage fluctuation component) of the pressure sensor voltage Vf can be transmitted to the touch receiving electrode Rx.

图10示出了测量触摸传感器Ts的触摸位置和压力传感器Ps的压力产生的触摸传感器控制器700的实施例。触摸传感器控制器700产生触摸检测信号,并将触摸检测信号传输到触摸传感器Ts。触摸传感器控制器700从触摸传感器Ts接收传感器信号以产生触摸信息。另外,触摸传感器控制器700分析传感器信号的电压,以确定由于压力传感器Ps引起的传感器信号因子。FIG. 10 shows an embodiment of a touch sensor controller 700 that measures the touch position of the touch sensor Ts and the pressure generation of the pressure sensor Ps. The touch sensor controller 700 generates a touch detection signal and transmits the touch detection signal to the touch sensor Ts. The touch sensor controller 700 receives sensor signals from the touch sensor Ts to generate touch information. In addition, the touch sensor controller 700 analyzes the voltage of the sensor signal to determine the sensor signal factor due to the pressure sensor Ps.

触摸传感器控制器700可以包括时序产生单元710、信号产生和/或处理单元720、信号收发器730、复用器740和压力信号分析单元750。时序产生单元710、信号产生和/或处理单元720、信号收发器730和复用器740可以与对应于图1和图2中的实施例的那些基本上相同。The touch sensor controller 700 may include a timing generation unit 710 , a signal generation and/or processing unit 720 , a signal transceiver 730 , a multiplexer 740 and a pressure signal analysis unit 750 . The timing generation unit 710 , the signal generation and/or processing unit 720 , the signal transceiver 730 and the multiplexer 740 may be substantially the same as those corresponding to the embodiments in FIGS. 1 and 2 .

压力信号分析单元750分析从确定为已经触摸的区域施加的传感器信号的变化。由于在压力施加到触摸感测单元的压力传感器Ps之前发生触摸动作,因此可以参考触摸传感器Ts的确定值。The pressure signal analysis unit 750 analyzes the change of the sensor signal applied from the area determined to have been touched. Since the touch action occurs before the pressure is applied to the pressure sensor Ps of the touch sensing unit, the determined value of the touch sensor Ts may be referred to.

压力信号分析单元750检测触摸发生处的触摸传感器Ts的传感器信号的振幅和电压产生时序。The pressure signal analysis unit 750 detects the amplitude and voltage generation timing of the sensor signal of the touch sensor Ts where the touch occurs.

当触摸接收电极Rx的传感器信号大于处于未触摸状态下的传感器信号时,压力信号分析单元750可以确定输入的传感器信号以压力传感器电压Vf为基础。另外,触摸接收电极Rx的传感器信号是由触摸传输电极Tx施加的触摸检测信号。触摸传输电极Tx的施加时序可以与传感器信号的检测时序同步。When the sensor signal of the touch receiving electrode Rx is greater than the sensor signal in the untouched state, the pressure signal analysis unit 750 may determine that the input sensor signal is based on the pressure sensor voltage Vf. In addition, the sensor signal of the touch reception electrode Rx is a touch detection signal applied by the touch transmission electrode Tx. The application timing of the touch transfer electrodes Tx may be synchronized with the detection timing of the sensor signal.

基于压力传感器电压Vf的传感器信号的电压可以不与触摸检测信号同步。压力信号分析单元750可以分析传感器信号的电压幅值和电压产生时序,以确定触摸动作是否产生传感器信号或者是否由压力传感器Ps输出传感器信号。The voltage of the sensor signal based on the pressure sensor voltage Vf may not be synchronized with the touch detection signal. The pressure signal analysis unit 750 may analyze the voltage amplitude and voltage generation timing of the sensor signal to determine whether the touch action generates the sensor signal or whether the sensor signal is output by the pressure sensor Ps.

图11示出了根据示例性实施例的触摸传感器的操作。首先,触摸传感器控制器700将触摸检测信号施加到触摸传感器(S1001)。触摸检测信号可以包括多个脉冲信号,并通过形成在触摸传感器处的电容器传输到触摸接收电极Rx。FIG. 11 illustrates the operation of a touch sensor according to an exemplary embodiment. First, the touch sensor controller 700 applies a touch detection signal to the touch sensor (S1001). The touch detection signal may include a plurality of pulse signals, and is transmitted to the touch receiving electrode Rx through a capacitor formed at the touch sensor.

触摸传感器控制器700首先检测施加到触摸接收电极Rx的传感器信号(S1002)。在从触摸传输电极Tx传输的触摸检测信号之中,传感器信号是通过互电容器传输到触摸接收电极Rx的信号。The touch sensor controller 700 first detects a sensor signal applied to the touch receiving electrode Rx (S1002). Among the touch detection signals transmitted from the touch transmission electrodes Tx, the sensor signals are signals transmitted to the touch reception electrodes Rx through the mutual capacitor.

触摸传感器控制器700将传感器信号的电压与触摸动作参考电压进行比较(S1003)。当传感器信号电压在触摸动作期间与触摸动作参考电压对应时,对应的触摸传感器的位置被检测为触摸位置(S1004)。The touch sensor controller 700 compares the voltage of the sensor signal with the touch action reference voltage (S1003). When the sensor signal voltage corresponds to the touch action reference voltage during the touch action, the position of the corresponding touch sensor is detected as the touch position (S1004).

触摸传感器控制器700重新检测确定为被触摸的触摸传感器的传感器信号(S1005)。在触摸动作之后基于由用户执行的动作的顺序执行压力产生动作。可以通过仅相对于发生触摸动作的位置处的触摸传感器Ts重新检测传感器信号来基本上减少或最小化压力感测所需要的时间。The touch sensor controller 700 redetects the sensor signal of the touch sensor determined to be touched (S1005). The pressure generating action is performed based on the sequence of actions performed by the user after the touch action. The time required for pressure sensing can be substantially reduced or minimized by only redetecting the sensor signal relative to the touch sensor Ts at the location where the touch action occurred.

触摸传感器控制器700将传感器信号电压与压力阈值电压进行比较(S1006)。压力阈值电压大于在触摸感测期间产生的电压。在压力下从压力传感器输出的传感器信号电压可以被设定为大于处于未触摸状态下的触摸传感器Ts的传感器信号电压。因此,压力阈值电压可以大于未触摸的触摸传感器Ts的传感器信号电压。当传感器信号电压大于压力阈值电压时,触摸传感器控制器700确定在触摸位置处施加了压力(S1007)。The touch sensor controller 700 compares the sensor signal voltage with the pressure threshold voltage (S1006). The pressure threshold voltage is greater than the voltage generated during touch sensing. The sensor signal voltage output from the pressure sensor under pressure may be set to be greater than the sensor signal voltage of the touch sensor Ts in the untouched state. Therefore, the pressure threshold voltage may be greater than the sensor signal voltage of the untouched touch sensor Ts. When the sensor signal voltage is greater than the pressure threshold voltage, the touch sensor controller 700 determines that pressure is applied at the touch position (S1007).

图12A是示出了触摸感测单元的触摸传感器图案的另一实施例的剖视图,图12B示出了该触摸传感器单元的操作的示例。FIG. 12A is a cross-sectional view showing another embodiment of a touch sensor pattern of a touch sensing unit, and FIG. 12B shows an example of the operation of the touch sensor unit.

参照图12A,触摸感测单元包括基底910、触摸传感器920、第一弹性层930、第二弹性层940、压力传感器950、绝缘层960、共电极970和保护层980。基底910可以是例如包括在施加压力时不弯曲的刚性材料的玻璃基底,或者可以是显示装置的前基底。12A , the touch sensing unit includes a substrate 910 , a touch sensor 920 , a first elastic layer 930 , a second elastic layer 940 , a pressure sensor 950 , an insulating layer 960 , a common electrode 970 and a protective layer 980 . The substrate 910 may be, for example, a glass substrate comprising a rigid material that does not bend when pressure is applied, or may be a front substrate of a display device.

触摸传感器920基本上在行方向上或基本上在列方向上延伸,并连接到外部触摸传感器控制器,以传输位置检测信号和传感器信号。The touch sensors 920 extend substantially in the row direction or substantially in the column direction, and are connected to an external touch sensor controller to transmit position detection signals and sensor signals.

第一弹性层930是光学透明的,并可以具有比第二弹性层940的弹性模量低的弹性模量。第一弹性层930在其上部处具有不均匀性,以基本上增大或最大化对压力传感器950的外部压力的施加。The first elastic layer 930 is optically transparent and may have a lower elastic modulus than that of the second elastic layer 940 . The first elastic layer 930 has unevenness at its upper portion to substantially increase or maximize the application of external pressure to the pressure sensor 950 .

第二弹性层940包括具有比第一弹性层930的弹性模量大的弹性模量的材料,并且通过外部压力容易变形,以使压力施加到压力传感器950。第二弹性层940可以包括例如透明且弹性优异的聚二甲基硅氧烷(PDMS)。The second elastic layer 940 includes a material having a larger elastic modulus than that of the first elastic layer 930 , and is easily deformed by external pressure, so that the pressure is applied to the pressure sensor 950 . The second elastic layer 940 may include, for example, polydimethylsiloxane (PDMS) which is transparent and excellent in elasticity.

压力传感器950包括压电元件,并可以形成为膜。该膜可以包括例如在厚度方向上层叠的聚偏氟乙烯(PVDF)聚合物、碳纳米管(CNT)/PVDF、ZnO纳米线、无铅Mn掺杂的(K0.5,Na0.5)NbO3、PZT、Pb(Zr,Ti)O3或和PbZr1-xTixO3中的一种或更多种。压电元件可以具有例如大约80μm或更小的厚度,并可以具有透光性。在一个实施例中,压电元件可以具有大约10μm或更小的厚度。由于压力传感器950位于显示装置的显示表面上,因此压力传感器950可以具有大约80%或更大的透光率。The pressure sensor 950 includes a piezoelectric element, and may be formed as a film. The film may include, for example, polyvinylidene fluoride (PVDF) polymer, carbon nanotube (CNT)/PVDF, ZnO nanowires, lead-free Mn-doped (K 0.5 , Na 0.5 )NbO 3 , laminated in the thickness direction, One or more of PZT, Pb(Zr, Ti)O 3 or and PbZr 1-x Ti x O 3 . The piezoelectric element may have a thickness of, for example, about 80 μm or less, and may have light transmittance. In one embodiment, the piezoelectric element may have a thickness of about 10 μm or less. Since the pressure sensor 950 is located on the display surface of the display device, the pressure sensor 950 may have a light transmittance of about 80% or more.

在一个实施例中,压力传感器950的数量可以少于触摸传感器920的数量,或者压力传感器950和触摸传感器920可以一一对应地布置。In one embodiment, the number of the pressure sensors 950 may be less than the number of the touch sensors 920, or the pressure sensors 950 and the touch sensors 920 may be arranged in a one-to-one correspondence.

绝缘层960使压力传感器950与共电极970绝缘。The insulating layer 960 insulates the pressure sensor 950 from the common electrode 970 .

共电极970保持接地(或参考)电压或者恒定的偏移电压,并包括透明导电层。共电极970可以包括例如氧化铟锡(ITO)、氧化铟锌(IZO)或碳纳米管(CNT)的透明导电材料。共电极970可以具有例如大约106欧姆/平方或更大的表面电阻,使得传输到触摸电容器Ct的信号不受共电极970的阻碍。共电极970可以形成在基底的整个表面上,或者可以仅位于与压力传感器950叠置的区域中。The common electrode 970 maintains a ground (or reference) voltage or a constant offset voltage and includes a transparent conductive layer. The common electrode 970 may include a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), or carbon nanotubes (CNT). The common electrode 970 may have a sheet resistance of, for example, about 10 6 ohms/square or more, so that the signal transmitted to the touch capacitor Ct is not hindered by the common electrode 970 . The common electrode 970 may be formed on the entire surface of the substrate, or may be located only in an area overlapping the pressure sensor 950 .

保护层980可以使用诸如PI膜的薄膜基底或者玻璃基底。当使用薄膜基底作为保护层980时,触摸传感器920可以形成在基底910上。共电极970、绝缘层960和压力传感器950可以形成在薄膜基底980上。第一弹性层930和第二弹性层940可以彼此结合,因此,可以制造触摸感测单元。The protective layer 980 may use a thin film substrate such as a PI film or a glass substrate. When a thin film substrate is used as the protective layer 980 , the touch sensor 920 may be formed on the substrate 910 . The common electrode 970 , the insulating layer 960 and the pressure sensor 950 may be formed on the thin film substrate 980 . The first elastic layer 930 and the second elastic layer 940 may be combined with each other, and thus, a touch sensing unit may be manufactured.

参照图12B,当外部压力施加到触摸感测单元时,保护层980向内推,并按压保护层980下方的压力传感器950。压力传感器950可以包括压电元件。当施加压力时,穿过压力传感器950的相对端产生电势差。从压力传感器950产生的电压的AC分量穿过绝缘层960,并通过触摸传感器920传输到触摸传感器控制器。Referring to FIG. 12B , when external pressure is applied to the touch sensing unit, the protective layer 980 is pushed inward, and the pressure sensor 950 under the protective layer 980 is pressed. The pressure sensor 950 may include a piezoelectric element. When pressure is applied, a potential difference is created across the opposite ends of the pressure sensor 950 . The AC component of the voltage generated from the pressure sensor 950 passes through the insulating layer 960 and is transmitted through the touch sensor 920 to the touch sensor controller.

图13是示出了触摸传感器单元的触摸传感器图案的另一实施例的剖视图。参照图13,当保护层980包括硬涂覆层时,触摸感测单元包括基底910、触摸传感器920、第一弹性层930和第二弹性层940。以在第二弹性层940上列出的次序顺序地层叠压力传感器950、绝缘层960、共电极970和保护层980。FIG. 13 is a cross-sectional view illustrating another embodiment of a touch sensor pattern of a touch sensor unit. 13 , when the protective layer 980 includes a hard coating layer, the touch sensing unit includes a substrate 910 , a touch sensor 920 , a first elastic layer 930 and a second elastic layer 940 . The pressure sensor 950 , the insulating layer 960 , the common electrode 970 and the protective layer 980 are sequentially stacked in the order listed on the second elastic layer 940 .

图14示出了触摸传感器单元的触摸传感器图案的另一实施例。参照图14,触摸传输电极Tx在基底的列方向上延伸,并具有菱形形状的槽。触摸接收电极Rx与触摸传输电极Tx分隔开,并位于凹槽的内侧上。触摸接收电极Rx具有与触摸传输电极Tx的凹槽的形状基本上相同的形状。FIG. 14 shows another embodiment of a touch sensor pattern of a touch sensor unit. Referring to FIG. 14 , the touch transfer electrodes Tx extend in the column direction of the substrate and have rhombus-shaped grooves. The touch receiving electrodes Rx are spaced apart from the touch transmitting electrodes Tx and are located on the inner side of the grooves. The touch receiving electrodes Rx have substantially the same shape as that of the grooves of the touch transmitting electrodes Tx.

沿触摸传输电极Tx和触摸接收电极Rx彼此面对的菱形的侧边形成互电容器,以形成一个触摸传感器Ts。触摸接收电极Rx可以单独地设置在触摸传输电极Tx沿其延伸的列方向上。触摸接收电极Rx包括彼此连接并通过传感器线SL1至SLp连接到触摸信号控制器的三个菱形形状的表面。Mutual capacitors are formed along the sides of the rhombus where the touch transmission electrodes Tx and the touch reception electrodes Rx face each other to form one touch sensor Ts. The touch reception electrodes Rx may be individually disposed in a column direction along which the touch transmission electrodes Tx extend. The touch receiving electrode Rx includes three diamond-shaped surfaces connected to each other and to the touch signal controller through sensor lines SL1 to SLp.

压力传感器Ps位于触摸接收电极Rx的三个菱形形状的表面中的一个处。压力传感器Ps可以接触位于一侧上的触摸接收电极Rx。当压力传感器Ps的一个电极接触触摸接收电极Rx时,其另一个电极绝缘,而不连接到另一导体。The pressure sensor Ps is located at one of the three diamond-shaped surfaces of the touch receiving electrode Rx. The pressure sensor Ps may contact the touch receiving electrode Rx on one side. When one electrode of the pressure sensor Ps contacts the touch receiving electrode Rx, the other electrode thereof is insulated without being connected to another conductor.

在一个实施例中,考虑到传感器线的绝缘电阻,随着距传感器线SL1至SLp的端子部的距离增大,触摸接收电极Rx可以具有更大的面积。随着距传感器线SL1至SLp的端子部的距离增大,压力传感器可以具有更大的面积。In one embodiment, the touch receiving electrodes Rx may have a larger area as the distance from the terminal portions of the sensor lines SL1 to SLp increases in consideration of the insulation resistance of the sensor lines. As the distance from the terminal portions of the sensor lines SL1 to SLp increases, the pressure sensor can have a larger area.

在此描述的方法、进程和/或操作可以通过由计算机、处理器、控制器或其它信号处理装置执行的代码或指令来执行。计算机、处理器、控制器或其它信号处理装置可以是在此所描述的那些或者除了在此描述的元件之外的一个。因为详细描述了形成方法(或计算机、处理器、控制器或其它信号处理装置的操作)的基础的算法,所以用于实现方法实施例的操作的代码或指令可以将计算机、处理器、控制器或其它信号处理装置转变成用于执行在此描述的方法的专用处理器。The methods, processes and/or operations described herein may be performed by code or instructions executed by a computer, processor, controller or other signal processing device. The computer, processor, controller or other signal processing device may be one of those described herein or in addition to the elements described herein. Because the algorithms that form the basis of the method (or operation of a computer, processor, controller, or other signal processing device) are described in detail, the code or instructions for implementing the operation of the method embodiments may or other signal processing device into a special purpose processor for performing the methods described herein.

在此描述的实施例的控制器、单元和其它处理特征可以以例如可包括硬件、软件或包括两者的逻辑来实现。当至少部分地以硬件实现时,控制器、单元和其它处理特征可以是例如包括但不限于专用集成电路的各种集成电路、场可编程门阵列、逻辑门的组合、片上系统、微处理器以及其它类型的处理或控制电路中的任何一种。The controllers, units, and other processing features of the embodiments described herein may be implemented in logic, which may include hardware, software, or both, for example. When implemented at least in part in hardware, the controllers, units and other processing features may be, for example, various integrated circuits including, but not limited to, application specific integrated circuits, field programmable gate arrays, combinations of logic gates, systems on a chip, microprocessors and any of other types of processing or control circuits.

当至少部分地以软件实现时,控制器、单元和其它处理特征可以包括例如用于存储将要例如由计算机、处理器、微处理器、控制器或其它信号处理装置执行的代码或指令的存储器或其它存储装置。计算机、处理器、微处理器、控制器或其它信号处理装置可以是在此所描述的那些或者除了在此描述的元件之外的一个。因为详细描述了形成方法(或计算机、处理器、微处理器、控制器或其它信号处理装置的操作)的基础的算法,所以用于实现方法实施例的操作的代码或指令可以使计算机、处理器、控制器或其它信号处理装置转变成用于执行在此描述的方法的专用处理器。When implemented at least in part in software, the controllers, units and other processing features may include, for example, memory for storing code or instructions to be executed, for example, by a computer, processor, microprocessor, controller or other signal processing device or other storage devices. The computer, processor, microprocessor, controller or other signal processing device may be one of those described herein or in addition to the elements described herein. Since the algorithms that form the basis of the method (or operation of a computer, processor, microprocessor, controller or other signal processing device) are described in detail, code or instructions for implementing the operation of an embodiment of the method may enable a computer, processing A controller, controller, or other signal processing device is converted into a special-purpose processor for performing the methods described herein.

根据一个或多个上述实施例,触摸感测单元可以使用静电触摸传感器的电极上的单独的岛形状的压电元件来检测触摸压力。因为不需要压力检测信号布线,所以可以容易地制造触摸感测单元。According to one or more of the above-described embodiments, the touch sensing unit may detect touch pressure using individual island-shaped piezoelectric elements on electrodes of an electrostatic touch sensor. Since no pressure detection signal wiring is required, the touch sensing unit can be easily manufactured.

已经在此公开了示例实施例,尽管采用了具体术语,但仅以一般的和描述性的含义而非限制性的目的来使用并将解释这些术语。在一些情况下,如对于到提交本申请时为止的本领域普通技术人员而言将明显的是,除非另外表明,否则结合具体实施例描述的特征、特性和/或元件可以单独使用,或者可以与结合其它实施例描述的特征、特性和/或元件组合使用。因此,在不脱离权利要求书中阐述的实施例的精神和范围的情况下,可以进行形式和细节上的各种变化。Example embodiments have been disclosed herein, and although specific terms are employed, these terms are used and will be interpreted in a generic and descriptive sense only and not for purposes of limitation. In some cases, as would be apparent to one of ordinary skill in the art at the time of filing this application, features, characteristics and/or elements described in connection with a particular embodiment may be used alone, or may be unless otherwise indicated Used in combination with features, characteristics and/or elements described in connection with other embodiments. Accordingly, various changes in form and details may be made therein without departing from the spirit and scope of the embodiments as set forth in the claims.

Claims (20)

1. A touch sensing unit, the touch sensing unit comprising:
a substrate;
a touch sensor on the substrate and arranged in an island shape, the touch sensor providing a first signal indicative of a change in self-capacitance of the touch sensor;
a sensor line connected to the touch sensor;
a pressure sensor comprising a piezoelectric material overlying and electrically connected to the touch sensor and arranged in an island shape, the pressure sensor providing a second signal indicative of a voltage from the piezoelectric material; and
a touch sensor controller receiving the first signal from the touch sensor through the sensor line and receiving the voltage from the piezoelectric material through the touch sensor and the sensor line when the piezoelectric material receives a pressure and determining a magnitude of the pressure based on the voltage.
2. The touch sensing unit of claim 1, wherein the piezoelectric material directly contacts the touch sensor.
3. The touch sensing unit of claim 2, further comprising:
an insulating layer coating the touch sensor and the piezoelectric material.
4. The touch sensing unit of claim 3, further comprising:
a common electrode on the insulating layer,
wherein the common electrode overlaps the piezoelectric material.
5. The touch sensing unit of claim 1, wherein the piezoelectric material comprises polyvinylidene fluoride polymer, carbon nanotube/polyvinylidene fluoride, ZnO nanowire, lead-free Mn doped (K)0.5,Na0.5)NbO3、PZT、Pb(Zr,Ti)O3And Pb (Zr)1-xTix)O3At least one of (1).
6. The touch sensing unit of claim 5, wherein the piezoelectric material has an optical transparency of 80% or greater.
7. The touch sensing unit according to claim 1, wherein a size of the pressure sensor including the piezoelectric material increases as a distance from a terminal portion increases.
8. The touch sensing unit of claim 1, further comprising:
an elastic layer between the touch sensor and the piezoelectric material; and
and an insulating layer coating the piezoelectric material.
9. The touch sensing unit of claim 8, further comprising:
a common electrode on the insulating layer,
wherein the common electrode overlaps the piezoelectric material.
10. The touch sensing unit of claim 9, wherein the touch sensor receives an AC component of the voltage generated from the piezoelectric material instead of a DC component.
11. The touch sensing unit of claim 1, wherein the touch sensor and the sensor wire are integrally formed.
12. A touch sensing unit, the touch sensing unit comprising:
a substrate;
a touch sensor on the substrate and including a transmit electrode and a receive electrode, the touch sensor providing a first signal indicative of a change in mutual capacitance between the transmit electrode and the receive electrode;
a sensor wire connected to the receiving electrode;
a pressure sensor comprising a piezoelectric material overlying and electrically connected to the receive electrode and arranged in an island shape, the pressure sensor providing a second signal indicative of a voltage from the piezoelectric material; and
a touch sensor controller receiving the first signal through the receiving electrode and the sensor line, and receiving the voltage generated by the piezoelectric material through the receiving electrode and the sensor line when pressure is applied to the piezoelectric material, and determining a magnitude of the pressure.
13. The touch sensing unit of claim 12, wherein the piezoelectric material directly contacts the receive electrode.
14. The touch sensing unit of claim 13, further comprising:
a common electrode overlapping the piezoelectric material,
wherein the common electrode is insulated from the piezoelectric material.
15. The touch sensing unit of claim 12, wherein the piezoelectric material comprises polyvinylidene fluoride polymer, Carbon Nanotube (CNT)/polyvinylidene fluoride, ZnO nanowires, lead-free Mn doped (K)0.5,Na0.5)NbO3、PZT、Pb(Zr,Ti)O3And Pb (Zr)1-xTix)O3At least one of (1).
16. The touch sensing unit according to claim 12, wherein a size of the pressure sensor including the piezoelectric material increases as a distance from a terminal portion increases.
17. The touch sensing unit of claim 12, further comprising:
an elastic layer between the receiving electrode and the piezoelectric material; and
and an insulating layer coating the piezoelectric material.
18. The touch sensing unit of claim 17, wherein:
the elastic layer includes a first elastic layer and a second elastic layer, and
the elastic modulus of the first elastic layer and the elastic modulus of the second elastic layer are different from each other.
19. The touch sensing unit of claim 17, further comprising:
a common electrode on the insulating layer,
wherein the common electrode overlaps the piezoelectric material.
20. The touch sensing unit of claim 17, wherein the receive electrodes receive an AC component, but not a DC component, of the voltage generated by the piezoelectric material.
CN201710854361.6A 2016-09-20 2017-09-20 touch sensing unit Active CN107844213B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160120130A KR102636735B1 (en) 2016-09-20 2016-09-20 Display Device
KR10-2016-0120130 2016-09-20

Publications (2)

Publication Number Publication Date
CN107844213A CN107844213A (en) 2018-03-27
CN107844213B true CN107844213B (en) 2022-05-24

Family

ID=61618018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710854361.6A Active CN107844213B (en) 2016-09-20 2017-09-20 touch sensing unit

Country Status (3)

Country Link
US (1) US10474300B2 (en)
KR (1) KR102636735B1 (en)
CN (1) CN107844213B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7017775B2 (en) 1999-08-10 2006-03-28 S.C. Johnson & Son, Inc. Container lid including venting and denesting features, and container having such a lid
US20180307345A1 (en) * 2016-10-31 2018-10-25 Tactus Technology, Inc. System for detecting inputs into a computing device
JP6744203B2 (en) * 2016-12-14 2020-08-19 株式会社ジャパンディスプレイ Display device
CN106773415A (en) * 2017-01-16 2017-05-31 京东方科技集团股份有限公司 A kind of array base palte, display panel and display device
GB2574588A (en) * 2018-06-06 2019-12-18 Cambridge Touch Tech Ltd Pressure sensing apparatus and method
US11592941B2 (en) * 2018-03-30 2023-02-28 Sony Corporation Input apparatus and electronic equipment
KR102522290B1 (en) * 2018-04-05 2023-04-19 삼성디스플레이 주식회사 Display device
CN108801336A (en) * 2018-05-04 2018-11-13 东南大学 A kind of method of piezoelectric-array monitoring vehicle speed and load-carrying
GB2574589B (en) 2018-06-06 2020-12-23 Cambridge Touch Tech Ltd Pressure sensing apparatus and method
KR102540613B1 (en) * 2018-07-10 2023-06-07 삼성전자 주식회사 An pressure sensor formed on a substrate and an elelctronic device comprising the same
US10788939B2 (en) 2018-12-19 2020-09-29 Synaptics Incorporated Capacitive sensing acquisition schemes
GB2582171B (en) * 2019-03-13 2022-10-12 Cambridge Touch Tech Ltd Force sensing touch panel
KR102710197B1 (en) * 2019-04-01 2024-09-26 삼성디스플레이 주식회사 Touch sensing unit having force sensor and display device including the same
CN210670181U (en) * 2020-01-21 2020-06-02 湃瑞电子科技(苏州)有限公司 Device and touch screen and mobile phone thereof
FI20205146A1 (en) * 2020-02-12 2021-08-13 Aito Bv A piezoelectric sensing device
JP2022040711A (en) * 2020-08-31 2022-03-11 株式会社ジャパンディスプレイ Pressure sensor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193685B2 (en) * 2007-07-03 2012-06-05 Koninklijke Philips Electronics N.V. Thin film detector for presence detection
KR101516982B1 (en) * 2008-12-24 2015-04-30 삼성전자주식회사 Vibration touch sensor, method of vibration touch sensing and vibration touch screen display panel
CA2708020C (en) * 2009-06-24 2016-05-10 Research In Motion Limited Piezoelectric assembly
MX340813B (en) * 2012-03-05 2016-07-27 Siemens Ag Methods and apparatus for calibrating a thermomagnetic trip unit of a circuit breaker.
WO2013149331A1 (en) * 2012-04-07 2013-10-10 Cambridge Touch Technologies, Ltd. Pressure sensing display device
WO2014042170A1 (en) * 2012-09-17 2014-03-20 株式会社村田製作所 Touch input device
KR102051518B1 (en) 2013-01-28 2019-12-03 삼성전자주식회사 Energy harvesting device combined with self-powered touch sensor
CN103150070B (en) 2013-03-05 2016-07-06 合肥京东方光电科技有限公司 A kind of capacitance touching control module, capacitance type in-cell touch panel and display device
KR20140143646A (en) * 2013-06-07 2014-12-17 삼성디스플레이 주식회사 Display device including touch sensor and manufacturing method thereof
KR102128394B1 (en) 2013-09-11 2020-07-01 삼성디스플레이 주식회사 Touch sensible display device
JP2015075892A (en) 2013-10-08 2015-04-20 ダイキン工業株式会社 Touch input device and sensor device
KR20160088893A (en) * 2013-11-21 2016-07-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Multi-layer piezoelectric polymer film devices and methods
CN106489119B (en) * 2014-07-02 2020-02-18 株式会社村田制作所 Touch panel
JP6112086B2 (en) * 2014-09-02 2017-04-12 株式会社デンソー Fuel vapor leak detection device and control method thereof
WO2016061155A1 (en) * 2014-10-14 2016-04-21 Corning Incorporated Piezoelectric film structures and sensors and display assemblies using same
KR102270037B1 (en) * 2015-02-02 2021-06-28 삼성디스플레이 주식회사 Touch screen panel
CN105808001B (en) * 2016-03-10 2018-07-17 京东方科技集团股份有限公司 A kind of pressure sensitivity touch screen and display device

Also Published As

Publication number Publication date
US20180081466A1 (en) 2018-03-22
US10474300B2 (en) 2019-11-12
KR20180031887A (en) 2018-03-29
KR102636735B1 (en) 2024-02-15
CN107844213A (en) 2018-03-27

Similar Documents

Publication Publication Date Title
CN107844213B (en) touch sensing unit
TWI616788B (en) Display device and method of driving the same
KR102425824B1 (en) Haptic driving method and apparatus in flexible display
US9857913B2 (en) Scanned piezoelectric touch sensor device
CN105912150B (en) Display device and driving method for display device
CN104915078B (en) Touch panel and display device including the same
JP6807370B2 (en) Touch panel, touch panel drive method and display device
KR102082425B1 (en) Flat panel display device
TWI386834B (en) 3-d non-bias electrets multi-touch device
KR102733336B1 (en) Display device and method for driving the same
US11592874B1 (en) Touch sensing in a flexible/foldable touch screen display
US20160098110A1 (en) Display device including touch sensor
CN108345408B (en) Touch sensor and display device including the touch sensor
US20150324033A1 (en) Touch sensing device, display device including the same, and method of sensing touch
WO2017012294A1 (en) Touch control module, touch screen panel, touch positioning method thereof and display device
CN105612481A (en) Touch panel, touch input device, and electronic device
CN105807984B (en) Touch recognition method for display device and display device using the method
CN106775122A (en) Touch control display apparatus
TWI617956B (en) Touch device
KR102418579B1 (en) Touch panel liquid crystal display device and method for driving the same
TWM449306U (en) Liquid crystal display device with touch control circuit
WO2019052304A1 (en) Touch panel and driving method therefor, touch apparatus
US10156947B2 (en) Touch substrate and manufacturing method and driving method thereof, touch panel and touch device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant