[go: up one dir, main page]

CN107831461A - Longitudinal gradient coil design method based on 01 integer programmings - Google Patents

Longitudinal gradient coil design method based on 01 integer programmings Download PDF

Info

Publication number
CN107831461A
CN107831461A CN201711005456.7A CN201711005456A CN107831461A CN 107831461 A CN107831461 A CN 107831461A CN 201711005456 A CN201711005456 A CN 201711005456A CN 107831461 A CN107831461 A CN 107831461A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
msup
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711005456.7A
Other languages
Chinese (zh)
Inventor
李霞
郑思杰
刘晓芳
徐文龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201711005456.7A priority Critical patent/CN107831461A/en
Publication of CN107831461A publication Critical patent/CN107831461A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种基于0‑1整数规划的纵向梯度线圈设计方法,本发明针对分离绕线方法存在的问题,提出一种纵向梯度线圈设计的0‑1整数规划方法。此方法将线圈所在的区域划分为若干一维网格,取网格的中心为待求电流圆环的位置。给定圆环线圈的电流I,如果某处电流圆环对磁场有贡献,则变量为1,电流为1*I,无贡献则变量为0,电流为0。该方法计算简单直接,可以以线圈电感最小或者使用材料最小为目标,可容易实现很好的梯度磁场线性度,并且可以方便的施加线圈间距的约束。

The invention discloses a longitudinal gradient coil design method based on 0-1 integer programming. Aiming at the problems existing in the separate winding method, the invention proposes a 0-1 integer programming method for longitudinal gradient coil design. This method divides the area where the coil is located into several one-dimensional grids, and takes the center of the grid as the position of the current ring to be calculated. Given the current I of the ring coil, if the current ring somewhere contributes to the magnetic field, the variable is 1, the current is 1*I, and if there is no contribution, the variable is 0, and the current is 0. The calculation of this method is simple and direct, and the minimum inductance of the coil or the minimum material can be used as the goal. It is easy to achieve a good linearity of the gradient magnetic field, and it is convenient to impose constraints on the spacing of the coils.

Description

基于0-1整数规划的纵向梯度线圈设计方法Design Method of Longitudinal Gradient Coil Based on 0-1 Integer Programming

技术领域technical field

本发明涉及磁共振成像技术领域,具体涉及一种基于0-1整数规划的纵向梯度线圈设计方法。The invention relates to the technical field of magnetic resonance imaging, in particular to a design method for longitudinal gradient coils based on 0-1 integer programming.

背景技术Background technique

磁共振成像是基于核磁共振现象进行成像的技术。梯度线圈是磁共振成像系统的重要组成部分,用于在成像区内沿空间三个正交方向产生线性变化的磁场,分别应用于层面选取、相位编码和频率编码,以便为图像重建提供定位依据。梯度线圈的结构主要包括封闭式的圆柱形结构和开放式的平面结构。Magnetic resonance imaging is an imaging technique based on the phenomenon of nuclear magnetic resonance. Gradient coils are an important part of the magnetic resonance imaging system. They are used to generate linearly changing magnetic fields along three orthogonal directions in the imaging area, which are respectively applied to slice selection, phase encoding and frequency encoding, so as to provide positioning basis for image reconstruction. . The structure of the gradient coil mainly includes a closed cylindrical structure and an open planar structure.

目前来说,永磁磁共振成像系统采用开放式的平面盘式结构较多,超导磁共振成像系统采用封闭式圆筒结构较多。随着永磁磁共振成像系统成本的提高和人们对成像质量要求的提高,超导磁共振成像系统代替永磁磁共振成像系统是以后的发展趋势。At present, most permanent magnetic resonance imaging systems adopt an open planar disk structure, and superconducting magnetic resonance imaging systems mostly adopt a closed cylindrical structure. With the increase of the cost of permanent magnetic resonance imaging system and the improvement of people's requirements for imaging quality, superconducting magnetic resonance imaging system will replace the permanent magnetic resonance imaging system is the future development trend.

衡量梯度线圈性能的指标有:梯度强度G、梯度非线性度E、涡流大小和线圈电感。一般来说,梯度线圈的梯度强度越高、非线性度越小、电感越小,则表示线圈的性能越好。The indicators to measure the performance of gradient coils are: gradient strength G, gradient nonlinearity E, eddy current size and coil inductance. Generally speaking, the higher the gradient strength, the smaller the nonlinearity and the smaller the inductance of the gradient coil, the better the performance of the coil.

磁共振成像系统中,主磁场的方向定义为z方向。梯度线圈沿主磁场方向的线圈称为纵向梯度线圈(z方向梯度线圈),垂直于主磁场方向的线圈称为横向梯度线圈(x方向梯度线圈和y方向梯度线圈)。In the magnetic resonance imaging system, the direction of the main magnetic field is defined as the z direction. The coils along the direction of the main magnetic field are called longitudinal gradient coils (z-direction gradient coils), and the coils perpendicular to the main magnetic field direction are called transverse gradient coils (x-direction gradient coils and y-direction gradient coils).

纵向梯度线圈一般采用“麦克斯韦线圈对”的形式,它是一对半径为r的环形线圈,关于原点对称,电流方向相反。实际的梯度线圈为了获得更好的线性度和梯度强度,往往采用多对线圈。The longitudinal gradient coil generally adopts the form of "Maxwell coil pair", which is a pair of circular coils with radius r, symmetrical about the origin, and the current direction is opposite. In order to obtain better linearity and gradient strength, actual gradient coils often use multiple pairs of coils.

梯度线圈的基本设计方法可以分为两大类:一类是规则的分离绕线方法,即选择预先确定的规则线圈几何形状,然后根据可获得磁场最佳线性梯度的原则来优化线圈结构;另一类是分布绕线方法(也称为电流密度方法),该方法根据Maxwell方程,按所需的梯度场分布通过某种优化算法求取一个确定空间范围内的理想的连续表面电流密度,然后用分布绕线或导电铜板模拟这一电流密度分布。分布绕线方法可以根据目标场的要求得到实现该场的电流密度分布,但是在电流密度离散时存在误差,从而导致线圈性能下降。在自屏蔽梯度线圈的设计上,这个问题尤其重要。而且,分布绕线方法不容易施加线圈间距的约束。分离绕线方法的优点是简单直接,便于工程计算和实现。但是线圈的性能指标与预先确定的线圈形状关系很大,难以找到线圈性能参数的全局最优解。综合来看,在分离绕线方法进行改进更有可能获得解决上述问题的技术方案。The basic design methods of gradient coils can be divided into two categories: one is the regular separation winding method, which selects a predetermined regular coil geometry, and then optimizes the coil structure according to the principle of obtaining the best linear gradient of the magnetic field; the other One is the distributed winding method (also known as the current density method). According to the Maxwell equation, according to the required gradient field distribution, an ideal continuous surface current density in a certain space is obtained through an optimization algorithm, and then This current density distribution is simulated with distributed wire or conductive copper plates. The distributed winding method can achieve the current density distribution of the field according to the requirements of the target field, but there are errors when the current density is discrete, which leads to the degradation of the coil performance. This issue is especially important in the design of self-shielded gradient coils. Also, the distributed winding approach does not easily impose coil spacing constraints. The advantage of the separate winding method is that it is simple and direct, and it is convenient for engineering calculation and realization. However, the performance index of the coil has a great relationship with the pre-determined coil shape, and it is difficult to find the global optimal solution of the coil performance parameters. On the whole, it is more likely to obtain a technical solution to the above-mentioned problems by improving the separate winding method.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种便于找到线圈性能参数的全局最优解的基于0-1整数规划的纵向梯度线圈设计方法,用以解决现有技术存在的不容易施加约束条件、难以得到线圈性能参数的全局最优解的技术问题。In view of this, the object of the present invention is to provide a longitudinal gradient coil design method based on 0-1 integer programming that is convenient for finding the global optimal solution of the coil performance parameters, so as to solve the existing problems in the prior art that are not easy to impose constraints, It is difficult to obtain the technical problem of the global optimal solution of the coil performance parameters.

本发明的技术解决方案是,提供一种基于0-1整数规划的纵向梯度线圈设计方法,包括以下步骤:The technical solution of the present invention is to provide a method for designing longitudinal gradient coils based on 0-1 integer programming, comprising the following steps:

假设梯度线圈主线圈和屏蔽线圈分别分布在长度为Lp和Ls,半径分别为Rp和Rs的区域,通电电流为I;用网格沿z轴分别将线圈区域均匀划分为Mp和Ms等份,取网格中心为线圈位置;主线圈和屏蔽线圈采用相同的网格间距,并根据需要调整线圈的长度Lp和Ls,使得网格数目正好取整数;Assume that the main coil and shielding coil of the gradient coil are respectively distributed in areas with lengths L p and L s , radii R p and R s respectively, and the energized current is I; the coil area is uniformly divided into M p along the z axis by a grid Take the center of the grid as the coil position; the main coil and the shielding coil adopt the same grid spacing, and adjust the length L p and L s of the coil according to the needs, so that the number of grids is just an integer ;

在球形成像区域DSV内,选取N1个目标场点,屏蔽区域选取N2个目标场点,则位于z=z′j(j=1,…,Mp+Ms)处,半径为r=r′j(j=1,…,Mp+Ms)的电流圆环在第i(i=1,…,N1+N2)个场点(ri,zj)产生的磁场z分量和r分量分别为:In the spherical imaging area DSV, N 1 target field points are selected, and N 2 target field points are selected in the shielding area, then they are located at z=z′ j (j=1,...,M p +M s ), and the radius is r =r′ j (j=1,...,M p +M s ) the magnetic field generated by the i-th (i=1,...,N 1 +N 2 ) field point (r i , z j ) of the current ring The z and r components are:

其中, in,

K(k)和E(k)分别为第一类椭圆积分和第二类椭圆积分;μ0为真空磁导率; K(k) and E(k) are respectively the first kind of elliptic integral and the second kind of elliptic integral; μ 0 is the vacuum magnetic permeability;

主线圈和屏蔽线圈的电流大小相等,方向相反,因此所有载流网格在第i个场点产生的磁场为The currents of the main coil and the shielding coil are equal in size and opposite in direction, so the magnetic field generated by all current-carrying grids at the i-th field point is

其中ej=0,说明网格电流对磁场没有贡献,ej=1说明线圈对磁场有贡献;在DSV内,只考虑磁场z分量,在屏蔽区域考虑Bz和Br,写为矩阵形式为Where e j = 0, it means that the grid current has no contribution to the magnetic field, and e j = 1 means that the coil has a contribution to the magnetic field; in DSV, only the z component of the magnetic field is considered, and B z and B r are considered in the shielded area, written in matrix form for

Bzdsv=IA1eB zdsv =IA 1 e

Bzshield=IA2eB zshield = IA 2 e

Brshield=IA3eB rshield = IA 3 e

其中,系数矩阵A1的维数为N1×(Mp+Ms),A2和A3为N2×(Mp+Ms)的系数矩阵。Wherein, the dimension of the coefficient matrix A 1 is N 1 ×(M p +M s ), and A 2 and A 3 are coefficient matrices of N 2 ×(M p +M s ).

以线圈材料用量最少为目标建立模型,则The model is established with the goal of minimizing the amount of coil material, then

目标函数: Objective function:

约束条件:Restrictions:

|IA1e-B′zdsv|≤ε1B′zdsv |IA 1 eB′ zdsv |≤ε 1 B′ zdsv

|IA2e|≤ε2 |IA 2 e|≤ε 2

|IA3e|≤ε3 |IA 3 e|≤ε 3

ej=0或者ej=1;B′zdsv=Gz*zj,B′zdsv为目标磁场z分量,Gz为目标梯度场强;e j =0 or e j =1; B' zdsv =G z *z j , B' zdsv is the z component of the target magnetic field, and G z is the target gradient field strength;

其中,ε1取0.05,ε2和ε2取10-7Among them, ε 1 takes 0.05, ε 2 and ε 2 take 10 -7 ;

求解该线性规划模型,得到主线圈和屏蔽线圈的匝数和线圈分布的位置。The linear programming model is solved to obtain the number of turns of the main coil and the shielding coil and the position of the coil distribution.

可选的,定义线圈的最小间距约束,假设网格间距为a mm,两匝线圈中心的最小距离为b mm,可以施加约束条件,取h为小于b/a的最大整数;则有:Optionally, define the minimum spacing constraint of the coil, assuming that the grid spacing is a mm, and the minimum distance between the centers of two turns of the coil is b mm, constraints can be imposed, and h is the largest integer smaller than b/a; then:

ej+ej+1+ej+2...+ej+h≤1(j=1,…,Mp-h,Mp+1,…,Mp+Ms-h)e j +e j+1 +e j+2 ...+e j+h ≤ 1 (j=1,...,M p -h, M p +1,...,M p +M s -h)

约束条件:Restrictions:

|IA1e-B′zdsv|≤ε1B′zdsv |IA 1 eB′ zdsv |≤ε 1 B′ zdsv

|IA2e|≤ε2 |IA 2 e|≤ε 2

|IA3e|≤ε3 |IA 3 e|≤ε 3

Ce≤1Ce≤1

ej=0或者ej=1e j =0 or e j =1

其中,矩阵C的维数为(Mp+Ms-2h)×(Mp+Ms)。Wherein, the dimension of the matrix C is (M p +M s −2h)×(M p +M s ).

可选的,在DSV内取1/4弧线上的点作为目标场点,在线圈结构上取正半轴或负半轴部分进行网格划分。Optionally, the point on the 1/4 arc is taken as the target field point in the DSV, and the positive half-axis or negative half-axis is taken on the coil structure for grid division.

可选的,梯度强度Gz的单位为T/m/A,取电流I=1A。Optionally, the unit of the gradient strength G z is T/m/A, and the current I=1A.

可选的,梯度强度Gz的单位为T/m时,即当取T/m时,先取电流I等于特定值,然后逐步增大电流,会发现随着电流的增大,材料用量在减少,直到当前电流值下的材料用量与上一电流值下的材料用量之差小于相应阈值时,确认该电流值为实现材料用量最小的最优电流值。Optionally, when the unit of the gradient strength G z is T/m, that is, when T/m is taken, the current I is equal to a specific value first, and then the current is gradually increased, and it will be found that the amount of materials is decreasing as the current increases , until the difference between the material usage at the current current value and the material usage at the previous current value is less than the corresponding threshold value, confirm that the current value is the optimal current value to achieve the minimum material usage.

采用本发明方法,与现有技术相比,具有以下优点:本发明本发明针对分离绕线方法存在的问题,提出一种纵向梯度线圈设计的0-1整数规划方法。此方法将线圈所在的区域划分为若干一维网格,取网格的中心为待求电流圆环的位置。给定圆环线圈的电流I,如果某处电流圆环对磁场有贡献,则变量为1,电流为1*I,无贡献则变量为0,电流为0。该方法计算简单直接,可以以线圈电感最小或者使用材料最小为目标,可容易实现很好的梯度磁场线性度,并且可以方便的施加线圈间距的约束。Compared with the prior art, the method of the present invention has the following advantages: The present invention aims at the problems existing in the separate winding method, and proposes a 0-1 integer programming method for longitudinal gradient coil design. This method divides the area where the coil is located into several one-dimensional grids, and takes the center of the grid as the position of the current ring to be calculated. Given the current I of the ring coil, if the current ring somewhere contributes to the magnetic field, the variable is 1, the current is 1*I, and if there is no contribution, the variable is 0, and the current is 0. The calculation of this method is simple and direct, and the minimum inductance of the coil or the minimum material can be used as the goal. It is easy to achieve a good linearity of the gradient magnetic field, and it is convenient to impose constraints on the spacing of the coils.

附图说明Description of drawings

图1为本发明下纵向梯度线圈的示意图;Fig. 1 is the schematic diagram of longitudinal gradient coil under the present invention;

图2为主线圈的绕线示意图;Fig. 2 is a schematic diagram of the winding of the main coil;

图3为屏蔽线圈的绕线示意图。Figure 3 is a schematic diagram of the winding of the shielding coil.

具体实施方式Detailed ways

以下结合附图对本发明的优选实施例进行详细描述,但本发明并不仅仅限于这些实施例。本发明涵盖任何在本发明的精神和范围上做的替代、修改、等效方法以及方案。Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but the present invention is not limited to these embodiments. The present invention covers any alternatives, modifications, equivalent methods and schemes made within the spirit and scope of the present invention.

为了使公众对本发明有彻底的了解,在以下本发明优选实施例中详细说明了具体的细节,而对本领域技术人员来说没有这些细节的描述也可以完全理解本发明。In order to provide the public with a thorough understanding of the present invention, specific details are set forth in the following preferred embodiments of the present invention, but those skilled in the art can fully understand the present invention without the description of these details.

在下列段落中参照附图以举例方式更具体地描述本发明。需说明的是,附图均采用较为简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。In the following paragraphs the invention is described more specifically by way of example with reference to the accompanying drawings. It should be noted that all the drawings are in simplified form and use inaccurate scales, which are only used to facilitate and clearly assist the purpose of illustrating the embodiments of the present invention.

参考图1所示,磁共振成像纵向梯度线圈的一种优化设计方法,所述方法依次按以下步骤实现:Shown in Fig. 1 with reference to, a kind of optimal design method of magnetic resonance imaging longitudinal gradient coil, described method is realized by following steps successively:

以超导纵向梯度线圈的设计为例说明纵向梯度线圈设计的方法:Taking the design of superconducting longitudinal gradient coils as an example to illustrate the design method of longitudinal gradient coils:

首先,由于梯度线圈的形状为圆环型,所述线圈分布在roz面上。主线圈长度为Lp,半径为Rp,屏蔽线圈长度为Ls,半径为Rs。将主线圈和屏蔽线圈分别均匀划分为Mp和Ms等份,取网格中心为圆环线圈位置。主线圈和屏蔽线圈采用相同的网格间距,并根据需要调整线圈的长度Lp和Ls,使得网格数目正好取整数。Firstly, since the shape of the gradient coil is circular, the coils are distributed on the roz plane. The main coil has a length L p and a radius R p , and the shielding coil has a length L s and a radius R s . The main coil and the shielding coil are evenly divided into M p and M s equal parts, and the center of the grid is taken as the ring coil position. The main coil and the shielding coil adopt the same grid spacing, and the lengths L p and L s of the coils are adjusted as required so that the number of grids is just an integer.

根据Biot-Savart定律,位于z′处,电流为I,半径为r′的通电圆环线圈在空间中任意一点(r,z)产生的磁场分量为According to the Biot-Savart law, the magnetic field component generated at any point (r, z) in space by the energized circular coil at z′, current I, and radius r′ is

其中,in,

K(k)和E(k)分别为第一类椭圆积分和第二类椭圆积分。K(k) and E(k) are the elliptic integrals of the first kind and the elliptic integrals of the second kind respectively.

在成像区和屏蔽区域分别选择纵向梯度线圈优化问题的目标场点:Select the target field points of the longitudinal gradient coil optimization problem in the imaging area and the shielding area respectively:

在成像区内的1/2球形区域弧线上,选取N1个目标点,考虑梯度线圈的对称性,可以只对主线圈和屏蔽线圈的z轴的正半轴进行网格划分。目标场点在成像区内选择1/4弧线上的点,在屏蔽区域z轴的正半轴选择。On the arc of the 1/2 spherical area in the imaging area, select N 1 target points, and consider the symmetry of the gradient coil, only the positive semi-axis of the z-axis of the main coil and the shielding coil can be meshed. Select the point on the 1/4 arc of the target field point in the imaging area, and select the positive semi-axis of the z-axis in the shielded area.

其中,rdsv为球形成像区半径,Gz为给定的梯度强度值,B′zdsv为理想的磁场z分量值。Among them, r dsv is the radius of the spherical imaging area, G z is the given gradient strength value, and B' zdsv is the ideal z component value of the magnetic field.

在屏蔽区域,在半径为Rstray,长度为Ls的圆柱面侧边选择N2个点为目标场点,In the shielded area, select N 2 points on the side of the cylindrical surface with radius R stray and length L s as target field points,

由于主线圈和屏蔽线圈的通电电流大小相等,方向相反,因此设主线圈通电电流为I,屏蔽线圈通电电流为-I。在工作电流、球形成像区半径rdsv和梯度强度Gz给定的情况下,以线圈材料用量为目标函数f建立0-1整数规划模型:Since the energizing currents of the main coil and the shielding coil are equal in size and opposite in direction, the energizing current of the main coil is I, and the energizing current of the shielding coil is -I. In the case of given operating current, spherical imaging area radius r dsv and gradient strength Gz, a 0-1 integer programming model is established with the amount of coil material as the objective function f :

其中,ej为优化变量(ej=0或者ej=1),Mp和Ms分别是主线圈和屏蔽线圈的划分份数,并且 Wherein, e j is the optimization variable (e j =0 or e j =1), M p and M s are respectively the number of divisions of the main coil and the shielding coil, and

在成像区内,只考虑磁场z分量,在屏蔽区域考虑Bz和Br,因此约束条件为:In the imaging area, only the z component of the magnetic field is considered, and B z and B r are considered in the shielding area, so the constraints are:

|IA1e-B′zdsv|≤ε1B′zdsv |IA 1 eB′ zdsv |≤ε 1 B′ zdsv

|IA2e|≤ε2 |IA 2 e|≤ε 2

|IA3e|≤ε3 |IA 3 e|≤ε 3

ej=0或者ej=1e j =0 or e j =1

此处,ε1取0.05,ε2和ε2取10-7。系数矩阵A1的维数为N1×(Mp+Ms),A2和A3为N2×(Mp+Ms)的系数矩阵。Here, ε 1 is 0.05, and ε 2 and ε 2 are 10 -7 . The dimension of coefficient matrix A 1 is N 1 ×(M p +M s ), and A 2 and A 3 are coefficient matrices of N 2 ×(M p +M s ).

求解的线性规划模型,可以得到线圈的匝数和线圈分布的位置,优化结果有时会出现线圈集中的情况。考虑线圈的实际尺寸和线圈间距,必须在设计时施加线圈之间最小距离的约束条件。根据划分网格的尺寸,我们可以定义线圈的最小间距约束。假设网格间距为4mm,两匝线圈中心的最小距离为10mm,可以施加线圈间距约束条件:By solving the linear programming model, the number of turns of the coil and the position of the coil distribution can be obtained, and the optimization result sometimes shows that the coils are concentrated. Considering the actual size of the coils and the spacing between the coils, a minimum distance constraint between the coils must be imposed at design time. According to the size of the divided mesh, we can define the minimum spacing constraints of the coils. Assuming that the grid spacing is 4mm and the minimum distance between the centers of two coils is 10mm, the coil spacing constraints can be imposed:

ej+ej+1+ej+2≤1(j=1,…,Mp-2,Mp+1,…,Mp+Ms-2)e j +e j+1 +e j+2 ≤1 (j=1,..., M p -2, M p +1,..., M p +M s -2)

此时约束条件为:At this point the constraints are:

|IA1e-B′zdsv|≤ε1B′zdsv |IA 1 eB′ zdsv |≤ε 1 B′ zdsv

|IA2e|≤ε2 |IA 2 e|≤ε 2

|IA3e|≤ε3 |IA 3 e|≤ε 3

Ce≤1Ce≤1

ej=0或者ej=1e j =0 or e j =1

其中,矩阵C的维数为(Mp+Ms-4)×(Mp+Ms)。Wherein, the dimension of the matrix C is (M p +M s −4)×(M p +M s ).

如果网格间距为3mm,则线圈约束条件为If the grid spacing is 3mm, the coil constraints are

ej+ej+1+ej+2+ej+3≤1(j=1,…,Mp-3,Mp+1,…,Mp+Ms-3),约束条件中矩阵C的维数则变为(Mp+Ms-6)×(Mp+Ms)。e j +e j+1 +e j+2 +e j+3 ≤1(j=1,...,M p -3, M p +1,...,M p +M s -3), in the constraints The dimension of the matrix C becomes (M p +M s −6)×(M p +M s ).

上述纵向梯度线圈的设计中,考虑梯度线圈的对称性,可以只对主线圈和屏蔽线圈的z轴的正半轴进行网格划分。目标场点在成像区内选择1/4弧线上的点,在屏蔽区域z轴的正半轴选择。In the above-mentioned design of the longitudinal gradient coil, considering the symmetry of the gradient coil, only the positive semi-axis of the z-axis of the main coil and the shielding coil can be meshed. Select the point on the 1/4 arc of the target field point in the imaging area, and select the positive semi-axis of the z-axis in the shielded area.

保持磁场和线圈间距约束条件不变,改变目标函数f,也可以得到不同的线性规划或者非线性规划模型。Keeping the constraints of the magnetic field and coil spacing constant, and changing the objective function f, different linear programming or nonlinear programming models can also be obtained.

梯度强度Gz的单位可以是T/m/A,也可以是T/m。当取T/m/A时,即取电流I=1A。当取T/m时,可以先取电流I=100A。然后逐步增大电流,会发现随着电流的增大,材料用量在减少,当达到一个电流值时,随着电流的继续增大,材料用量变化很小。The unit of the gradient strength G z can be T/m/A or T/m. When T/m/A is taken, the current I=1A is taken. When T/m is taken, the current I=100A can be taken first. Then gradually increase the current, and you will find that as the current increases, the amount of material used decreases. When a current value is reached, as the current continues to increase, the amount of material used changes little.

图2和图3为设计的超导纵向梯度线圈绕线示意图。rdsv=0.225m,Lp=1.2m,Ls=1.4m,Rp=0.36m,Rs=0.39m,Gz=55*(1e-6)T/m/A,Rstray=Rs+0.15。Figure 2 and Figure 3 are schematic diagrams of the designed superconducting longitudinal gradient coil winding. r dsv =0.225m, L p =1.2m, L s =1.4m, R p =0.36m, R s =0.39m, G z =55*(1e-6)T/m/A, R stray =R s +0.15.

虽然以上将实施例分开说明和阐述,但涉及部分共通之技术,在本领域普通技术人员看来,可以在实施例之间进行替换和整合,涉及其中一个实施例未明确记载的内容,则可参考有记载的另一个实施例。Although the above embodiments are described and illustrated separately, some common technologies are involved, and in the eyes of those of ordinary skill in the art, the embodiments can be replaced and integrated, and the content that is not clearly recorded in one of the embodiments can be Reference is made to another example documented.

以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。The implementation methods described above do not constitute a limitation to the scope of protection of the technical solution. Any modifications, equivalent replacements and improvements made within the spirit and principles of the above implementation methods shall be included in the protection scope of the technical solution.

Claims (5)

1. A longitudinal gradient coil design method based on 0-1 integer programming comprises the following steps:
the main gradient coil and the shield coil are assumed to be distributed in a length LpAnd LsRadius is R respectivelypAnd RsThe area (2) has an energization current of I; uniformly dividing the coil area into M along the z-axis by a gridpAnd MsEqually dividing, and taking the center of a grid as a coil position;
within the spherical imaging region DSV, N is selected1Selecting N for each target field point and shielding area2The target site is located at z ═ z'j(j=1,…,Mp+Ms) Where the radius is r ═ r'j(j=1,…,Mp+Ms) In the ith (i-1, …, N) current ring1+N2) Individual field point (r)i,zi) The z-component and r-component of the generated magnetic field are:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mrow> <mi>z</mi> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;mu;</mi> <mn>0</mn> </msub> <mi>I</mi> </mrow> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <mfrac> <mn>1</mn> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>+</mo> <msubsup> <mi>r</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>&amp;lsqb;</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>r</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>r</mi> <mi>j</mi> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>r</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mi>E</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mi>I</mi> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mrow> <mi>r</mi> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>&amp;mu;</mi> <mn>0</mn> </msub> <mi>I</mi> </mrow> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <mfrac> <mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mrow> <msub> <mi>r</mi> <mi>i</mi> </msub> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>+</mo> <msubsup> <mi>r</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>r</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mi>j</mi> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>r</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mi>E</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mi>I</mi> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
wherein,
<mrow> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <msub> <mi>&amp;mu;</mi> <mn>0</mn> </msub> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </mfrac> <mfrac> <mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mrow> <msub> <mi>r</mi> <mi>i</mi> </msub> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>+</mo> <msubsup> <mi>r</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>r</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>r</mi> <mi>j</mi> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>r</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>z</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mi>E</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>;</mo> </mrow>
k (k) and e (k) are elliptical integrals of a first kind and elliptical integrals of a second kind, respectively; mu.s0Is a vacuum magnetic conductivity;
the currents of the main coil and the shielding coil are equal in magnitude and opposite in direction, so that the magnetic field generated by all current-carrying grids at the ith field point is
<mrow> <msub> <mi>B</mi> <mrow> <mi>z</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>M</mi> <mi>p</mi> </msub> </munderover> <msub> <mi>A</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>e</mi> <mi>j</mi> </msub> <mo>-</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <msub> <mi>M</mi> <mi>p</mi> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <msub> <mi>M</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>M</mi> <mi>s</mi> </msub> </mrow> </munderover> <msub> <mi>A</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>e</mi> <mi>j</mi> </msub> </mrow> <mo>)</mo> </mrow> <mi>I</mi> <mo>;</mo> <msub> <mi>B</mi> <mrow> <mi>r</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>M</mi> <mi>p</mi> </msub> </munderover> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>e</mi> <mi>j</mi> </msub> <mo>-</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <msub> <mi>M</mi> <mi>p</mi> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <msub> <mi>M</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>M</mi> <mi>s</mi> </msub> </mrow> </munderover> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>e</mi> <mi>j</mi> </msub> </mrow> <mo>)</mo> </mrow> <mi>I</mi> </mrow>
Wherein ej0, indicating that the grid current does not contribute to the magnetic field, ej1 illustrates that the coil contributes to the magnetic field; in a DSV, only the z-component of the magnetic field is considered, and B is considered in the shielded regionzAnd BrWritten in matrix form as
Bzdsv=IA1e
Bzshield=IA2e
Brshield=IA3e
Wherein, the coefficient matrix A1Has a dimension of N1×(Mp+Ms),A2And A3Is N2×(Mp+Ms) The coefficient matrix of (2).
The least amount of coil material is used as a target for establishing a model, then
An objective function:
constraint conditions are as follows:
|IA1e-B′zdsv|≤ε1B′zdsv
|IA2e|≤ε2
|IA3e|≤ε3
ej0 or ej=1;B′zdsv=Gz*zj,B′zdsvFor the z-component of the target magnetic field, GzIs the target gradient field strength;
wherein epsilon1Take 0.05, ε2And ε2Get 10-7
And solving the linear programming model to obtain the number of turns of the main coil and the shielding coil and the distribution position of the coils.
2. The method of claim 1, wherein the method comprises: defining minimum spacing constraint of the coils, assuming that the grid spacing is a mm, the minimum distance between the centers of two turns of coils is b mm, applying constraint conditions, and taking h as the maximum integer smaller than b/a; then there are:
ej+ej+1+ej+2...+ej+h≤1(j=1,…,Mp-h,Mp+1,…,Mp+Ms-h)
optimization constraints are rewritten as
Constraint conditions are as follows:
|IA1e-B′zdsv|≤ε1B′zdsv
|IA2e|≤ε2
|IA3e|≤ε3
Ce≤1
ej0 or ej=1
Wherein the dimension of the matrix C is (M)p+Ms-2h)×(Mp+Ms)。
3. A method of designing a longitudinal gradient coil based on an integer program of 0-1 according to claim 1 or 2, characterized in that: taking a point on an 1/4 arc line in the DSV as a target field point, and taking a positive half shaft part or a negative half shaft part on the coil structure for meshing division.
4. The method of claim 1, wherein the method comprises: gradient intensity GzThe unit of (1) is T/m/A, and the current I is 1A.
5. The method of claim 3, wherein the method comprises: gradient intensity GzWhen the unit of (1) is T/m, namely when T/m is taken, the current I is taken to be equal to a specific value firstly, then the current is increased step by step, and the material usage is found to be reduced along with the increase of the current until the difference between the material usage at the current value and the material usage at the previous valueAnd when the current value is smaller than the corresponding threshold value, the current value is determined to be the optimal current value for realizing the minimum material consumption.
CN201711005456.7A 2017-10-24 2017-10-24 Longitudinal gradient coil design method based on 01 integer programmings Pending CN107831461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711005456.7A CN107831461A (en) 2017-10-24 2017-10-24 Longitudinal gradient coil design method based on 01 integer programmings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711005456.7A CN107831461A (en) 2017-10-24 2017-10-24 Longitudinal gradient coil design method based on 01 integer programmings

Publications (1)

Publication Number Publication Date
CN107831461A true CN107831461A (en) 2018-03-23

Family

ID=61649141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711005456.7A Pending CN107831461A (en) 2017-10-24 2017-10-24 Longitudinal gradient coil design method based on 01 integer programmings

Country Status (1)

Country Link
CN (1) CN107831461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761357A (en) * 2018-04-22 2018-11-06 成都理工大学 Fluxgate sensor feedback coil
CN110456293A (en) * 2019-07-22 2019-11-15 惠仁望都医疗设备科技有限公司 A Design Method of Self-Shield Gradient Coil
CN113325350A (en) * 2020-02-28 2021-08-31 河海大学 High-performance gradient coil design method based on discrete grids

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278422A (en) * 1999-06-21 2001-01-03 通用电器横河医疗系统株式会社 Method for mfg. gradient coil, gradient coil unit, gradient coil nuclear magnetic resonance imaging apparatus
JP3967505B2 (en) * 1999-12-07 2007-08-29 日本電子株式会社 Magnetic field correction coil design method
CN102096053A (en) * 2010-12-02 2011-06-15 苏州安科医疗系统有限公司 Gradient coil design method in nuclear magnetic resonance system
CN102445674A (en) * 2010-09-22 2012-05-09 特斯拉工程有限公司 Gradient coil sub-assemblies
CN104007406A (en) * 2014-06-13 2014-08-27 河海大学 Method for designing elliptic cylindrical surface transverse gradient coil based on spatial alternation
CN104020429A (en) * 2014-06-06 2014-09-03 南京工程学院 Wire distribution structure and method for gradient coils connected in parallel and layered mode
CN104198969A (en) * 2014-08-14 2014-12-10 南京工程学院 Gradient coil design method
CA2983448A1 (en) * 2015-05-12 2016-11-17 Hyperfine Research, Inc. Radio frequency coil methods and apparatus
CN107831462A (en) * 2017-10-24 2018-03-23 中国计量大学 Longitudinal gradient coil based on 01 integer programmings
CN108802646A (en) * 2017-10-24 2018-11-13 中国计量大学 Permanent-magnet type longitudinal direction gradient coil based on Zero-one integer programming

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278422A (en) * 1999-06-21 2001-01-03 通用电器横河医疗系统株式会社 Method for mfg. gradient coil, gradient coil unit, gradient coil nuclear magnetic resonance imaging apparatus
JP3967505B2 (en) * 1999-12-07 2007-08-29 日本電子株式会社 Magnetic field correction coil design method
CN102445674A (en) * 2010-09-22 2012-05-09 特斯拉工程有限公司 Gradient coil sub-assemblies
CN102096053A (en) * 2010-12-02 2011-06-15 苏州安科医疗系统有限公司 Gradient coil design method in nuclear magnetic resonance system
CN104020429A (en) * 2014-06-06 2014-09-03 南京工程学院 Wire distribution structure and method for gradient coils connected in parallel and layered mode
CN104007406A (en) * 2014-06-13 2014-08-27 河海大学 Method for designing elliptic cylindrical surface transverse gradient coil based on spatial alternation
CN104198969A (en) * 2014-08-14 2014-12-10 南京工程学院 Gradient coil design method
CA2983448A1 (en) * 2015-05-12 2016-11-17 Hyperfine Research, Inc. Radio frequency coil methods and apparatus
CN107831462A (en) * 2017-10-24 2018-03-23 中国计量大学 Longitudinal gradient coil based on 01 integer programmings
CN108802646A (en) * 2017-10-24 2018-11-13 中国计量大学 Permanent-magnet type longitudinal direction gradient coil based on Zero-one integer programming
CN108802645A (en) * 2017-10-24 2018-11-13 中国计量大学 Permanent-magnet type longitudinal direction gradient coil design method based on Zero-one integer programming

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
张国庆 等: "基于0-1整数线性规划的自屏蔽磁共振成像超导磁体研究", 《物理学报》 *
张鞠成: "逆方法设计用于3T磁共振成像的乳腺射频线圈", 《高压电技术》 *
徐文龙 等: "基于目标场法的磁共振成像小尺寸射频线圈设计", 《高压电技术》 *
陶贵生 等: "永磁磁共振系统盘式梯度线圈的设计", 《中国计量学院学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761357A (en) * 2018-04-22 2018-11-06 成都理工大学 Fluxgate sensor feedback coil
CN110456293A (en) * 2019-07-22 2019-11-15 惠仁望都医疗设备科技有限公司 A Design Method of Self-Shield Gradient Coil
CN110456293B (en) * 2019-07-22 2021-07-20 惠仁望都医疗设备科技有限公司 A Design Method of Self-shielding Gradient Coils
CN113325350A (en) * 2020-02-28 2021-08-31 河海大学 High-performance gradient coil design method based on discrete grids

Similar Documents

Publication Publication Date Title
CN108802645B (en) Permanent magnet type longitudinal gradient coil design method based on 0-1 integer programming
CN106990373B (en) A kind of decoupling axial direction shim coil design method of magnetic resonance system
JP4902787B2 (en) Magnetic field adjustment for MRI equipment
CN107110922B (en) Solenoid structure and system and method of operation
CN102150222B (en) Magnetic assembly and method for defining a magnetic field for an imaging volume
CN101996273B (en) Finite difference design method of magnatic resonance imaging (MRI) system gradient coil
CN107831461A (en) Longitudinal gradient coil design method based on 01 integer programmings
CN110780245B (en) Design method of shielded gradient coil for planar superconducting magnetic resonance system and gradient coil thereof
Liu et al. Approximate expressions for the magnetic field created by circular coils inside a closed cylindrical shield of finite thickness and permeability
CN107831462A (en) Longitudinal gradient coil based on 01 integer programmings
CN102096053A (en) Gradient coil design method in nuclear magnetic resonance system
WO2013166810A1 (en) Magnetic resonance imaging superconducting magnet system and method and device for acquiring structural parameter thereof
CN102466649A (en) Cylindrical Halbach magnet shimming coils
CN104007406A (en) Method for designing elliptic cylindrical surface transverse gradient coil based on spatial alternation
CN101852843B (en) Optimization design algorithm of superconducting magnet external magnetism shielding coil
US6664879B2 (en) Asymmetric tesseral shim coils for magnetic resonance
CN103499797A (en) Method for obtaining number and initial positions of solenoid coils of magnetic resonance imaging superconducting magnet
CN114983387A (en) Low-cost movable ultralow-field nuclear magnetic resonance imaging device
Liu et al. An efficacious target-field approach to design shim coils for Halbach magnet of mobile NMR sensors
US6377148B1 (en) Asymmetric zonal shim coils for magnetic resonance
JP6401374B2 (en) Magnetic field adjustment method
Zhu et al. A novel design method of passive shimming for 0.7-T biplanar superconducting MRI magnet
JP6797008B2 (en) Superconducting magnet device and magnetic resonance imaging device equipped with it
JP2021118872A (en) Magnetic field generation system
CN107249453B (en) Magnetic field adjustment assistance system and magnetic field adjustment method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180323