CN107810447B - 用于将标记图案转印到衬底的方法、校准方法以及光刻设备 - Google Patents
用于将标记图案转印到衬底的方法、校准方法以及光刻设备 Download PDFInfo
- Publication number
- CN107810447B CN107810447B CN201680037390.7A CN201680037390A CN107810447B CN 107810447 B CN107810447 B CN 107810447B CN 201680037390 A CN201680037390 A CN 201680037390A CN 107810447 B CN107810447 B CN 107810447B
- Authority
- CN
- China
- Prior art keywords
- resist layer
- substrate
- radiation dose
- pattern
- target portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70425—Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
- G03F7/70466—Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/70516—Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70633—Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70681—Metrology strategies
- G03F7/70683—Mark designs
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/707—Chucks, e.g. chucking or un-chucking operations or structural details
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7003—Alignment type or strategy, e.g. leveling, global alignment
- G03F9/7019—Calibration
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7073—Alignment marks and their environment
- G03F9/708—Mark formation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本发明涉及一种方法,包括:a)向参考衬底提供第一标记图案;b)在参考衬底上向参考衬底提供第一抗蚀剂层,其中第一抗蚀剂层具有使第一抗蚀剂显影所需的最小辐射剂量;c)使用参考图案形成装置在辐射束的截面中向辐射束赋予第二标记图案,以形成经图案化的辐射束;以及d)将参考衬底的第一抗蚀剂层的目标部分n次暴露于经图案化的辐射束,以根据第二标记图案,在第一抗蚀剂层的目标部分中创建已经经受累积的辐射剂量的曝光区域,累积的辐射剂量高于第一抗蚀剂层的最小辐射剂量,其中n是值至少为2的整数。
Description
相关申请的交叉引用
本申请要求于2015年6月26日提交的EP申请15174026.3的优先权,其全部内容通过引用并入本文。
技术领域
本发明涉及用于将标记图案转印到衬底的方法以及用于校准量测工具的方法。本发明还涉及光刻设备。
背景技术
光刻设备是将期望的图案施加到衬底上(通常是施加到衬底的目标部分上)的机器。光刻设备可以用于例如制造集成电路(IC)。在这种情况下,可以使用备选地被称为掩模或掩模版的图案形成装置来生成待形成在IC的单独层上的电路图案。该图案可以被转印到衬底(例如,硅晶片)上的目标部分(例如,包括部分、一个或多个裸片)上。图案的转印通常是经由成像到设置在衬底上的辐射敏感材料(抗蚀剂)层上。通常,单个衬底将包含相继被图案化的相邻目标部分的网络。常规的光刻设备包括:所谓的步进器,其中通过将整个图案一次曝光到目标部分上来照射每个目标部分;以及所谓的扫描器,其中通过在给定方向(“扫描”方向)上穿过辐射束扫描图案、同时在平行或反平行于该方向的方向上同步扫描衬底来照射每个目标部分。也可以通过将图案压印到衬底上,来将图案从图案形成装置转印到衬底上。
可以通过在彼此的顶部上布置多个经图案化的层来制造复杂器件(例如,集成电路),其中借助于光刻设备将每个图案转印到对应的层。虽然通常被转印到相继的层的图案是不同的,但是对于器件的正确功能来说,精确地将所述图案相对于彼此定位是重要的。可以通过确定先前图案的位置来实现所述图案相对于彼此的准确定位,使得可以基于所确定的位置来准确地转印后续图案。相应图案相对于彼此如何定位被称为套刻性能。
可以通过测量在衬底表面上分布(通常均匀分布)的标记的位置来确定先前图案的位置。典型地,在曝光之前,在光刻设备中完成标记位置的确定来确定先前图案的位置。光刻设备因此可以包括被配置为确定标记例如相对于衬底保持器或量测框架的位置的装置。
可以通过对标记在一个层中的位置与对应的标记在另一层中的位置进行比较来测量套刻性能。用于测量套刻性能的标记通常与用于测量先前图案的位置的标记不同。典型地,使用与光刻设备分离的量测系统来测量套刻性能。
为了准确地测量衬底上标记的位置,例如,为了确定先前图案的位置或确定套刻性能,需要例如在启动或维护操作之后定期校准光刻设备和/或量测系统,以补偿随时间发生的任何漂移。优选使用在预定义位置处设置有标记的衬底来执行校准。
除此之外,由标记转印到衬底上预定义位置的准确度来确定校准的准确度。已发现,由于光刻设备中存在的随机误差(例如,部件相对于其他部件的位置的随机误差、随机温度变化、随机压力变化等),标记转印到衬底的准确度受限制。可能在曝光期间、衬底在衬底保持器上定位期间、将衬底与图案形成装置对准期间等表现出随机误差,从而导致标记转印到衬底的有限精度。
为了减少随机误差对光刻设备和/或量测系统的校准过程的影响,可以使用多个衬底并通过光刻设备或量测系统测量多个衬底来对结果进行平均并因此平均掉随机误差。但是,测量多个衬底需要大量时间,并且因此可能对吞吐量产生负面影响。
发明内容
期望提供具有以更高准确度定位在衬底上预定义位置处的标记的衬底。进一步期望改进使用带有标记的衬底的校准方法。
根据本发明的一个实施例,提供了一种方法,包括:
a)向参考衬底提供第一标记图案;
b)在参考衬底上向参考衬底提供第一抗蚀剂层,其中第一抗蚀剂层具有使第一抗蚀剂显影所需的最小辐射剂量;
c)使用参考图案形成装置在辐射束的截面中向辐射束赋予第二标记图案,以形成经图案化的辐射束;以及
d)将参考衬底的第一抗蚀剂层的目标部分n次暴露于所述经图案化的辐射束,以根据第二标记图案,在第一抗蚀剂层的目标部分中创建已经经受累积的辐射剂量的曝光区域,累积的辐射剂量高于第一抗蚀剂层的最小辐射剂量,其中n是值至少为2的整数。
根据本发明的另一实施例,提供了一种用于校准量测工具的方法,其中使用如上所述的方法来制造参考衬底,其中步骤a)包括:a1)在所述参考衬底上向所述参考衬底提供第二抗蚀剂层,其中所述第二抗蚀剂层具有使所述第二抗蚀剂显影所需的最小辐射剂量;a2)使用第一图案形成装置,在辐射束的截面中向辐射束赋予第一标记图案,以形成经图案化的辐射束;a3')将所述参考衬底的所述第二抗蚀剂层的目标部分n次暴露于所述经图案化的辐射束,以根据所述第一标记图案,在所述第二抗蚀剂层的所述目标部分中创建已经经受累积的辐射剂量的曝光区域,所述累积的辐射剂量高于所述第二抗蚀剂层的所述最小辐射剂量,其中n是值至少为2的整数;a4)将所述参考衬底的所述第二抗蚀剂层显影;a5)根据所述第一标记图案,蚀刻所述参考衬底,以去除衬底材料;a6)去除仍然存在于所述参考衬底上的所述第二抗蚀剂层。其中根据第一标记图案和第二标记图案之间预定义的相对位置,第一标记图案和第二标记图案已被定位在参考衬底上,并且其中通过测量第一标记图案和第二标记图案之间的相对位置并且将所测量的相对位置与预定义的相对位置进行比较来对量测工具进行校准。
根据本发明的另一实施例,提供了一种用于制造生产衬底的方法,所述方法包括:
a)为生产衬底提供第一标记图案;
b)在生产衬底上向生产衬底提供抗蚀剂层,其中抗蚀剂层具有使抗蚀剂显影所需的最小辐射剂量;
c)在辐射束的截面中向辐射束赋予包括第二标记图案的图案,以形成经图案化的辐射束;
d)根据图案,将抗蚀剂层的目标部分暴露于所述经图案化的辐射束,以在抗蚀剂层的目标部分中创建已经经受低于抗蚀剂层的最小辐射剂量的辐射剂量的曝光区域;
e)确定第一标记图案相对于第二标记图案的相对位置;
f)确定工艺校正,以补偿所确定的相对位置与期望的相对位置之间的偏差;
g)考虑所确定的工艺校正,将抗蚀剂层的目标部分暴露于经图案化的辐射束,以根据图案在抗蚀剂层的目标部分中创建已经经受累积的辐射剂量的曝光区域,累积的辐射剂量高于抗蚀剂层的最小辐射剂量。
根据本发明的又一实施例,提供了一种光刻设备,被配置为执行根据本发明的方法。
附图说明
现在将仅通过示例的方式参考附图来描述本发明的实施例,其中对应的附图标记表示对应的部分,并且其中:
图1描绘了根据本发明的一个实施例的光刻设备;
图2描绘现有技术方法中用于将标记图案转印到抗蚀剂层的辐射剂量结果;
图3A描绘了根据本发明的一个实施例的方法中用于将图案转印到抗蚀剂层的辐射剂量结果;
图3B描绘了根据本发明的一个实施例的与图3A相关联的方法的流程图;
图4A示意性地描绘了根据本发明的另一实施例的方法的流程图;
图4B示意性地描绘了根据本发明的又一实施例的方法的流程图;
图5描绘了根据本发明的另一实施例的方法中用于将标记图案转印到抗蚀剂层的辐射剂量结果;
图6A和图6B描绘了根据本发明的又一实施例的方法中用于将标记图案转印到抗蚀剂层的辐射剂量结果;
图7描绘了分别为图4A和图4B的步骤403和/或412的可能实施例;
图8示意性地描绘了根据本发明的一个实施例的校准方法的流程图;
图9示意性地描绘了根据本发明的另一实施例的方法的流程图;以及
图10示意性地描绘了根据本发明的又一实施例的方法的流程图。
具体实施方式
图1示意性地描绘了根据本发明的一个实施例的光刻设备。设备包括:被配置为调节辐射束B(例如,UV辐射或任何其他合适的辐射)的照射系统(照射器)IL;掩模支撑结构(例如,掩模台)MT,被构造为支撑图案形成装置(例如,掩模)MA并且被连接到第一定位装置PM,第一定位装置PM被配置为根据某些参数准确地定位图案形成装置。设备还包括:衬底台(例如,晶片台)WT或“衬底支撑件”,被构造为保持衬底(例如,抗蚀剂涂布的晶片)W并被连接到第二定位装置PW,第二定位装置PW被配置为根据某些参数准确地定位衬底。设备还包括:投影系统(例如,折射式投影透镜系统)PS,被配置为将由图案形成装置MA赋予辐射束B的图案投影到衬底W的目标部分C(例如,包括一个或多个裸片)上。
照射系统可以包括用于引导辐射、将辐射成形、或控制辐射的各种类型的光学部件,例如,折射型、反射型、磁性型、电磁型、静电型或其他类型的光学部件或其任何组合。
掩模支撑结构支撑图案形成装置,即,承受图案形成装置的重量。掩模支撑结构以取决于图案形成装置的取向、光刻设备的设计以及其他条件(例如,图案形成装置是否被保持在真空环境中)的方式来保持图案形成装置。掩模支撑结构可以使用机械、真空、静电或其他夹持技术来保持图案形成装置。掩模支撑结构可以是例如可以根据需要被固定或可移动的框架或台。掩模支撑结构可以确保图案形成装置例如相对于投影系统处于期望的位置。本文中术语“掩模版”或“掩模”的任何使用可以被认为与更通用的术语“图案形成装置”同义。
本文使用的术语“图案形成装置”应被广义地解释为指代可以用于在辐射束的截面中向辐射束赋予图案以在衬底的目标部分中创建图案的任何装置。应注意,例如如果图案包括相移特征或所谓的辅助特征,则赋予辐射束的图案可能不完全对应于衬底的目标部分中的期望图案。通常,赋予辐射束的图案将对应于在目标部分中创建的器件(例如,集成电路)中的特定功能层。
图案形成装置可以是透射式或反射式的。图案形成装置的示例包括掩模、可编程反射镜阵列、以及可编程LCD面板。掩模在光刻方面是众所周知的,并且包括诸如二元、交替相移和衰减相移的掩模类型以及各种混合掩模类型。可编程反射镜阵列的一个示例采用小反射镜的矩阵布置,其中的每一个反射镜均可以单独地倾斜,以在不同方向上反射入射辐射束。倾斜的反射镜在由反射镜矩阵反射的辐射束中赋予图案。
本文使用的术语“投影系统”应被广义地解释为涵盖适合于所使用的曝光辐射或适合于其他因素(例如,使用浸没液体或使用真空)的任何类型的投影系统,包括折射型、反射型、反射折射型、磁性型、电磁型以及静电光学系统或其任何组合。本文中术语“投影透镜”的任何使用可以被认为与更一般的术语“投影系统”同义。
如本文所描绘的,设备是透射型的(例如,采用透射型掩模)。备选地,设备可以是反射型的(例如,采用如上所述类型的可编程反射镜阵列、或采用反射型掩模)。
光刻设备可以是具有两个(双台)或更多个衬底台或“衬底支撑件”(和/或两个或更多个掩模台或“掩模支撑件”)的类型。在这样的“多台”机器中,附加的台或支撑件可以并行使用,或者可以在一个或多个台或支撑件上执行预备步骤,同时使用一个或多个其他台或支撑件用于曝光。
光刻设备还可以是如下类型,其中衬底的至少一部分可以被具有相对高的折射率的液体(例如,水)覆盖,以填充投影系统与衬底之间的空间。浸没液体也可以被施加到光刻设备中的其他空间(例如,掩模和投影系统之间的空间)。浸没技术可以用于增加投影系统的数值孔径。本文使用的术语“浸没”并不意味着诸如衬底的结构必须浸入在液体中,而仅意味着在曝光期间,液体位于投影系统和衬底之间。
参考图1,照射器IL从辐射源SO接收辐射束。例如当源是准分子激光器时,源和光刻设备可以是分离的实体。在这样的情况下,不认为源形成光刻设备的一部分,并且借助于射束传输系统BD(包括例如合适的定向反射镜和/或扩束器),辐射束从源SO传递到照射器IL。在其他情况下,例如当源是汞灯时,源可以是光刻设备的组成部分。源SO和照射器IL连同射束传输系统BD可以根据需要被称为辐射系统。
照射器IL可以包括调整器AD,调整器AD被配置为调整辐射束的角强度分布。通常,可以调整照射器的光瞳平面中强度分布的至少外径向范围和/或内径向范围(通常分别称为σ-外和σ-内)。另外,照射器IL可以包括诸如积分器IN和聚光器CO的各种其他部件。照射器可以用于调节辐射束,以在辐射束的截面中具有期望的均匀性和强度分布。
辐射束B入射到保持在掩模支撑结构(例如,掩模台MT)上的图案形成装置(例如,掩模MA)上,并由图案形成装置图案化。在穿过掩模MA之后,辐射束B穿过投影系统PS,投影系统PS将射束聚焦到衬底W的目标部分C上。借助于第二定位装置PW和位置传感器IF(例如,干涉测量装置、线性编码器或电容传感器),衬底台WT可以被精确地移动,例如以将不同的目标部分C定位在辐射束B的路径中。类似地,例如在从掩模库中机械检索之后或在扫描期间,可以使用第一定位装置PM和另一位置传感器(在图1中未明确描绘)来将掩模MA相对于辐射束B的路径进行准确定位。通常,可以借助于形成第一定位装置PM的一部分的长行程模块(粗定位)和短行程模块(精定位)来实现掩模台MT的移动。类似地,可以使用形成第二定位装置PW的一部分的长行程模块和短行程模块来实现衬底台WT或“衬底支撑件”的移动。在步进器(与扫描器相对)的情况下,掩模台MT可以仅连接到短行程致动器,或者可以被固定。可以使用掩模对准标记M1、M2和衬底对准标记P1、P2来将掩模MA和衬底W对准。尽管如图所示的衬底对准标记占据专用目标部分,但是衬底对准标记可以位于目标部分之间的空间中(这些被称为划线对准标记)。类似地,在掩模MA上提供多于一个的裸片的情况下,掩模对准标记可以位于裸片之间。
所描绘的设备可以用于以下模式中的至少一个:
1.在步进模式中,掩模台MT或“掩模支撑件”和衬底台WT或“衬底支撑件”被保持基本静止,同时将赋予辐射束的整个图案一次投影到目标部分C上(即,单次静态曝光)。衬底台WT或“衬底支撑件”然后沿X和/或Y方向移位,使得可以曝光不同的目标部分C。在步进模式中,曝光场的最大尺寸限制了目标部分C在单次静态曝光中成像的尺寸。
2.在扫描模式中,同步扫描掩模台MT或“掩模支撑件”和衬底台WT或“衬底支撑件”,同时将赋予辐射束的图案投影到目标部分C上(即,单次动态曝光)。衬底台WT或“衬底支撑件”相对于掩模台MT或“掩模支撑件”的速度和方向可以由投影系统PS的(缩小)放大率和图像反转特性来确定。在扫描模式中,曝光场的最大尺寸限制了在单次动态曝光中目标部分的宽度(在非扫描方向上),而扫描运动的长度决定了目标部分的高度(在扫描方向上)。
3.在另一模式中,保持可编程图案形成装置的掩模台MT或“掩模支撑件”被保持基本静止,并且在赋予辐射束的图案被投影到目标部分C上的同时,衬底台WT或“衬底支撑件”被移动或扫描。在该模式中,通常使用脉冲辐射源,并且在衬底台WT或“衬底支撑件”的每次移动之后或在扫描期间的相继辐射脉冲之间,根据需要更新可编程图案形成装置。这种操作模式可以容易地应用于利用可编程图案形成装置的无掩模光刻(例如,上述类型的可编程反射镜阵列)。
还可以采用上述使用模式的组合和/或变体或完全不同的使用模式。
可以向与图1的光刻设备一起使用的衬底提供一个或多个标记(例如诸如,衬底对准标记P1、P2)。借助于所述标记,使用光刻设备和/或单独的适当量测系统,衬底可以相对于图案形成装置对准,可以确定目标部分C的位置和/或可以确定套刻性能(即,相继图案被定位于彼此的顶部上的准确度)。
通常使用光刻设备将标记转印到衬底。为了将标记图案转印到衬底,现有技术方法使用具有设置在衬底上的抗蚀剂层的衬底,其中抗蚀剂层具有使抗蚀剂显影所需的最小辐射剂量。然后在辐射束的截面中,向辐射束赋予标记图案以形成经图案化的辐射束。将抗蚀剂层上的目标部分一次暴露于经图案化的辐射束,以在抗蚀剂层的目标部分中创建已经经受高于最小辐射剂量的辐射剂量的曝光区域。在图2中通过辐射剂量曲线图示了抗蚀剂层接收的辐射剂量根据衬底位置变化的示例,其中水平轴表示在单个方向上衬底上的位置,并且竖直轴表示辐射剂量水平。虚线MRD表示抗蚀剂层显影所需的最小辐射剂量。
图2的辐射剂量曲线描绘了具有宽度W的单个线,该单个线可以是包含多个线的线图案(例如,以栅格或光栅的形式)的一部分。在这种情况下,曝光区域的位置对应于待转印到衬底的线的位置。与此相反,也可以设想待转印到衬底上的线的位置对应于未曝光区域的位置。
可以通过向辐射束赋予对应的图案使得经辐射的区域和未经辐射的区域之间存在尖锐的转变来实现使不同的区域经受不同的辐射剂量,其具有如下优点:只要经照射的区域的辐射剂量高于最小辐射剂量,则线图案的宽度独立于实际接收到的辐射剂量。然而,实际上,如图2所示,这样的尖锐的转变是不可能的,并且辐射剂量将从最大辐射剂量水平ML渐变为基本为零。在图2中,渐变被描绘为直线,但是其他渐变(例如,是高阶导数的连续函数的渐变)也可以适用。
由于辐射剂量曲线的渐变,实际宽度AW可能与预期宽度W不同,并取决于最大辐射剂量水平ML。然而,由于曝光过程的可重复性质,通过每次使用相同的预定最大辐射剂量对抗蚀剂层进行曝光并调整赋予辐射束的图案,可以补偿接收最大辐射剂量水平ML的区域的宽度W与接收高于最小辐射剂量MRD的辐射剂量的区域的实际宽度AW之间的差,使得实际宽度AW对应于预期的宽度。
在将标记图案转印到抗蚀剂层之后,将抗蚀剂层显影。显影包括在经照射的区域或未经照射的区域之一处去除抗蚀剂层,而两个区域中的另一个仍然被抗蚀剂层占据。这允许选择性地去除材料或使用材料层来覆盖包括剩余抗蚀剂部分的衬底。最后,包括设置在这些部分上的任何材料(如果存在)的抗蚀剂部分由此被去除,从而在衬底中留下对应于标记图案的图案。
当稍后确定线图案的位置时,将有效地确定线图案的中心C0的位置,只要辐射剂量曲线是对称的,则该位置与线图案的实际宽度AW无关。然而,当由于光刻设备中的处理效应和/或随机误差而导致线图案沿衬底移位时,由于中心C0的位置与线图案一起移位,所以对中心C0所测量的位置的影响是清楚的。
为了增加光刻设备的准确度,因此可以确定所需的工艺校正来补偿标记图案的位置偏移。可以通过测量衬底上的标记图案相对于参考的位置来确定工艺校正,该参考可以是衬底上(例如,衬底的另一层中)的另一标记图案、确定所需的工艺校正、并将这些工艺校正用于后续的衬底。
然而,在一些情况下,先前的衬底不能用于确定所需的工艺校正,或者曝光如此关键,以至于基于先前衬底的工艺校正不充分。在这种情况下,衬底当前被两次曝光,第一次用于确定工艺校正,然后是在衬底的重新加工之后第二次使用最佳工艺校正。衬底的重新加工意味着用于第一次曝光的抗蚀剂层被完全去除,并且在衬底上提供新的抗蚀剂层用于第二次曝光。但是,在重新加工之后,例如由于重新加工的处理影响、抗蚀剂层的差异、曝光噪声、测量噪声等,所需的工艺校正已改变。
因此,为了避免对衬底进行重新加工,提出使用低于将所使用的抗蚀剂显影所需的最小辐射剂量的辐射剂量来曝光衬底、确定工艺校正、并再次使用所确定的工艺校正来进行曝光,以创建已经经受高于最小辐射剂量的累积的辐射剂量的曝光区域。将参考图3A和图3B更详细地进行解释。
图3A描绘了根据本发明的一个实施例的将标记图案转印到衬底的方法的辐射剂量结果。
向衬底提供具有显影所需的最小辐射剂量MRD的抗蚀剂层。光刻设备(例如,图1的设备)的辐射束被赋予标记图案。
在图3A的左上角,示出了由抗蚀剂层接收的辐射剂量根据衬底位置变化的第一辐射剂量曲线FRC。出于简化的原因,第一辐射剂量曲线FRC类似于图2所示的辐射剂量曲线。第一辐射剂量曲线对应于具有中心C1的线。旨在将线图案转印到抗蚀剂层,使得中心C1位于由C0表示的期望位置处。然后,由于例如处理效应和/或光刻设备中的随机误差,中心C1可能未被转印到期望的位置C0。
例如,当在衬底上已存在另一标记图案以用作参考时,可以确定中心C1与由C0指示的期望位置之间的差。例如当包括其他标记图案的特征的先前层与当前制作的层之间的套刻很关键时,另一标记图案也可以对应于期望的位置C0。
具体地注意到,如在图3A的左上角曲线中可以清楚地看到的,已使用低于抗蚀剂层的最小辐射剂量的辐射剂量来执行抗蚀剂层的目标部分的曝光。因此,不存在已经经受高于抗蚀剂层最小辐射剂量的辐射剂量的曝光区域,使得抗蚀剂层还未准备好进行抗蚀剂的显影。
通过确定中心C1相对于期望位置C0的相对位置,可以计算第二曝光,以补偿C1和C0之间的偏差。这样的第二曝光的一个示例在图3A的左下角示出。图3A的左下角描绘了根据衬底位置变化的第二辐射曲线SRC。第二辐射曲线SRC的中心C2相对于期望位置C0的位置被故意地选择为与中心C1相对于期望位置C0的相对位置相反,以补偿偏差。
再次,以低于抗蚀剂层的最小辐射剂量的辐射剂量执行抗蚀剂层的目标部分的曝光。然而,第一曝光和第二曝光的辐射剂量使得所组合的曝光在抗蚀剂层的目标部分中导致已经经受高于抗蚀剂层的最小辐射剂量的累积的辐射剂量的曝光区域。在图3的右侧,使用根据第一辐射曲线的辐射剂量和根据第二辐射曲线的辐射剂量进行曝光之后累积的辐射剂量被示出为累积的辐射剂量ARC。
累积的辐射剂量ARC具有其中累积的辐射剂量高于最小辐射剂量MRD的区域。该区域现在具有与期望的位置C0大致重合的中心。
现在参考图3B,在图3B中通过包括以下步骤的流程图总结了上述方法:
a)向衬底提供第一标记图案(步骤301);
b)在衬底上向衬底提供抗蚀剂层,其中抗蚀剂层具有使抗蚀剂显影所需的最小辐射剂量(步骤302);
c)在辐射束的截面中向辐射束赋予包括第二标记图案的图案,以形成经图案化的辐射束(步骤303);
d)将抗蚀剂层的目标部分暴露于所述经图案化的辐射束,以根据图案在抗蚀剂层的目标部分中创建已经经受低于抗蚀剂层的最小辐射剂量MRD的辐射剂量FRC的曝光区域(步骤304);
e)确定第一标记图案相对于第二标记图案的相对位置C1-C0(步骤305);
f)确定工艺校正,以补偿所确定的相对位置和期望的位置之间的偏差C1-C0(步骤306);
g)考虑所确定的工艺校正,将抗蚀剂层的目标部分暴露于经图案化的辐射束,以根据第二图案在抗蚀剂层的目标部分中创建已经经受累积的辐射剂量ARC的曝光区域,累积的辐射剂量ARC高于最小辐射剂量MRD(步骤307)。
使用基本相同的辐射剂量来执行图3A中的第一曝光和第二曝光,但也可以使用第一曝光和第二曝光的辐射剂量之间的其他比例,例如,第二曝光的辐射剂量是用于第一曝光的辐射剂量的1/3,只要累积的辐射剂量高于最小辐射剂量。
在一个实施例中,第一曝光之后的曝光区域已经经受了抗蚀剂层的最小辐射剂量的至少50%的辐射剂量,优选地为抗蚀剂层的最小辐射剂量的约75%的辐射剂量。优选地,在确定工艺校正之前,第一曝光的辐射剂量足够高,使得可以相对于参考来测量抗蚀剂层中标记图案的位置。
衬底可以是生产衬底,意味着可以进一步处理衬底以生产可以被第三方使用并出售给第三方的集成电路、器件或其他功能元件,即,转印到抗蚀剂层的图案还包括器件特征。
所描述的方法的优点在于不需要重新加工,从而导致改进的校正准确度,这是因为第一曝光中的处理效应和随机曝光噪声不会被衬底的完全重新加工改变。
也可以添加第三曝光,意味着抗蚀剂层首先以低于最小辐射剂量的辐射剂量被曝光,工艺校正被确定,并且考虑到工艺校正来执行第二曝光,使得第二曝光之后累积的辐射剂量仍然低于最小辐射剂量,再次确定工艺校正,并且最后考虑到第二曝光之后确定的工艺校正来执行第三曝光,其中第三曝光之后累积的辐射剂量高于用于显影的最小辐射剂量。第一曝光、第二曝光和第三曝光均涉及相同的图案。
在实施例中,该方法可以被扩展为包括第四曝光、第五曝光甚至更多次曝光。该方法随后迭代地导致图案在衬底上的正确定位。
当如上所述使用多于两次的曝光时,第一曝光优选具有足够高的辐射剂量,使得标记图案在抗蚀剂层中的位置可以相对于参考来进行测量。后续曝光的辐射剂量就可以更低,只要最后的曝光产生高于抗蚀剂层的最小辐射剂量的累积的辐射剂量。备选地,第一曝光的辐射剂量不够高,但是执行多次曝光,直到累积的辐射剂量足够用于测量抗蚀剂层中的标记图案相对于参考的位置,以用于确定工艺校正,然后基于工艺校正执行一次或多次曝光。
根据本发明的另一方面,设置有第一标记图案的衬底可以用作用于监测、测试目的、设置和匹配传感器或量测工具的参考。理想情况下,使用单个参考衬底,但出于灵活性和逻辑原因,使用多个相似的参考衬底。然而,实际上难以制造相同的参考衬底,从而存在衬底到衬底的变化。这对光刻设备或量测工具的可获得的准确度具有负面影响。
因此,提出使用具有第一标记图案的衬底作为所选择的参考衬底,该衬底将被称为主衬底。其他参考衬底然后可以与主衬底进行比较,然后可以将任何偏差保存在数据文件中,以用作针对对应参考衬底的校正,以使这些衬底基本上等同并与主衬底匹配。
然后,出发点是我们具有带有第一标记图案的参考衬底,并且我们具有带有相同第一标记图案的主衬底。为了比较这两个衬底,需要对参考衬底执行如图4A示意性所示的以下步骤:
-在参考衬底上向参考衬底提供第一抗蚀剂层,其中第一抗蚀剂层具有使第一抗蚀剂显影所需的最小辐射剂量(步骤401);
-使用参考图案形成装置,在辐射束的截面中向辐射束赋予第二标记图案,以形成经图案化的辐射束(步骤402);以及
-将参考衬底的第一抗蚀剂层的目标部分n次暴露于所述经图案化的辐射束,以根据第二标记图案,在第一抗蚀剂层的目标部分中创建已经经受累积的辐射剂量的曝光区域,累积的辐射剂量高于第一抗蚀剂层的最小辐射剂量,其中n是值至少为2的整数(步骤403)。
为了比较这两个衬底,需要相对于主衬底执行如图4B中示意性示出的以下步骤:
-在主衬底上向主衬底提供第一抗蚀剂层,其中第一抗蚀剂层具有使第一抗蚀剂显影所需的最小辐射剂量(步骤410);
-使用参考图案形成装置,在辐射束的截面中向辐射束赋予第二标记图案,以形成经图案化的辐射束(步骤411);以及
-将主衬底的第一抗蚀剂层的目标部分n次暴露于所述经图案化的辐射束,以根据第二标记图案在第一抗蚀剂层的目标部分中创建已经经受累积辐射剂量的曝光区域,累积辐射剂量高于第一抗蚀剂层的最小辐射剂量,其中n是值至少为2的整数(步骤412)。
通过多次曝光参考衬底和主衬底,抗蚀剂层中的第二标记图案被更准确地定位,以下将参考图5和图6A-图6B进行解释。
图5描绘了根据本发明的一个实施例的将标记图案转印到衬底的方法的辐射剂量结果。
向衬底提供具有显影所需的最小辐射剂量MRD的抗蚀剂层。光刻设备(例如,图1的设备)的辐射束被赋予标记图案。
在图5的左上角处,描绘了由抗蚀剂层接收的辐射剂量根据衬底位置变化的第一辐射剂量曲线FRC。出于简化的原因,第一辐射剂量曲线FRC类似于图2所示的辐射剂量曲线。第一辐射剂量曲线对应于具有中心C1的线。旨在将线图案转印到抗蚀剂层,使得中心C1位于由C0表示的期望位置处。然而,由于光刻设备中的随机误差,中心C1可能未被转印到期望的位置C0。
在根据本发明的方法中,如上所述,抗蚀剂层的目标部分被多次暴露于相同的经图案化的辐射束,其中每次旨在将图案转印到相同的位置(在图5的情况下为期望的位置C0)。由于光刻设备中的随机误差,线图案的中心的位置可能在随后的曝光之间变化。通过多次曝光抗蚀剂层,抗蚀剂层中所得到的最终图案将具有中心,该中心优选为与各次曝光相对应的中心的平均值,或者与单次曝光的情况相比,至少更接近期望位置,从而减少了随机误差的影响。
以更数学的方式,可以说,在根据本发明的方法中,抗蚀剂层的目标部分n次暴露于经图案化的辐射束,其中n是值至少为2的整数。
作为示例,在图5的左下角示出了涉及第二曝光的第二辐射剂量曲线SRC。由于光刻设备中的随机误差,线具有处于与中心C1不同的位置处的中心C2,中心C2也不位于期望的位置C0处。然而,将第一曝光的辐射剂量分布添加到第二曝光的辐射剂量分布产生了在图5的右侧示出的累积的辐射剂量曲线ARC。累积的辐射剂量曲线具有其中累积的辐射剂量高于最小辐射剂量的区域。该区域的中心C3可以被测量并且可以用于校准目的。当抗蚀剂层被曝光两次时,中心C3的位置是中心C1和C2的位置的平均值,与单独的中心C1和C2中的任一个相比,在大部分时间,该中心C3将更接近期望位置C0。
对多次曝光进行平均具有若干优点。使用单个暴露的目标部分进行平均仅在使用多个衬底并测量每个衬底的情况下是可能的。通过对单个衬底进行平均,需要较少的衬底来获得相同水平的校准准确度,这意味着需要执行较少的测量,因此校准需要较少的时间。这一优点对生产能力有巨大的影响,因为在一些校准期间,光刻设备可能不能用于生产。较少的校准时间因此可以增加生产能力。
另一优点是,与其中使用并测量多个衬底但其中标记在单次曝光中进行转印的情况相比,可以提高校准的准确度。在图5所示的情况下,使用两倍的曝光进行校准,这与使用在单次曝光中转印标记的衬底进行的相同校准相比,通常导致准确度提高倍。
在图5中,单独的曝光的最大辐射剂量(即,FRC和SRC两者的最大辐射剂量)高于最小辐射剂量MRD。这具有的优点是,在不必改变辐射剂量并因此影响光刻设备的操作性质(例如,透镜加热、照射设置等)的情况下,该方法可以容易地应用于现有的光刻设备。
备选地,只要累积的辐射剂量具有高于最小辐射剂量的部分,每次曝光的最大辐射剂量可以低于最小辐射剂量MRD。可以通过使用具有较高最小辐射剂量的抗蚀剂层或通过降低每次曝光的最大辐射剂量来获得这种情况。
对于本领域技术人员显而易见的是,也可以使用多于两次的曝光,这也将在图6A和图6B中进行解释。然而,在使用多于两次的曝光的情况下,优选的是,只有最后一次曝光导致衬底上的曝光区域经受高于最小辐射剂量MRD的累积的辐射剂量,即,在所述优选实施例中,需要最后一次曝光的曝光剂量来在衬底上形成已接收高于最小辐射剂量的累积辐射剂量的曝光区域,并且在最后一次曝光之前,没有区域接收到高于最小辐射剂量的累积的辐射剂量。以这种方式,平均过程中每次曝光的加权基本相同,这给出了最好的结果。
在两次曝光之间进行的操作决定了对图案的随机定位有贡献的随机误差。如果未进行任何操作,并且在彼此之后直接执行多次曝光(分别在图4A和图4B中的步骤403和/或412),则只考虑曝光过程中的随机误差。
在一个实施例中,方法还可以包括曝光之间的步骤422(参见图7),其中衬底与经图案化的辐射束对准,使得对准步骤中的随机误差也对标记图案转印中的随机误差有贡献。
备选地或附加地,如图7所示,在一个实施例中,方法还可以包括在曝光之间的步骤421(参见图7),其中衬底从衬底保持器移除(即,卸载)并被再次定位(即,加载)在衬底保持器上,由此也考虑随机误差中的加载误差。
使用根据本发明的方法将标记图案转印到衬底的衬底可以用于校准器件,例如,作为光刻设备的一部分并且被配置为确定衬底上的标记例如相对于衬底保持器的位置的器件、或者被配置为通过测量一个层中的标记的位置相对于另一层中的标记的位置来测量光刻设备的套刻性能的单独的量测系统。如图8所示的可能的校准方法至少包括:
-在衬底上的预定义位置处向衬底提供标记图案(步骤801),其中利用根据本发明的方法将标记图案转印到衬底;
-测量每个标记图案的位置(步骤802);
-将每个标记图案的所测量的位置与所述标记图案的预定义位置进行比较(步骤803);
-基于所测量的位置和标记图案的预定义位置之间的比较来校准器件(步骤804)。
利用这些校准方法,可以针对光刻设备的特定配置对量测系统进行校准,并且随后可以通过测量衬底来检测/监测从特定配置的偏差(例如,由于漂移)。通过校准光刻设备内的器件,可以抵消偏差并且可以恢复特定的配置。
图6A和图6B描绘了根据本发明的另一实施例的将标记图案转印到衬底的方法的辐射剂量结果。在该方法中,抗蚀剂层具有使抗蚀剂层显影所需的最小辐射剂量MRD。辐射束在辐射束的截面中被赋予标记图案,以形成经图案化的辐射束。抗蚀剂层的目标部分随后被暴露于经图案化的辐射束。所产生的接收的辐射剂量针对一维简化的情况在左上角被示出在图6A中,在一维简化的情况中第一辐射曲线FRC指示根据衬底位置变化的所接收的辐射剂量。在该图中还示出了抗蚀剂层显影所需的最小辐射剂量MRD。如可以清楚看到的,单次曝光不足以达到最小辐射剂量MRD以上。
对应于第一辐射曲线的图案是具有中心C1的简单的线。在此曝光期间以及随后的任何曝光期间,旨在将中心C1定位在期望的位置C0处。由于例如光刻设备中的随机误差,中心C1未被精确地定位在期望位置C0处。
随后将抗蚀剂层再次暴露于相同的经图案化的辐射束。忽略任何先前接收到的辐射剂量,在图6A的左下角处示出在第二曝光期间接收到的辐射剂量,其中类似于第一辐射曲线的第二辐射曲线SRC指示根据衬底位置变化的所接收的辐射剂量。对应于第二辐射曲线的图案是具有中心C2的简单的线。在第二曝光期间,旨在将中心C2定位在期望的位置C0处,但是由于例如在光刻设备中的随机误差,中心C2未被精确地定位在期望的位置C0处,并且处于与第一曝光的中心C1不同的位置处。
两次曝光导致如作为第一累积辐射曲线ARC1的图6A右侧所示的累积的辐射剂量。
如图6B的左上角所示,随后将抗蚀剂层第三次暴露于相同的经图案化的辐射束,旨在将中心C3定位在期望位置C0处,其中第三辐射曲线TRC指示根据第三曝光期间衬底位置变化的所接收的辐射剂量。如可以清楚看到的,由于随机误差,中心C3与其他曝光不同地被定位。
辐射剂量累加到如图6B的左下角所示的前两次曝光的累积的辐射剂量ARC1。结果是如图6B的右侧所示的第二累积辐射曲线ARC2。在第三次曝光之后,在衬底上存在接收到高于最小辐射剂量MRD的辐射剂量的抗蚀剂的曝光区域AR。该区域AR的中心C4是三个中心C1-C3的平均值。从图6B的右侧部分可以看出,针对每个单独曝光的随机误差的影响被减小,并且获得标记图案的中心位置C4,与单独的曝光之后获得的中心位置相比,中心位置C4更接近期望位置C0。
因此,由于多次曝光,参考衬底和主衬底均设置有第二标记图案,第二标记图案被定位在期望位置处或期望位置附近,使得其可被用作两个衬底的参考。
随后,确定参考衬底中的第一标记图案相对于参考衬底的第一抗蚀剂层中的第二标记图案的第一相对位置,并且确定主衬底中的第一标记图案相对于主衬底的第一抗蚀剂层中的第二标记图案的第二相对位置。然后可以通过确定第一相对位置和第二相对位置之间的差来确定衬底误差校正数据。该误差校正数据可用于校正参考衬底中第一标记图案的位置,使得其对应于主衬底的第一标记图案的位置。以这种方式,可以使用对应的衬底误差校正数据来使得许多参考衬底与主衬底一致。
在多个参考图案形成装置被用于监测、测试目的和光刻设备的设置的情况下,在不同的参考图案形成装置之间可能存在类似的变化。这对光刻设备或量测工具的可获得的准确度具有负面影响。
为了改进这一点,提出使用其上具有第一标记图案的参考衬底,并使用参考图案形成装置将第二标记图案转印至参考衬底上的抗蚀剂层,并使用将用作所选择的参考的主图案形成装置,将第三标记图案转印至参考衬底上的相同的抗蚀剂层。通过比较第二标记图案相对于第一标记图案的位置与第三标记图案相对于第一标记图案的位置,可以确定图案形成装置误差校正数据,以校正参考图案形成装置和主图案形成装置之间的偏差。
如上关于图5和图6A及图6B所描述的通过多次曝光参考衬底的抗蚀剂层的目标部分,将第二标记图案和第三标记图案转印到抗蚀剂层。
在一个实施例中,第三标记图案和第二标记图案彼此等同。
可以例如使用如图9所示的以下方法来制作参考衬底上的第一标记图案:
-在参考衬底上向参考衬底提供第二抗蚀剂层,其中第二抗蚀剂层具有使第二抗蚀剂显影所需的最小辐射剂量(步骤901);
-使用第一图案形成装置,在辐射束的截面中向辐射束赋予第一标记图案,以形成经图案化的辐射束(步骤902);
-将参考衬底的第二抗蚀剂层的目标部分暴露于所述经图案化的辐射束,以根据第一标记图案,在第二抗蚀剂层的目标部分中创建已经经受高于第二抗蚀剂层的最小辐射剂量的辐射剂量的曝光区域(步骤903);
-将参考衬底的第二抗蚀剂层显影(步骤904);
-根据第一标记图案,蚀刻参考衬底,以去除衬底材料(步骤905);以及
-去除仍然存在于参考衬底上的第二抗蚀剂层(步骤906)。
为了改进参考衬底的准确度,可以如上所述针对第二标记图案和第三标记图案使用多次曝光,使得第三步骤903可以被步骤903'(步骤903'在图9中被示出为如上所述的路线旁边的可选路线)替代:
-将参考衬底的第二抗蚀剂层的目标部分n次暴露于所述经图案化的辐射束,以根据第一标记图案,在第二抗蚀剂层的目标部分中创建已经经受累积的辐射剂量的曝光区域,累积的辐射剂量高于第二抗蚀剂层的最小辐射剂量,其中n是至少为2的整数。
可以例如使用如图10所示的以下方法来制造主衬底上的第一标记图案:
-在主衬底上向主衬底提供第二抗蚀剂层,其中第二抗蚀剂层具有第二抗蚀剂显影所需的最小辐射剂量(步骤1001);
-使用第一图案形成装置,在辐射束的截面中向辐射束赋予第一标记图案,以形成经图案化的辐射束(步骤1002);
-将主衬底的第二抗蚀剂层的目标部分暴露于所述经图案化的辐射束,以根据第一标记图案,在第二抗蚀剂层的目标部分中创建已经经受高于第二抗蚀剂层的最小辐射剂量的辐射剂量的曝光区域(步骤1003);
-将主衬底的第二抗蚀剂层显影(步骤1004);
-根据第一标记图案,蚀刻主衬底,以去除衬底材料(步骤1005);以及
-去除仍然存在于主衬底上的第二抗蚀剂层(步骤1006)。
为了改进主衬底的准确度,可以如上所述针对第二和第三标记图案使用多次曝光,使得第三步骤1003可以被步骤1003'(步骤1003'在图10中被示出为如上所述的路线旁边的可选路线)替代。
-将主衬底的第二抗蚀剂层的目标部分n次暴露于所述经图案化的辐射束,以根据第一标记图案,在第二抗蚀剂层的目标部分中创建已经经受累积的辐射剂量的曝光区域,累积的辐射剂量高于第二抗蚀剂层的最小辐射剂量,其中n是至少为2的整数。
当根据本发明已使用多次曝光制作了参考衬底的第一标记图案和第二标记图案时,两个标记图案之间的预定义的相对位置可以被并入到参考衬底中,使得参考衬底可以用于通过利用量测工具测量第一标记图案和第二标记图案之间的相对位置、并将所测量的相对位置与预定义的相对位置进行比较来对量测工具进行校准。
尽管仅针对一维情况示出所指示的辐射剂量,但是对于光刻技术领域的技术人员而言显而易见的是,本发明也适用于二维情况。使用一维情况是因为它们更容易用于解释发明背后的原理。
此外,根据本发明的方法还可以使用多于三次的曝光,其中使用的曝光次数越多,从标记图案的最终位置平均越多的随机误差。然而,更多的曝光也需要时间,使得可以在平均优点和进行n次曝光所花费的时间之间选择最佳值。
尽管以上描述主要涉及曝光抗蚀剂层的单个目标部分,但是对于本领域技术人员显而易见的是,如也参考图1所指示的,抗蚀剂层可以具有多个目标部分。然后可以使用根据本发明的方法将标记图案转印到每个目标部分。优选地,一次仅曝光一个目标部分,其中每个目标部分最终被曝光n次。
将每个目标部分曝光n次可以通过一个接一个地曝光多个目标部分来执行,该序列重复n次。备选地,通过将目标部分曝光n次并且随后将下一目标部分曝光n次直到所有多个目标部分已被曝光n次,每个目标部分被曝光n次。
明确地指出,无论使用“第一”还是“第二”来描述本发明,都不是时间或地点顺序的指示,而仅仅用于区分彼此不同的特征。
尽管在本文中可以具体提及在制造IC中使用光刻设备,但是应当理解,本文描述的光刻设备可以具有其他应用,例如,制造集成光学系统、用于磁畴存储器、平板显示器、液晶显示器(LCD)、薄膜磁头等的指导和检测。本领域技术人员将认识到,在这样的备选应用的上下文中,术语“晶片”或“裸片”的任何使用可以被认为分别与更一般的术语“衬底”或“目标部分”同义。在曝光之前或之后,可以在例如轨道(通常将抗蚀剂层施加到衬底并且使曝光的抗蚀剂显影的工具)、量测系统和/或检查工具中处理本文涉及的衬底。在适用的情况下,本文的公开内容可以应用于这种和其他衬底处理工具。此外,衬底可以被处理多次,例如以创建多层IC,使得本文使用的术语衬底还可以指代已经包含多个处理层的衬底。
虽然以上已经在光学光刻的上下文中对本发明的实施例的使用进行了具体的参考,但是应理解,本发明可以用于其他应用(例如,压印光刻),并且在上下文允许的情况下不限于光学光刻。在压印光刻中,图案形成装置中的形貌限定了在衬底上创建的图案。图案形成装置的形貌可以被压入提供给衬底的抗蚀剂层中,于是通过施加电磁辐射、热、压力或其组合,抗蚀剂被固化。在抗蚀剂被固化之后,图案形成装置从抗蚀剂中移出,留下图案。
本文使用的术语“辐射”和“射束”包括所有类型的电磁辐射(包括紫外(UV)辐射(例如,具有或约365nm、248nm、193nm、157nm或126nm的波长)、超紫外(EUV)辐射(例如,具有5nm-20nm范围内的波长)以及诸如离子束或电子束的粒子束)。
在上下文允许的情况下,术语“透镜”可以指代各种类型的光学部件(包括折射型、反射型、磁性型、电磁型和静电型光学部件)中的任何一个或其组合。
尽管以上已经描述了本发明的具体实施例,但是应理解,可以以与上述不同的方式来实践本发明。例如,本发明可以采用计算机程序的形式,计算机程序包含描述如上所公开的方法的机器可读指令的一个或多个序列或者具有存储在其中的这样的计算机程序的数据存储介质(例如,半导体存储器、磁盘或光盘)。
以上描述旨在是示例性的而不是限制性的。因此,对于本领域技术人员显而易见的是,可以在不脱离以下阐述的权利要求的范围的情况下,对所描述的本发明进行修改。
Claims (12)
1.一种用于将标记图案转印到衬底的方法,包括:
a)向参考衬底提供第一标记图案;
b)在所述参考衬底上向所述参考衬底提供第一抗蚀剂层,其中所述第一抗蚀剂层具有使所述第一抗蚀剂显影所需的最小辐射剂量;
c)使用参考图案形成装置,在辐射束的截面中向辐射束赋予第二标记图案,以形成经图案化的辐射束;以及
d)将所述参考衬底的所述第一抗蚀剂层的目标部分至少两次暴露于所述经图案化的辐射束,以根据所述第二标记图案,在所述第一抗蚀剂层的所述目标部分中创建已经经受累积的辐射剂量的曝光区域,所述累积的辐射剂量高于所述第一抗蚀剂层的所述最小辐射剂量,其中所述暴露被配置为将在所述参考衬底上的所述第一抗蚀剂层中得到的图案定位成比利用单次曝光的情况相比更靠近期望的位置,并且其中步骤d)包括:确定所述第一标记图案相对于所述第二标记图案的相对位置;以及确定工艺校正,以补偿所确定的相对位置与期望的相对位置之间的偏差。
2.根据权利要求1所述的方法,还包括以下步骤:
1)向主衬底提供所述第一标记图案;
2)在所述主衬底上向所述主衬底提供第一抗蚀剂层,其中所述第一抗蚀剂层具有使所述第一抗蚀剂显影所需的最小辐射剂量;
3)使用所述参考图案形成装置,在辐射束的截面中向辐射束赋予所述第二标记图案,以形成经图案化的辐射束;以及
4)将所述主衬底的所述第一抗蚀剂层的目标部分n次暴露于所述经图案化的辐射束,以根据所述第二标记图案,在所述第一抗蚀剂层的所述目标部分中创建已经经受累积的辐射剂量的曝光区域,所述累积的辐射剂量高于所述第一抗蚀剂层的所述最小辐射剂量,其中n是值至少为2的整数;
5)确定所述参考衬底中的所述第一标记图案相对于所述参考衬底的所述第一抗蚀剂层中的所述第二标记图案的第一相对位置;
6)确定所述主衬底中的所述第一标记图案相对于所述主衬底的所述第一抗蚀剂层中的所述第二标记图案的第二相对位置;以及
7)通过确定所述第一相对位置和所述第二相对位置之间的差,确定衬底误差校正数据。
3.根据权利要求1所述的方法,还包括以下步骤:
e)使用主图案形成装置,在辐射束的截面中向辐射束赋予第三标记图案,以形成经图案化的辐射束;
f)将所述参考衬底的所述第一抗蚀剂层的目标部分n次暴露于所述经图案化的辐射束,以根据所述第三标记图案,在所述第一抗蚀剂层的所述目标部分中创建已经经受累积的辐射剂量的曝光区域,所述累积的辐射剂量高于所述第一抗蚀剂层的所述最小辐射剂量,其中n是值至少为2的整数;
g)确定所述参考衬底中的所述第一标记图案相对于所述参考衬底的所述第一抗蚀剂层中的所述第二标记图案的第一相对位置;
h)确定所述参考衬底中的所述第一标记图案相对于所述参考衬底的所述第一抗蚀剂层中的所述第三标记图案的第三相对位置;以及
i)通过确定所述第一相对位置和所述第三相对位置之间的差来确定图案形成装置误差校正数据。
4.根据权利要求1所述的方法,其中步骤a)包括:
a1)在所述参考衬底上向所述参考衬底提供第二抗蚀剂层,其中所述第二抗蚀剂层具有使所述第二抗蚀剂显影所需的最小辐射剂量;
a2)使用第一图案形成装置,在辐射束的截面中向辐射束赋予第一标记图案,以形成经图案化的辐射束;
a3)将所述参考衬底的所述第二抗蚀剂层的目标部分暴露于所述经图案化的辐射束,以根据所述第一标记图案,在所述第二抗蚀剂层的所述目标部分中创建已经经受高于所述第二抗蚀剂层的所述最小辐射剂量的辐射剂量的曝光区域;
a4)将所述参考衬底的所述第二抗蚀剂层显影;
a5)根据所述第一标记图案,蚀刻所述参考衬底,以去除衬底材料;
a6)去除仍然存在于所述参考衬底上的所述第二抗蚀剂层。
5.根据权利要求4所述的方法,其中步骤a3)被替换为:
a3')将所述参考衬底的所述第二抗蚀剂层的目标部分n次暴露于所述经图案化的辐射束,以根据所述第一标记图案,在所述第二抗蚀剂层的所述目标部分中创建已经经受累积的辐射剂量的曝光区域,所述累积的辐射剂量高于所述第二抗蚀剂层的所述最小辐射剂量,其中n是值至少为2的整数。
6.根据权利要求2所述的方法,其中步骤1)包括:
1.1)在所述主衬底上向所述主衬底提供第二抗蚀剂层,其中所述第二抗蚀剂层具有使所述第二抗蚀剂显影所需的最小辐射剂量;
1.2)使用第一图案形成装置,在辐射束的截面中向辐射束赋予第一标记图案,以形成经图案化的辐射束;
1.3)将所述主衬底的所述第二抗蚀剂层的目标部分暴露于所述经图案化的辐射束,以根据所述第一标记图案,在所述第二抗蚀剂层的所述目标部分中创建已经经受高于所述第二抗蚀剂层的所述最小辐射剂量的辐射剂量的曝光区域;
1.4)将所述主衬底的所述第二抗蚀剂层显影;
1.5)根据所述第一标记图案,蚀刻所述主衬底,以去除衬底材料;
1.6)去除仍然存在于所述主衬底上的所述第二抗蚀剂层。
7.根据权利要求6所述的方法,其中步骤1.3)被替换为:
1.3')将所述主衬底的所述第二抗蚀剂层的目标部分n次暴露于所述经图案化的辐射束,以根据所述第一标记图案,在所述第二抗蚀剂层的所述目标部分中创建已经经受累积的辐射剂量的曝光区域,所述累积的辐射剂量高于所述第二抗蚀剂层的所述最小辐射剂量,其中n是值至少为2的整数。
8.一种用于校准量测工具的方法,其中使用根据权利要求5所述的方法来制造参考衬底,其中根据所述第一标记图案和所述第二标记图案之间的预定义的相对位置,所述第一标记图案和所述第二标记图案已被定位在所述参考衬底上,并且其中通过测量所述第一标记图案和所述第二标记图案之间的相对位置,并且将所测量的相对位置与所述预定义的相对位置进行比较,来对所述量测工具进行校准。
9.一种用于制造生产衬底的方法,所述方法包括:
a)向所述生产衬底提供第一标记图案;
b)在所述生产衬底上向所述生产衬底提供抗蚀剂层,其中所述抗蚀剂层具有使所述抗蚀剂显影所需的最小辐射剂量;
c)在辐射束的截面中,向辐射束赋予包括第二标记图案的图案,以形成经图案化的辐射束;
d)将所述抗蚀剂层的目标部分暴露于所述经图案化的辐射束,以根据所述第二标记图案在所述抗蚀剂层的所述目标部分中创建已经经受低于所述抗蚀剂层的所述最小辐射剂量的辐射剂量的曝光区域;
e)确定所述第一标记图案相对于所述第二标记图案的相对位置;
f)确定工艺校正,以补偿所确定的相对位置与期望的相对位置之间的偏差;
g)考虑所确定的工艺校正,将所述抗蚀剂层的所述目标部分暴露于所述经图案化的辐射束,以根据所述第二标记图案在所述抗蚀剂层的所述目标部分中创建已经经受累积的辐射剂量的曝光区域,所述累积的辐射剂量高于所述抗蚀剂层的所述最小辐射剂量。
10.根据权利要求9所述的方法,其中在步骤d)中,所述曝光区域已经经受所述抗蚀剂层的所述最小辐射剂量的至少50%的辐射剂量。
11.根据权利要求10所述的方法,其中在步骤d)中,所述曝光区域已经经受所述抗蚀剂层的所述最小辐射剂量的75%的辐射剂量。
12.一种光刻设备,被配置为执行根据权利要求1或权利要求9所述的方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15174026 | 2015-06-26 | ||
EP15174026.3 | 2015-06-26 | ||
PCT/EP2016/064892 WO2016207445A1 (en) | 2015-06-26 | 2016-06-27 | Method for transferring a mark pattern to a substrate, a calibration method, and a lithographic apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107810447A CN107810447A (zh) | 2018-03-16 |
CN107810447B true CN107810447B (zh) | 2020-11-06 |
Family
ID=53491354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680037390.7A Active CN107810447B (zh) | 2015-06-26 | 2016-06-27 | 用于将标记图案转印到衬底的方法、校准方法以及光刻设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10191390B2 (zh) |
KR (1) | KR102059034B1 (zh) |
CN (1) | CN107810447B (zh) |
WO (1) | WO2016207445A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12105424B2 (en) * | 2019-08-30 | 2024-10-01 | Applied Materials, Inc. | Multi-tone scheme for maskless lithography |
JP7523904B2 (ja) * | 2019-12-27 | 2024-07-29 | キヤノン株式会社 | 検査装置および半導体装置の製造方法 |
CN113900350A (zh) * | 2021-09-13 | 2022-01-07 | 长江存储科技有限责任公司 | 掩膜版、光刻系统以及半导体器件的制作方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6699627B2 (en) * | 2000-12-08 | 2004-03-02 | Adlai Smith | Reference wafer and process for manufacturing same |
JP4178291B2 (ja) * | 2001-05-30 | 2008-11-12 | 富士通マイクロエレクトロニクス株式会社 | 半導体装置の製造方法及び製造用レチクルセット |
US7262398B2 (en) | 2001-09-20 | 2007-08-28 | Litel Instruments | Method and apparatus for self-referenced dynamic step and scan intra-field scanning distortion |
WO2003038518A1 (en) * | 2001-10-30 | 2003-05-08 | Pixelligent Technologies Llc | Advanced exposure techniques for programmable lithography |
US6839126B2 (en) * | 2002-01-03 | 2005-01-04 | United Microelectronics Corp. | Photolithography process with multiple exposures |
EP2131243B1 (en) * | 2008-06-02 | 2015-07-01 | ASML Netherlands B.V. | Lithographic apparatus and method for calibrating a stage position |
KR20120000846A (ko) * | 2010-06-28 | 2012-01-04 | 삼성전자주식회사 | 웨이퍼의 정렬 방법 및 공정 모니터링 방법 |
JP5538205B2 (ja) * | 2010-12-27 | 2014-07-02 | 富士フイルム株式会社 | 放射線画像変換パネル及び放射線画像変換パネルの製造方法、並びに放射線画像検出装置 |
DE102011006468B4 (de) * | 2011-03-31 | 2014-08-28 | Carl Zeiss Smt Gmbh | Vermessung eines abbildenden optischen Systems durch Überlagerung von Mustern |
CN103454860B (zh) * | 2012-05-30 | 2015-11-25 | 中芯国际集成电路制造(上海)有限公司 | 曝光的方法 |
NL2011683A (en) | 2012-12-13 | 2014-06-16 | Asml Netherlands Bv | Method of calibrating a lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product. |
US9075313B2 (en) * | 2013-03-13 | 2015-07-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multiple exposures in extreme ultraviolet lithography |
CN103698767B (zh) * | 2013-12-30 | 2016-02-24 | 中国科学院国家天文台长春人造卫星观测站 | 获取空间目标与观测站距离的方法及装置 |
-
2016
- 2016-06-27 WO PCT/EP2016/064892 patent/WO2016207445A1/en active Application Filing
- 2016-06-27 US US15/578,312 patent/US10191390B2/en active Active
- 2016-06-27 CN CN201680037390.7A patent/CN107810447B/zh active Active
- 2016-06-27 KR KR1020187002405A patent/KR102059034B1/ko active Active
Also Published As
Publication number | Publication date |
---|---|
KR102059034B1 (ko) | 2019-12-24 |
WO2016207445A1 (en) | 2016-12-29 |
US20180149981A1 (en) | 2018-05-31 |
KR20180021140A (ko) | 2018-02-28 |
US10191390B2 (en) | 2019-01-29 |
CN107810447A (zh) | 2018-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7619207B2 (en) | Lithographic apparatus and device manufacturing method | |
US8345265B2 (en) | Lithographic apparatus and methods for compensating substrate unflatness, determining the effect of patterning device unflatness, and determining the effect of thermal loads on a patterning device | |
KR100985834B1 (ko) | 리소그래피 투영 장치의 포커스를 측정하는 방법 | |
US8451454B2 (en) | Stage system, lithographic apparatus including such stage system, and correction method | |
JP4527099B2 (ja) | 投影システムの倍率を計測する方法、デバイス製造方法およびコンピュータプログラム製品 | |
US8482718B2 (en) | Lithographic apparatus and device manufacturing method | |
US8330941B2 (en) | Calibration method for a lithographic apparatus | |
US7992115B2 (en) | Overlay measurement on double patterning substrate | |
EP3255493A1 (en) | Method of determining pellicle compensation corrections for a lithographic process, metrology apparatus and computer program | |
CN109804316B (zh) | 确定高度轮廓的方法、测量系统和计算机可读介质 | |
CN107810447B (zh) | 用于将标记图案转印到衬底的方法、校准方法以及光刻设备 | |
US8208118B2 (en) | Method for determining exposure settings, lithographic exposure apparatus, computer program and data carrier | |
US7525636B2 (en) | Lithographic apparatus and exposure method | |
US11307507B2 (en) | Method to obtain a height map of a substrate having alignment marks, substrate alignment measuring apparatus and lithographic apparatus | |
KR100832078B1 (ko) | 디바이스 제조방법 및 컴퓨터 프로그램 제품 | |
JP4832493B2 (ja) | リソグラフィ方法及びデバイス製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |