CN107805622B - Recombinant bacillus subtilis for synthesizing guanosine diphosphate rock sugar and construction method and application thereof - Google Patents
Recombinant bacillus subtilis for synthesizing guanosine diphosphate rock sugar and construction method and application thereof Download PDFInfo
- Publication number
- CN107805622B CN107805622B CN201711092675.3A CN201711092675A CN107805622B CN 107805622 B CN107805622 B CN 107805622B CN 201711092675 A CN201711092675 A CN 201711092675A CN 107805622 B CN107805622 B CN 107805622B
- Authority
- CN
- China
- Prior art keywords
- bacillus subtilis
- recombinant bacillus
- guanosine diphosphate
- fucose
- recombinant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 244000063299 Bacillus subtilis Species 0.000 title claims abstract description 55
- 235000014469 Bacillus subtilis Nutrition 0.000 title claims abstract description 55
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 15
- 238000010276 construction Methods 0.000 title abstract description 10
- QGWNDRXFNXRZMB-UUOKFMHZSA-N GDP Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O QGWNDRXFNXRZMB-UUOKFMHZSA-N 0.000 title abstract description 7
- QGWNDRXFNXRZMB-UHFFFAOYSA-N guanidine diphosphate Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O QGWNDRXFNXRZMB-UHFFFAOYSA-N 0.000 title abstract description 7
- 239000011435 rock Substances 0.000 title abstract description 7
- 108010078791 Carrier Proteins Proteins 0.000 claims abstract description 30
- LQEBEXMHBLQMDB-QIXZNPMTSA-N GDP-L-fucose Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)OC1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C3=C(C(NC(N)=N3)=O)N=C2)O1 LQEBEXMHBLQMDB-QIXZNPMTSA-N 0.000 claims abstract description 28
- 241000276408 Bacillus subtilis subsp. subtilis str. 168 Species 0.000 claims abstract description 23
- 102100040648 L-fucose kinase Human genes 0.000 claims abstract description 21
- 108010083136 fucokinase Proteins 0.000 claims abstract description 21
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 16
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 8
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 7
- 230000002708 enhancing effect Effects 0.000 claims abstract description 5
- 238000000855 fermentation Methods 0.000 claims description 17
- 230000004151 fermentation Effects 0.000 claims description 17
- 238000006467 substitution reaction Methods 0.000 claims description 17
- 108090000992 Transferases Proteins 0.000 claims description 13
- 239000013612 plasmid Substances 0.000 claims description 13
- 102000004357 Transferases Human genes 0.000 claims description 10
- 108010083912 bleomycin N-acetyltransferase Proteins 0.000 claims description 10
- 241000606124 Bacteroides fragilis Species 0.000 claims description 9
- 238000012795 verification Methods 0.000 claims description 8
- 230000001131 transforming effect Effects 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 3
- 102000043276 Oncogene Human genes 0.000 claims description 2
- 108700020796 Oncogene Proteins 0.000 claims description 2
- GUIRUWRHBDQCQJ-UHFFFAOYSA-N [(6-oxo-1,7-dihydropurin-2-yl)amino]phosphonic acid Chemical compound P(=O)(O)(O)NC=1NC(C=2NC=NC=2N=1)=O GUIRUWRHBDQCQJ-UHFFFAOYSA-N 0.000 claims 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 abstract description 10
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 abstract description 10
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 abstract description 10
- 230000003834 intracellular effect Effects 0.000 abstract description 6
- 108050007025 Sugar transport proteins Proteins 0.000 abstract description 5
- 102000017952 Sugar transport proteins Human genes 0.000 abstract description 2
- 230000007154 intracellular accumulation Effects 0.000 abstract description 2
- 238000005728 strengthening Methods 0.000 abstract description 2
- 101100068421 Synechocystis sp. (strain PCC 6803 / Kazusa) gtr gene Proteins 0.000 description 13
- 101150021750 glcP gene Proteins 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 8
- LQEBEXMHBLQMDB-UHFFFAOYSA-N GDP-L-fucose Natural products OC1C(O)C(O)C(C)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C3=C(C(N=C(N)N3)=O)N=C2)O1 LQEBEXMHBLQMDB-UHFFFAOYSA-N 0.000 description 8
- LQEBEXMHBLQMDB-JGQUBWHWSA-N GDP-beta-L-fucose Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C3=C(C(NC(N)=N3)=O)N=C2)O1 LQEBEXMHBLQMDB-JGQUBWHWSA-N 0.000 description 8
- 239000001963 growth medium Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000012163 sequencing technique Methods 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 229930027917 kanamycin Natural products 0.000 description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 6
- 229960000318 kanamycin Drugs 0.000 description 6
- 229930182823 kanamycin A Natural products 0.000 description 6
- 229920001542 oligosaccharide Polymers 0.000 description 5
- 150000002482 oligosaccharides Chemical class 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- PTVXQARCLQPGIR-SXUWKVJYSA-N beta-L-fucose 1-phosphate Chemical compound C[C@@H]1O[C@H](OP(O)(O)=O)[C@@H](O)[C@H](O)[C@@H]1O PTVXQARCLQPGIR-SXUWKVJYSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 235000020256 human milk Nutrition 0.000 description 4
- 210000004251 human milk Anatomy 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 235000013619 trace mineral Nutrition 0.000 description 4
- 239000011573 trace mineral Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 241000193830 Bacillus <bacterium> Species 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000011218 seed culture Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- BALXSYQWXWVVJJ-UHFFFAOYSA-N 2-amino-3,7-dihydropurin-6-one;phosphoric acid Chemical compound OP(O)(O)=O.O=C1NC(N)=NC2=C1NC=N2 BALXSYQWXWVVJJ-UHFFFAOYSA-N 0.000 description 2
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 2
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 108010045674 Fucose-1-phosphate guanylyltransferase Proteins 0.000 description 2
- 102100037047 Fucose-1-phosphate guanylyltransferase Human genes 0.000 description 2
- 108010062427 GDP-mannose 4,6-dehydratase Proteins 0.000 description 2
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 2
- 239000007836 KH2PO4 Substances 0.000 description 2
- 229910018890 NaMoO4 Inorganic materials 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 238000010170 biological method Methods 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 2
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 229910000357 manganese(II) sulfate Inorganic materials 0.000 description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000012137 tryptone Substances 0.000 description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 239000011686 zinc sulphate Substances 0.000 description 2
- MVMSCBBUIHUTGJ-UHFFFAOYSA-N 10108-97-1 Natural products C1=2NC(N)=NC(=O)C=2N=CN1C(C(C1O)O)OC1COP(O)(=O)OP(O)(=O)OC1OC(CO)C(O)C(O)C1O MVMSCBBUIHUTGJ-UHFFFAOYSA-N 0.000 description 1
- 241001655328 Bifidobacteriales Species 0.000 description 1
- 244000228088 Cola acuminata Species 0.000 description 1
- 235000010205 Cola acuminata Nutrition 0.000 description 1
- 235000015438 Cola nitida Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 102000006471 Fucosyltransferases Human genes 0.000 description 1
- 108010019236 Fucosyltransferases Proteins 0.000 description 1
- MVMSCBBUIHUTGJ-GDJBGNAASA-N GDP-alpha-D-mannose Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=C(NC(=O)C=2N=C1)N)OP(O)(=O)OP(O)(=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]1O MVMSCBBUIHUTGJ-GDJBGNAASA-N 0.000 description 1
- 108010020034 GDPfucose synthetase Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- -1 L-fucopyranosyl tetraacetic acid Chemical compound 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000000369 enteropathogenic effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 125000002446 fucosyl group Chemical group C1([C@@H](O)[C@H](O)[C@H](O)[C@@H](O1)C)* 0.000 description 1
- 230000033581 fucosylation Effects 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 108010064833 guanylyltransferase Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N hydrogen bromide Substances Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 230000003832 immune regulation Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- LKZMBDSASOBTPN-UHFFFAOYSA-L silver carbonate Substances [Ag].[O-]C([O-])=O LKZMBDSASOBTPN-UHFFFAOYSA-L 0.000 description 1
- KQTXIZHBFFWWFW-UHFFFAOYSA-L silver(I) carbonate Inorganic materials [Ag]OC(=O)O[Ag] KQTXIZHBFFWWFW-UHFFFAOYSA-L 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/32—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1241—Nucleotidyltransferases (2.7.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
- C12P19/32—Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01052—Fucokinase (2.7.1.52)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/07—Nucleotidyltransferases (2.7.7)
- C12Y207/0703—Fucose-1-phosphate guanylyltransferase (2.7.7.30)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention provides a recombinant bacillus subtilis for synthesizing guanosine diphosphate fucose, a construction method and application thereof, wherein the recombinant bacillus subtilis is obtained by enhancing expression of a sugar transporter gene of bacillus subtilis 168 and expressing exogenous fucokinase and phosphoguanyltransferase genes. The invention obtains the strain capable of efficiently synthesizing the guanosine diphosphate fucose by modifying the bacillus subtilis 168, and the intracellular accumulation amount of the strain is up to 156 mg/L. The invention can effectively strengthen the expression of the sugar transport protein by strengthening and expressing the sugar transport protein gene, improves the efficiency of transferring exogenous fucose into cells, increases the concentration of intracellular fucose and promotes the synthesis of guanosine diphosphate rock fucose. The recombinant bacillus subtilis has the advantages of simple construction method, convenient use and good application prospect.
Description
Technical Field
The invention belongs to the technical field of genetic engineering, and particularly relates to recombinant bacillus subtilis for synthesizing guanosine diphosphate fucose, and a construction method and application thereof.
Background
The breast milk contains important nutrients, bioactive substances and factors for stimulating the growth of intestinal flora. Wherein, the breast milk oligosaccharide(Human Milk Oligosacchrides, hMOs) play key roles in many physiological functions, such as promotion of bifidobacterial growth, inhibition of pathogen infection, and enhancement of immune responses. Among the human milk oligosaccharides, the Fucosylated Oligosaccharides (FOSs) have received great attention for their physiological functions such as their ability to act as receptor analogs for enteropathogenic bacteria, ability to promote immune regulation, and ability to reduce inflammation. Since fucosylated oligosaccharides are produced by fucosylation of saccharides catalyzed by fucosyltransferase, guanosine diphosphate fucose (GDP-L-fucose) is required as a donor of fucosyl. As fucosylated oligosaccharides get hotter, many pharmaceutical companies try to synthesize sufficient GDP-L-fucose by chemical and biological methods. In the chemical synthesis, GDP-L-fucose takes L-fucopyranosyl tetraacetic acid as a starting material and HBr and Ag2CO3And N-tetrabutylammonium ditolyl phosphate and the like. GDP-L-fucose is a precursor of kola acid, which is a major component of cell walls of gram-negative bacteria, and thus, some enteric bacteria such as Escherichia coli and Salmonella can synthesize GDP-L-fucose in vivo. Two metabolic pathways for the synthesis of GDP-L-fucose are found in organisms: the salvage route and the de novo route.
The salvage pathway is found in the human metabolic pathway, exogenous fucose is transferred into the cell, and ATP is consumed by fucose kinase and phosphorylated (EC 2.7.1.52) to form fucose-1-phosphate (Fuc-1-P). The Fuc-1-P bound Guanosine Triphosphate (GTP) is catalyzed by fucose-1-phosphate guanylyltransferase (L-fucose-1-phosphate guanylyltransferase) (EC 2.7.7.30) to produce GDP-L-fucose. The de novo synthetic pathway is ubiquitous in prokaryotes and eukaryotes, where GDP-L-fucose is catalytically synthesized from GDP-mannose by mannose dehydrogenase (GMD, EC 4.2.1.47) and GDP-fucose synthetase (WCAG, EC 1.1.1.271). A representative reaction method is shown in FIG. 2.
Bacillus subtilis is a production host widely used as food enzyme preparation and important nutritional chemicals, and the product is certified as "general regulated as safe" (GRAS) level by FDA.
Therefore, how to utilize the bacillus subtilis to synthesize the guanosine diphosphate fucose efficiently by a biological method still remains a problem to be solved in the field.
Disclosure of Invention
In order to solve the technical problems, the invention aims to provide the recombinant bacillus subtilis for synthesizing the guanosine diphosphate fucose, and the construction method and the application thereof.
Specifically, in one aspect, the invention provides a recombinant bacillus subtilis for synthesizing guanosine diphosphate fucose, wherein the recombinant bacillus is obtained by enhancing expression of a sugar transport protein gene of bacillus subtilis 168 and expressing exogenous fucokinase and phosphoguanyltransferase genes.
The sugar transporter gene of the bacillus subtilis 168 is not expressed, and the efficiency of transferring exogenous fucose into cells is improved, the concentration of intracellular fucose is increased and the synthesis of guanosine diphosphate fucose is promoted by enhancing the expression of the sugar transporter gene of the bacillus subtilis 168 and expressing exogenous fucokinase and phosphoguanyltransferase genes.
Wherein the promoter of the sugar transporter gene of Bacillus subtilis 168 is replaced by a strong promoter P43 to enhance expression of the sugar transporter gene of Bacillus subtilis 168. The strong promoter P43 strengthens and expresses the sugar transporter gene of the bacillus subtilis 168, effectively strengthens the expression of the sugar transporter, improves the efficiency of transferring exogenous fucose into cells, and increases the concentration of intracellular fucose.
The sugar transporter Gene is shown as Gene ID:936346 in NCBI.
Preferably, the fucose kinase and guanine phosphate transferase genes are fkp genes of Bacteroides fragilis 9343. The fkp gene of Bacteroides fragilis 9343 is shown in GenBank: AY849806.1 at NCBI.
In a second aspect, the invention also provides a construction method of the recombinant bacillus subtilis for synthesizing the guanosine diphosphate fucose, and the construction method comprises the following steps:
(1) constructing a substitution frame containing an upstream and downstream sequence of a sugar transporter gene, a P43 promoter and a bleomycin resistance gene sequence, transforming the constructed substitution frame into recombinant bacillus subtilis 168, and confirming that the sugar transporter gene is successfully expressed in a strengthened manner through verification to obtain recombinant bacillus subtilis BSG;
(2) constructing a recombinant plasmid containing fucokinase and guanine phosphate transferase genes, transforming the constructed recombinant plasmid into bacillus subtilis BSG, and confirming the successful expression of the fucokinase and the guanine phosphate transferase through verification to obtain the recombinant bacillus subtilis BSGF.
Preferably, in step (1), the sequence of the substitution box is shown as SEQ ID NO. 1.
In the step (2), the sequence of the recombinant plasmid is shown as SEQ ID NO. 2.
In a third aspect, the invention also provides an application of the recombinant bacillus subtilis, and the recombinant bacillus subtilis is used for fermenting to generate guanosine diphosphate fucose.
Preferably, the fermentation is to inoculate the recombinant bacillus seed liquid into the fermentation medium with the OD value of 0.1-0.3, and culture the recombinant bacillus seed liquid for 20-25h under the conditions of 35-40 ℃ and 200-250 rpm.
The invention has the beneficial effects that:
the recombinant bacillus subtilis is obtained by enhancing expression of a sugar transporter gene on the basis of bacillus subtilis 168 and expressing fucokinase and phosphoguanyltransferase genes on the basis, and a strain capable of efficiently synthesizing and synthesizing guanosine diphosphate fucose is obtained by modification, wherein the intracellular accumulation amount of the strain is up to 156 mg/L. The invention effectively strengthens the expression of the sugar transport protein by strengthening and expressing the sugar transport protein gene, improves the efficiency of transferring exogenous fucose into cells, increases the concentration of intracellular fucose and promotes the synthesis of guanosine diphosphate rock sugar. The recombinant bacillus subtilis has a simple construction method, is convenient to use and has a good application prospect.
Drawings
FIG. 1 is a GC-MS chromatogram of guanosine diphosphate fucose obtained in example 3 of the present invention.
FIG. 2 is a prior art scheme for the de novo synthesis of guanosine diphosphate fucose.
Detailed Description
The present invention will be explained in detail below with reference to examples and the accompanying drawings.
Example 1
Enhanced expression of the sugar transporter gene glcP
The substitution cassette having a sequence shown in SEQ ID NO.1 was constructed based on the upstream and downstream sequences of the sugar transporter gene glcP, the P43 promoter, and the bleomycin resistance gene of Bacillus subtilis (Bacillus subtilis 168 available from American type culture Collection, ATCC No.27370) published on NCBI.
Electrically transforming competent cells of the bacillus subtilis 168 by using the constructed replacement frame, wherein the addition amount of the replacement frame is 100-300ng, and the electrical transformation conditions are as follows: the voltage is 2.5kV, the electric shock reagent is 5ms, the mixture is revived at 37 ℃ for 5h and coated with LB plates with the final concentration of 10 mug/mL bleomycin resistance, the mixture is anaerobically cultured at 37 ℃ for 48h, and a plurality of monoclonals are selected.
Since the upstream and downstream sequences of the sugar transporter gene glcP exist in the substitution cassette, which is homologous to the transporter gene of Bacillus subtilis 168, the P43 promoter in the substitution cassette replaces the promoter of the sugar transporter gene glcP of Bacillus subtilis 168 by homologous recombination.
Screening by a bleomycin resistance plate, carrying out colony PCR verification, and sequencing to confirm whether the sugar transporter gene (glcP) is successfully expressed in an enhanced manner, wherein the bacteria with positive bleomycin resistance are Bacillus subtilis successfully transformed by a substitution box, the bacteria with a special band are verified by colony PCR, and the sequencing result is consistent with a theoretical result and is the Bacillus subtilis successfully transformed and recombined by the substitution box, namely the Bacillus subtilis successfully expressed in the sugar transporter gene (glcP) in an enhanced manner.
And (3) after confirming that the sugar transporter gene (glcP) intensified expression is successful, obtaining the recombinant bacillus subtilis BSG.
Example 2
Exogenous expression of Bacteroides fragilis exogenous gene
A recombinant plasmid pP43-Fkp having a sequence shown in SEQ ID NO.2 was constructed by digesting and ligating the gene fkp with the restriction enzyme site of plasmid pP43NMK based on the sequences of fucokinase and guanine phosphate group transferase genes fkp of Bacteroides fragilis (ATCC No.25285) published at NCBI.
Electrically transforming the constructed recombinant plasmid into competent cells of the recombinant bacillus subtilis BSG, wherein the addition amount of the recombinant plasmid is 50-300ng, and the electrical transformation conditions are as follows: the voltage is 2.5kV, the electric shock reagent is 5ms, the mixture is revived at 37 ℃ for 5h and coated with LB plates with 10 mug/mL kanamycin resistance, the mixture is anaerobically cultured at 37 ℃ for 48h, and a plurality of monoclonals are selected.
Screening by a kanamycin-resistant plate, carrying out colony PCR verification, and determining whether genes of the fucokinase and the guanine-phosphate transferase are successfully expressed after sequencing, wherein bacillus subtilis which is successfully transformed is positive in kanamycin resistance, special bands are formed in the colony PCR verification, and the bacillus subtilis which is successfully transformed and recombined is obtained when the sequencing result is consistent with the theoretical result, namely the fucokinase and the guanine-phosphate transferase are successfully expressed.
Confirming the successful expression of the fucokinase and the guanine-phosphate transferase of the bacteroides fragilis to obtain the recombinant bacillus subtilis BSGF.
Example 3
Production of guanosine diphosphate rock algae sugar by fermentation
Preparing the recombinant bacillus subtilis BSGF into seed liquid, wherein the formula of a seed liquid culture medium is as follows: 10g/L of tryptone and 5g/L, NaCl 10g/L of yeast powder; the preparation method of the seed liquid comprises the following steps: picking single colony on a fresh plate, and culturing for 8-10h in a seed culture medium.
Inoculating the seed liquid into a fermentation culture medium by an inoculum size with an OD value of 0.1, wherein the formula of the fermentation culture medium is as follows: 20g/L of initial glycerol, 6g/L of peptone, 12g/L of yeast powder, (NH)4)SO46g/L, K2HPO4·3H2O 12.5g/L、KH2PO42.5g/L、CaCO35g/L and 10ml/L of trace elements; the trace element solution contains in g/L: MnSO4·5H2O 1.0、CoCl2·6H2O 0.4、 NaMoO4·2H2O 0.2、ZnSO4·7H2O 0.2、AlCl3·6H2O 0.1、CuCl2·H2O 0.1、 H3BO40.05, 5mol/LHCl, at 35 ℃ and 200rpm for 20 h.
When the fermentation is finished, determining the content of the guanosine diphosphate fucose in the fermentation supernatant by using a gas chromatograph, wherein a gas chromatograph of the guanosine diphosphate fucose is shown in figure 1, and the determined content of the guanosine diphosphate fucose reaches 156 mg/L.
Example 4
Production of guanosine diphosphate rock algae sugar by fermentation
Preparing the recombinant bacillus subtilis BSGF into seed liquid, wherein the formula of a seed culture medium is as follows: 10g/L of tryptone and 5g/L, NaCl 10g/L of yeast powder; the preparation method of the seed liquid comprises the following steps: selecting single colony on fresh plate, and culturing in seed culture medium for 8-10 hr.
Inoculating the seed liquid into a fermentation culture medium by an inoculum size with an OD value of 0.3, wherein the formula of the fermentation culture medium is as follows: 20g/L of initial glycerol, 6g/L of peptone, 12g/L of yeast powder, (NH)4)SO46g/L, K2HPO4·3H2O 12.5g/L、KH2PO42.5g/L、CaCO35g/L and 10ml/L of trace elements; the trace element solution contains in g/L: MnSO4·5H2O 1.0、CoCl2·6H2O 0.4、 NaMoO4·2H2O 0.2、ZnSO4·7H2O 0.2、AlCl3·6H2O 0.1、CuCl2·H2O 0.1、 H3BO40.05, 5mol/LHCl, at 40 ℃ and 250rpm for 25 h.
When the fermentation is finished, the content of the guanosine diphosphate fucose in the fermentation supernatant reaches 154 mg/L.
Comparative example 1
The substitution cassette having a sequence shown in SEQ ID NO.1 was constructed based on the upstream and downstream sequences of the sugar transporter gene glcP, the P43 promoter, and the bleomycin resistance gene of Bacillus subtilis (Bacillus subtilis 168 available from American type culture Collection, ATCC No.27370) published on NCBI.
Electrically transforming competent cells of bacillus subtilis 168 by using the constructed replacement frame, wherein the addition amount of the replacement frame is 50-300ng, and the electrical transformation conditions are as follows: the voltage is 2.5kV, the electric shock reagent is 5ms, the mixture is revived at 37 ℃ for 5h and coated with LB plates with the final concentration of 10 mug/mL bleomycin resistance, the mixture is anaerobically cultured at 37 ℃ for 48h, and a plurality of monoclonals are selected.
Since the upstream and downstream sequences of the sugar transporter gene glcP exist in the substitution cassette, which is homologous to the transporter gene of Bacillus subtilis 168, the P43 promoter in the substitution cassette replaces the promoter of the sugar transporter gene glcP of Bacillus subtilis 168 by homologous recombination.
Screening by a bleomycin resistance plate, carrying out colony PCR verification, and sequencing to confirm whether the sugar transporter gene (glcP) is successfully expressed in an enhanced manner, wherein the bacteria with positive bleomycin resistance are Bacillus subtilis successfully transformed by a substitution box, the bacteria with a special band are verified by colony PCR, and the sequencing result is consistent with a theoretical result and is the Bacillus subtilis successfully transformed and recombined by the substitution box, namely the Bacillus subtilis successfully expressed in the sugar transporter gene (glcP) in an enhanced manner.
And (3) after confirming that the sugar transporter gene (glcP) intensified expression is successful, obtaining the recombinant bacillus subtilis BSG.
And (3) fermenting and producing guanosine diphosphate fucose by using the recombinant bacillus subtilis BSG, centrifuging and collecting obtained cells after fermentation is finished, and carrying out ultrasonic disruption to obtain an intracellular soluble mixed solution, wherein guanosine diphosphate fucose is not detected.
Comparative example 2
A recombinant plasmid having a sequence shown in SEQ ID NO.2 was constructed based on the sequences of fucokinase and phosphoguanyltransferase genes fkp of Bacteroides fragilis (ATCC No.25285) published at NCBI.
Electrically transforming competent cells of bacillus subtilis 168 with the constructed recombinant plasmid, wherein the addition amount of the recombinant plasmid is 50-300ng, and the electrical transformation conditions are as follows: the voltage is 2.5kV, the electric shock reagent is 5ms, the mixture is revived at 37 ℃ for 5h and coated with LB plates with 10 mug/mL kanamycin resistance, the mixture is anaerobically cultured at 37 ℃ for 48h, and a plurality of monoclonals are selected.
Screening by a kanamycin resistance plate, verifying by colony PCR, and determining whether genes of the fucokinase and the guanine phosphate transferase are successfully expressed or not after sequencing, wherein the bacillus subtilis which is successfully transformed is positive in kanamycin resistance, the bacillus subtilis which is successfully transformed is verified by colony PCR, and the bacillus subtilis which is successfully recombined in a substitution frame is verified by the sequencing result which is consistent with the theoretical result, namely the bacillus subtilis is successfully expressed by the fucokinase and the guanine phosphate transferase.
Confirming the successful expression of fucokinase and guanine-phosphate transferase of bacteroides fragilis, and obtaining the recombinant bacillus subtilis BSF.
And (3) fermenting and producing guanosine diphosphate fucose by using the recombinant bacillus subtilis BSF, centrifuging and collecting obtained cells after fermentation is finished, and carrying out ultrasonic disruption to obtain an intracellular soluble mixed solution, wherein guanosine diphosphate fucose is not detected.
The above description is only for the purpose of illustrating the preferred embodiments of the present invention and is not to be construed as limiting the invention, and any modifications, equivalents and simplifications made in the spirit of the present invention are intended to be included in the scope of the present invention.
Sequence listing
<110> Guangming Dairy milk industry Co., Ltd
<120> recombinant bacillus subtilis for synthesizing guanosine diphosphate rock sugar and construction method and application thereof
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 4337
<212> DNA
<213> Artificial sequence (unknown)
<400> 1
ttgtgaaaac tttcggcggg aagtcatttg aaaacgtaga tgaactaatt gatgcctcag 60
aaggtttaat tgtagcatca ccaaactttt gccataaaga acatgctttg caagcattag 120
gaaaacataa gcatgtatta tgtgaaaagc ctatggctat ttctcttgaa gaagcaagca 180
taatgaaaga tactgctgaa aggttgagcg taagagccag tatgggattt aattatagat 240
atttatctta cgtaaatatc ttaaaaagct taattatcaa taatgaacta ggtaacatac 300
tgtccataaa agtacacttc aagaaaaata gtgcacttag acgtaagaag tttacttgga 360
gagatgacgc taatagtaag aagacgagtg gatcattggg ggatctgggt attcacctta 420
ttgacatggt atggtatttg ttcgagagtg atttcatcac agaatcagta agggcaaaga 480
tgaacacaaa tgtaaaaaca aaagaggata aacaggtact tgtagatgac tatgcagaaa 540
tttatggcca gctgaagaac aaggtatttg taaatatcat cacatcaaag tgttctgtac 600
ctgaagactg tggttttagc attgaggtag ttggacacaa aaaagagttt aaataccaca 660
caggtaatcc tcacgtttac aagctcatag atggcttgaa cgtggtagac tgcccagtac 720
cgcaaagcct attaaacgat ccgccaaacg agttttatgg atgggctgat tcttttagaa 780
gcgagttaat caattggatt gcatcaactc agaatgattg ggttgagatc ccttctttta 840
gtgatggttt tagatctcag gaagtattag aaatgttctt tgagaaagac agcaactctc 900
aacccatgtc tgtttcagca gtcaactagt atttcaaaga gagaagttac taaaaaagca 960
ggaatttact ttcctgcttt ttcatatagg ggtgtaatga gattgggatc ctctagagat 1020
tctaccgttc gtatagcata cattatacga agttatcttg atatggcttt ttatatgtgt 1080
tactctacat acagaaagga ggaactaaac atggccaagt tgaccagtgc cgttccggtg 1140
ctcaccgcgc gcgacgtcgc cggagcggtc gagttctgga ccgaccggct cgggttctcc 1200
cgggacttcg tggaggacga cttcgccggt gtggtccggg acgacgtgac cctgttcatc 1260
agcgcggtcc aggaccaggt ggtgccggac aacaccctgg cctgggtgtg ggtgcgcggc 1320
ctggacgagc tgtacgccga gtggtcggag gtcgtgtcca cgaacttccg ggacgcctcc 1380
gggccggcca tgaccgagat cggcgagcag ccgtgggggc gggagttcgc cctgcgcgac 1440
ccggccggca actgcgtgca cttcgtggcc gaggagcagg actgaataac ttcgtatagc 1500
atacattata cgaacggtaa atcgtcgacc tgcaggcaag cccgcctaat gagcgggctt 1560
ttttcacgtc acgcgtccat ggagatcttt gtctgcaact gaaaagttta taccttacct 1620
ggaacaaatg gttgaaacat acgaggctaa tatcggctta ttaggaatag tccctgtact 1680
aataaaatca ggtggatcag ttgatcagta tattttggac gaagctcgga aagagctttt 1740
aagccgtctg tacgttcctt aagatcaaac gtgatatagt cactgcccgc tttccagtcg 1800
ggaaacctgt cgtgccagct gcattaatga atcggccaac gcgcggggag aggcggtttg 1860
cgtattgggc gccagggtgg tttttctttt caccagtgag acgggcaaca gctgattgcc 1920
cttcaccgcc tggccctgag agagttgcag caagcggtcc acgctggttt gccccagcag 1980
gcgaaaatcc tgtttgatgg tggttaacgg cgggatataa catgagctgt cttcggtatc 2040
gtcgtatccc actaccgaga tatccgcacc aacgcgcagc ccggactcgg taatggcgcg 2100
cattgcgccc agcgccatct gatcgttggc aaccagcatc gcagtgggaa cgatgccctc 2160
attcagcatt tgcatggttt gttgaaaacc ggacatggca ctccagtcgc cttcccgttc 2220
cgctatcggc tgaatttgat tgcgagtgag atatttatgc cagccagcca gacgcagacg 2280
cgccgagaca gaacttaatg ggcccgctaa cagcgcgatt tgctggtgac ccaatgcgac 2340
cagatgctcc acgcccagtc gcgtaccgtc ttcatgggag aaaataatac tgttgatggg 2400
tgtctggtca gagacatcaa gaaataacgc cggaacatta gtgcaggcag cttccacagc 2460
aatggcatcc tggtcatcca gcggatagtt aatgatcagc ccactgacgc gttgcgcgag 2520
aagattgtgc accgccgttt tacaggcttc gacgccgctt cgttctacca tcgacaccac 2580
cacgctggca cccagttgat cggcgcgaga tttaatcgcc gcgacaattt gcgacggcgc 2640
gtgcagggcc agactggagg tggcaacgcc aatcagcaac gactgtttgc ccgccagttg 2700
ttgtgccacg cggttgggaa tgtaattcag ctccgccatc gccgcttcca ctttttcccg 2760
cgttttcgca gaaacgtggc tggcctggtt caccacgcgg gaaacggtct gataagagac 2820
accggcatac tctgcgacat cgtataacgt tactggtttc atcaaaatcg tctccctccg 2880
tttgaatatt tgattgatcg taaccagatg aagcactctt tccactatcc ctacagtgtt 2940
atggcttgaa caatcacgaa acaataattg gtacgtacga tctttcagcc gactcaaaca 3000
tcaaatctta caaatgtagt ctttgaaagt attacatatg taagatttaa atgcaaccgt 3060
tttttcggaa ggaaatgatg acctcgtttc caccggaatt agcttggtac caaaggaggt 3120
gaaatgtaca catgttaaga gggacatatt tatttggata tgctttcttt tttacagtag 3180
gtattatcca tatatcaaca gggagtttga caccattttt attagaggct tttaacaaga 3240
caacagatga tatttcggtc ataatcttct tccagtttac cggatttcta agcggagtat 3300
taatcgcacc tttaatgatt aagaaataca gtcattttag gacacttact ttagctttga 3360
caataatgct tgtagcgtta agtatctttt ttctaaccaa ggattggtat tatattattg 3420
taatggcttt tctcttagga tatggagcag gcacattaga aacgacagtt ggttcatttg 3480
ttattgctaa tttcgaaagt aatgcagaaa aaatgagtaa gctggaagtt ctctttggat 3540
taggcgcttt atctttccca ttattaatta attccttcat agatatcaat aactggtttt 3600
taccatatta ctgtatattc acctttttat tcgtcctatt cgtagggtgg ttaattttct 3660
tgtctaagaa ccgagagtac gctaagaatg ctaaccaaca agtgaccttt ccagatggag 3720
gagcatttca atactttata ggagatagaa aaaaatcaaa gcaattaggc ttttttgtat 3780
ttttcgcttt cctatatgct ggaattgaaa caaattttgc caacttttta ccttcaatca 3840
tgataaacca agacaatgaa caaattagtc ttataagtgt ctcctttttc tgggtaggga 3900
tcatcatagg aagaatattg attggtttcg taagtagaag gcttgatttt tccaaatacc 3960
ttctttttag ctgtagttgt ttaattgttt tgttgattgc cttctcttat ataagtaacc 4020
caatacttca attgagtggt acatttttga ttggcctaag tatagcgggg atatttccca 4080
ttgctttaac actagcatca atcattattc agaagtacgt tgacgaagtt acaagtttat 4140
ttattgcctc ggcaagtttc ggaggagcga tcatctcttt cttaattgga tggagtttaa 4200
accaggatac gatcttatta accatgggaa tatttacaac tatggcggtc attctagtag 4260
gtatttctgt aaagattagg agaactaaaa cagaagaccc tatttcactt gaaaacaaag 4320
catcaaaaac acagtag 4337
<210> 2
<211> 9577
<212> DNA
<213> Artificial sequence (unknown)
<400> 2
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240
attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 300
tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360
tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt ccttaaggaa cgtacagacg 420
gcttaaaagc ctttaaaaac gtttttaagg ggtttgtaga caaggtaaag gataaaacag 480
cacaattcca agaaaaacac gatttagaac ctaaaaagaa cgaatttgaa ctaactcata 540
accgagaggt aaaaaaagaa cgaagtcgag atcagggaat gagtttataa aataaaaaaa 600
gcacctgaaa aggtgtcttt ttttgatggt tttgaacttg ttctttctta tcttgataca 660
tatagaaata acgtcatttt tattttagtt gctgaaaggt gcgttgaagt gttggtatgt 720
atgtgtttta aagtattgaa aacccttaaa attggttgca cagaaaaacc ccatctgtta 780
aagttataag tgactaaaca aataactaaa tagatggggg tttcttttaa tattatgtgt 840
cctaatagta gcatttattc agatgaaaaa tcaagggttt tagtggacaa gacaaaaagt 900
ggaaaagtga gaccatggag agaaaagaaa atcgctaatg ttgattactt tgaacttctg 960
catattcttg aatttaaaaa ggctgaaaga gtaaaagatt gtgctgaaat attagagtat 1020
aaacaaaatc gtgaaacagg cgaaagaaag ttgtatcgag tgtggttttg taaatccagg 1080
ctttgtccaa tgtgcaactg gaggagagca atgaaacatg gcattcagtc acaaaaggtt 1140
gttgctgaag ttattaaaca aaagccaaca gttcgttggt tgtttctcac attaacagtt 1200
aaaaatgttt atgatggcga agaattaaat aagagtttgt cagatatggc tcaaggattt 1260
cgccgaatga tgcaatataa aaaaattaat aaaaatcttg ttggttttat gcgtgcaacg 1320
gaagtgacaa taaataataa agataattct tataatcagc acatgcatgt attggtatgt 1380
gtggaaccaa cttattttaa gaatacagaa aactacgtga atcaaaaaca atggattcaa 1440
ttttggaaaa aggcaatgaa attagactat gatccaaatg taaaagttca aatgattcga 1500
ccgaaaaata aatataaatc ggatatacaa tcggcaattg acgaaactgc aaaatatcct 1560
gtaaaggata cggattttat gaccgatgat gaagaaaaga atttgaaacg tttgtctgat 1620
ttggaggaag gtttacaccg taaaaggtta atctcctatg gtggtttgtt aaaagaaata 1680
cataaaaaat taaaccttga tgacacagaa gaaggcgatt tgattcatac agatgatgac 1740
gaaaaagccg atgaagatgg attttctatt attgcaatgt ggaattggga acggaaaaat 1800
tattttatta aagagtagtt caacaaacgg gccagtttgt tgaagattag atgctataat 1860
tgttattaaa aggattgaag gatgcttagg aagacgagtt attaatagct gaataagaac 1920
ggtgctctcc aaatattctt atttagaaaa gcaaatctaa aattatctga aaagggaatg 1980
agaatagtga atggaccaat aataatgact agagaagaaa gaatgaagat tgttcatgaa 2040
attaaggaac gaatattgga taaatatggg gatgatgtta aggctattgg tgtttatggc 2100
tctcttggtc gtcagactga tgggccctat tcggatattg agatgatgtg tgtcatgtca 2160
acagaggaag cagagttcag ccatgaatgg acaaccggtg agtggaaggt ggaagtgaat 2220
tttgatagcg aagagattct actagattat gcatctcagg tggaatcaga ttggccgctt 2280
acacatggtc aatttttctc tattttgccg atttatgatt caggtggata cttagagaaa 2340
gtgtatcaaa ctgctaaatc ggtagaagcc caaacgttcc acgatgcgat ttgtgccctt 2400
atcgtagaag agctgtttga atatgcaggc aaatggcgta atattcgtgt gcaaggaccg 2460
acaacatttc taccatcctt gactgtacag gtagcaatgg caggtgccat gttgattggt 2520
ctgcatcatc gcatctgtta tacgacgagc gcttcggtct taactgaagc agttaagcaa 2580
tcagatcttc cttcaggtta tgaccatctg tgccagttcg taatgtctgg tcaactttcc 2640
gactctgaga aacttctgga atcgctagag aatttctgga atgggattca ggagtggaca 2700
gaacgacacg gatatatagt ggatgtgtca aaacgcatac cattttgaac gatgacctct 2760
aataattgtt aatcatgttg gttacgtatt tattaacttc tcctagtatt agtaattatc 2820
atggctgtca tggcgcatta acggaataaa gggtgtgctt aaatcgggcc attttgcgta 2880
ataagaaaaa ggattaatta tgagcgaatt gaattaataa taaggtaata gatttacatt 2940
agaaaatgaa aggggatttt atgcgtgaga atgttacagt ctatcccggc attgccagtc 3000
ggggatatta aaaagagtat aggtttttat tgggataaag taggtttcac tttggttcac 3060
catgaagatg gattcgcagt tctaatgtgt aatgaggttc ggattcatct atgggaggca 3120
agtgatgaag gctggcgcct cgtagtaatg attcaccggt ttgtacaggt gcggagtcgt 3180
ttattgctgg tactgctagt tgccgcattg aagtagaggg aattgatgaa ttatatcaac 3240
atattaagcc tttgggcatt ttgcacccca atacatcatt aaaagatcag tggtgggatg 3300
aacgagactt tgcagtaatt gatcccgaca acaatttgat tagctttttt caacaaataa 3360
aaagctaaaa tctattatta atctgttcag caatcgggcg cgattgctga ataaaagata 3420
cgagagacct ctcttgtatc ttttttattt tgagtggttt tgtccgttac actagaaaac 3480
cgaaagacaa taaaaatttt attcttgctg agtctggctt tcggtaagct agacaaaacg 3540
gacaaaataa aaattggcaa gggtttaaag gtggagattt tttgagtgat cttctcaaaa 3600
aatactacct gtcccttgct gatttttaaa cgagcacgag agcaaaaccc ccctttgctg 3660
aggtggcaga gggcaggttt ttttgtttct tttttctcgt aaaaaaaaga aaggtcttaa 3720
aggttttatg gttttggtcg gcactgccgc gcctcgcaga gcacacactt tatgaatata 3780
aagtatagtg tgttatactt tacttggaag tggttgccgg aaagagcgaa aatgcctcac 3840
atttgtgcca cctaaaaagg agcgatttac atatgagtta tgcagtttgt agaatgcaaa 3900
aagtgaaatc agctggacta aaaggcatgc aatttcataa tcaaagagag cgaaaaagta 3960
gaacgaatga tgatattgac catgagcgaa cacgtgaaaa ttatgatttg aaaaatgata 4020
aaaatattga ttacaacgaa cgtgtcaaag aaattattga atcacaaaaa acaggtacaa 4080
gaaaaacgag gaaagatgct gttcttgtaa atgagttgct agtaacatct gaccgagatt 4140
tttttgagca actggatcct gataggtggt atgttttcgc ttgaactttt aaatacagcc 4200
attgaacata cggttgattt aataactgac aaacatcacc ctcttgctaa agcggccaag 4260
gacgctgccg ccggggctgt ttgcgttttt gccgtgattt cgtgtatcat tggtttactt 4320
atttttttgc caaagctgta atggctgaaa attcttacat ttattttaca tttttagaaa 4380
tgggcgtgaa aaaaagcgcg cgattatgta aaatataaag tgatagcggt accgagctca 4440
aaggaggtga aatgtacaca tgcaaaagtt actgtctctc ccatctaact tagtccagag 4500
ctttcatgaa ttagaaagag taaatcggac tgactggttt tgcacatccg acccggtcgg 4560
aaaaaagctt ggcagtggcg gtggcacatc atggctgctc gaggaatgct ataatgaata 4620
ctctgacggc gcaactttcg gagagtggct cgaaaaagag aaaagaatac tgctccacgc 4680
cggtgggcag tcccgccgtt tgccgggtta cgctcctagt ggtaagatcc ttacgccggt 4740
cccagtattt cgctgggaaa gaggacagca cctgggccag aaccttttga gtttacagct 4800
tccactttat gagaaaataa tgagcttagc tcctgacaag cttcataccc ttatcgccag 4860
cggagatgtc tatatacgct ctgaaaaacc gttgcagtcc atacctgagg ccgacgttgt 4920
ttgttacggg ctgtgggtcg acccttcctt ggcgacgcac catggggtat tcgccagtga 4980
ccgcaaacat ccggagcagc tcgacttcat gctccagaag ccttctttgg cagaacttga 5040
aagtctctct aagactcatc ttttcctgat ggacataggg atttggttat tgtccgatcg 5100
cgcggtagag attttgatga agcggtccca taaggagtcc tctgaagaat tgaaatacta 5160
tgatctttac agcgactttg ggcttgccct gggcacccac ccacggatag aagatgagga 5220
agtgaatact ctctcagttg caattctgcc tctcccgggc ggggagtttt atcattacgg 5280
tactagcaaa gagctgattt cctccaccct gtcagtccag aataaggttt atgaccaacg 5340
ccggatcatg catagaaagg tcaaaccgaa ccctgccatg tttgtccaaa atgcggtagt 5400
acgtatccca ctgtgcgctg agaacgcaga cctctggatt gaaaactcac atataggtcc 5460
gaagtggaag atagcgagcc ggcatattat tactggggtg ccggagaacg actggagttt 5520
agcagtgcca gcaggggtat gtgtcgacgt tgtcccgatg ggtgataaag gttttgtggc 5580
acggccttac gggctggacg atgtatttaa aggagacctg agagattcaa aaaccacttt 5640
gaccggaatc ccattcggtg aatggatgtc caaacgggga ctctcctaca ctgatctgaa 5700
aggtcggact gacgaccttc aagccgtgag cgtgtttccg atggtcaatt ccgttgagga 5760
attgggcctc gtactccgct ggatgctttc agaacctgag ttggaagagg gtaagaacat 5820
ctggcttcgc tccgagcact tctctgcgga tgaaataagc gctggagcga acctgaagcg 5880
cctctatgct caacgggaag aattccggaa ggggaactgg aaagcattag ccgttaacca 5940
tgagaagtcc gtattttacc aactcgattt ggccgatgcg gcggaggatt tcgtacggtt 6000
gggactcgac atgcctgaat tactccctga ggacgccctg cagatgagtc gcatccataa 6060
tagaatgctt cgcgctcgca tcctcaagct cgacggcaaa gattaccggc ctgaggaaca 6120
ggcagcgttc gatctgctgc gcgacggttt gctcgatgga atctctaacc gtaaaagcac 6180
accaaagctg gacgtttatt ctgaccaaat agtgtggggc cggagcccag tacggattga 6240
tatggccggc ggctggaccg acaccccacc ttatagctta tattccggag gcaatgttgt 6300
gaaccttgcg attgaattaa atggtcaacc tccattgcag gtatacgtta agccgtgtaa 6360
ggacttccat atcgtcctgc ggtccattga catgggggct atggagatag tctcaacttt 6420
tgacgagctg caagactaca aaaagatcgg ttccccgttt tccataccaa aagccgctct 6480
ctctcttgct ggattcgccc cggcatttag cgctgtgtca tatgcatcat tggaggaaca 6540
gttgaaagat tttggagctg gtattgaggt tacgttatta gccgccattc cggctggttc 6600
tggtcttggt acatcatcaa tactggcttc cacagtgctc ggggcaatta atgatttttg 6660
tggactcgca tgggacaaaa atgaaatttg tcagagaaca ttagttttag agcaactgct 6720
gactacggga ggaggctggc aggaccagta cggcggggtc ttgcaaggtg ttaagcttct 6780
gcagaccgag gccgggttcg cgcaatcccc attagttaga tggctgccag accacctctt 6840
tacgcaccct gaatacaagg actgccattt gttatattac acaggaatta cgcgtacggc 6900
aaagggaata ctggcggaga tcgtctctag catgtttctc aatagtagcc tgcacctgaa 6960
tttactctca gaaatgaaag cgcatgccct cgacatgaac gaggctatac agcgcggctc 7020
ctttgttgag ttcggtcgcc ttgtcggaaa gacatgggag caaaacaagg cactcgacag 7080
tggtaccaac ccaccagcag tcgaagccat aatcgactta attaaggatt atacattagg 7140
gtataaactc ccaggggctg gaggaggcgg gtacctctac atggttgcta aagatccgca 7200
ggcagcagtg cgcatccgca aaattttaac agagaacgcg ccaaaccctc gtgcccggtt 7260
tgtggaaatg actctgtccg acaaaggctt tcaagtaagt cggtcctaaa ctagtgattg 7320
ctagctctag actgcagaag cttggcgtaa tcatggtcat agctgtttcc tgtgtgaaat 7380
tgttatccgc tcacaattcc acacaacata cgagccggaa gcataaagtg taaagcctgg 7440
ggtgcctaat gagtgagcta actcacatta attgcgttgc gctcactgcc cgctttccag 7500
tcgggaaacc tgtcgtgcca gctgcattaa tgaatcggcc aacgcgcggg gagaggcggt 7560
ttgcgtattg ggcgctcttc cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg 7620
ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac agaatcaggg 7680
gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag 7740
gccgcgttgc tggcgttttt ccataggctc cgcccccctg acgagcatca caaaaatcga 7800
cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct 7860
ggaagctccc tcgtgcgctc tcctgttccg accctgccgc ttaccggata cctgtccgcc 7920
tttctccctt cgggaagcgt ggcgctttct catagctcac gctgtaggta tctcagttcg 7980
gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac cccccgttca gcccgaccgc 8040
tgcgccttat ccggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca 8100
ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg tgctacagag 8160
ttcttgaagt ggtggcctaa ctacggctac actagaagaa cagtatttgg tatctgcgct 8220
ctgctgaagc cagttacctt cggaaaaaga gttggtagct cttgatccgg caaacaaacc 8280
accgctggta gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga 8340
tctcaagaag atcctttgat cttttctacg gggtctgacg ctcagtggaa cgaaaactca 8400
cgttaaggga ttttggtcat gagattatca aaaaggatct tcacctagat ccttttaaat 8460
taaaaatgaa gttttaaatc aatctaaagt atatatgagt aaacttggtc tgacagttac 8520
caatgcttaa tcagtgaggc acctatctca gcgatctgtc tatttcgttc atccatagtt 8580
gcctgactcc ccgtcgtgta gataactacg atacgggagg gcttaccatc tggccccagt 8640
gctgcaatga taccgcgaga cccacgctca ccggctccag atttatcagc aataaaccag 8700
ccagccggaa gggccgagcg cagaagtggt cctgcaactt tatccgcctc catccagtct 8760
attaattgtt gccgggaagc tagagtaagt agttcgccag ttaatagttt gcgcaacgtt 8820
gttgccattg ctacaggcat cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc 8880
tccggttccc aacgatcaag gcgagttaca tgatccccca tgttgtgcaa aaaagcggtt 8940
agctccttcg gtcctccgat cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg 9000
gttatggcag cactgcataa ttctcttact gtcatgccat ccgtaagatg cttttctgtg 9060
actggtgagt actcaaccaa gtcattctga gaatagtgta tgcggcgacc gagttgctct 9120
tgcccggcgt caatacggga taataccgcg ccacatagca gaactttaaa agtgctcatc 9180
attggaaaac gttcttcggg gcgaaaactc tcaaggatct taccgctgtt gagatccagt 9240
tcgatgtaac ccactcgtgc acccaactga tcttcagcat cttttacttt caccagcgtt 9300
tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg 9360
aaatgttgaa tactcatact cttccttttt caatattatt gaagcattta tcagggttat 9420
tgtctcatga gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg 9480
cgcacatttc cccgaaaagt gccacctgac gtctaagaaa ccattattat catgacatta 9540
acctataaaa ataggcgtat cacgaggccc tttcgtc 9577
Claims (6)
1. A recombinant bacillus subtilis for synthesizing guanosine diphosphate fucose is characterized in that the recombinant bacillus subtilis is obtained by enhancing and expressing a sugar transporter gene of bacillus subtilis 168 and expressing exogenous fucokinase and phosphoguanine transferase genes; and the promoter of the sugar transporter gene of the bacillus subtilis 168 is replaced by a strong promoter P43 to enhance the expression of the sugar transporter gene of the bacillus subtilis 168; the sugar transporter Gene is shown as Gene ID:936346 in NCBI; the genes of the fucokinase and the guanine-phosphotransferase are fkp genes derived from Bacteroides fragilis 9343, and the fkp gene of the Bacteroides fragilis 9343 is shown as GenBank: AY849806.1 on NCBI.
2. The method for constructing recombinant Bacillus subtilis for synthesizing guanosine diphosphate fucose according to claim 1, wherein the method for constructing recombinant Bacillus subtilis comprises the following steps:
(1) constructing a substitution frame containing an upstream and downstream sequence of a sugar transporter gene, a P43 promoter and a bleomycin resistance gene sequence, transforming the constructed substitution frame into recombinant bacillus subtilis 168, and confirming that the sugar transporter gene is successfully expressed in a strengthened manner through verification to obtain recombinant bacillus subtilis BSG;
(2) constructing a recombinant plasmid containing fucokinase and guanine phosphate transferase genes, transforming the constructed recombinant plasmid into bacillus subtilis BSG, and confirming the successful expression of the fucokinase and the guanine phosphate transferase through verification to obtain the recombinant bacillus subtilis BSGF.
3. The method for constructing recombinant Bacillus subtilis for synthesizing guanosine diphosphate fucose according to claim 2, wherein the sequence of the substitution box in the step (1) is shown in SEQ ID No. 1.
4. The method for constructing recombinant Bacillus subtilis for synthesizing guanosine diphosphate fucose according to claim 2, wherein in the step (2), the sequence of the recombinant plasmid is shown as SEQ ID No. 2.
5. The use of recombinant Bacillus subtilis for the synthesis of guanosine diphosphate fucose as claimed in claim 1, wherein the guanosine diphosphate fucose is produced by fermentation using said recombinant Bacillus subtilis.
6. The use of the recombinant Bacillus subtilis for the synthesis of guanosine diphosphate fucose as claimed in claim 5, wherein the fermentation is carried out by inoculating the recombinant Bacillus subtilis seed solution into a fermentation medium at an OD value of 0.1-0.3, and culturing at 35-40 ℃ and 200-250rpm for 20-25 h.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711092675.3A CN107805622B (en) | 2017-11-08 | 2017-11-08 | Recombinant bacillus subtilis for synthesizing guanosine diphosphate rock sugar and construction method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711092675.3A CN107805622B (en) | 2017-11-08 | 2017-11-08 | Recombinant bacillus subtilis for synthesizing guanosine diphosphate rock sugar and construction method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107805622A CN107805622A (en) | 2018-03-16 |
CN107805622B true CN107805622B (en) | 2021-04-30 |
Family
ID=61591176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711092675.3A Active CN107805622B (en) | 2017-11-08 | 2017-11-08 | Recombinant bacillus subtilis for synthesizing guanosine diphosphate rock sugar and construction method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107805622B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109735479B (en) * | 2019-01-30 | 2022-04-01 | 光明乳业股份有限公司 | Recombinant bacillus subtilis for synthesizing 2' -fucosyllactose and construction method and application thereof |
CN109749976B (en) * | 2019-01-30 | 2022-04-01 | 光明乳业股份有限公司 | Recombinant bacillus subtilis for efficiently synthesizing guanosine diphosphate fucose and construction method and application thereof |
EP3719135A1 (en) * | 2019-04-01 | 2020-10-07 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Enzymatic method for preparation of gdp-fucose |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1292422A (en) * | 1999-08-10 | 2001-04-25 | 协和发酵工业株式会社 | Process for preparation of guanosine diphosphate-fucose |
CN106148260A (en) * | 2016-07-01 | 2016-11-23 | 江南大学 | The recombined bacillus subtilis of high yield acetylglucosamine and construction method thereof |
CN106978382A (en) * | 2009-06-08 | 2017-07-25 | 詹尼温生物技术有限责任公司 | HMO is synthesized |
-
2017
- 2017-11-08 CN CN201711092675.3A patent/CN107805622B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1292422A (en) * | 1999-08-10 | 2001-04-25 | 协和发酵工业株式会社 | Process for preparation of guanosine diphosphate-fucose |
CN106978382A (en) * | 2009-06-08 | 2017-07-25 | 詹尼温生物技术有限责任公司 | HMO is synthesized |
CN106148260A (en) * | 2016-07-01 | 2016-11-23 | 江南大学 | The recombined bacillus subtilis of high yield acetylglucosamine and construction method thereof |
Non-Patent Citations (4)
Title |
---|
Conserved Protein Domain Family FucP;NCBI;《NCBI》;20150131;第1-5页 * |
Engineering the Substrate Transport and Cofactor Regeneration Systems for Enhancing 2"-Fucosyllactose Synthesis in Bacillus subtilis;Jieying Deng等;《ACS Synth Biol》;20191018;第8卷(第10期);第2418-2427页 * |
GenBank:AY849806.1;GenBank;《GenBank》;20050321;第1-2页 * |
Metabolic Engineering of Escherichia Coli to Produce 2"-fucosyllactose via Salvage Pathway of Guanosine 5"-diphosphate (GDP)-l-fucose;Young-Wook Chin等;《Biotechnol Bioeng》;20161130;第113卷(第11期);第2443-2452页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107805622A (en) | 2018-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109749976B (en) | Recombinant bacillus subtilis for efficiently synthesizing guanosine diphosphate fucose and construction method and application thereof | |
CN101223271B (en) | Modified microorganisms with inactivated lactate dehydrogenase gene | |
CN108424870B (en) | Corynebacterium glutamicum for producing N-acetylglucosamine and application thereof | |
CN107699535B (en) | Recombinant bacillus subtilis for induced synthesis of guanosine diphosphate fucose and construction method and application thereof | |
CN110088275A (en) | The ethyl alcohol of improved no glycerol produces | |
KR20080012934A (en) | Thermophilic microorganisms inactivated lactate dehydrogenase gene for ethanol production | |
CN107805622B (en) | Recombinant bacillus subtilis for synthesizing guanosine diphosphate rock sugar and construction method and application thereof | |
CN106544361B (en) | Mammalian cell expression vector, expression system, preparation method and application | |
CN112481271B (en) | Transcription factor C/EBPZ for regulating and controlling formation of adipocytes and application thereof | |
CN101250548B (en) | A kind of shuttle plasmid and derivative plasmid thereof | |
CN113025752B (en) | Internal reference genes, kits and detection methods for PCR detection of 2019-nCoV and SARS virus | |
CN114150001A (en) | A construction method of CRISPR/Cas9 vector for gene editing of Toxoplasma gondii | |
CN113943737A (en) | Application of chicken CTGF gene in inhibiting differentiation of chicken preadipocytes | |
CN106978432B (en) | Vector construction method and application for knocking out Chlamydomonas endogenous gene and expressing exogenous gene | |
CN114395020B (en) | Application of GmRALF1 protein in promoting phosphorus element absorption of plants | |
CN109022363A (en) | A kind of CD-133-CAR-T system constituting method based on PiggyBac carrier | |
CN113073086A (en) | African swine fever virus gene deletion strain and construction method and application thereof | |
CN111909957B (en) | A kind of genetic transformation method of Haematococcus pluvialis | |
KR101639424B1 (en) | Method for Detecting and Quantitating Cellulase Using Artificial Genetic Circuit | |
CN113684212B (en) | A method and application of MMEJ targeted genome modification based on palindromic sequence within the target site | |
CN103305541A (en) | Activating tag Ac/Ds transposons system and application thereof in building of plant mutant library | |
KR102247462B1 (en) | Recombinant Lactic acid bacteria having enhanced Productivity for Riboflavin | |
KR101246884B1 (en) | Transformed Pseudomonas Aeruginosa for Over-expression of Fatty Acid Biosynthesis Pathway and Method of Preparing the Same | |
CN114875159A (en) | Method for detecting content of limnoperna lacustris in water delivery system | |
CN101300358A (en) | Astaxanthine biosynthesis in eukaryotes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |