[go: up one dir, main page]

CN107797558A - Inspecting robot - Google Patents

Inspecting robot Download PDF

Info

Publication number
CN107797558A
CN107797558A CN201711099650.6A CN201711099650A CN107797558A CN 107797558 A CN107797558 A CN 107797558A CN 201711099650 A CN201711099650 A CN 201711099650A CN 107797558 A CN107797558 A CN 107797558A
Authority
CN
China
Prior art keywords
mtd
mrow
mtr
msub
tracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711099650.6A
Other languages
Chinese (zh)
Inventor
汤小兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Sp Nice Technology Development Ltd By Share Ltd
Original Assignee
Nanjing Sp Nice Technology Development Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Sp Nice Technology Development Ltd By Share Ltd filed Critical Nanjing Sp Nice Technology Development Ltd By Share Ltd
Priority to CN201711099650.6A priority Critical patent/CN107797558A/en
Publication of CN107797558A publication Critical patent/CN107797558A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种轮巡视机器人,包括:运动系统,包括搭载平台和装配于搭载平台上的具备全向运动性能的四个对称分布的Mecanum轮;升降系统,包括固设于搭载平台上的支架和装配于支架上的第一同步带滑轨及装配于第一同步带滑轨中滑块上的第二同步带滑轨;采集系统,包括装配于第二同步带滑轨中滑块上的安装板和装配于安装板上的摄像装置及热成像装置;控制系统控制运动系统到达待巡视设备,控制升降系统在竖直方向上到达待巡视设备的仪表盘位置,控制采集系统对待巡视设备的仪表盘采集图像。能够在拥堵和狭小空间内使用,能够根据待巡视设备中仪表盘的高度调整采集系统的所处位置。

The invention discloses a wheel inspection robot, comprising: a motion system, including a carrying platform and four symmetrically distributed Mecanum wheels with omnidirectional motion performance assembled on the carrying platform; a lifting system, including a The bracket and the first synchronous belt slide rail assembled on the bracket and the second synchronous belt slide rail assembled on the slider in the first synchronous belt slide rail; the collection system includes the slider assembled on the second synchronous belt slide rail The mounting plate and the camera device and thermal imaging device assembled on the mounting plate; the control system controls the motion system to reach the equipment to be inspected, controls the lifting system to reach the instrument panel of the equipment to be inspected in the vertical direction, and controls the acquisition system to treat the inspection equipment Dashboard capture image. It can be used in crowded and narrow spaces, and the position of the acquisition system can be adjusted according to the height of the instrument panel in the equipment to be inspected.

Description

巡视机器人patrol robot

技术领域technical field

本发明涉及电力技术领域,尤其涉及一种用于对电力设备进行巡视的巡视机器人。The invention relates to the field of electric power technology, in particular to a patrol robot for patrolling electric equipment.

背景技术Background technique

对于电网系统的巡视主要依赖人工巡视,巡视强度大、安全风险高,因为各种各样的原因,比如巡视人员业务水平差、经验不足、责任心不强,又如现场环境原因等不佳,不能及时发现设备缺陷的问题。The inspection of the power grid system mainly relies on manual inspection, which has high inspection intensity and high safety risks. Due to various reasons, such as poor professional level of inspectors, lack of experience, weak sense of responsibility, and poor site environment, etc., Failure to detect equipment defects in time.

随着电网系统自动化的不断升级,智能的巡视机器人逐渐成为电网系统安全稳定检测重要手段。然而,现有技术中的巡视机器人由于自身结构条件的限制,很难在拥堵和狭小空间的环境中通行,因而常常不能对电网系统进行全方面的巡视,还是得辅助人工巡视,从而效率低下,且仍存在较高的安全风险。而且,巡视机器人上搭载的数据采集装置通常设置于一固定的高度,不能根据待巡视设备中仪表盘的高度来进行调节,从而影响巡视的准确性。With the continuous upgrading of power grid system automation, intelligent inspection robots have gradually become an important means of power grid system security and stability detection. However, due to the limitation of its own structural conditions, the inspection robots in the prior art are difficult to pass in the environment of congestion and narrow space, so they often cannot conduct all-round inspections of the power grid system, and they still have to assist manual inspections, which is inefficient. And there are still high security risks. Moreover, the data acquisition device mounted on the inspection robot is usually set at a fixed height, which cannot be adjusted according to the height of the instrument panel in the equipment to be inspected, thus affecting the accuracy of the inspection.

发明内容Contents of the invention

本发明为解决上述技术问题提供一种巡视机器人及其巡视方法,能够在拥堵和狭小空间内使用,且能够根据待巡视设备中仪表盘的高度调整采集系统的所处位置。To solve the above technical problems, the present invention provides an inspection robot and its inspection method, which can be used in crowded and narrow spaces, and can adjust the position of the acquisition system according to the height of the instrument panel in the equipment to be inspected.

为解决上述技术问题,本发明提供一种巡视机器人,包括:运动系统,包括搭载平台以及装配于所述搭载平台上的具备全向运动性能的四个对称分布的Mecanum轮;升降系统,包括固设于所述搭载平台上的支架以及装配于所述支架上的由电机驱动其同步带的第一同步带滑轨以及装配于所述第一同步带滑轨中滑块上的由电机驱动其同步带的第二同步带滑轨,所述第一同步带滑轨中滑块带动所述第二同步带滑轨在竖直方向上升降,所述第二同步带滑轨中滑块亦在竖直方向上升降;采集系统,包括装配于所述第二同步带滑轨中滑块上的安装板以及装配于所述安装板上的摄像装置及热成像装置;以及分别与所述运动系统、所述升降系统及所述采集系统连接的控制系统,所述控制系统控制所述运动系统在平面上到达待巡视设备处,并控制所述升降系统在竖直方向上到达待巡视设备的仪表盘位置,进而控制所述采集系统对待巡视设备的仪表盘进行图像采集。In order to solve the above-mentioned technical problems, the present invention provides a patrol robot, comprising: a motion system, including a carrying platform and four symmetrically distributed Mecanum wheels with omnidirectional motion performance assembled on the carrying platform; a lifting system, including a fixed The support provided on the loading platform and the first synchronous belt slide rail whose synchronous belt is driven by a motor mounted on the support and the synchronous belt slide rail which is assembled on the slider in the first synchronous belt slide rail and which is driven by a motor The second synchronous belt slide rail of the synchronous belt, the slider in the first synchronous belt slide rail drives the second synchronous belt slide rail to rise and fall in the vertical direction, and the slider in the second synchronous belt slide rail is also on the Lifting in the vertical direction; acquisition system, including a mounting plate assembled on the slide block in the second synchronous belt slide rail and a camera device and a thermal imaging device assembled on the mounting plate; and respectively with the motion system . The lifting system and the control system connected to the collection system, the control system controls the motion system to reach the equipment to be patrolled on the plane, and controls the lifting system to reach the instrument of the equipment to be patrolled in the vertical direction The panel position, and then control the acquisition system to perform image acquisition on the instrument panel of the equipment to be inspected.

进一步地,所述巡视机器人包括分别与所述采集系统、所述控制系统连接的图像处理系统,用于对所述采集系统采集到的图像进行图像处理,进而生成并存储报表。Further, the inspection robot includes an image processing system respectively connected to the acquisition system and the control system, and is used to perform image processing on the images collected by the acquisition system, and then generate and store reports.

进一步地,所述巡视机器人包括分别与所述图像处理系统、所述控制系统连接的无线通信系统,用于将所述图像处理系统存储的报表发送至外部监控系统。Further, the inspection robot includes a wireless communication system respectively connected to the image processing system and the control system, and is used to send the reports stored by the image processing system to an external monitoring system.

进一步地,所述图像处理系统还用于根据所述采集系统采集的图像计算出待巡视设备中仪表盘的高度,所述控制系统进而根据所述图像处理系统计算出的待巡视设备中仪表盘的高度控制所述升降系统中的第一同步带滑轨和/或第二同步带滑轨工作达到待巡视设备中仪表盘位置。Further, the image processing system is also used to calculate the height of the instrument panel in the equipment to be inspected according to the image collected by the acquisition system, and the control system further calculates the height of the instrument panel in the equipment to be inspected according to the image processing system. The height control of the first synchronous belt slide rail and/or the second synchronous belt slide rail in the lifting system works to reach the position of the instrument panel in the equipment to be inspected.

进一步地,所述待巡视设备中仪表盘的高度的计算依据来源于所述采集装置中摄像装置和/或热成像装置所采集的图像。Further, the basis for calculating the height of the instrument panel in the equipment to be inspected comes from images collected by the camera device and/or thermal imaging device in the collection device.

进一步地,所述巡视机器人包括与控制系统连接的激光导航系统,用于在SLAM环境地图中规划所述巡视机器人从初始待命位置到每一个待巡视设备所处位置的导航路径,同时获取所述巡视机器人在SLAM环境地图中的定位;所述控制系统用于根据所述激光导航系统规划的导航路径和对所述巡视机器人的定位控制所述运动系统中的各Mecanum轮运行并依次导航至每一个待巡视设备的前方位置。Further, the inspection robot includes a laser navigation system connected to the control system, which is used to plan the navigation path of the inspection robot from the initial standby position to the location of each device to be inspected in the SLAM environment map, and at the same time obtain the The positioning of the inspection robot in the SLAM environment map; the control system is used to control the operation of each Mecanum wheel in the motion system according to the navigation path planned by the laser navigation system and the positioning of the inspection robot and to navigate to each A forward position of the device to be inspected.

进一步地,所述巡视机器人还包括与所述控制系统连接的循迹系统,用于对预设的循迹路径进行循迹;所述控制系统,用于在将所述巡视机器人导航至一个待巡视设备的前方位置后,控制所述运动系统中的各Mecanum轮运行并根据所述循迹系统对循迹路径的跟踪循迹进而以合适的姿态到达当前待巡视设备的循迹定位点停车以进行数据采集。Further, the patrol robot also includes a tracking system connected to the control system, used to track the preset tracking path; the control system is used to navigate the patrol robot to a waiting After patrolling the front position of the equipment, control the operation of each Mecanum wheel in the motion system and follow the tracking path of the tracking system according to the tracking system, and then arrive at the tracking positioning point of the current equipment to be patrolled with a suitable posture to stop. Perform data collection.

进一步地,所述激光导航系统还用于获取地图数据,利用SLAM技术对所述巡视机器人实时定位并同步构造所述SLAM环境地图;并用于在所述巡视机器人对全部待巡视设备完成数据采集后,规划另一导航路径以使得控制系统中的各Mecanum轮运行根据所述另一导航路径将所述巡视机器人直接导航至初始待命位置;所述循迹系统还用于捕捉所述循迹路径的图像,通过图像处理将所述循迹路径从所述图像中分离出来,并获取所述巡视机器人相对所述循迹路径的偏角信息。Further, the laser navigation system is also used to obtain map data, use SLAM technology to locate the patrol robot in real time and construct the SLAM environment map synchronously; and after the patrol robot completes data collection for all equipment to be patrolled , plan another navigation path so that each Mecanum wheel operation in the control system directly navigates the patrol robot to the initial standby position according to the other navigation path; the tracking system is also used to capture the tracking path image, separating the tracking path from the image through image processing, and acquiring the deflection angle information of the patrol robot relative to the tracking path.

进一步地,所述循迹系统用于实时获取所述巡视机器人相对于所述循迹路径的位置偏差,所述控制系统从所述运动系统处获取所述巡视机器人的X方向运动速度、Y方向运动速度以及旋转速度,根据逆运动学矩阵推导计算所述巡视机器人每个Mecanum轮纠正位置的角加速度进而实现纠偏进而确保巡视机器人能始终沿循迹路径运动,逆运动学矩阵为:其中,XνY ωZ]T∈R3×1分别为四个所述Mecanum轮的角加速度,W为所述巡视机器人的半宽,L为所述巡视机器人的半长,α为所述巡视机器人相对于所述循迹路径的偏角,VX、VY以及ωZ分别为X方向运动速度、Y方向运动速度以及旋转速度。Further, the tracking system is used to obtain the position deviation of the patrol robot relative to the tracking path in real time, and the control system obtains the X-direction movement speed and the Y-direction movement speed of the patrol robot from the motion system. The speed of motion and the speed of rotation are calculated according to the inverse kinematics matrix to calculate the angular acceleration of each Mecanum wheel correction position of the patrol robot to achieve deviation correction and ensure that the patrol robot can always move along the track path. The inverse kinematics matrix is: in, X ν Y ω Z ] T ∈ R 3×1 , are the angular accelerations of the four Mecanum wheels, W is the half width of the patrol robot, L is the half length of the patrol robot, α is the deflection angle of the patrol robot relative to the tracking path, V X , V Y and ω Z are the movement speed in the X direction, the movement speed in the Y direction and the rotation speed, respectively.

进一步地,所述控制系统还用于检测循迹模式是自动循迹模式还是手动循迹模式,如果所述控制系统检测到是自动循迹模式,则实时获取所述巡视机器人相对于所述循迹路径的位置偏差,并获取所述巡视机器人的X方向运动速度、Y方向运动速度以及旋转速度,根据逆运动学矩阵对所述巡视机器人的各Mecanum轮的角加速度的控制来进行纠偏;如果所述控制系统检测到是手动循迹模式,则实时获取所述巡视机器人相对于所述循迹路径的位置偏差,并获取所述巡视机器人的四个Mecanum轮的角加速度,根据运动学方程控制所述巡视机器人的各Mecanum轮的X方向运动速度、Y方向运动速度以及旋转速度来进行纠偏进而确保巡视机器人能始终沿循迹路径运动,其中,运动学矩阵为:Further, the control system is also used to detect whether the tracking mode is automatic tracking mode or manual tracking mode. The position deviation of the track path, and obtain the X-direction motion speed, Y-direction motion speed and rotation speed of the patrol robot, and correct the deviation according to the control of the angular acceleration of each Mecanum wheel of the patrol robot according to the inverse kinematics matrix; if The control system detects that it is a manual tracking mode, then obtains the positional deviation of the patrol robot relative to the tracking path in real time, and obtains the angular acceleration of the four Mecanum wheels of the patrol robot, and controls according to the kinematic equation The X-direction movement speed, the Y-direction movement speed and the rotation speed of each Mecanum wheel of the patrol robot are corrected to ensure that the patrol robot can always move along the tracking path, wherein the kinematic matrix is:

其中,X νY ωZ]T∈R3×1 in, X ν Y ω Z ] T ∈ R 3×1 .

本发明的巡视机器人,具有如下有益效果:The inspection robot of the present invention has the following beneficial effects:

通过设置成具有Mecanum轮的的运动系统的形式,借助Mecanum轮的全向运动性能,能够在拥堵和狭小的空间内运行使用;By setting it in the form of a motion system with Mecanum wheels, with the help of the omnidirectional motion performance of Mecanum wheels, it can be used in crowded and narrow spaces;

通过在运动系统的搭载平台上设置装配采集系统的升降系统,能够根据待巡视设备中仪表盘的高度通过调整升降系统的高度进而调整采集系统的所处位置;By setting the lifting system for assembling the acquisition system on the carrying platform of the motion system, the position of the acquisition system can be adjusted by adjusting the height of the lifting system according to the height of the instrument panel in the equipment to be inspected;

通过使用SLAM环境地图,能够在室内环境下精确导航至待巡视设备处,尤其是在SLAM环境地图所规划的导航路径的末段设置循迹路径,能够以更合适的姿态和更精确的位置到达待巡视设备处以进行数据采集,使得能够更好地进行数据采集。By using the SLAM environment map, it is possible to accurately navigate to the device to be inspected in the indoor environment, especially if the tracking path is set at the end of the navigation path planned by the SLAM environment map, it can be reached with a more suitable posture and a more precise position The equipment to be inspected is used for data collection, so that data collection can be performed better.

附图说明Description of drawings

图1是本发明巡视机器人的巡视方法的工作流程图。Fig. 1 is a working flowchart of the inspection method of the inspection robot of the present invention.

图2是本发明巡视机器的导航定位示意图。Fig. 2 is a schematic diagram of navigation and positioning of the inspection machine of the present invention.

图3是本发明巡视机器的运动示意图。Fig. 3 is a schematic diagram of the movement of the inspection machine of the present invention.

图4是本发明巡视机器的仰视图。Fig. 4 is a bottom view of the inspection machine of the present invention.

图5是本发明巡视机器的功能模块图。Fig. 5 is a functional block diagram of the inspection machine of the present invention.

图6是本发明巡视机器人的结构示意图。Fig. 6 is a structural schematic diagram of the inspection robot of the present invention.

具体实施方式Detailed ways

下面结合附图和实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.

请结合图5和图6参阅,本发明提供一种巡视机器人。该巡视机器人包括:运动系统1、升降系统6、采集系统7以及分别与运动系统1、升降系统6及采集系统7连接的控制系统2。Please refer to FIG. 5 and FIG. 6 , the present invention provides a patrol robot. The inspection robot includes: a motion system 1 , a lifting system 6 , a collection system 7 and a control system 2 connected to the motion system 1 , the lifting system 6 and the collection system 7 respectively.

运动系统1包括搭载平台101以及装配于搭载平台101上的具备全向运动性能的四个对称分布的Mecanum(麦克纳姆)轮102。举例而言,每个Mecanum轮102负载可以为40Kg,直径可以为127mm;该搭载平台101大小可以控制在500×500mm以内;以满足较高负载和稳定性要求。进一步地,每个Mecanum轮102分别通过一个独立的电机11驱动;每个电机11分别通过一个独立的电机驱动器12驱动;控制系统2与运动系统1之间通过CAN总线通信,具体为控制系统2与各电机驱动器12连接,且各电机驱动器12与CAN总线之间分别通过一个独立的CAN伺服接口13连接。The motion system 1 includes a carrying platform 101 and four symmetrically distributed Mecanum (Mecanum) wheels 102 assembled on the carrying platform 101 with omnidirectional motion performance. For example, the load of each Mecanum wheel 102 can be 40Kg, and the diameter can be 127mm; the size of the carrying platform 101 can be controlled within 500×500mm; to meet higher load and stability requirements. Further, each Mecanum wheel 102 is driven by an independent motor 11; each motor 11 is driven by an independent motor driver 12; the control system 2 communicates with the motion system 1 through the CAN bus, specifically the control system 2 It is connected with each motor driver 12, and each motor driver 12 is connected with the CAN bus through an independent CAN servo interface 13 respectively.

升降系统6包括固设于搭载平台101上的支架61以及装配于支架61上的第一同步带滑轨621以及装配于第一同步带滑轨621中滑块622上的第二同步带滑轨631,第一同步带滑轨621中滑块622带动第二同步带滑轨631整体在竖直方向上升降,第二同步带滑轨631中滑块632亦在竖直方向上升降。其中,该第一同步带滑轨621及第二同步带滑轨631中同步带均采用步进电机600驱动,如采用57式步进电机驱动,提升速度举例可控制在33mm/s、精度在1mm以内。其中,第一同步带滑轨621及第二同步带滑轨631中各自的滑块622、632的行程可以设置为相等,如1000mm;当然,也可以设置为不等。通过设置滑块622、632均可以在竖直方向上升降的两个同步带滑轨621、631,可以减小巡视机器人整体的高度,而且也提高了该巡视机器人在狭小空间内的通过性。该升降系统6与控制系统2之间也可以通过CAN总线通信。进一步地,第一同步带滑轨621、第二同步带滑轨631中的各步进电机600分别通过一个独立的电机驱动器601驱动;该升降系统6与控制系统2之间亦通过CAN总线通信,具体为控制系统2与各电机驱动器601连接,且各电机驱动器601与CAN总线之间分别通过一个独立的CAN伺服接口602连接。The lifting system 6 includes a support 61 fixed on the loading platform 101, a first synchronous belt slide rail 621 assembled on the support 61, and a second synchronous belt slide rail assembled on the slider 622 in the first synchronous belt slide rail 621. 631 , the slider 622 in the first synchronous belt slide rail 621 drives the second synchronous belt slide rail 631 to move up and down in the vertical direction as a whole, and the slider 632 in the second synchronous belt slide rail 631 also moves up and down in the vertical direction. Wherein, the synchronous belts in the first synchronous belt slide rail 621 and the second synchronous belt slide rail 631 are all driven by a stepper motor 600. If a 57-type stepper motor is used, the lifting speed can be controlled at 33mm/s and the precision is at within 1mm. Wherein, the strokes of the sliders 622 and 632 in the first synchronous belt slide rail 621 and the second synchronous belt slide rail 631 can be set to be equal, such as 1000 mm; of course, they can also be set to be unequal. By arranging two synchronous belt slide rails 621, 631 in which the sliders 622, 632 can be lifted in the vertical direction, the overall height of the patrol robot can be reduced, and the passability of the patrol robot in a narrow space can also be improved. The lifting system 6 and the control system 2 can also communicate through the CAN bus. Further, the stepper motors 600 in the first synchronous belt slide rail 621 and the second synchronous belt slide rail 631 are respectively driven by an independent motor driver 601; the lifting system 6 communicates with the control system 2 through the CAN bus Specifically, the control system 2 is connected to each motor driver 601 , and each motor driver 601 is connected to the CAN bus through an independent CAN servo interface 602 .

采集系统7包括装配于第二同步带滑轨631中滑块上的安装板71以及装配于安装板71上的摄像装置72及热成像装置73。摄像装置72常为工业级摄像装置72,热成像装置73进行红外热成像。The acquisition system 7 includes a mounting plate 71 mounted on the slider in the second synchronous belt slide rail 631 , and a camera device 72 and a thermal imaging device 73 mounted on the mounting plate 71 . The camera device 72 is usually an industrial-grade camera device 72, and the thermal imaging device 73 performs infrared thermal imaging.

其中,该控制系统2控制运动系统1在平面上到达待巡视设备处,并控制升降系统6在竖直方向上到达待巡视设备的仪表盘位置,进而控制采集系统7对待巡视设备的仪表盘进行图像采集。Wherein, the control system 2 controls the motion system 1 to arrive at the equipment to be inspected on the plane, and controls the lifting system 6 to reach the instrument panel of the equipment to be inspected in the vertical direction, and then controls the acquisition system 7 to perform inspection on the instrument panel of the equipment to be inspected. Image Acquisition.

在一具体实施例中,该巡视机器人还包括分别与采集系统7、控制系统2连接的图像处理系统8。该图像处理系统8用于对采集系统7采集到的图像进行图像处理,根据图像处理后得到相关数据进而生成并存储报表。In a specific embodiment, the inspection robot further includes an image processing system 8 connected to the acquisition system 7 and the control system 2 respectively. The image processing system 8 is used to perform image processing on the images collected by the collection system 7, and generate and store reports according to relevant data obtained after image processing.

在一具体实施例中,巡视机器人包括分别与图像处理系统8、控制系统2连接的无线通信系统9。无线通信系统9用于将图像处理系统8生成及存储的报表以无线方式发送至外部监控系统以便于对各设备的实时监控。举例而言,该无线通信系统9可以采用WIFI模块、3G模块、或者4G模块等制成。In a specific embodiment, the inspection robot includes a wireless communication system 9 connected to the image processing system 8 and the control system 2 respectively. The wireless communication system 9 is used to wirelessly send the reports generated and stored by the image processing system 8 to an external monitoring system for real-time monitoring of each device. For example, the wireless communication system 9 may be made by using a WIFI module, a 3G module, or a 4G module.

在一具体实施例中,图像处理系统8还用于根据采集系统7采集的图像计算出待巡视设备中仪表盘的高度,控制系统2进而根据图像处理系统8计算出高度值控制升降系统6中的第一同步带滑轨621和/或第二同步带滑轨631工作达到待巡视设备中仪表盘位置。其中,待巡视设备中仪表盘的高度的计算依据来源于采集装置中摄像装置72和/或热成像装置73所采集的图像。In a specific embodiment, the image processing system 8 is also used to calculate the height of the instrument panel in the equipment to be inspected according to the image collected by the acquisition system 7, and the control system 2 then calculates the height value according to the image processing system 8 to control the height of the instrument panel in the lifting system 6. The first synchronous belt slide rail 621 and/or the second synchronous belt slide rail 631 work to reach the position of the instrument panel in the equipment to be inspected. Wherein, the basis for calculating the height of the instrument panel in the equipment to be inspected comes from the images collected by the camera device 72 and/or the thermal imaging device 73 in the collection device.

在一较佳具体实施例中,巡视机器人包括与控制系统2连接的激光导航系统3。该激光导航系统3用于在SLAM环境地图中规划巡视机器人从初始待命位置到每一个待巡视设备所处位置的导航路径,同时获取巡视机器人在SLAM环境地图中的定位。其中,该激光导航系统3包括与控制系统2之间通过RS2通信的激光导航主机31、和与激光导航主机31之间通过RS2通信的激光雷达32,激光雷达32对环境实时扫描,激光导航主机31根据扫描得到的数据构建SLAM环境地图及该巡视机器人的定位。激光雷达32举例可以采用HOKUYO公司的UST-20LX激光雷达,具体参数为:扫描测距20m,测量范围270°,输入DC2V/24V,扫描时间25ms,防护等级IP65,非接触式测量。激光雷达32可以实现对室内环境的快速扫描,巡视机器人通过SLAM对巡视环境建立导航图像,可以准确的确定巡视环境中的障碍和路径,通过合理的路径规划可以有效的指导机器人运行到相应的工作位置。In a preferred embodiment, the inspection robot includes a laser navigation system 3 connected with the control system 2 . The laser navigation system 3 is used to plan the navigation path of the patrol robot from the initial standby position to the location of each device to be patrolled in the SLAM environment map, and at the same time obtain the positioning of the patrol robot in the SLAM environment map. Wherein, the laser navigation system 3 includes a laser navigation host 31 communicating with the control system 2 through RS2, and a laser radar 32 communicating with the laser navigation host 31 through RS2. The laser radar 32 scans the environment in real time. 31 Construct the SLAM environment map and the positioning of the inspection robot according to the scanned data. The laser radar 32 can be used as an example of the UST-20LX laser radar of HOKUYO company. The specific parameters are: scanning distance 20m, measuring range 270°, input DC2V/24V, scanning time 25ms, protection level IP65, non-contact measurement. LiDAR 32 can quickly scan the indoor environment. The inspection robot can establish a navigation image for the inspection environment through SLAM, which can accurately determine the obstacles and paths in the inspection environment, and can effectively guide the robot to run to the corresponding work through reasonable path planning. Location.

进而,控制系统2用于根据激光导航系统3规划的导航路径和对巡视机器人的定位控制运动系统1中的各Mecanum轮102运行并依次导航至每一个待巡视设备的前方位置。Furthermore, the control system 2 is used to control the operation of each Mecanum wheel 102 in the motion system 1 according to the navigation path planned by the laser navigation system 3 and the positioning of the patrol robot, and navigate to the front position of each equipment to be patrolled sequentially.

进一步地,巡视机器人还包括与控制系统2连接的循迹系统4。该循迹系统4用于对预设的循迹路径进行循迹。具体的,循迹系统4包括与控制系统2之间通过RS232通信的循迹工控主板41和与循迹工控主板41之间通过RS232通信的循迹传感器42。循迹传感器42用于捕捉循迹路径的图像,循迹工控主板41用于通过图像处理将循迹路径从图像中分离出来,并获取巡视机器人相对循迹路径的偏角信息。Further, the patrol robot also includes a tracking system 4 connected with the control system 2 . The tracking system 4 is used to track a preset tracking path. Specifically, the tracking system 4 includes a tracking industrial control main board 41 communicating with the control system 2 through RS232 and a tracking sensor 42 communicating with the tracking industrial control main board 41 through RS232. The tracking sensor 42 is used to capture the image of the tracking path, and the tracking industrial control board 41 is used to separate the tracking path from the image through image processing, and obtain the deflection angle information of the patrol robot relative to the tracking path.

进而,控制系统2用于在将巡视机器人导航至一个待巡视设备的前方位置后,控制运动系统1中的各Mecanum轮102运行并根据循迹系统4对循迹路径的跟踪循迹进而以合适的姿态到达当前待巡视设备的循迹定位点停车以进行数据采集。Furthermore, the control system 2 is used to control the operation of each Mecanum wheel 102 in the motion system 1 after navigating the patrol robot to the front position of the equipment to be patrolled, and to follow the tracking path of the tracking system 4 according to the tracking of the tracking path and then follow the tracking path in a suitable manner. The attitude of the device arrives at the tracking and positioning point of the current equipment to be inspected and stops for data collection.

上述实施例中,激光导航系统3还用于获取地图数据,利用SLAM技术对巡视机器人实时定位并同步构造SLAM环境地图。In the above-mentioned embodiments, the laser navigation system 3 is also used to obtain map data, use SLAM technology to locate the patrol robot in real time and construct a SLAM environment map synchronously.

该激光导航系统3还用于在巡视机器人对全部待巡视设备完成数据采集后,规划另一导航路径以使得控制系统2中的各Mecanum轮102运行根据另一导航路径将巡视机器人直接导航至初始待命位置。该循迹系统4还用于捕捉循迹路径的图像,通过图像处理将循迹路径从图像中分离出来,并获取巡视机器人相对循迹路径的偏角信息。The laser navigation system 3 is also used to plan another navigation path so that each Mecanum wheel 102 in the control system 2 can directly navigate the patrol robot to the initial state according to another navigation path after the patrol robot completes data collection for all equipment to be patrolled. standby position. The tracking system 4 is also used to capture the image of the tracking path, separate the tracking path from the image through image processing, and obtain the deflection angle information of the patrol robot relative to the tracking path.

循迹系统4用于实时获取巡视机器人相对于循迹路径的位置偏差,控制系统2从运动系统1处获取巡视机器人的X方向运动速度、Y方向运动速度以及旋转速度,根据逆运动学矩阵推导计算巡视机器人每个Mecanum轮102纠正位置的角加速度进而实现纠偏进而确保巡视机器人能始终沿循迹路径运动,逆运动学矩阵为:The tracking system 4 is used to obtain the position deviation of the patrol robot relative to the tracking path in real time, and the control system 2 obtains the X-direction movement speed, the Y-direction movement speed and the rotation speed of the patrol robot from the motion system 1, and deduces it according to the inverse kinematics matrix Calculate the angular acceleration of each Mecanum wheel 102 of the patrol robot to correct the position and then realize the deviation correction to ensure that the patrol robot can always move along the tracking path. The inverse kinematics matrix is:

其中,X νY ωZ]T∈R3×1分别为四个Mecanum轮102的角加速度,W为巡视机器人的半宽,L为巡视机器人的半长,α为巡视机器人相对于循迹路径的偏角,VX、VY以及ωZ分别为X方向运动速度、Y方向运动速度以及旋转速度。 in, X ν Y ω Z ] T ∈ R 3×1 , are the angular accelerations of the four Mecanum wheels 102, W is the half width of the patrol robot, L is the half length of the patrol robot, α is the deflection angle of the patrol robot relative to the tracking path, V X , V Y and ω Z are respectively X-direction movement speed, Y-direction movement speed and rotation speed.

在另一具体实施例中,控制系统2还用于检测循迹模式是自动循迹模式还是手动循迹模式,如果控制系统2检测到是自动循迹模式,则实时获取巡视机器人相对于循迹路径的位置偏差,并获取巡视机器人的X方向运动速度、Y方向运动速度以及旋转速度,根据逆运动学矩阵对巡视机器人的各Mecanum轮102的角加速度的控制来进行纠偏。In another specific embodiment, the control system 2 is also used to detect whether the tracking mode is an automatic tracking mode or a manual tracking mode. The position deviation of the path is obtained, and the X-direction movement speed, Y-direction movement speed and rotation speed of the patrol robot are obtained, and the deviation is corrected according to the control of the angular acceleration of each Mecanum wheel 102 of the patrol robot by the inverse kinematics matrix.

而如果控制系统2检测到是手动循迹模式(具体指借助NRF遥控器5控制控制系统2来控制运动系统1运动),则实时获取巡视机器人相对于循迹路径的位置偏差,并获取巡视机器人的四个Mecanum轮102的角加速度,根据运动学方程控制巡视机器人的各Mecanum轮102的X方向运动速度、Y方向运动速度以及旋转速度来进行纠偏进而确保巡视机器人能始终沿循迹路径运动,其中,运动学矩阵为:And if the control system 2 detects that it is a manual tracking mode (specifically referring to controlling the control system 2 to control the movement of the motion system 1 with the help of the NRF remote controller 5), then obtain the position deviation of the patrol robot relative to the tracking path in real time, and obtain the position deviation of the patrol robot According to the angular acceleration of the four Mecanum wheels 102 of the patrol robot, the X-direction movement speed, the Y-direction movement speed and the rotation speed of each Mecanum wheel 102 of the patrol robot are controlled according to the kinematic equations to correct the deviation and thus ensure that the patrol robot can always move along the tracking path. Among them, the kinematic matrix is:

其中,X νY ωZ]T∈R3×1 in, X ν Y ω Z ] T ∈ R 3×1 .

本发明还提供一种巡视机器人的巡视方法。如图1所示,该巡视方法包括如下步骤:The invention also provides a patrolling method of the patrolling robot. As shown in Figure 1, the inspection method includes the following steps:

步骤S11,在SLAM环境地图中规划巡视机器人从初始待命位置到每一个待巡视设备所处位置的导航路径,同时获取巡视机器人在SLAM环境地图中的定位。其中,可以一次性对巡视机器人到一个及以上的待巡视设备统一进行导航路径的规划,以提高整体巡视效率。Step S11, plan the navigation path of the patrol robot from the initial standby position to the location of each device to be patrolled in the SLAM environment map, and obtain the location of the patrol robot in the SLAM environment map at the same time. Among them, it is possible to plan the navigation path from the inspection robot to one or more devices to be inspected at one time, so as to improve the overall inspection efficiency.

步骤S12,根据导航路径和巡视机器人的定位将巡视机器人依次导航至每一个待巡视设备的前方位置。具体为在导航至一个待巡视设备完成后续姿态及位置的精确调整并进行数据采集之后继续导航至下一个待巡视设备。Step S12, according to the navigation path and the positioning of the patrol robot, the patrol robot is sequentially navigated to the front position of each device to be patrolled. Specifically, after navigating to a device to be inspected to complete the subsequent precise adjustment of posture and position and performing data collection, continue to navigate to the next device to be inspected.

步骤S13,每到达一个待巡视设备的前方位置后,按预设的循迹路径引导巡视机器人以合适的姿态到达当前待巡视设备的循迹定位点停车。进而能够以合适的姿态在最佳停车位置对待巡视设备进行数据采集,使每次的巡视定位精度大幅提升。该循迹路径可以通过测量和定位粘贴在待巡视点。通过跟踪循迹至循迹定位点可以以较高精度的实现最后一小段的定位,确保能够有效进行数据采集。Step S13, after arriving at the front position of a device to be patrolled, guide the patrolling robot to arrive at the tracking positioning point of the current device to be patrolled with a suitable posture according to the preset tracking path and stop. In addition, it is possible to collect data from the inspection equipment at the best parking position with a suitable posture, so that the positioning accuracy of each inspection is greatly improved. The tracking path can be pasted on the point to be inspected by measuring and positioning. By tracking the track to the track positioning point, the positioning of the last segment can be realized with high precision, ensuring effective data collection.

如图2所示,待巡视设备设置为A、B、C、D、E这样的至少5个以上,预先规划从A~E依次巡视,则巡视机器人会依次导航至该5个设备位置,当然,图2仅为举例示意的导航定位示意图,实际上可以按照各待巡视设备的具体定位自动进行合理规划出最佳的导航路径;当然,也可以人为地对各待巡视设备的巡视顺序进行设定,然后根据该设定规划合理的导航路径。在到达每个待巡视设备后,根据循迹路线跟踪循迹直至到该相应待巡视设备对应的循迹定位点停车。As shown in Figure 2, the equipment to be inspected is set to at least 5 or more such as A, B, C, D, and E. If the inspection is planned in advance from A to E, the inspection robot will navigate to the 5 equipment locations in sequence. , Figure 2 is only a schematic diagram of navigation and positioning for example, in fact, the best navigation path can be automatically and reasonably planned according to the specific positioning of each equipment to be inspected; of course, the inspection sequence of each equipment to be inspected can also be artificially set Then plan a reasonable navigation path according to the setting. After arriving at each device to be inspected, track and track according to the tracking route until the corresponding device to be inspected is parked at the corresponding tracking location point.

步骤S14,控制升降系统携带采集系统到达当前待巡视设备中仪表盘的高度处。Step S14, controlling the lifting system to carry the acquisition system to the height of the instrument panel in the current equipment to be inspected.

步骤S15,控制采集系统对当前待巡视设备中仪表盘采集图像。在步骤S15中,还进一步对所采集的图像进行处理,根据图像处理所得到的数据生成并存储报表以供外部监控系统实时监控。Step S15, controlling the acquisition system to acquire images of the instrument panels in the current equipment to be inspected. In step S15, the collected image is further processed, and a report is generated and stored according to the data obtained by the image processing for real-time monitoring by an external monitoring system.

步骤S16,对所有待巡视设备巡视结束后,将巡视机器人直接导航返回至初始待命位置。该初始待命位置优选可以设置为充电座,该初始待命位置的设置可以方便对巡视机器人进行充电及维护。Step S16, after the inspection of all the equipment to be inspected is completed, the inspection robot is directly navigated back to the initial standby position. Preferably, the initial standby position can be set as a charging stand, and the setting of the initial standby position can facilitate charging and maintenance of the patrol robot.

其中,举例各待巡视设备A~D按照如图3所示的方式进行布置,借助Mecanum轮所具有的全向运动性能,巡视机器人检测完待巡视设备A后通过直行和横向移动可以以相同姿态到达待巡视设备B指定位置,在到达待巡视设备C过程中可以通过右前方式的斜向运动,通过左前斜向移动和旋转运动可以到达待巡视设备D,并且保持巡视机器人相对于设备的位置姿态。其中,从待巡视设备A到待巡视设备B~D过程中,除直行运动之外的运动可以按照上述的循迹路径进行跟踪循迹进而以合适姿态准确到达相应设备处。Among them, for example, the devices A to D to be inspected are arranged as shown in Figure 3. With the help of the omnidirectional motion performance of the Mecanum wheel, the inspection robot can move straight and laterally in the same posture after detecting the device A to be inspected. Arrive at the designated position of the device B to be inspected. In the process of arriving at the device C to be inspected, it can reach the device D to be inspected through the right-front oblique movement, and the left-front oblique movement and rotation movement, and maintain the position and posture of the inspection robot relative to the device. . Among them, during the process from the device A to be inspected to the devices B to D to be inspected, the movement other than the straight movement can be tracked according to the above-mentioned tracking path and then accurately arrive at the corresponding device with a suitable posture.

在一具体实施例中,在步骤S11之前,还包括步骤S10:采用激光雷达通过扫描环境而获取地图数据,利用SLAM技术对巡视机器人实时定位并同步构造SLAM环境地图。相较于现有技术机器人导航技术中的电磁导航需在地上布置感应线圈、GPS导航在室内精度太低等在室内环境下无法有效使用,而基于RFID的导航系统精度较低,视觉导航虽然具有信号探测范围广,获取信息完整等优点,但需处理的实时图像数据量巨大,实时性较差,本发明采用基于激光雷达的SLAM导航可以有效和高精度的完成对巡视机器人在室内复杂环境的导航。该SLAM环境地图还可以帮助巡视机器人实现避障功能,该SLAM环境地图稳定、可靠、性能好。In a specific embodiment, before step S11, step S10 is also included: using laser radar to scan the environment to obtain map data, using SLAM technology to locate the patrol robot in real time and synchronously construct the SLAM environment map. Compared with the electromagnetic navigation in the prior art robot navigation technology, induction coils need to be arranged on the ground, and the indoor precision of GPS navigation is too low to be effectively used in indoor environments, while the navigation system based on RFID has low precision, and although visual navigation has It has the advantages of wide signal detection range and complete information acquisition, but the amount of real-time image data to be processed is huge and the real-time performance is poor. The present invention uses laser radar-based SLAM navigation to effectively and accurately complete the inspection of patrol robots in complex indoor environments. navigation. The SLAM environment map can also help the patrol robot realize the obstacle avoidance function. The SLAM environment map is stable, reliable and has good performance.

在一具体实施例中,结合图4参阅,在步骤S13中,包括:In a specific embodiment, referring to FIG. 4, in step S13, including:

实时获取巡视机器人相对于循迹路径的位置偏差(包括偏角和偏距);Real-time acquisition of the position deviation (including deflection angle and distance) of the patrolling robot relative to the tracking path;

获取巡视机器人的X方向运动速度、Y方向运动速度以及旋转速度;Obtain the X-direction movement speed, Y-direction movement speed and rotation speed of the patrolling robot;

根据逆运动学矩阵推导计算巡视机器人每个Mecanum轮纠正位置的角加速度进而实现纠偏以更加准确和灵活的对机器人位置和姿态进行调整进而确保巡视机器人能始终沿循迹路径运动,逆运动学矩阵为:According to the derivation of the inverse kinematics matrix, calculate the angular acceleration of each Mecanum wheel of the inspection robot to correct the position, and then realize the deviation correction to adjust the position and attitude of the robot more accurately and flexibly, so as to ensure that the inspection robot can always move along the track path, the inverse kinematics matrix for:

其中,X νY ωZ]T∈R3×1in, X ν Y ω Z ] T ∈ R 3×1 ,

分别为四个Mecanum轮的角加速度,W为巡视机器人的半宽,L为巡视机器人的半长,α为巡视机器人相对于循迹路径的偏角,VX、VY以及ωZ分别为X方向运动速度、Y方向运动速度以及旋转速度。 are the angular accelerations of the four Mecanum wheels, W is the half width of the patrol robot, L is the half length of the patrol robot, α is the deflection angle of the patrol robot relative to the tracking path, V X , V Y and ω Z are X direction movement speed, Y direction movement speed and rotation speed.

在一具体实施例中,在步骤S13之前,包括:In a specific embodiment, before step S13, including:

检测循迹模式是自动循迹模式还是手动循迹模式;Detect whether the tracking mode is automatic tracking mode or manual tracking mode;

如果检测到是自动循迹模式,则实时获取巡视机器人相对于循迹路径的位置偏差,并获取巡视机器人的X方向运动速度、Y方向运动速度以及旋转速度,根据逆运动学矩阵对巡视机器人的各Mecanum轮的角加速度的控制来进行纠偏。If the automatic tracking mode is detected, the position deviation of the patrol robot relative to the tracking path is obtained in real time, and the X-direction movement speed, Y-direction movement speed and rotation speed of the patrol robot are obtained. According to the inverse kinematics matrix, the patrol robot The control of the angular acceleration of each Mecanum wheel is used to correct the deviation.

如果检测到是手动循迹模式(远程遥控和主动控制),则实时获取巡视机器人相对于循迹路径的位置偏差,并获取巡视机器人的四个Mecanum轮的角加速度,根据运动学方程控制巡视机器人的各Mecanum轮的X方向运动速度、Y方向运动速度以及旋转速度来进行纠偏进而确保巡视机器人能始终沿循迹路径运动,其中,运动学矩阵为:If it is detected that it is a manual tracking mode (remote control and active control), the position deviation of the patrol robot relative to the tracking path is obtained in real time, and the angular acceleration of the four Mecanum wheels of the patrol robot is obtained, and the patrol robot is controlled according to the kinematic equation The X-direction movement speed, Y-direction movement speed and rotation speed of each Mecanum wheel are corrected to ensure that the patrol robot can always move along the tracking path, where the kinematics matrix is:

其中,X νY ωZ]T∈R3×1in, X ν Y ω Z ] T ∈ R 3×1 .

上述实施例中,具体在实时获取巡视机器人相对于循迹路径的位置偏差的步骤中,包括:In the above-mentioned embodiment, specifically in the step of obtaining the position deviation of the patrol robot relative to the tracking path in real time, including:

捕捉循迹路径的图像,通过图像处理将循迹路径从图像中分离出来,并获取巡视机器人相对循迹路径的偏角信息。进而可根据偏角信息调整巡视机器人的位置和姿态,保证巡视机器人与循迹路径方向的一致性。较佳的,还可以获取巡视机器人相对循迹路径的偏距信息,通过对巡视机器人的位置和姿态的调整,使巡视机器人相对于循迹路径的偏距小于预设值,进而保证巡视机器人与循迹路径的一致性。最终满足机器人的定位巡视要求。Capture the image of the tracking path, separate the tracking path from the image through image processing, and obtain the deflection angle information of the patrol robot relative to the tracking path. Furthermore, the position and posture of the patrolling robot can be adjusted according to the deflection angle information to ensure the consistency of the patrolling robot with the direction of the tracking path. Preferably, the offset distance information of the patrolling robot relative to the tracking path can also be obtained, and by adjusting the position and posture of the patrolling robot, the offset distance of the patrolling robot relative to the tracking path is less than a preset value, thereby ensuring that the patrolling robot and Consistency of tracked paths. Finally, the positioning inspection requirements of the robot are met.

本发明的巡视机器人,具有如下有益效果:The inspection robot of the present invention has the following beneficial effects:

通过设置成具有Mecanum轮102的运动系统1的形式,借助Mecanum轮102的全向运动性能,能够在拥堵和狭小的空间内运行使用;By setting the form of the motion system 1 with the Mecanum wheel 102, with the omnidirectional motion performance of the Mecanum wheel 102, it can be used in crowded and narrow spaces;

通过在运动系统1的搭载平台101上设置装配采集系统7的升降系统6,能够根据待巡视设备中仪表盘的高度通过调整升降系统6的高度进而调整采集系统7的所处位置;By setting the lifting system 6 of the assembly collection system 7 on the carrying platform 101 of the motion system 1, the position of the collection system 7 can be adjusted by adjusting the height of the lifting system 6 according to the height of the instrument panel in the equipment to be inspected;

通过使用SLAM环境地图,能够在室内环境下精确导航至待巡视设备处,尤其是在SLAM环境地图所规划的导航路径的末段设置循迹路径,能够以更合适的姿态和更精确的位置到达待巡视设备处以进行数据采集,使得能够更好地进行数据采集。By using the SLAM environment map, it is possible to accurately navigate to the device to be inspected in the indoor environment, especially if the tracking path is set at the end of the navigation path planned by the SLAM environment map, it can be reached with a more suitable posture and a more precise position The equipment to be inspected is used for data collection, so that data collection can be performed better.

以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only the embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process conversion made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technical fields, All are included in the scope of patent protection of the present invention in the same way.

Claims (10)

1.一种巡视机器人,其特征在于,包括:1. A patrolling robot, characterized in that, comprising: 运动系统,包括搭载平台以及装配于所述搭载平台上的具备全向运动性能的四个对称分布的Mecanum轮;The motion system includes a carrying platform and four symmetrically distributed Mecanum wheels with omnidirectional motion performance assembled on the carrying platform; 升降系统,包括固设于所述搭载平台上的支架以及装配于所述支架上的由电机驱动其同步带的第一同步带滑轨以及装配于所述第一同步带滑轨中滑块上的由电机驱动其同步带的第二同步带滑轨,所述第一同步带滑轨中滑块带动所述第二同步带滑轨在竖直方向上升降,所述第二同步带滑轨中滑块亦在竖直方向上升降;The lifting system includes a bracket fixed on the carrying platform, a first synchronous belt slide rail whose synchronous belt is driven by a motor mounted on the bracket, and a slider mounted on the first synchronous belt slide rail The motor drives the second synchronous belt slide rail of its synchronous belt, the slider in the first synchronous belt slide rail drives the second synchronous belt slide rail to lift in the vertical direction, and the second synchronous belt slide rail The middle slider also moves up and down in the vertical direction; 采集系统,包括装配于所述第二同步带滑轨中滑块上的安装板以及装配于所述安装板上的摄像装置及热成像装置;The acquisition system includes a mounting plate mounted on the slider in the second synchronous belt slide rail, and a camera device and a thermal imaging device mounted on the mounting plate; 以及分别与所述运动系统、所述升降系统及所述采集系统连接的控制系统,所述控制系统控制所述运动系统在平面上到达待巡视设备处,并控制所述升降系统在竖直方向上到达待巡视设备的仪表盘位置,进而控制所述采集系统对待巡视设备的仪表盘进行图像采集。and a control system respectively connected to the motion system, the lifting system and the acquisition system, the control system controls the motion system to reach the equipment to be inspected on the plane, and controls the lifting system to move vertically Up to the position of the instrument panel of the equipment to be inspected, and then control the acquisition system to collect images of the instrument panel of the equipment to be inspected. 2.根据权利要求1所述的巡视机器人,其特征在于:2. The inspection robot according to claim 1, characterized in that: 所述巡视机器人包括分别与所述采集系统、所述控制系统连接的图像处理系统,用于对所述采集系统采集到的图像进行图像处理,进而生成并存储报表。The inspection robot includes an image processing system connected to the acquisition system and the control system respectively, and is used for image processing the images collected by the acquisition system, and then generating and storing reports. 3.根据权利要求2所述的巡视机器人,其特征在于:3. The inspection robot according to claim 2, characterized in that: 所述巡视机器人包括分别与所述图像处理系统、所述控制系统连接的无线通信系统,用于将所述图像处理系统存储的报表发送至外部监控系统。The inspection robot includes a wireless communication system connected to the image processing system and the control system respectively, and is used to send the reports stored in the image processing system to an external monitoring system. 4.根据权利要求2所述的巡视机器人,其特征在于:4. The inspection robot according to claim 2, characterized in that: 所述图像处理系统还用于根据所述采集系统采集的图像计算出待巡视设备中仪表盘的高度,所述控制系统进而根据所述图像处理系统计算出的待巡视设备中仪表盘的高度控制所述升降系统中的第一同步带滑轨和/或第二同步带滑轨工作达到待巡视设备中仪表盘位置。The image processing system is also used to calculate the height of the instrument panel in the equipment to be inspected according to the image collected by the acquisition system, and the control system further controls the height of the instrument panel in the equipment to be inspected according to the image processing system. The first synchronous belt slide rail and/or the second synchronous belt slide rail in the lifting system work to reach the position of the instrument panel in the equipment to be inspected. 5.根据权利要求4所述的巡视机器人,其特征在于:5. patrol robot according to claim 4, is characterized in that: 所述待巡视设备中仪表盘的高度的计算依据来源于所述采集装置中摄像装置和/或热成像装置所采集的图像。The basis for calculating the height of the instrument panel in the equipment to be inspected comes from the images collected by the camera device and/or thermal imaging device in the collection device. 6.根据权利要求1所述的巡视机器人,其特征在于:6. The inspection robot according to claim 1, characterized in that: 所述巡视机器人包括与控制系统连接的激光导航系统,用于在SLAM环境地图中规划所述巡视机器人从初始待命位置到每一个待巡视设备所处位置的导航路径,同时获取所述巡视机器人在SLAM环境地图中的定位;The patrol robot includes a laser navigation system connected to the control system, which is used to plan the navigation path of the patrol robot from the initial standby position to the position of each device to be patrolled in the SLAM environment map. Localization in the SLAM environment map; 所述控制系统用于根据所述激光导航系统规划的导航路径和对所述巡视机器人的定位控制所述运动系统中的各Mecanum轮运行并依次导航至每一个待巡视设备的前方位置。The control system is used to control the operation of each Mecanum wheel in the motion system according to the navigation path planned by the laser navigation system and the positioning of the inspection robot, and to navigate to the front position of each equipment to be inspected sequentially. 7.根据权利要求6所述的巡视机器人,其特征在于:7. The inspection robot according to claim 6, characterized in that: 所述巡视机器人还包括与所述控制系统连接的循迹系统,用于对预设的循迹路径进行循迹;The patrol robot also includes a tracking system connected to the control system for tracking a preset tracking path; 所述控制系统,用于在将所述巡视机器人导航至一个待巡视设备的前方位置后,控制所述运动系统中的各Mecanum轮运行并根据所述循迹系统对循迹路径的跟踪循迹进而以合适的姿态到达当前待巡视设备的循迹定位点停车以进行数据采集。The control system is used to control the operation of each Mecanum wheel in the motion system and track the tracking path according to the tracking system after navigating the patrol robot to a position in front of a device to be patrolled. Then arrive at the tracking and positioning point of the current equipment to be inspected with a suitable attitude and stop for data collection. 8.根据权利要求7所述的巡视机器人,其特征在于:8. The inspection robot according to claim 7, characterized in that: 所述激光导航系统还用于获取地图数据,利用SLAM技术对所述巡视机器人实时定位并同步构造所述SLAM环境地图;并用于在所述巡视机器人对全部待巡视设备完成数据采集后,规划另一导航路径以使得控制系统中的各Mecanum轮运行根据所述另一导航路径将所述巡视机器人直接导航至初始待命位置;The laser navigation system is also used to obtain map data, use SLAM technology to locate the patrol robot in real time and construct the SLAM environmental map synchronously; A navigation path is such that each Mecanum wheel in the control system operates and directly navigates the patrol robot to the initial standby position according to the other navigation path; 所述循迹系统还用于捕捉所述循迹路径的图像,通过图像处理将所述循迹路径从所述图像中分离出来,并获取所述巡视机器人相对所述循迹路径的偏角信息。The tracking system is also used to capture the image of the tracking path, separate the tracking path from the image through image processing, and obtain the deflection angle information of the patrol robot relative to the tracking path . 9.根据权利要求8所述的巡视机器人,其特征在于:9. The inspection robot according to claim 8, characterized in that: 所述循迹系统用于实时获取所述巡视机器人相对于所述循迹路径的位置偏差,所述控制系统从所述运动系统处获取所述巡视机器人的X方向运动速度、Y方向运动速度以及旋转速度,根据逆运动学矩阵推导计算所述巡视机器人每个Mecanum轮纠正位置的角加速度进而实现纠偏进而确保巡视机器人能始终沿循迹路径运动,逆运动学矩阵为:The tracking system is used to obtain the position deviation of the patrol robot relative to the tracking path in real time, and the control system obtains the X-direction movement speed, the Y-direction movement speed and The rotation speed is calculated according to the inverse kinematics matrix to calculate the angular acceleration of each Mecanum wheel of the patrol robot to correct the position, so as to realize the deviation correction and ensure that the patrol robot can always move along the tracking path. The inverse kinematics matrix is: <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>4</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>1</mn> <mi>R</mi> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mi>cot</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mrow> <mi>W</mi> <mo>+</mo> <mi>cot</mi> <mi>&amp;alpha;</mi> <mi>L</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mi>cot</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>W</mi> <mo>+</mo> <mi>cot</mi> <mi>&amp;alpha;</mi> <mi>L</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mi>cot</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>W</mi> <mo>+</mo> <mi>cot</mi> <mi>&amp;alpha;</mi> <mi>L</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mi>cot</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mrow> <mi>W</mi> <mo>+</mo> <mi>cot</mi> <mi>&amp;alpha;</mi> <mi>L</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>X</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>Y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>Z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> <mrow><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mover><mi>&amp;theta;</mi><mo>&amp;CenterDot;</mo></mover><mn>1</mn></msub></mtd></mtr><mtr><mtd><msub><mover><mi>&amp;theta;</mi><mo>&amp;CenterDot;</mo></mover><mn>2</mn></msub></mtd></mtr><mtr><mtd><msub><mover><mi>&amp;theta;</mi><mo>&amp;CenterDot;</mo></mover><mn>3</mn></msub></mtd></mtr><mtr><mtd><msub><mover><mi>&amp;theta;</mi><mo>&amp;CenterDot;</mo></mover><mn>4</mn></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfrac><mn>1</mn><mi>R</mi></mfrac><mfenced open = "[" close = "]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mrow><mi>cot</mi><mi>&amp;alpha;</mi></mrow></mtd><mtd><mrow><mi>W</mi><mo>+</mo><mi>cot</mi><mi>&amp;alpha;</mi><mi>L</mi></mrow></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mrow><mo>-</mo><mi>cot</mi><mi>&amp;alpha;</mi></mrow></mtd><mtd><mrow><mo>-</mo><mrow><mo>(</mo><mi>W</mi><mo>+</mo><mi>cot</mi><mi>&amp;alpha;</mi><mi>L</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mrow><mi>cot</mi><mi>&amp;alpha;</mi></mrow></mtd><mtd><mrow><mo>-</mo><mrow><mo>(</mo><mi>W</mi><mo>+</mo><mi>cot</mi><mi>&amp;alpha;</mi><mi>L</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mrow><mo>-</mo><mi>cot</mi><mi>&amp;alpha;</mi></mrow></mtd><mtd><mrow><mi>W</mi><mo>+</mo><mi>cot</mi><mi>&amp;alpha;</mi><mi>L</mi></mrow></mtd></mtr></mtable></mfenced><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>v</mi><mi>X</mi></msub></mtd></mtr><mtr><mtd><msub><mi>v</mi><mi>Y</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&amp;omega;</mi><mi>Z</mi></msub></mtd></mtr></mtable></mfenced><mo>,</mo></mrow> 其中,X νY ωZ]T∈R3×1in, X ν Y ω Z ] T ∈ R 3×1 , 分别为四个所述Mecanum轮的角加速度,W为所述巡视机器人的半宽,L为所述巡视机器人的半长,α为所述巡视机器人相对于所述循迹路径的偏角,VX、VY以及ωZ分别为X方向运动速度、Y方向运动速度以及旋转速度。 are the angular accelerations of the four Mecanum wheels, W is the half width of the patrol robot, L is the half length of the patrol robot, α is the deflection angle of the patrol robot relative to the tracking path, V X , V Y and ω Z are the movement speed in the X direction, the movement speed in the Y direction and the rotation speed, respectively. 10.根据权利要求8所述的巡视机器人,其特征在于:10. The inspection robot according to claim 8, characterized in that: 所述控制系统还用于检测循迹模式是自动循迹模式还是手动循迹模式,如果所述控制系统检测到是自动循迹模式,则实时获取所述巡视机器人相对于所述循迹路径的位置偏差,并获取所述巡视机器人的X方向运动速度、Y方向运动速度以及旋转速度,根据逆运动学矩阵对所述巡视机器人的各Mecanum轮的角加速度的控制来进行纠偏;如果所述控制系统检测到是手动循迹模式,则实时获取所述巡视机器人相对于所述循迹路径的位置偏差,并获取所述巡视机器人的四个Mecanum轮的角加速度,根据运动学方程控制所述巡视机器人的各Mecanum轮的X方向运动速度、Y方向运动速度以及旋转速度来进行纠偏进而确保巡视机器人能始终沿循迹路径运动,其中,运动学矩阵为:The control system is also used to detect whether the tracking mode is an automatic tracking mode or a manual tracking mode, and if the control system detects that it is an automatic tracking mode, then obtain the position of the patrol robot relative to the tracking path in real time. position deviation, and obtain the X-direction motion speed, Y-direction motion speed and rotation speed of the patrol robot, and correct the deviation according to the control of the angular acceleration of each Mecanum wheel of the patrol robot according to the inverse kinematics matrix; if the control The system detects that it is a manual tracking mode, then obtains the position deviation of the patrol robot relative to the tracking path in real time, and obtains the angular acceleration of the four Mecanum wheels of the patrol robot, and controls the patrol according to the kinematic equation The X-direction movement speed, the Y-direction movement speed and the rotation speed of each Mecanum wheel of the robot are used to correct the deviation so as to ensure that the patrol robot can always move along the tracking path, where the kinematic matrix is: <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>X</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>Y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>Z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mi>R</mi> <mn>4</mn> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>tan</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>tan</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mrow> <mi>tan</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>tan</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mn>1</mn> <mrow> <mi>W</mi> <mo>+</mo> <mi>cot</mi> <mi>&amp;alpha;</mi> <mi>L</mi> </mrow> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <mi>W</mi> <mo>+</mo> <mi>cot</mi> <mi>&amp;alpha;</mi> <mi>L</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <mi>W</mi> <mo>+</mo> <mi>cot</mi> <mi>&amp;alpha;</mi> <mi>L</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mfrac> <mn>1</mn> <mrow> <mi>W</mi> <mo>+</mo> <mi>cot</mi> <mi>&amp;alpha;</mi> <mi>L</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>4</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> <mrow><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>v</mi><mi>X</mi></msub></mrow>mtd></mtr><mtr><mtd><msub><mi>v</mi><mi>Y</mi></msub></mtd></mtr><mtr><mtd><msub><mi>&amp;omega;</mi><mi>Z</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfrac><mi>R</mi><mn>4</mn></mfrac><mfenced open = "[" close = "]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mrow><mi>tan</mi><mi>&amp;alpha;</mi></mrow></mtd><mtd><mrow><mo>-</mo><mi>tan</mi><mi>&amp;alpha;</mi></mrow></mtd><mtd><mrow><mi>tan</mi><mi>&amp;alpha;</mi></mrow></mtd><mtd><mrow><mo>-</mo><mi>tan</mi><mi>&amp;alpha;</mi></mrow></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mrow><mi>W</mi><mo>+</mo><mi>cot</mi><mi>&amp;alpha;</mi><mi>L</mi></mrow></mfrac></mtd><mtd><mrow><mo>-</mo><mfrac><mn>1</mn><mrow><mi>W</mi><mo>+</mo><mi>cot</mi><mi>&amp;alpha;</mi><mi>L</mi></mrow></mfrac></mrow></mtd><mtd><mrow><mo>-</mo><mfrac><mn>1</mn><mrow><mi>W</mi><mo>+</mo><mi>cot</mi><mi>&amp;alpha;</mi><mi>L</mi></mrow></mfrac></mrow></mtd><mtd><mfrac><mn>1</mn><mrow><mi>W</mi><mo>+</mo><mi>cot</mi><mi>&amp;alpha;</mi><mi>L</mi></mrow></mfrac></mtd></mtr></mtable></mfenced><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mover><mi>&amp;theta;</mi><mo>&amp;CenterDot;</mo></mover><mn>1</mn></msub></mtd></mtr><mtr><mtd><msub><mover><mi>&amp;theta;</mi><mo>&amp;CenterDot;</mo></mover><mn>2</mn></msub></mtd></mtr><mtr><mtd><msub><mover><mi>&amp;theta;</mi><mo>&amp;CenterDot;</mo></mover><mn>3</mn></msub></mtd></mtr><mtr><mtd><msub><mover><mi>&amp;theta;</mi><mo>&amp;CenterDot;</mo></mover><mn>4</mn></msub></mtd></mtr></mtable></mfenced><mo>,</mo></mrow> 其中,X νY ωZ]T∈R3×1in, X ν Y ω Z ] T ∈ R 3×1 .
CN201711099650.6A 2017-11-09 2017-11-09 Inspecting robot Pending CN107797558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711099650.6A CN107797558A (en) 2017-11-09 2017-11-09 Inspecting robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711099650.6A CN107797558A (en) 2017-11-09 2017-11-09 Inspecting robot

Publications (1)

Publication Number Publication Date
CN107797558A true CN107797558A (en) 2018-03-13

Family

ID=61534664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711099650.6A Pending CN107797558A (en) 2017-11-09 2017-11-09 Inspecting robot

Country Status (1)

Country Link
CN (1) CN107797558A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181912A (en) * 2018-03-20 2018-06-19 广东工业大学 A kind of storage transportation system based on laser radar trolley
CN108422432A (en) * 2018-05-07 2018-08-21 哈工大(张家口)工业技术研究院 A kind of crusing robot and the underground pipe gallery information management system with the robot
CN108582107A (en) * 2018-05-07 2018-09-28 哈工大(张家口)工业技术研究院 A kind of pipe gallery information system based on technology of Internet of things
CN108958265A (en) * 2018-08-05 2018-12-07 北京华远意通热力科技股份有限公司 A kind of inspecting robot
CN109366754A (en) * 2018-11-30 2019-02-22 宣城市安工大工业技术研究院有限公司 A kind of intelligence drilling robot and its application method
CN109696914A (en) * 2019-01-02 2019-04-30 安徽师范大学 A kind of indoor patrol robot based on electromagnetic navigation
CN109904926A (en) * 2019-02-27 2019-06-18 国网福建省电力有限公司漳州供电公司 Intelligent robot suitable for inspection of abnormal conditions in substation indoors and its control method
CN110605718A (en) * 2019-09-20 2019-12-24 国网湖北省电力有限公司电力科学研究院 A substation inspection robot system and inspection method
CN110647082A (en) * 2019-10-09 2020-01-03 宁波思高信通科技有限公司 Intelligent inspection system for machine room and working method of intelligent inspection system
CN110788826A (en) * 2019-09-25 2020-02-14 刘泓言 Domestic transport robot with intelligence lift platform

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1387082A (en) * 2001-05-23 2002-12-25 科乐美股份有限公司 Automatic photographing device and method
US20050232397A1 (en) * 2004-03-30 2005-10-20 Siemens Aktiengesellschaft Medical imaging device
KR20100065920A (en) * 2008-12-09 2010-06-17 한양대학교 산학협력단 Structure inspection robot and vehicle having the same
CN202586115U (en) * 2012-04-11 2012-12-05 中国农业大学 Thermal image temperature measuring and fault location inspection robot system
CN105387314A (en) * 2014-09-04 2016-03-09 青岛东旭机器人视觉系统科技有限公司 Intelligent track camera robot system
CN205327219U (en) * 2015-12-30 2016-06-22 东北大学 Patrol and examine walking robot based on vision
CN106891319A (en) * 2017-03-15 2017-06-27 广东电网有限责任公司惠州供电局 Inspecting robot
CN107015359A (en) * 2017-06-21 2017-08-04 保定金迪科学仪器有限公司 A kind of pipeline periscope
CN208351329U (en) * 2017-11-09 2019-01-08 南京国电南思科技发展股份有限公司 Inspecting robot

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1387082A (en) * 2001-05-23 2002-12-25 科乐美股份有限公司 Automatic photographing device and method
US20050232397A1 (en) * 2004-03-30 2005-10-20 Siemens Aktiengesellschaft Medical imaging device
KR20100065920A (en) * 2008-12-09 2010-06-17 한양대학교 산학협력단 Structure inspection robot and vehicle having the same
CN202586115U (en) * 2012-04-11 2012-12-05 中国农业大学 Thermal image temperature measuring and fault location inspection robot system
CN105387314A (en) * 2014-09-04 2016-03-09 青岛东旭机器人视觉系统科技有限公司 Intelligent track camera robot system
CN205327219U (en) * 2015-12-30 2016-06-22 东北大学 Patrol and examine walking robot based on vision
CN106891319A (en) * 2017-03-15 2017-06-27 广东电网有限责任公司惠州供电局 Inspecting robot
CN107015359A (en) * 2017-06-21 2017-08-04 保定金迪科学仪器有限公司 A kind of pipeline periscope
CN208351329U (en) * 2017-11-09 2019-01-08 南京国电南思科技发展股份有限公司 Inspecting robot

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨天旭: "全方位移动AGV智能控制技术研究", 《信息科技》, pages 2 *
王兴松: "Mecanum 轮全方位移动机器人技术及其应用", 《综述与展望》, vol. 43, no. 3 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181912A (en) * 2018-03-20 2018-06-19 广东工业大学 A kind of storage transportation system based on laser radar trolley
CN108422432A (en) * 2018-05-07 2018-08-21 哈工大(张家口)工业技术研究院 A kind of crusing robot and the underground pipe gallery information management system with the robot
CN108582107A (en) * 2018-05-07 2018-09-28 哈工大(张家口)工业技术研究院 A kind of pipe gallery information system based on technology of Internet of things
CN108958265A (en) * 2018-08-05 2018-12-07 北京华远意通热力科技股份有限公司 A kind of inspecting robot
CN109366754A (en) * 2018-11-30 2019-02-22 宣城市安工大工业技术研究院有限公司 A kind of intelligence drilling robot and its application method
CN109696914A (en) * 2019-01-02 2019-04-30 安徽师范大学 A kind of indoor patrol robot based on electromagnetic navigation
CN109904926A (en) * 2019-02-27 2019-06-18 国网福建省电力有限公司漳州供电公司 Intelligent robot suitable for inspection of abnormal conditions in substation indoors and its control method
CN110605718A (en) * 2019-09-20 2019-12-24 国网湖北省电力有限公司电力科学研究院 A substation inspection robot system and inspection method
CN110788826A (en) * 2019-09-25 2020-02-14 刘泓言 Domestic transport robot with intelligence lift platform
CN110647082A (en) * 2019-10-09 2020-01-03 宁波思高信通科技有限公司 Intelligent inspection system for machine room and working method of intelligent inspection system

Similar Documents

Publication Publication Date Title
CN107797558A (en) Inspecting robot
CN110605718A (en) A substation inspection robot system and inspection method
CN102116625B (en) GIS (geographic information system)-GPS (global position system) navigation method of inspection robot
CN111639505B (en) Hybrid positioning navigation system and method for indoor inspection robot
CN111633660A (en) Intelligent inspection robot
CN103659817B (en) A kind of rescuing robot system and realize the method for this rescue system
CN102608998A (en) Vision guiding AGV (Automatic Guided Vehicle) system and method of embedded system
CN108955667A (en) A kind of complex navigation method, apparatus and system merging laser radar and two dimensional code
CN106338245A (en) Non-contact movement measuring method for workpiece
CN107943026B (en) Mecanum wheel patrol robot and its patrol method
CN112414457A (en) Automatic intelligent inspection method based on work of transformer substation
CN110362090A (en) A kind of crusing robot control system
CN109144068A (en) The automatically controlled mode and control device of three-dimensional shift-forward type navigation switching AGV fork truck
CN109572842B (en) Pole-climbing mechanism, pole-climbing intelligent inspection robot and pole-climbing method of transformer substation
CN110068286A (en) The full topography system of three-dimensional and method based on the projecting cooperation mechanical arm of large-sized gantry
CN107830832A (en) Workpiece profile scanning system and method
CN108549370A (en) Collecting method and harvester
CN208351329U (en) Inspecting robot
Kim et al. Autonomous mobile robot localization and mapping for unknown construction environments
CN111811400A (en) A combined positioning device and method based on AGV and laser tracker
CN208453013U (en) Mobile detection robot carries the positioning system of 2D laser radar scanning axle
CN104898667B (en) A kind of robot vision leading system ammeter transiting vehicle Stop Control System
CN113218384A (en) Indoor AGV self-adaptation positioning system based on laser SLAM
CN113251255A (en) Transformer substation inspection device
CN113733043B (en) Automatic delivery robot and automatic driving method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180313