[go: up one dir, main page]

CN107785419B - A kind of fin field effect transistor and its manufacturing method - Google Patents

A kind of fin field effect transistor and its manufacturing method Download PDF

Info

Publication number
CN107785419B
CN107785419B CN201610726754.4A CN201610726754A CN107785419B CN 107785419 B CN107785419 B CN 107785419B CN 201610726754 A CN201610726754 A CN 201610726754A CN 107785419 B CN107785419 B CN 107785419B
Authority
CN
China
Prior art keywords
isolation layer
fin
trench
layer
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610726754.4A
Other languages
Chinese (zh)
Other versions
CN107785419A (en
Inventor
黄敬勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201610726754.4A priority Critical patent/CN107785419B/en
Publication of CN107785419A publication Critical patent/CN107785419A/en
Application granted granted Critical
Publication of CN107785419B publication Critical patent/CN107785419B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]

Landscapes

  • Element Separation (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种鳍式场效应晶体管及其制作方法,所述方法包括:提供半导体衬底;在所述半导体衬底的第一区域上形成第一隔离层;在所述半导体衬底的第二区域上形成第二隔离层,所述第二隔离层的密度低于所述第一隔离层的密度;刻蚀所述第一隔离层及所述第二隔离层,形成定义鳍片的第一沟槽和第二沟槽,所述第二沟槽的宽度大于所述第一沟槽的宽度;填充所述第一沟槽和第二沟槽,以形成第一鳍片和第二鳍片。根据本发明提出的鳍式场效应晶体管的制造方法,能够得到不同宽度与有效高度的鳍片。

Figure 201610726754

The present invention provides a fin field effect transistor and a manufacturing method thereof. The method includes: providing a semiconductor substrate; forming a first isolation layer on a first region of the semiconductor substrate; A second isolation layer is formed on the two regions, and the density of the second isolation layer is lower than that of the first isolation layer; the first isolation layer and the second isolation layer are etched to form the first isolation layer defining the fins a trench and a second trench, the width of the second trench is greater than the width of the first trench; filling the first trench and the second trench to form the first fin and the second fin piece. According to the manufacturing method of the fin field effect transistor proposed in the present invention, fins with different widths and effective heights can be obtained.

Figure 201610726754

Description

一种鳍式场效应晶体管及其制造方法A kind of fin field effect transistor and its manufacturing method

技术领域technical field

本发明涉及半导体制造工艺,具体而言涉及一种鳍式场效应晶体管及其制造方法。The present invention relates to a semiconductor manufacturing process, in particular to a fin field effect transistor and a manufacturing method thereof.

背景技术Background technique

半导体器件尺寸的不断缩小是推动集成电路制造技术改进的主要因素。由于调整栅氧化物层的厚度和源/漏极的结深度的限制,很难将常规的平面MOSFET器件缩小至32nm以下的工艺,因此,已经开发出多栅极场效应晶体管。The continuous shrinking of the size of semiconductor devices is a major factor driving improvements in integrated circuit manufacturing technology. Due to the limitations of adjusting the thickness of the gate oxide layer and the depth of the source/drain junction, it is difficult to scale conventional planar MOSFET devices to processes below 32 nm, therefore, multi-gate field effect transistors have been developed.

典型的多栅极场效应晶体管为鳍式场效应晶体管(FinFET),它使得器件的尺寸更小,性能更高。鳍式场效应晶体管包括垂直于衬底的鳍片,导电沟道形成在该鳍片中,且鳍片之上及两侧包围有栅极。与传统的平面结构相比,鳍式场效应晶体管实现全耗尽的工作模式,栅电极从垂直鳍结构的三边控制导电沟道,因而鳍式场效应晶体管具有更好的沟道控制能力和更好的亚阈值斜率,可以提供更小的泄露电流、更小的栅极延迟以及更大的电流驱动能力。A typical multi-gate field effect transistor is the fin field effect transistor (FinFET), which enables smaller device size and higher performance. The fin field effect transistor includes a fin perpendicular to the substrate, a conductive channel is formed in the fin, and a gate is surrounded on and on both sides of the fin. Compared with the traditional planar structure, the fin field effect transistor realizes a fully depleted working mode, and the gate electrode controls the conduction channel from the three sides of the vertical fin structure, so the fin field effect transistor has better channel control ability and Better sub-threshold slope can provide smaller leakage current, smaller gate delay and greater current drive capability.

尽管鳍式场效应晶体管相对于平面结构场效应晶体管来说提供了改进的性能,但是也带来了一些设计挑战。具体来说,常规MOSFET对于器件宽度基本上无限制,而鳍式场效应晶体管鳍片的宽度和高度一般是固定的,因此,对于给定的晶体管长度,鳍式场效应晶体管的饱和电流是固定的。然而,在高性能集成电路中,经常需要具有不同驱动能力的晶体管,例如SRAM(静态随机存取存储器)单元。SRAM一般由6个MOS构成,需要具有不同的驱动电流,以便实现SRAM单元的最佳性能。然而对于鳍式场效应晶体管,只能采用改变并联的鳍片数量的方法来达到目的。Although fin field effect transistors offer improved performance over planar structure field effect transistors, they also present some design challenges. Specifically, conventional MOSFETs are essentially unlimited for device width, while FinFET fins are generally fixed in width and height, so for a given transistor length, the saturation current of the FinFET is fixed of. However, in high performance integrated circuits, transistors with different drive capabilities are often required, such as SRAM (Static Random Access Memory) cells. SRAM is generally composed of 6 MOSs, which need to have different drive currents in order to achieve the best performance of the SRAM cell. However, for the fin field effect transistor, the method can only be achieved by changing the number of fins connected in parallel.

因此,有必要提出一种鳍式场效应晶体管的制造方法,能够得到不同宽度与有效高度的鳍片。Therefore, it is necessary to provide a method for manufacturing a fin field effect transistor, which can obtain fins with different widths and effective heights.

发明内容SUMMARY OF THE INVENTION

针对现有技术的不足,本发明提供一种新型的鳍式场效应晶体管的制作方法,包括:In view of the deficiencies of the prior art, the present invention provides a novel method for fabricating a fin field effect transistor, including:

提供半导体衬底;provide semiconductor substrates;

在所述半导体衬底的第一区域上形成第一隔离层;forming a first isolation layer on the first region of the semiconductor substrate;

在所述半导体衬底的第二区域上形成第二隔离层,所述第二隔离层的密度低于所述第一隔离层;forming a second isolation layer on the second region of the semiconductor substrate, the second isolation layer having a lower density than the first isolation layer;

刻蚀所述第一隔离层及所述第二隔离层,形成定义鳍片的第一沟槽和第二沟槽,所述第二沟槽的宽度大于所述第一沟槽;etching the first isolation layer and the second isolation layer to form a first trench and a second trench defining a fin, and the width of the second trench is larger than that of the first trench;

填充所述第一沟槽和第二沟槽,以形成第一鳍片和第二鳍片。The first and second trenches are filled to form first and second fins.

示例性地,还包括回刻蚀所述第一隔离层及所述第二隔离层,使所述第一鳍片和第二鳍片暴露预定的有效高度的步骤,所述第二鳍片的有效高度大于所述第一鳍片的有效高度。Exemplarily, the method further includes the step of etching back the first isolation layer and the second isolation layer to expose the first fin and the second fin to a predetermined effective height. The effective height is greater than the effective height of the first fin.

示例性地,所述第二隔离层的刻蚀速率及抛光速率大于所述第一隔离层的刻蚀速率及抛光速率。Exemplarily, the etching rate and polishing rate of the second isolation layer are greater than the etching rate and polishing rate of the first isolation layer.

示例性地,所述刻蚀步骤包括通过使用掩膜干法刻蚀形成定义鳍片的第一沟槽和第二沟槽,以及通过湿法刻蚀所述第一沟槽和第二沟槽使所述第二沟槽的宽度大于所述第一沟槽的宽度。Illustratively, the etching step includes forming first and second trenches defining fins by dry etching using a mask, and wet etching the first and second trenches The width of the second trench is made larger than the width of the first trench.

示例性地,所述第一鳍片和第二鳍片的形成方法为外延生长法。Exemplarily, the method for forming the first fin and the second fin is an epitaxial growth method.

示例性地,形成所述第二隔离层之后,还包括执行平坦化工艺,使所述第一隔离层与所述第二隔离层形成阶梯式高度的步骤。Exemplarily, after the second isolation layer is formed, the step of performing a planarization process to form a stepped height between the first isolation layer and the second isolation layer is further included.

示例性地,所述平坦化工艺为化学机械抛光法。Exemplarily, the planarization process is chemical mechanical polishing.

示例性地,所述刻蚀步骤采用的掩膜为掩膜叠层。Exemplarily, the mask used in the etching step is a mask stack.

示例性地,所述掩膜叠层包括旋涂碳层及介质抗反射层。Exemplarily, the mask stack includes a spin-on carbon layer and a dielectric anti-reflection layer.

示例性地,所述掩膜叠层包括硅抗反射层及底部抗反射层。Exemplarily, the mask stack includes a silicon antireflection layer and a bottom antireflection layer.

示例性地,所述第一鳍片与所述第二鳍片的宽度差为3-5nm。Exemplarily, the width difference between the first fin and the second fin is 3-5 nm.

示例性地,所述第一鳍片与所述第二鳍片的有效高度差为50-200埃。Exemplarily, the effective height difference between the first fin and the second fin is 50-200 angstroms.

示例性地,还包括在所述第一鳍片和第二鳍片上形成栅极结构的步骤。Exemplarily, the method further includes the step of forming a gate structure on the first fin and the second fin.

示例性地,所述第一隔离层和第二隔离层均为氧化物层。Exemplarily, the first isolation layer and the second isolation layer are both oxide layers.

本发明还提供一种鳍式场效应晶体管,其特征在于,包括:The present invention also provides a fin field effect transistor, which is characterized by comprising:

半导体衬底;semiconductor substrate;

位于所述半导体衬底第一区域上的第一隔离层,以及位于所述半导体第二区域上的第二隔离层,所述第二隔离层的高度小于所述第一隔离层的高度;a first isolation layer located on the first region of the semiconductor substrate, and a second isolation layer located on the second region of the semiconductor, the height of the second isolation layer being less than the height of the first isolation layer;

由所述第一隔离层隔离开的第一鳍片以及由所述第二隔离层隔离开的第二鳍片,所述第一鳍片的宽度小于所述第二鳍片,所述第二鳍片暴露在所述第二隔离层以外的高度大于所述第一鳍片暴露在所述第一隔离层以外的高度。A first fin separated by the first isolation layer and a second fin separated by the second isolation layer, the width of the first fin is smaller than that of the second fin, the second fin is The height of the fins exposed outside the second isolation layer is greater than the height of the first fins exposed outside the first isolation layer.

示例性地,所述第二隔离层的密度小于所述第一隔离层的密度。Exemplarily, the density of the second isolation layer is less than the density of the first isolation layer.

示例性地,所述第二隔离层的刻蚀速率及抛光速率大于所述第一隔离层的刻蚀速率及抛光速率。Exemplarily, the etching rate and polishing rate of the second isolation layer are greater than the etching rate and polishing rate of the first isolation layer.

示例性地,还包括形成于所述第一鳍片和第二鳍片上的栅极结构。Exemplarily, a gate structure formed on the first fin and the second fin is also included.

示例性地,所述第一鳍片与所述第二鳍片的宽度差为3-5nm。Exemplarily, the width difference between the first fin and the second fin is 3-5 nm.

示例性地,所述第一鳍片与所述第二鳍片的有效高度差为50-200埃。Exemplarily, the effective height difference between the first fin and the second fin is 50-200 angstroms.

示例性地,所述第一隔离层和第二隔离层均为氧化物层。Exemplarily, the first isolation layer and the second isolation layer are both oxide layers.

与现有工艺相比,根据本发明提出的鳍式场效应晶体管的制造方法,能够得到不同宽度与有效高度的鳍片。Compared with the prior art, according to the manufacturing method of the fin field effect transistor proposed by the present invention, fins with different widths and effective heights can be obtained.

附图说明Description of drawings

本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。The following drawings of the present invention are incorporated herein as a part of the present invention for understanding of the present invention. The accompanying drawings illustrate embodiments of the present invention and their description, which serve to explain the principles of the present invention.

附图中:In the attached picture:

图1为根据现有技术中鳍式场效应晶体管的制作方法依次实施的步骤所分别获得的器件的示意性剖面图。FIG. 1 is a schematic cross-sectional view of a device obtained by sequentially performing steps in a method for fabricating a fin field effect transistor in the prior art.

图2为根据本发明的方法依次实施的步骤的流程图。Figure 2 is a flow chart of the steps carried out in sequence in the method according to the invention.

图3-图11为根据本发明的方法依次实施的步骤所分别获得的器件的示意性剖面图;3-11 are schematic cross-sectional views of devices obtained by sequentially implementing the steps of the method according to the present invention;

具体实施方式Detailed ways

在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。In the following description, numerous specific details are set forth in order to provide a more thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without one or more of these details. In other instances, some technical features known in the art have not been described in order to avoid obscuring the present invention.

应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。在附图中,为了清楚,层和区的尺寸以及相对尺寸可能被夸大。自始至终相同附图标记表示相同的元件。It should be understood that the present invention may be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. The same reference numbers refer to the same elements throughout.

应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本发明教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。It will be understood that when an element or layer is referred to as being "on," "adjacent to," "connected to," or "coupled to" other elements or layers, it can be directly on the other elements or layers Layers may be on, adjacent to, connected or coupled to other elements or layers, or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly adjacent to," "directly connected to," or "directly coupled to" other elements or layers, there are no intervening elements or layers present. Floor. It will be understood that, although the terms first, second, third, etc. may be used to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.

空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。Spatial relational terms such as "under", "below", "below", "under", "above", "above", etc., in It may be used herein for convenience of description to describe the relationship of one element or feature to other elements or features shown in the figures. It should be understood that the spatially relative terms are intended to encompass different orientations of the device in use and operation in addition to the orientation shown in the figures. For example, if the device in the figures is turned over, then elements or features described as "below" or "beneath" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the exemplary terms "below" and "under" can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatial descriptors used herein interpreted accordingly.

在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a," "an," and "the/the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It should also be understood that the terms "compose" and/or "include", when used in this specification, identify the presence of stated features, integers, steps, operations, elements and/or components, but do not exclude one or more other The presence or addition of features, integers, steps, operations, elements, parts and/or groups. As used herein, the term "and/or" includes any and all combinations of the associated listed items.

图1是现有技术中使用自对准式双重图形化技术制作鳍式场效应晶体管的方法的示意图:首先提供半导体衬底101,在所述半导体衬底上形成有硬掩膜102;选择性刻蚀所述半导体衬底101及所述硬掩膜102,以形成鳍片,所述鳍片两侧形成有浅沟槽且其上表面仍覆盖有硬掩膜102;在所述浅沟槽侧壁及底部,以及所述硬掩膜102上形成衬垫隔离层103;在所述浅沟槽中填充隔离层104,所述隔离层104覆盖所述鳍片顶部的硬掩膜102;执行退火处理;采用回刻蚀工艺去除所述硬掩膜102及部分隔离层,使所述鳍片暴露预定高度。然而,由于所有鳍片的高度都由同一次抛光工序来进行定义,使用这一方法制备的鳍式场效应晶体管中所有鳍片都具有相同的高度,鳍片的宽度也面临类似的情况。1 is a schematic diagram of a method for fabricating a fin field effect transistor using a self-aligned double patterning technique in the prior art: first, a semiconductor substrate 101 is provided, and a hard mask 102 is formed on the semiconductor substrate; selectivity The semiconductor substrate 101 and the hard mask 102 are etched to form fins with shallow trenches formed on both sides of the fins and the top surface of which is still covered with the hard mask 102; Forming a liner isolation layer 103 on the sidewalls and bottoms, and the hard mask 102; filling the shallow trenches with an isolation layer 104 covering the hard mask 102 on top of the fins; performing Annealing treatment; using an etch-back process to remove the hard mask 102 and part of the isolation layer to expose the fins to a predetermined height. However, since the heights of all fins are defined by the same polishing process, all fins in FETs fabricated using this method have the same height, and the width of the fins faces a similar situation.

为了解决上述问题,本发明提供了一种鳍式场效应晶体管的制作方法,包括:In order to solve the above problems, the present invention provides a method for fabricating a fin field effect transistor, comprising:

提供半导体衬底;provide semiconductor substrates;

在所述半导体衬底的第一区域上形成第一隔离层;forming a first isolation layer on the first region of the semiconductor substrate;

在所述半导体衬底的第二区域上形成第二隔离层,所述第二隔离层的密度低于所述第一隔离层的密度;forming a second isolation layer on the second region of the semiconductor substrate, the density of the second isolation layer is lower than the density of the first isolation layer;

刻蚀所述第一隔离层及所述第二隔离层,形成定义鳍片的第一沟槽和第二沟槽,所述第二沟槽的宽度大于所述第一沟槽的宽度;etching the first isolation layer and the second isolation layer to form a first trench and a second trench defining a fin, and the width of the second trench is greater than the width of the first trench;

填充所述第一沟槽和第二沟槽,以形成第一鳍片和第二鳍片。The first and second trenches are filled to form first and second fins.

还包括回刻蚀所述第一隔离层及所述第二隔离层,使所述鳍片暴露预定的有效高度的步骤,所述第二鳍片的有效高度大于所述第一鳍片的有效高度。It also includes the step of etching back the first isolation layer and the second isolation layer to expose the fins to a predetermined effective height, and the effective height of the second fins is greater than the effective height of the first fins. high.

所述第二隔离层的刻蚀速率及抛光速率大于所述第一隔离层的刻蚀速率及抛光速率。The etching rate and polishing rate of the second isolation layer are greater than the etching rate and polishing rate of the first isolation layer.

所述刻蚀步骤包括通过使用掩膜干法刻蚀形成定义鳍片的第一沟槽和第二沟槽,以及通过湿法刻蚀所述第一沟槽和第二沟槽使所述第二沟槽的宽度大于所述第一沟槽的宽度。The etching step includes forming first trenches and second trenches defining fins by dry etching using a mask, and making the first trenches and second trenches wet by etching the first trenches and the second trenches. The width of the second trench is greater than the width of the first trench.

所述鳍片的形成方法为外延生长法。The formation method of the fins is an epitaxial growth method.

形成所述第二隔离层之后,还包括执行平坦化工艺,使所述第一隔离层与所述第二隔离层形成阶梯式高度的步骤。所述平坦化工艺为化学机械抛光法。After the second isolation layer is formed, the step of performing a planarization process to form a stepped height between the first isolation layer and the second isolation layer is further included. The planarization process is a chemical mechanical polishing method.

所述干法刻蚀步骤采用的掩膜为掩膜叠层。所述掩膜叠层包括旋涂碳层及介质抗反射层或包括硅抗反射层及底部抗反射层。The mask used in the dry etching step is a mask stack. The mask stack includes a spin-on carbon layer and a dielectric anti-reflection layer or includes a silicon anti-reflection layer and a bottom anti-reflection layer.

所述第一鳍片与所述第二鳍片的宽度差为3-5nm。所述第一鳍片与所述第二鳍片的有效高度差为50-200埃。The width difference between the first fin and the second fin is 3-5 nm. The effective height difference between the first fin and the second fin is 50-200 angstroms.

还包括在所述鳍片上形成栅极结构的步骤。Also included is the step of forming a gate structure on the fin.

所述第一隔离层和第二隔离层均为氧化物层。The first isolation layer and the second isolation layer are both oxide layers.

与现有工艺相比,本发明提出鳍式场效应晶体管的制造方法,能够得到不同宽度与有效高度的鳍片。Compared with the prior art, the present invention provides a method for manufacturing a fin field effect transistor, which can obtain fins with different widths and effective heights.

为了彻底理解本发明,将在下列的描述中提出详细的结构及/或步骤,以便阐释本发明提出的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。[示例性实施例一]For a thorough understanding of the present invention, detailed structures and/or steps will be presented in the following description, so as to explain the technical solutions proposed by the present invention. Preferred embodiments of the present invention are described in detail below, however, the present invention may have other embodiments in addition to these detailed descriptions. [Exemplary Embodiment 1]

下面将参照图2~图11对本发明一实施方式的鳍式场效应晶体管的制作方法做详细描述。A method for fabricating a fin field effect transistor according to an embodiment of the present invention will be described in detail below with reference to FIGS. 2 to 11 .

首先,执行步骤201,提供半导体衬底301。First, step 201 is performed to provide a semiconductor substrate 301 .

具体地,本发明中所述半导体衬底可以是以下所提到的材料中的至少一种:硅、绝缘体上硅(SOI)、绝缘体上层叠硅(SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)、绝缘体上锗化硅(SiGeOI)以及绝缘体上锗(GeOI)等。Specifically, the semiconductor substrate in the present invention may be at least one of the following materials: silicon, silicon-on-insulator (SOI), silicon-on-insulator (SSOI), silicon-germanium-on-insulator (SSOI) -SiGeOI), silicon germanium on insulator (SiGeOI) and germanium on insulator (GeOI), etc.

接着,执行步骤202,在所述半导体衬底301的第一区域上形成第一隔离层302,如图3所示。示例性地,所述第一隔离层302的材料包括氧化物,例如氧化硅等。所述第一隔离层302的形成工艺可以是化学气相沉积、高密度等离子体CVD、原子层淀积、等离子体增强原子层淀积、脉冲激光沉积或其他合适的方法,较佳的是化学气相沉积法。当半导体衬底301的材料为硅时,所述第一隔离层302的形成工艺还可以为热氧化法。接着,如图4所示,在所述第一隔离层表面形成图案化的硬掩膜层,刻蚀所述第一隔离层302,使其覆盖所述半导体衬底的第一区域。Next, step 202 is performed to form a first isolation layer 302 on the first region of the semiconductor substrate 301 , as shown in FIG. 3 . Exemplarily, the material of the first isolation layer 302 includes oxide, such as silicon oxide. The formation process of the first isolation layer 302 can be chemical vapor deposition, high-density plasma CVD, atomic layer deposition, plasma enhanced atomic layer deposition, pulsed laser deposition or other suitable methods, preferably chemical vapor deposition. deposition method. When the material of the semiconductor substrate 301 is silicon, the formation process of the first isolation layer 302 may also be a thermal oxidation method. Next, as shown in FIG. 4 , a patterned hard mask layer is formed on the surface of the first isolation layer, and the first isolation layer 302 is etched to cover the first region of the semiconductor substrate.

接着,执行步骤203,如图5所示,在所述半导体衬底的第二区域上形成第二隔离层303,所述第二隔离层的密度低于所述第一隔离层302的密度。所述第二隔离层303的形成工艺与所述第一隔离层类似。在沉积所述第二隔离层303之后,对所述第一隔离层302与所述第二隔离层303进行平坦化处理,所述平坦化工艺为CMP(化学机械抛光法)。示例性地,使用金属氧化物粒子的料浆进行CMP,例如SiO2、Al2O3、和CeO2等。工作台转速在从30rpm至110rpm的范围内,下向力在从0.5psi至5psi的范围内,料浆流速在从50毫升/分钟至500毫升/分钟的范围内。由于所述第二隔离层材料303的密度低于所述第一隔离层302,其抛光速率小于所述第一隔离层302,执行平坦化以后第一隔离层302与第二隔离层303会形成阶梯式的高度。Next, step 203 is performed, as shown in FIG. 5 , a second isolation layer 303 is formed on the second region of the semiconductor substrate, and the density of the second isolation layer is lower than that of the first isolation layer 302 . The formation process of the second isolation layer 303 is similar to that of the first isolation layer. After the second isolation layer 303 is deposited, the first isolation layer 302 and the second isolation layer 303 are planarized, and the planarization process is CMP (Chemical Mechanical Polishing). Illustratively, CMP is performed using a slurry of metal oxide particles, such as SiO2 , Al2O3 , CeO2 , and the like. The table speed was in the range from 30 rpm to 110 rpm, the down force was in the range from 0.5 psi to 5 psi, and the slurry flow rate was in the range from 50 ml/min to 500 ml/min. Since the density of the second isolation layer material 303 is lower than that of the first isolation layer 302 and its polishing rate is lower than that of the first isolation layer 302 , the first isolation layer 302 and the second isolation layer 303 will be formed after planarization is performed. stepped height.

接着,执行步骤204,刻蚀所述第一隔离层302及第二隔离层303,形成定义鳍片的第一沟槽309和第二沟槽310,所述第二沟槽310的宽度大于所述第一沟槽309的宽度。由于隔离层的阶梯式高度会造成光刻过程中的摆线效应等,影响光刻效果,因而在本实施例中,采用包括抗反射层的掩膜叠层对所述隔离层进行刻蚀。在一个实施例中,如图6a所示,依次在所述第一隔离层302及第二隔离层303表面形成旋涂碳层304及介质抗反射层(DARC)305。所述旋涂碳层304可充当在具有阶梯差的区域中形成的平面化膜,抗反射膜及与下部材料纸件具有刻蚀选择性的掩膜。所述旋涂碳层304优选地包括富含碳的聚合物,其中碳元素占总分子量的85wt%~90wt%。所述DARC层305可以为氮氧硅层(SiON),厚度可以为20nm到60nm。在所述DARC层305上形成光刻胶306,对所述光刻胶进行曝光、显影,以形成图案化的光刻胶。以所述图案化的光刻胶为掩膜,刻蚀所述抗反射层,并以所述抗反射层为硬掩膜刻蚀隔离层以形成定义鳍片的第一沟槽309和第二沟槽310,所述第一沟槽309和第二沟槽310的深度为2000埃到3000埃,如图7所示。Next, step 204 is performed to etch the first isolation layer 302 and the second isolation layer 303 to form a first trench 309 and a second trench 310 that define fins, and the width of the second trench 310 is greater than the width of the first trench 309. Since the stepped height of the isolation layer will cause trochoidal effects in the photolithography process, which affects the photolithography effect, in this embodiment, a mask stack including an anti-reflection layer is used to etch the isolation layer. In one embodiment, as shown in FIG. 6a, a spin-coated carbon layer 304 and a dielectric anti-reflection layer (DARC) 305 are formed on the surfaces of the first isolation layer 302 and the second isolation layer 303 in sequence. The spin-on carbon layer 304 can serve as a planarizing film formed in a region with a step difference, an anti-reflection film, and a mask with etch selectivity to the underlying material sheet. The spin-on carbon layer 304 preferably includes a carbon-rich polymer, wherein the carbon element accounts for 85 wt % to 90 wt % of the total molecular weight. The DARC layer 305 may be a silicon oxynitride layer (SiON), and the thickness may be 20 nm to 60 nm. A photoresist 306 is formed on the DARC layer 305, and the photoresist is exposed and developed to form a patterned photoresist. Using the patterned photoresist as a mask, the anti-reflection layer is etched, and the anti-reflection layer is used as a hard mask to etch the isolation layer to form a first trench 309 and a second fin defining a fin. The depths of the trenches 310, the first trenches 309 and the second trenches 310 are 2000 angstroms to 3000 angstroms, as shown in FIG. 7 .

在另一个实施例中,如图6b所示,依次在所述第一隔离层302及第二隔离层303表面形成硅抗反射层307,底部抗反射层(BARC)308以及光刻胶层306。首先在第一隔离层302及第二隔离层303表面旋涂一层硅抗反射层307,例如氮氧化硅或氮化硅,再在其上形成一层BARC308,例如聚酰亚胺类或聚砜类。示例性地,通过用包含单体的溶液旋涂衬底并引发聚合反应来形成BARC,形成的BARC的厚度在从300埃至5000埃的范围内。在100℃至500℃温度范围内进行烘烤以使BARC交联。在所述BARC上形成光刻胶306,对所述光刻胶进行曝光、显影,以形成图案化的光刻胶。以所述图案化的光刻胶为掩膜,刻蚀所述抗反射层,并以所述抗反射层为硬掩膜刻蚀隔离层以形成定义鳍片的第一沟槽309和第二沟槽310,所述第一沟槽309和第二沟槽310的深度为2000埃到3000埃,如图7所示。In another embodiment, as shown in FIG. 6b, a silicon anti-reflection layer 307, a bottom anti-reflection layer (BARC) 308 and a photoresist layer 306 are sequentially formed on the surfaces of the first isolation layer 302 and the second isolation layer 303 . First, a silicon anti-reflection layer 307, such as silicon oxynitride or silicon nitride, is spin-coated on the surfaces of the first isolation layer 302 and the second isolation layer 303, and then a layer of BARC 308, such as polyimide or polyimide, is formed thereon. Sulfones. Illustratively, the BARC is formed by spin-coating a substrate with a monomer-containing solution and initiating a polymerization reaction, and the thickness of the formed BARC ranges from 300 angstroms to 5000 angstroms. Baking is performed at a temperature ranging from 100°C to 500°C to crosslink the BARC. A photoresist 306 is formed on the BARC, and the photoresist is exposed and developed to form a patterned photoresist. Using the patterned photoresist as a mask, the anti-reflection layer is etched, and the anti-reflection layer is used as a hard mask to etch the isolation layer to form a first trench 309 and a second fin defining a fin. The depths of the trenches 310, the first trenches 309 and the second trenches 310 are 2000 angstroms to 3000 angstroms, as shown in FIG. 7 .

接着,采用湿法刻蚀对所述沟槽进行第二步刻蚀,如图8所示。所述湿法刻蚀采用的溶液包括氢氟酸溶液,氢氟酸溶液等。由于所述第二隔离层材料的湿法刻蚀速率大于所述第一隔离层,因此湿法刻蚀后第二沟槽310的宽度大于第一沟槽309的宽度。示例性地,所述第一沟槽与第二沟槽宽度的差值为3-5nm。Next, a second step of etching is performed on the trenches by wet etching, as shown in FIG. 8 . The solution used in the wet etching includes a hydrofluoric acid solution, a hydrofluoric acid solution, and the like. Since the wet etching rate of the second isolation layer material is higher than that of the first isolation layer, the width of the second trench 310 after wet etching is greater than the width of the first trench 309 . Exemplarily, the difference between the widths of the first trench and the second trench is 3-5 nm.

接着,执行步骤205,如图9所示,填充所述第一沟槽309和第二沟槽310,以形成第一鳍片311和第二鳍片312。具体地,在所述沟槽中外延生长硅或多晶硅,以填充所述沟槽。所述硅或者多晶硅可以选用减压外延、低温外延、选择外延、液相外延、异质外延以及分子束外延等。外延工艺可使用气体和/或液体前体。所述鳍片还可为通过硅锗外延沉积工艺形成的硅锗(SiGe)。在鳍片生长过程中通过添加杂质到外延工艺的原始材料中或随后通过离子注入工艺添加杂质到半导体材料的生长工艺中可掺杂半导体材料。接着,实施化学机械抛光(CMP)工艺以平坦化所述第一鳍片311和第二鳍片312。Next, step 205 is performed, as shown in FIG. 9 , the first trenches 309 and the second trenches 310 are filled to form the first fins 311 and the second fins 312 . Specifically, silicon or polysilicon is epitaxially grown in the trench to fill the trench. The silicon or polysilicon can be selected from decompression epitaxy, low temperature epitaxy, selective epitaxy, liquid phase epitaxy, heteroepitaxy, molecular beam epitaxy, and the like. The epitaxy process may use gaseous and/or liquid precursors. The fins may also be silicon germanium (SiGe) formed by a silicon germanium epitaxial deposition process. The semiconductor material may be doped by adding impurities to the starting material of the epitaxy process during the growth of the fin or subsequently adding impurities to the growth process of the semiconductor material by an ion implantation process. Next, a chemical mechanical polishing (CMP) process is performed to planarize the first fins 311 and the second fins 312 .

接着,执行步骤206,如图10所示,回刻蚀所述第一隔离层302及所述第二隔离层303,使所述第一鳍片311和第二鳍片312暴露预定的有效高度,所述第二鳍片312的有效高度大于所述第一鳍片311的有效高度。由于所述第一隔离层302的厚度大于所述第二隔离层303的厚度,因此所述第一鳍片311的有效高度小于所述第二鳍片312的有效高度。示例性地,所述第一鳍片与所述第二鳍片的有效高度差为50-200埃。所述回蚀刻工艺可以为干法蚀刻工艺、湿法蚀刻工艺、其它蚀刻工艺或其组合。在示例中,使用等离子体蚀刻,蚀刻源气体使用HBr、Cl2和O2的混合物,源气体的流速在从5毫升/分钟至1000毫升/分钟的范围内。压力在1毫托至100毫托的范围内。蚀刻工艺的射频(RF)偏置电源可以为约30W到约400W。在另一实施例中,还可采用稀释的氢氟酸(DHF)对所述隔离层进行回蚀刻。示例性地,所述稀释的氢氟酸(DHF)的浓度体积百分比为1:50~1:1000。Next, step 206 is performed, as shown in FIG. 10 , the first isolation layer 302 and the second isolation layer 303 are etched back to expose the first fins 311 and the second fins 312 to a predetermined effective height , the effective height of the second fins 312 is greater than the effective height of the first fins 311 . Since the thickness of the first isolation layer 302 is greater than the thickness of the second isolation layer 303 , the effective height of the first fins 311 is smaller than the effective height of the second fins 312 . Exemplarily, the effective height difference between the first fin and the second fin is 50-200 angstroms. The etch-back process may be a dry etching process, a wet etching process, other etching processes, or a combination thereof. In an example, plasma etching is used, the source gas for the etching uses a mixture of HBr, Cl2, and O2 , and the flow rate of the source gas ranges from 5 ml/min to 1000 ml/min. The pressure is in the range of 1 mTorr to 100 mTorr. The radio frequency (RF) bias power for the etching process may be about 30W to about 400W. In another embodiment, the isolation layer may also be etched back using dilute hydrofluoric acid (DHF). Exemplarily, the concentration volume percentage of the diluted hydrofluoric acid (DHF) is 1:50˜1:1000.

接着,在所述鳍片上形成栅极结构313,如图11所示。所述栅极结构313可以包括栅极介电层和栅极电极。栅极介电层包括介电材料如氧化硅、高k介电材料、其它合适的介电材料或其组合物。高k介电材料的示例包括HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO等。栅极电极包括多晶硅和/或包含Al、Cu、Ti、Ta、W、Mo、TaN、NiSi、CoSi、TiN、WN、TiAl、TiAlN、TaCN、TaC、TaSiN的金属,其它导电材料,或其组合物。栅极结构可包括很多其它层如覆盖层、界面层、扩散层、阻挡层、硬掩模层、或其组合。通过合适的工艺如沉积、光刻图案化和蚀刻工艺形成栅极结构。沉积工艺例如化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)等。光刻图案化工艺包括光阻涂布(如旋转涂布)、软烘、掩模对齐、暴露、曝后烘、光阻显影、清洗、干燥(如硬烘干)、其它合适的工艺、或其组合。可选地,可通过其它的方法如无掩模光刻、电子束写入或离子束写入实施或代替光刻暴露工艺。蚀刻工艺包括干法蚀刻、湿法蚀刻和/或其它蚀刻方法。Next, a gate structure 313 is formed on the fin, as shown in FIG. 11 . The gate structure 313 may include a gate dielectric layer and a gate electrode. The gate dielectric layer includes dielectric materials such as silicon oxide, high-k dielectric materials, other suitable dielectric materials, or combinations thereof. Examples of high-k dielectric materials include HfO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, and the like. The gate electrode includes polysilicon and/or metals including Al, Cu, Ti, Ta, W, Mo, TaN, NiSi, CoSi, TiN, WN, TiAl, TiAlN, TaCN, TaC, TaSiN, other conductive materials, or combinations thereof thing. The gate structure may include many other layers such as capping layers, interface layers, diffusion layers, barrier layers, hard mask layers, or combinations thereof. The gate structure is formed by suitable processes such as deposition, photolithographic patterning and etching processes. Deposition processes such as chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), and the like. Photolithographic patterning processes include photoresist coating (eg, spin coating), soft bake, mask alignment, exposure, post-exposure bake, photoresist development, cleaning, drying (eg, hard bake), other suitable processes, or its combination. Alternatively, the lithographic exposure process may be implemented or replaced by other methods such as maskless lithography, e-beam writing, or ion beam writing. Etching processes include dry etching, wet etching, and/or other etching methods.

需要注意的是,本实施例中还包括在鳍片的两端形成低掺杂源/漏极(LDD),然后形成重掺杂的源/漏极(未图示)的步骤。还可以执行后段工艺(BEOL)处理。例如,可以通过沉积和化学机械研磨在该结构上形成一层绝缘材料,通过光刻胶掩膜和刻蚀工艺在绝缘层中形成接触孔,填充该接触孔,形成金属互连等类似电连接结构等。It should be noted that this embodiment also includes the steps of forming low-doped source/drain (LDD) at both ends of the fin, and then forming heavily-doped source/drain (not shown). Back end of line (BEOL) processing can also be performed. For example, a layer of insulating material may be formed on the structure by deposition and chemical mechanical polishing, contact holes may be formed in the insulating layer by photoresist masking and etching processes, the contact holes may be filled, metal interconnections and the like may be formed for electrical connections structure, etc.

至此,完成了根据本发明示例性实施例一的方法实施的工艺步骤。可以理解的是,本实施例半导体器件制作方法不仅包括上述步骤,在上述步骤之前、之中或之后还可包括其他需要的步骤,其都包括在本实施制作方法的范围内。So far, the process steps implemented by the method according to the first exemplary embodiment of the present invention are completed. It can be understood that, the method for fabricating a semiconductor device in this embodiment not only includes the above steps, but may also include other required steps before, during or after the above steps, which are all included in the scope of the fabrication method in this embodiment.

与现有工艺相比,本发明提出的鳍式场效应晶体管的制造方法,能够得到不同宽度与有效高度的鳍片。Compared with the prior art, the manufacturing method of the fin field effect transistor proposed by the present invention can obtain fins with different widths and effective heights.

[示例性实施例二][Exemplary Embodiment 2]

参照图11,其中示出了根据本发明提供的制造方法获得的器件的鳍式场效应晶体管的示意性剖面图。本发明提供的鳍式场效应晶体管包括:半导体衬底301,第一隔离层302,第二隔离层303,第一鳍片311,第二鳍片312,栅极结构313。Referring to FIG. 11 , there is shown a schematic cross-sectional view of the fin field effect transistor of the device obtained according to the manufacturing method provided by the present invention. The fin field effect transistor provided by the present invention includes: a semiconductor substrate 301 , a first isolation layer 302 , a second isolation layer 303 , a first fin 311 , a second fin 312 , and a gate structure 313 .

其中,所述半导体衬底301可以是以下所提到的材料中的至少一种:硅、绝缘体上硅(SOI)、绝缘体上层叠硅(SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)、绝缘体上锗化硅(SiGeOI)以及绝缘体上锗(GeOI)等。The semiconductor substrate 301 may be at least one of the following materials: silicon, silicon-on-insulator (SOI), silicon-on-insulator (SSOI), silicon germanium-on-insulator (S-SiGeOI) , silicon germanium on insulator (SiGeOI) and germanium on insulator (GeOI).

所述第一隔离层302位于所述半导体衬底上的第一区域。示例性地,所述第一隔离层302的材料包括氧化物,例如氧化硅等。所述第一隔离层302的形成工艺可以是化学气相沉积、高密度等离子体CVD、原子层淀积、等离子体增强原子层淀积、脉冲激光沉积或其他合适的方法,较佳的是化学气相沉积法。当半导体衬底301的材料为硅时,所述第一隔离层302的形成工艺还可以为热氧化法。The first isolation layer 302 is located in a first region on the semiconductor substrate. Exemplarily, the material of the first isolation layer 302 includes oxide, such as silicon oxide. The formation process of the first isolation layer 302 can be chemical vapor deposition, high-density plasma CVD, atomic layer deposition, plasma enhanced atomic layer deposition, pulsed laser deposition or other suitable methods, preferably chemical vapor deposition. deposition method. When the material of the semiconductor substrate 301 is silicon, the formation process of the first isolation layer 302 may also be a thermal oxidation method.

所述第二隔离层303位于所述半导体衬底上的第二区域。示例性地,所述第二隔离层303的材料包括氧化物,例如氧化硅等,其形成工艺与所述第一隔离层类似。所述第二隔离层材料的密度低于所述第一隔离层302,其刻蚀速率及抛光速率大于所述第一隔离层302,因此在执行平坦化处理以后,所述第二隔离层303的厚度小于所述第一隔离层302的厚度。The second isolation layer 303 is located in a second region on the semiconductor substrate. Exemplarily, the material of the second isolation layer 303 includes oxide, such as silicon oxide, and the formation process thereof is similar to that of the first isolation layer. The density of the material of the second isolation layer is lower than that of the first isolation layer 302, and its etching rate and polishing rate are higher than those of the first isolation layer 302. Therefore, after the planarization process is performed, the second isolation layer 303 is smaller than the thickness of the first isolation layer 302 .

所述第一鳍片311及所述第二鳍片312分别形成于所述第一隔离层302及所述第二隔离层303中。具体地,先通过干法刻蚀及湿法刻蚀分别在所述第一隔离层302及所述第二隔离层303中形成定义鳍片的第一沟槽309和第二沟槽310,由于所述第二隔离层303的湿法刻蚀速率大于所述第一隔离层302,因此第二沟槽310的宽度大于第一沟槽309;接着使用外延生长法填充所述沟槽,以形成第一鳍片311和第二鳍片312,并进行平坦化处理,使所述第一鳍片311和第二鳍片312上表面齐平;接着回刻蚀所述第一隔离层302及所述第二隔离层303,使所述第一鳍片311和第二鳍片312暴露预定高度。由于所述第二沟槽310的宽度大于所述第一沟槽309,因而所述第二鳍片312的宽度大于所述第一鳍片311;由于所述第一鳍片311与所述第二鳍片312的上表面齐平,而所述第一隔离层302的厚度大于所述第二隔离层303,因而所述第二鳍片312的有效高度大于所述第一鳍片311。所述第一鳍片与所述第二鳍片的宽度差为3-5nm,所述第一鳍片与所述第二鳍片的有效高度差为50-200埃。The first fins 311 and the second fins 312 are respectively formed in the first isolation layer 302 and the second isolation layer 303 . Specifically, first trenches 309 and second trenches 310 defining fins are formed in the first isolation layer 302 and the second isolation layer 303 by dry etching and wet etching, respectively. The wet etching rate of the second isolation layer 303 is higher than that of the first isolation layer 302, so the width of the second trench 310 is larger than that of the first trench 309; then the trench is filled by epitaxial growth to form The first fins 311 and the second fins 312 are planarized to make the upper surfaces of the first fins 311 and the second fins 312 flush; then the first isolation layer 302 and all the The second isolation layer 303 exposes the first fins 311 and the second fins 312 to a predetermined height. Since the width of the second trench 310 is greater than that of the first trench 309, the width of the second fin 312 is greater than that of the first fin 311; The upper surfaces of the two fins 312 are flush, and the thickness of the first isolation layer 302 is greater than that of the second isolation layer 303 , so the effective height of the second fins 312 is greater than that of the first fins 311 . The width difference between the first fin and the second fin is 3-5 nm, and the effective height difference between the first fin and the second fin is 50-200 angstroms.

所述栅极结构313包括形成于隔离层和鳍片上,横跨鳍片的栅介电层以及形成于栅介质层上的栅极电极。栅介电层包括介电材料如氧化硅、高k介电材料、其它合适的介电材料或其组合物。高k介电材料的示例包括HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO等。栅极电极包括多晶硅和/或包含Al、Cu、Ti、Ta、W、Mo、TaN、NiSi、CoSi、TiN、WN、TiAl、TiAlN、TaCN、TaC、TaSiN的金属,其它导电材料,或其组合物。栅极结构313可包括很多其它层如覆盖层、界面层、扩散层、阻挡层、硬掩模层、或其组合。通过合适的工艺如沉积、光刻图案化和蚀刻工艺形成栅极结构313。The gate structure 313 includes a gate dielectric layer formed on the isolation layer and the fins, a gate dielectric layer across the fins, and a gate electrode formed on the gate dielectric layer. The gate dielectric layer includes dielectric materials such as silicon oxide, high-k dielectric materials, other suitable dielectric materials, or combinations thereof. Examples of high-k dielectric materials include HfO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, and the like. The gate electrode includes polysilicon and/or metals including Al, Cu, Ti, Ta, W, Mo, TaN, NiSi, CoSi, TiN, WN, TiAl, TiAlN, TaCN, TaC, TaSiN, other conductive materials, or combinations thereof thing. The gate structure 313 may include many other layers such as capping layers, interface layers, diffusion layers, barrier layers, hard mask layers, or combinations thereof. The gate structure 313 is formed by suitable processes such as deposition, photolithographic patterning, and etching processes.

与现有工艺相比,本发明提出的鳍式场效应晶体管,具有不同宽度与有效高度的鳍片。Compared with the prior art, the fin field effect transistor proposed by the present invention has fins with different widths and effective heights.

本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。The present invention has been described by the above-mentioned embodiments, but it should be understood that the above-mentioned embodiments are only for the purpose of illustration and description, and are not intended to limit the present invention to the scope of the described embodiments. In addition, those skilled in the art can understand that the present invention is not limited to the above-mentioned embodiments, and more variations and modifications can also be made according to the teachings of the present invention, and these variations and modifications all fall within the protection claimed in the present invention. within the range. The protection scope of the present invention is defined by the appended claims and their equivalents.

Claims (20)

1.一种鳍式场效应晶体管的制作方法,其特征在于,包括:1. a manufacturing method of a fin field effect transistor, is characterized in that, comprises: 提供半导体衬底;provide semiconductor substrates; 在所述半导体衬底的第一区域上形成第一隔离层;forming a first isolation layer on the first region of the semiconductor substrate; 在所述半导体衬底的第二区域上形成第二隔离层,所述第二隔离层的密度低于所述第一隔离层的密度,所述第二隔离层的刻蚀速率大于所述第一隔离层的刻蚀速率;A second isolation layer is formed on the second region of the semiconductor substrate, the density of the second isolation layer is lower than that of the first isolation layer, and the etching rate of the second isolation layer is higher than that of the first isolation layer an etch rate of the isolation layer; 刻蚀所述第一隔离层及所述第二隔离层,形成定义鳍片的第一沟槽和第二沟槽,所述第二沟槽的宽度大于所述第一沟槽的宽度;etching the first isolation layer and the second isolation layer to form a first trench and a second trench defining a fin, and the width of the second trench is greater than the width of the first trench; 填充所述第一沟槽和第二沟槽,以形成第一鳍片和第二鳍片。The first and second trenches are filled to form first and second fins. 2.根据权利要求1所述的方法,其特征在于,还包括回刻蚀所述第一隔离层及所述第二隔离层,使所述第一鳍片和第二鳍片暴露预定的有效高度的步骤,所述第二鳍片的有效高度大于所述第一鳍片的有效高度。2. The method of claim 1, further comprising etching back the first isolation layer and the second isolation layer to expose the first fin and the second fin for a predetermined effective In the step of height, the effective height of the second fin is greater than the effective height of the first fin. 3.根据权利要求1所述的方法,其特征在于,所述第二隔离层的抛光速率大于所述第一隔离层的抛光速率。3. The method of claim 1, wherein the polishing rate of the second isolation layer is greater than the polishing rate of the first isolation layer. 4.根据权利要求1所述的方法,其特征在于,所述刻蚀步骤包括通过使用掩膜干法刻蚀形成定义鳍片的第一沟槽和第二沟槽,以及通过湿法刻蚀所述第一沟槽和第二沟槽使所述第二沟槽的宽度大于所述第一沟槽的宽度。4. The method of claim 1, wherein the etching step comprises forming first and second trenches defining fins by dry etching using a mask, and wet etching The first trench and the second trench are such that the width of the second trench is larger than the width of the first trench. 5.根据权利要求1所述的方法,其特征在于,所述第一鳍片和第二鳍片的形成方法为外延生长法。5 . The method of claim 1 , wherein the first fin and the second fin are formed by an epitaxial growth method. 6 . 6.根据权利要求3所述的方法,其特征在于,形成所述第二隔离层之后,还包括执行平坦化工艺,使所述第一隔离层与所述第二隔离层形成阶梯式高度的步骤。6 . The method according to claim 3 , wherein after forming the second isolation layer, further comprising performing a planarization process, so that the first isolation layer and the second isolation layer form a stepped height. 7 . step. 7.根据权利要求6所述的方法,其特征在于,所述平坦化工艺为化学机械抛光法。7. The method of claim 6, wherein the planarization process is a chemical mechanical polishing method. 8.根据权利要求4所述的方法,其特征在于,所述刻蚀步骤采用的掩膜为掩膜叠层。8. The method according to claim 4, wherein the mask used in the etching step is a mask stack. 9.根据权利要求8所述的方法,其特征在于,所述掩膜叠层包括旋涂碳层及介质抗反射层。9. The method of claim 8, wherein the mask stack comprises a spin-on carbon layer and a dielectric anti-reflection layer. 10.根据权利要求8所述的方法,其特征在于,所述掩膜叠层包括硅抗反射层及底部抗反射层。10. The method of claim 8, wherein the mask stack comprises a silicon anti-reflection layer and a bottom anti-reflection layer. 11.根据权利要求1所述的方法,其特征在于,所述第一鳍片与所述第二鳍片的宽度差为3-5nm。11 . The method of claim 1 , wherein a difference in width between the first fin and the second fin is 3-5 nm. 12 . 12.根据权利要求2所述的方法,其特征在于,所述第一鳍片与所述第二鳍片的有效高度差为50-200埃。12. The method of claim 2, wherein an effective height difference between the first fin and the second fin is 50-200 angstroms. 13.根据权利要求1所述的方法,其特征在于,还包括在所述第一鳍片和第二鳍片上形成栅极结构的步骤。13. The method of claim 1, further comprising the step of forming a gate structure on the first fin and the second fin. 14.根据权利要求1所述的方法,其特征在于,所述第一隔离层和第二隔离层均为氧化物层。14. The method of claim 1, wherein the first isolation layer and the second isolation layer are both oxide layers. 15.一种采用权利要求1-14之一所述方法制备的鳍式场效应晶体管,其特征在于,包括:15. A fin field effect transistor prepared by the method of one of claims 1-14, characterized in that, comprising: 半导体衬底;semiconductor substrate; 位于所述半导体衬底第一区域上的第一隔离层,以及位于所述半导体衬底 第二区域上的第二隔离层,所述第二隔离层的高度小于所述第一隔离层的高度,所述第二隔离层的密度小于所述第一隔离层的密度,所述第二隔离层的刻蚀速率大于所述第一隔离层的刻蚀速率;a first isolation layer on a first region of the semiconductor substrate, and a second isolation layer on a second region of the semiconductor substrate, the height of the second isolation layer being less than the height of the first isolation layer , the density of the second isolation layer is smaller than the density of the first isolation layer, and the etching rate of the second isolation layer is greater than the etching rate of the first isolation layer; 由所述第一隔离层隔离开的第一鳍片以及由所述第二隔离层隔离开的第二鳍片,所述第一鳍片的宽度小于所述第二鳍片,所述第二鳍片暴露在所述第二隔离层以外的高度大于所述第一鳍片暴露在所述第一隔离层以外的高度。A first fin separated by the first isolation layer and a second fin separated by the second isolation layer, the width of the first fin is smaller than that of the second fin, the second fin is The height of the fins exposed outside the second isolation layer is greater than the height of the first fins exposed outside the first isolation layer. 16.根据权利要求15所述的鳍式场效应晶体管,其特征在于,所述第二隔离层的抛光速率大于所述第一隔离层的抛光速率。16 . The fin field effect transistor of claim 15 , wherein a polishing rate of the second isolation layer is greater than a polishing rate of the first isolation layer. 17 . 17.根据权利要求15所述的鳍式场效应晶体管,其特征在于,还包括形成于所述第一鳍片和第二鳍片上的栅极结构。17. The fin field effect transistor of claim 15, further comprising a gate structure formed on the first fin and the second fin. 18.根据权利要求15所述的鳍式场效应晶体管,其特征在于,所述第一鳍片与所述第二鳍片的宽度差为3-5nm。18 . The fin field effect transistor of claim 15 , wherein a difference in width between the first fin and the second fin is 3-5 nm. 19 . 19.根据权利要求15所述的鳍式场效应晶体管,其特征在于,所述第一鳍片与所述第二鳍片的有效高度差为50-200埃。19 . The fin field effect transistor of claim 15 , wherein an effective height difference between the first fin and the second fin is 50-200 angstroms. 20 . 20.根据权利要求15所述的鳍式场效应晶体管,其特征在于,所述第一隔离层和第二隔离层为氧化物层。20 . The fin field effect transistor of claim 15 , wherein the first isolation layer and the second isolation layer are oxide layers. 21 .
CN201610726754.4A 2016-08-25 2016-08-25 A kind of fin field effect transistor and its manufacturing method Active CN107785419B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610726754.4A CN107785419B (en) 2016-08-25 2016-08-25 A kind of fin field effect transistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610726754.4A CN107785419B (en) 2016-08-25 2016-08-25 A kind of fin field effect transistor and its manufacturing method

Publications (2)

Publication Number Publication Date
CN107785419A CN107785419A (en) 2018-03-09
CN107785419B true CN107785419B (en) 2020-09-01

Family

ID=61438644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610726754.4A Active CN107785419B (en) 2016-08-25 2016-08-25 A kind of fin field effect transistor and its manufacturing method

Country Status (1)

Country Link
CN (1) CN107785419B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403276A (en) * 2020-03-24 2020-07-10 长江存储科技有限责任公司 Method for manufacturing semiconductor structure
US11374002B2 (en) * 2020-07-24 2022-06-28 Globalfoundries U.S. Inc. Transistors with hybrid source/drain regions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296069A (en) * 2012-02-28 2013-09-11 台湾积体电路制造股份有限公司 FinFET and method of fabricating the same
CN103681339A (en) * 2012-09-20 2014-03-26 中芯国际集成电路制造(上海)有限公司 Fin field effect transistor preparation method
CN103887177A (en) * 2014-03-27 2014-06-25 上海集成电路研发中心有限公司 Finned active area manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196380B2 (en) * 2005-01-13 2007-03-27 International Business Machines Corporation High mobility plane FinFET with equal drive strength
US20110260282A1 (en) * 2010-04-23 2011-10-27 Toshiba America Electronic Components, Inc. Semiconductor device and manufacturing methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296069A (en) * 2012-02-28 2013-09-11 台湾积体电路制造股份有限公司 FinFET and method of fabricating the same
CN103681339A (en) * 2012-09-20 2014-03-26 中芯国际集成电路制造(上海)有限公司 Fin field effect transistor preparation method
CN103887177A (en) * 2014-03-27 2014-06-25 上海集成电路研发中心有限公司 Finned active area manufacturing method

Also Published As

Publication number Publication date
CN107785419A (en) 2018-03-09

Similar Documents

Publication Publication Date Title
US11855214B2 (en) Inner spacers for gate-all-around semiconductor devices
TWI815151B (en) Semiconductor device and methods for forming the same
KR102384617B1 (en) Leakage prevention structure and method
US11670723B2 (en) Silicon channel tempering
TWI786608B (en) Semiconductor device and method for fabricating the same
CN113054026B (en) Semiconductor device and method for forming the same
KR102545983B1 (en) Epitaxial features
US11908942B2 (en) Transistors having nanostructures
US12199190B2 (en) Silicon channel tempering
US12178032B2 (en) Source/drain feature separation structure
US12057486B2 (en) Metal gate cap
TW202213535A (en) Semiconductor device and method for manufacturing the same
US20240290870A1 (en) Methods for forming multi-gate transistors
CN107785419B (en) A kind of fin field effect transistor and its manufacturing method
CN218004857U (en) Semiconductor device
TWI872324B (en) Semiconductor device and fabricating method thereof
US20250126855A1 (en) Gate formation process
US20240413039A1 (en) Heat sink for stacked multi-gate device
US20240413220A1 (en) Stacked multi-gate device with an insulating layer between top and bottom source/drain features
TW202510102A (en) Semiconductor structure and forming method thereof
CN115841983A (en) Semiconductor structure and forming method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant