CN107769742A - 具有放大器‑mosfet的集成电路 - Google Patents
具有放大器‑mosfet的集成电路 Download PDFInfo
- Publication number
- CN107769742A CN107769742A CN201710703215.3A CN201710703215A CN107769742A CN 107769742 A CN107769742 A CN 107769742A CN 201710703215 A CN201710703215 A CN 201710703215A CN 107769742 A CN107769742 A CN 107769742A
- Authority
- CN
- China
- Prior art keywords
- mosfet
- integrated circuit
- amplifier
- terminal
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/34—DC amplifiers in which all stages are DC-coupled
- H03F3/343—DC amplifiers in which all stages are DC-coupled with semiconductor devices only
- H03F3/345—DC amplifiers in which all stages are DC-coupled with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/195—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is DC
- G05F3/10—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/205—Substrate bias-voltage generators
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/26—Modifications of amplifiers to reduce influence of noise generated by amplifying elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/193—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G1/00—Details of arrangements for controlling amplification
- H03G1/0005—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
- H03G1/0017—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
- H03G1/0023—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier in emitter-coupled or cascode amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G1/00—Details of arrangements for controlling amplification
- H03G1/0005—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
- H03G1/0017—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
- H03G1/0029—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier using FETs
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G1/00—Details of arrangements for controlling amplification
- H03G1/0005—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
- H03G1/0035—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements
- H03G1/007—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements using FET type devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G1/00—Details of arrangements for controlling amplification
- H03G1/0005—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
- H03G1/0088—Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/811—Combinations of field-effect devices and one or more diodes, capacitors or resistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/856—Complementary IGFETs, e.g. CMOS the complementary IGFETs having different architectures than each other, e.g. high-voltage and low-voltage CMOS
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Amplifiers (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
一种集成电路(200)包括衬底、放大器‑MOSFET(100)和偏压端子。偏压端子设置用于产生衬底与放大器‑MOSFET(100)的至少一个负载端子的电势差。衬底的电阻率不小于0.3kOhm cm,所述电势差是‑3V或者更负。由此可以在实例中实现特别是用于高频信号的具有低的信号噪声的放大器。
Description
技术领域
不同的实施方式涉及一种集成电路,其具有放大器-MOSFET和衬底。衬底相对于放大器-MOSFET的至少一个负载端子的电势差是-3V或者更负。衬底的电阻率不小于0.3kOhmcm。
背景技术
在多种应用情况中,期望具有低的信号噪声的信号放大。特别是与高频信号有关地,具有低的信号噪声的放大会是值得努力达到的。为了实现相应的具有低的信号噪声的放大器(英文:低噪声放大器(low noise amplifier,LNA))通常使用硅锗(SiGe)技术。在此,SiGe技术中的晶体管可能为了从未导电状态切换到导电状态而具有相对大的阈值电压(典型地0.7V)并伴有通过基极-发射极二极管相对高的电流消耗以及温度系数(典型地2mV/K)。此外,SiGe技术中的晶体管可以相对于静电放电具有高的稳定性。
另一方面,以SiGe技术制造元件的复杂性相对较高。因此,基于SiGe技术的开关的线性和效率通常可能受到极大限制。这与Complementary metal-oxide-semiconductor(CMOS)技术相比可以特别是合乎实际的。金属氧化物场效应晶体管(MOSFETs)被使用在CMOS技术中。
然而CMOS技术中的放大器的传统的实施方案在信号噪声方面与硅锗技术中的相应的实施方案相比具有不利的特性。信号噪声可以是非常显著的。
发明内容
因此,存在对用于改善放大器电路的技术的需要。特别是存在对减小或者消除至少一些上述缺点和限制的技术的需要。
该任务由独立权要求的特征解决。从属权利要求确定了实施方式。
根据一个实例,一种集成电路包括衬底和放大器-MOSFET。该集成电路也包括偏压端子。偏压端子设置用于产生衬底与放大器-MOSFET的至少一个负载端子的电势差。衬底的电阻率不小于0.3kOhm cm。电势差是-3V或者更负。
在一个另外的实例中,一种方法包括加工衬底,从而衬底具有不小于0.3kOhm cm的电阻率。该方法也包括将集成电路提供到衬底上,该集成电路包括放大器-MOSFET和偏压端子。偏压端子设置用于产生衬底与放大器-MOSFET的至少一个负载端子的电势差,所述电势差是-3V或者更负。
上述的特征和在下文中所述的特征可以在不脱离本发明的保护范围的情况下不仅以相应的详细描述的组合使用,而且也能够以另外的组合或单独地使用
附图说明
图1A示意性地示出根据不同的实施方式的N沟道MOSFET。
图1B示意性地示出根据不同的实施方式的P沟道MOSFET。
图2示意性地示出根据不同的实施方式的具有MOSFET和共源-共栅放大器-MOSFET的集成电路。
图3示意性地示出根据不同的实施方式的具有MOSFET和旁路支路的集成电路。
图4示意性地示出根据不同的实施方式的具有MOSFET、多个输入端子以及对应于输入端子的多个开关的集成电路。
图5以放大的细节图示意性地示出根据不同的实施方式的图4的开关。
图6示意性地示出根据不同的实施方式的具有MOSFET和过压保护元件的集成电路。
图7以放大的细节图示意性地示出根据不同的实施方式的图6的过压保护元件。
图8示意性地示出根据不同的实施方式的具有MOSFET的集成电路。
图9是根据不同的实施方式的方法的流程图。
具体实施方式
本发明的前述的特性、特征和优点以及如何实现其的方式和方法结合实施例的下述说明变得更清楚地并且更明确地理解,所述实施例结合附图详细地说明。
下面根据优选的实施例参考附图详细地说明本发明。在附图中,相同的或类似的元件标出相同的附图标记。附图是本发明的不同实施例的示意性的代表。附图中所示的元件不需要按比例尺示出。确切地说,不同的在附图中示出的元件这样描述,以使得所述元件的功能和一般目的对于本领域技术人员而言易于理解。附图中所示的功能性的单元和元件之间的连接和耦合也可以实施为间接的连接和耦合。功能性的单元可以实施为硬件、软件或者由硬件和软件构成的组合。
下面描述用于提供集成电路的技术,该集成电路设置用于以放大系数放大输出信号并且输出相应的输出信号。在此在这方面描述特别是适用于实现放大高频输入信号的技术。在此,高频输入信号的信号部分可以具有>1GHz、>3GHz或>10GHz的频率。
在此所述的技术可以例如提供一种具有MOSFET的集成电路。MOSFET典型地包括控制端子,所述控制端子也称为栅极端子。MOSFET典型地包括两个负载端子,所述负载端子也称为漏极端子和源极端子。在此,通过控制端子上的控制电压控制负载端子之间的导电性。MOSFET可以引起输入信号的放大并且由此也可以称为放大器MOSFET。MOSFET可以在此以CMOS技术制造。这意味着,MOSFET可以例如是P沟道MOSFET或者N沟道MOSFET。特别是硅可以用作衬底。不需要的是,MOSFET以绝缘层上硅技术(英文为silicon on insulator,SOI)制造。
在不同的实例中,衬底可以具有特别小的P掺杂。这可以意味着,衬底具有相对高的电阻率。例如,衬底的电阻率可以使0.3kOhm cm或者更大。
在另外的实例中可能的是,衬底相对于参考电势具有负的偏压(英文为bias)。例如可能的是,衬底与MOSFET的源极端子的电势差是-3V或者更负。例如也可能的是,衬底与MOSFET的漏极端子的电势差是-3V或者更负。
借助于这种技术可以极大地减小寄生电容,由此可以实现关于晶体管几何结构的附加的自由度。由此可以针对在放大时特别低的信号噪声进行优化。这可以通过有针对性地改善栅极多晶硅的导电性来实现。由此可以进行具有高性能的放大。同时可以实现,以建立的和良好制造的CMOS技术实现集成电路,以便附加地利用逻辑集成的优点。
此外,通过使用MOSFET可能的是,提供具有高线性的放大。
图1A示出关于MOSFET 100的方面。例如,MOSFET 100可以用于放大输入信号,即用作放大器-MOSFET。在图1A的实例中,MOSFET 100实施为N沟道MOSFET(通常也称为NMOS)。这意味着,在负载端子101,102之间通过在控制端子103上施加控制电压而形成了在另外的P掺杂的衬底106(例如硅)上的具有负的载流子的沟道。借助于负的载流子可以使负载电流在负载端子101,102之间流动(MOSFET 100的导电状态)。控制端子103通过绝缘层105与衬底106分隔开。
图1A还示出关于衬底106和参考电势之间的偏压的方面。在图1A中示出偏压端子110。偏压端子设置用于产生衬底106相对于至少一个负载端子101,102、例如相对于源极端子101的电势差。电势差在此可以确定为:ΔU=U衬底-U源极,其中,U衬底表示衬底的电势,并且U源极表示源极端子101的电势。
偏压端子110例如可以设计为焊盘,从而外部的电压源可以与集成电路100连接,以便产生电势差。也可能的是,偏压端子110与集成在集成电路100上的电压源、例如偏压端子连接。电势差可以例如是-3V或者更负。也可能的是,电势差可以例如是-4V或者更负、优选-6V或者更负、特别优选-8V或者更负。
图1A此外示出关于衬底106的掺杂。在图1A的实例中,衬底106具有少的受主(Akzeptor)(在图1A中未示出)的掺杂195。因此,衬底106被微弱地P型掺杂。掺杂195在此可以被进行以使得衬底106具有确定的电阻率。电阻率可以例如是0.3kOhm cm或者更大。也可能的是,电阻率是0.5kOhm cm或者更大、优选地1kOhm cm或者更大、特别优选地5kOhm cm或者更大。
图1B示出关于MOSFET 100的方面。根据图1B的实例的MOSFET 100又可以用于放大输入信号、即用作放大器-MOSFET。在图1B的实例中,MOSFET 100实施为P沟道MOSFET。在此,根据图1B的实例的P沟道MOSFET 100原则上相应于根据图1A的实例的N沟道MOSFET 100。根据图1B的实例的P沟道MOSFET 100具有N型掺杂的阱(Wanne)104,所述阱包围负载端子101,102。在N型掺杂的阱内可以接着通过将控制电压施加到控制触点103上形成具有正载流子的沟道。
在图1A,1B中此外示出控制端子103的栅极长度103A。栅极长度103A典型地通过所使用的CMOS技术确定。典型的栅极长度103A例如处于14nm-1000nm的范围内。
在图1A,1B中此外示出负载端子101,102和衬底106之间的寄生电容120。由于空间电荷层的区域中的载流子贫化产生所述电容106,在该空间电荷层中发生正的载流子和负的载流子的分离。通过微弱的掺杂195在衬底106的区域中提供仅仅少的自由载流子。换句话说,这样实现衬底106的相对大的电阻率,以使得在衬底106的区域中存在少的自由载流子。因此实现了特别大的空间电荷层。因此,电容106是相对小的。由此实现较大的较低欧姆的几何结构,所述几何结构可以用于减小信号噪声。此外,较低的电容可以减小对高频调节电路的要求并且实现例如较小的电感值:由此也可以减小损耗。通过减小损耗又可以进一步减小信号噪声。
在大多数的实例中,与使用P沟道MOSFET 100的相比,由于明显更慢的通断时间和工作频率106,使用N沟道MOSFET 100是优选的。P沟道MOSFET具有典型地明显更小的放大率。
通常可以值得努力达到的是,实现MOSFET 100的特别大的栅极宽度。在此,栅极宽度表示MOSFET 100垂直于负载端子101,102之间的连接线的延伸。栅极宽度可以例如通过多个指状结构的并联电路调节,该指状结构包括MOSFET 100的各晶体管元件。通过使用MOSFET 100的相对大的栅极宽度可以实现在放大时特别小的信号噪声。例如可能的是,MOSFET 100的栅极宽度是>100μm、优选>200μm、特别优选>500μm。例如,MOSFET 100的栅极宽度可以处于280-580μm范围内。
在此,不同的在此描述的实例基于下述知识,即由于衬底106的高的电阻率减小了电容120的影响。由此又可以实现,在不达到电容120的不能接受地大的绝对值的情况下将MOSFET 100的栅极宽度的大小限定为更大的。由此,又可以减小负载端子101,102之间的沟道电阻。这又实现了在放大时低的信号噪声。
下面说明关于P沟道MOSFET 100的不同的实例。然而在此相应的技术也可以通过N沟道MOSFET 100实现。
图2示出关于集成电路200的方面。电路200包括例如根据图1A,1B的实例之一的MOSFET 100。MOSFET 100以其负载端子101,102在偏压端子216和地线217之间切换。在MOSFET 100的负载端子之间相应的电流可以作为MOSFET 100的控制端子103上的输入信号的功能被切换。电路200实现基于MOSFET 100的LNA。出于简明,在图2中未示出用于MOSFET100的无功电流调节装置(Ruhestromeinstellung)(英文为Bias)。
电路200也包括输入端子221,所述输入端子设置用于接收接收信号、例如高频输入信号。输入端子221与MOSFET 100的控制端子103连接。
电感221与输入端子221相邻地布置。该电感引起对输入信号进行滤波。电感221与源阻抗有关并且与工作频率有关并且由此可以在一些实例中被去掉。
电路200也包括输出端子231,所述输出端子也设置用于输出一个输出信号、例如高频输出信号。输出端子231在此布置在MOSFET 100的朝向负载端子101,102的侧上。
在此,输出信号可以对应于输入信号,然而具有较大的振幅。输入信号的放大可以通过MOSFET 100实现。输出信号振幅与输入信号振幅的比例定义了放大系数。电路200也包括电感212。电感212布置在MOSFET 100的朝向负载端子101,102的侧上。电感212在图2的实例中布置在MOSFET 100的源极端子101和地线217中间。MOSFET 100和电感212确定了放大系数。放大系数可以例如是10dB或者更大、优选15dB或者更大、特别优选18dB或者更大。
MOSFET 100在不同的在此描述的实例中不以SOI技术制造。由此,MOSFET 100的负载端子101,102由此不通过绝缘层与衬底106分隔开,也就是说,以体技术(Bulk-Technologie)关于衬底106布置。这意味着,可能的是,实现电势差并且作为电路200的体特性的电阻率。这意味着,在整个电路200的区域内存在电势差和电阻率。不需要多个偏压端子100;单个的偏压端子100可以用于整个电路200。尤其可以不是必要的,集成电路200的单个晶体管分别与各自独立的参数有关地实现掺杂195和电势差。这样可以实现所使用的制造技术特别低的复杂性。
电路200也包括共源-共栅放大器-MOSFET 213,所述共源-共栅放大器-MOSFET布置在MOSFET 100的漏极端子102和输出端子231之间。共源-共栅放大器-MOSFET 213利用通过供电端子215提供的供电电压进行通断(在图2中出于简明的原因未示出用于提供共源-共栅放大器-MOSFET 213的共源-共栅放大器电压的电路)。共源-共栅放大器-MOSFET 213可以用于抑制米勒效应。
可能的是,共源-共栅放大器-MOSFET 213和MOSFET 100以相同的技术制造。共源-共栅放大器-MOSFET 213和MOSFET 100特别是可以具有相同的结构参数。例如可能的是,共源-共栅放大器-MOSFET 213和MOSFET 100具有相同的栅极长度103A。这样可以实现特别简单地制造电路200。尤其可以不是必要的,单独地制造MOSFET 100和共源-共栅放大器-MOSFET 213。
MOSFET 100和共源-共栅放大器-MOSFET 213可以具有相应的负载端子101,102和衬底106之间相同的电势差。为此可以使用同一个偏压端子110。
在一些实例中可能的是,共源-共栅放大器-MOSFET 213和MOSFET 100具有不同的栅极宽度。
电感214此外设置用于增大在供电端子216的方向上的用于高频输出信号的阻抗。
图3示出关于集成电路200的方面。电路200包括例如根据图1A,1B的实例之一的MOSFET 100。根据图3的实例的电路200在此原则上相应于根据图2的实例的电路200。前述不同的关于根据图2的实例的电路200所述的方面也可以应用到根据图3的实例的电路200上。电路200实现了基于MOSFET 100的LNA。
在图3的实例中,电路200包括两个开关302,303。开关302,303在此与输入端子221相邻地布置。开关302布置在输入端子221和MOSFET 100的控制端子103之间。开关302布置在旁路支路301中,该旁路支路在绕过MOSFET 100的情况下使输入端子221与输出端子231连接。
根据输入端子221上的输入信号的振幅可能的是,可选地通过相应地操作开关302,303激活旁路支路,从而可以实现放大输入信号或者可以抑制放大。由此可以例如关于功率放大器在输入信号足够大的振幅下通过绕开MOSFET 100减小能量损耗。此外,可以避免MOSFET 100的输入侧的压缩/饱和。
图4示出关于集成电路200的方面。电路200包括例如根据图1A,1B的实例之一的MOSFET 100。根据图4的实例的电路200在此原则上相应于根据图2和3的实例的电路200。前述不同的关于根据图2和3的实例的电路200所述的方面也可以应用到根据图4的实例的电路200上。电路200实现了基于MOSFET 100的LNA。
在图4的实例中,集成电路200包括多个开关401,402和多个输入端子221,222。在此,开关401,402分别与所述输入端子221,222中的一个输入端子相关联。例如,开关401与输入端子221相邻地布置。开关401特别是布置在MOSFET 100的控制端子103和输入端子221之间。开关402又与输入端子222相邻地布置。开关402特别是布置在MOSFET 100的控制端子103和输入端子222之间。
借助于相应地操作开关401,402可以实现,在用于借助于MOSFET 100放大的在输入接口221,222上不同的输入信号之间进行选择。
图5示出开关302,303,401,402的细节图。在此,开关302,303,401,402分别通过从开关-MOSFET至地线217的串联电路实现。开关-MOSFET可以具有与MOSFET 100相同的栅极长度103A。这样又可以实现特别简单地制造电路200。尤其可以不是必要的,实现单独地制造MOSFET 100和开关-MOSFET。
在图5的实例中,相应的开关302,303,401,402通过多个具有相应的控制电阻441和供电端子450的开关-MOSFET 431来实现。通过这种开关-MOSFET 431的叠堆可以实现,各个开关-MOSFET 431的相对小的击穿电压通过将电压降均匀地分布到所述叠堆的不同的开关-MOSFET 431上来补偿。
MOSFET 100和开关-MOSFET 431可以具有相应的负载端子101,102和衬底106之间相同的电势差。为此可以使用同一个偏压端子110。通过衬底106的负偏压可以减小开关-MOSFET 431的寄生衬底二极管。由此可以实现用于“OFF”状态的在用于开关302,303,401,402的叠堆431内部特别线性的电压分布。
图6示出关于集成电路200的方面。电路200包括根据图1A,1B的实例之一的MOSFET100。根据图6的实例的电路200在此原则上相应于根据图2-4的实例的电路200。特别是前述关于根据图2-4的实例的电路200所述的方面也可以应用到根据图6的实例的电路200上。电路200实现了基于MOSFET 100的LNA。
在图6的实例中,电路200此外包括过压保护元件601,所述过压保护元件布置在输入端子221和MOSFET 100之间。也就是说,过压保护元件601布置在MOSFET 100的朝向MOSFET 100的控制端子101的侧上。过压保护元件601布置在输入端子221和MOSFET 100的控制端子101之间。过压保护元件601可以设置用于例如由于在手动地操作电路200时的静电放电导致的输入信号的过压向地线217导出。这样可以避免损坏MOSFET 100。
在图6的实例中,电路200此外包括过压保护元件602,所述过压保护元件布置在输出端子231和MOSFET 100之间。也就是说,过压保护元件602布置在MOSFET 100的朝向MOSFET 100的负载端子101,102的侧上。特别是过压保护元件602布置在MOSFET 100的漏极端子102和输出端子231之间。
图7示出关于过压保护元件601,602的方面。图7以放大的细节图特别是示出根据一个示例性的实施例的过压保护元件601,602。
过压保护元件601,602包括电容器612、ESD-MOSFET 611、电阻613以及供电端子614。在图7的实例中,过压保护元件601,602包括仅仅一个单个的ESD-MOSFET 611。然而在另外的实例中也可能的是,过压保护元件601,602包括多个ESD-MOSFET 611的串联电路,该ESD-MOSFET 611与根据图5的实例的开关202,303,401,402的实施例相似。
可能的是,至少一个ESD-MOSFET 611具有与MOSFET 100相同的栅极长度103A。这样又可以实现特别简单制造电路200。尤其可以不是必要的,实现单独地制造MOSFET 100和ESD-MOSFET 611。
在一些实例中可能的是,开关302,303,411,412的功能和过压保护元件601,602的功能通过彼此相应的结构以堆叠的MOSFET431,611实现。在实例中可以实现,与输入端子221相邻地布置的过压保护元件601通过相应的开关301实现。由此,可以实现电路200特别高的集成。
MOSFET 100和至少一个ESD-MOSFET 611可以具有在相应的负载端子101,102和衬底106之间的相同的电势差。为此可以使用同一个偏压端子110。
图8示出关于集成电路200的方面。电路200包括根据图1A,1B的实例之一的MOSFET100。根据图6的实例的电路200在此原则上相应于根据图2-4和6的实例的电路200。特别是前述关于根据图2-4和6的实例的电路200所述的方面也可以应用到根据图8的实例的电路200上。电路200实现了基于MOSFET 100的LNA。
根据图8的实例的电路200还包括过压保护元件601,602,所述过压保护元件分别与输入端子221或者与输出端子231相邻地布置。过压保护元件602在此包括具有相应的栅极电阻613,833的ESD-MOSFET 831的并联电路。此外,电阻832与ESD-MOSFET 832的负载端子101,102并联。所述电阻用于调节平衡电位,从而可以确定地通断ESD-MOSFET 831。MOSFET 100和ESD-MOSFET 832可以具有相应的负载端子101,102和衬底106之间相同的电势差。为此可以使用同一个偏压端子110。
电路200包括两个共源-共栅放大器-MOSFET 213-1,213-2。共源-共栅放大器-MOSFET 213-2在此通过分压器811,812,813控制。分压器811,812与输出端子231相邻地布置。
为了控制MOSFET 100设置镜像电流801,802,所述镜像电流提供用于使MOSFET100的控制端子再充电的电流。
根据不同的在此所示的实例的具有放大器功能性的电路200可以使用在不同的应用情况中。例如,输入端子221可以与例如一个无线电仪器的一个或多个天线连接。
图9是根据不同的实施方式的方法的流程图。在方框1001中加工衬底。为此例如可以用助于衬底的掺杂。加工衬底被这样实现,以使得所述衬底具有不小于0.3kOhm cm的电阻率。
在方框1002中进行将集成电路提供在衬底上。方框1002可以包括一个或多个电路板印刷步骤。电路板印刷步骤可以例如包括将光刻胶涂覆衬底、光刻胶的照射、光刻胶的显影、材料的沉淀和光刻胶的去除。方框1002也可以包括一个或多个蚀刻步骤。
例如,在方框1002中可以根据CMOS技术实现提供集成电路。尤其可能的是,集成电路包括放大器-MOSFET和偏压端子。偏压端子可以设置用于产生衬底与放大器-MOSFET的至少一个负载端子的电势差。电势差可以例如是-3V或者更负。
也就是说,借助于在此描述的技术可以实现不同的效果。
作为第一效果,负载端子和MOSFET的衬底之间的电容由于衬底的低的导电性或高的电阻率被减小。由此可以减小所述放大的信号噪声。例如可以借助于在此描述的技术实现具有在给定的放大系数和确定的频率下作为可实现的最小信号噪声的处于0.2-1.2dB的数量级的信号噪声的放大器。
作为第二效果,通过衬底的负偏压可以减小寄生的衬底二极管。由此可以实现用于开关的特别好的线性,所述线性可以通过开关-MOSFET实现。
作为第三效果,由于相对于衬底、尺寸被确定为小的电容可以使在高频信号中也在无源元件例如电容器或线圈中不期望的模式设置在重要频谱之外。
当然,本发明的前述实施方式和方面的特征可以彼此组合。所述特征特别是可以在不脱离本发明的范围的情况下不仅以所述的组合而且以其他的组合或单独地被使用。
当特别是上文的示例性的电路和开关元件结合LNA来描述时,也可能的是,使用用于功率放大器的相应技术。在功率放大器中,通常,高的电流在>200mA、或者>1A、或者>50A的范围内被接通。
下述的实例是本发明的优选的实施方式。
实例1.一种集成电路(200),包括:
-衬底(106),
-放大器-MOSFET(100),以及
-偏压端子(110),设置用于产生所述衬底(106)相对于所述放大器-MOSFET(100)的至少一个负载端子(101,102)的电势差,
其中,所述衬底(106)的电阻率不小于0.3kOhm cm,
其中,所述电势差是-3V或者更负。
实例2.根据-实例1的集成电路(200),
其中,所述放大器-MOSFET(100)的栅极宽度大于100μm、可选地大于200μm、进一步可选地大于500μm。
实例3.根据实例1或2所述的集成电路(200),
其中,所述电阻率和所述电势差是衬底(106)在所述集成电路(200)的区域中的体特性。
实例4.根据前述实例中任一项所述的集成电路(200),还还包括:
-至少一个输入端子(221,222),所述输入端子与所述放大器-MOSFET(100)的控制端子(103)连接,并且设置用于接收至少一个输入信号,以及
-输出端子(231),所述输出端子布置在朝向所述放大器-MOSFET(100)的至少一个负载端子(101,102)的一侧上,并且设置用于将输出信号输出。
实例5.根据实例4所述的集成电路(200),还包括:
-电感(212),所述电感布置在朝向所述放大器-MOSFET(100)的至少一个负载端子(101,102)的一侧上,
其中,所述放大器-MOSFET(100)和电感(212)设置用于实现所述输出信号相对于所述至少一个输入信号的不小于10dB、优选地不小于15dB、特别优选地不小于18dB的放大系数。
实例6.根据实例4或5所述的集成电路(200),还包括:
-至少一个共源-共栅放大器-MOSFET(213,213-1,213-2),所述共源-共栅放大器-MOSFET布置在所述放大器-MOSFET(100)的至少一个负载端子(101,102)和所述输出端子(231)之间,
其中,所述至少一个共源-共栅放大器-MOSFET(213,213-1,213-2)和所述放大器-MOSFET(100)具有相同的栅极长度(103A)。
实例7.根据实例4-6中任一项所述的集成电路(200),还包括:
-至少一个开关(302,303,401,402),所述开关与所述至少一个输入端子(221,222)相邻地布置,并且所述开关具有从MOSFET-开关(431)至地线(217)的串联电路,
其中,所述MOSFET-开关(431)和所述放大器-MOSFET(100)具有相同的栅极长度(103A)。
实例8.根据实例7所述的集成电路(200),
其中,所述至少一个开关(302,303,401,402)布置在旁路支路(301)中,所述旁路支路在将所述放大器-MOSFET(100)旁路的情况下使所述至少一个输入端子(221,222)与所述输出端子(231)连接。
实例9.根据实例7或8所述的集成电路(200),
其中,所述集成电路(200)包括多个开关(302,303,401,402)和多个输入端子(221,222),
其中,所述多个开关(302,303,401,402)中的至少一些开关分别与所述多个输入端子(221,222)中的一个相应的输入端子相关联。
实例10.根据实例中任一项所述的集成电路(200),还包括:
-至少一个过压保护元件(601,602),所述过压保护元件具有至少一个ESD-MOSFET(611,831),
其中,所述至少一个ESD-MOSFET(611,831)和所述放大器-MOSFET(100)具有相同的栅极长度(103A)。
实例11.根据实例4-9和10中任一项所述的集成电路(200),
其中,所述至少一个过压保护元件(601,602)布置在所述至少一个输入端子(221,222)和所述放大器-MOSFET(100)的控制端子(103)之间,和/或
其中,所述至少一个过压保护元件(601,602)布置在所述放大器-MOSFET(100)的至少一个-负载端子(101,102)和所述输出端子(231)之间。
实例12.根据实例7-9和10或11中任一项所述的集成电路(200),
其中,所述至少一个过压保护元件(601,602)通过所述至少一个开关(302,303,401,402)实现。
实例13.根据前述实例中任一项所述的集成电路(200),
其中,所述衬底(106)的电阻率不小于0.5kOhm cm、优选地不小于1kOhm cm、特别优选地不小于5kOhm cm。
实例14.根据前述实例中任一项所述的集成电路(200),
其中,电势差是-4V或者更负、优选-6V或者更负、特别优选-8V或者更负。
实例15.根据前述实例中任一项所述的集成电路,
其中,所述放大器-MOSFET(100)的至少一个负载端子(101,102)以体技术关于所述衬底(106)布置。
实例16.根据前述实例中任一项所述的集成电路,
其中,所述衬底(106)是硅。
实例17.根据前述实例中任一项所述的集成电路,
其中,所述放大器-MOSFET(100)实现抗噪的放大器或功率放大器。
实例18.一种高频收发器的模拟输出级,其包括:
-天线,以及
-根据前述权利要求中任一项所述的集成电路(200),
其中,所述天线与所述集成电路(200)的输入端子(221,222)连接。
实例19.一种方法,其包括:
–加工衬底(106),使得所述衬底具有不小于0.3kOhm cm的电阻率,以及
-将集成电路(200)提供在所述衬底(106)上,所述集成电路包括放大器-MOSFET(100)和偏压端子(110),其中,所述偏压端子设置用于产生所述衬底(106)相对于所述放大器-MOSFET(100)的至少一个负载端子(101,102)的电势差,所述电势差是-3V或者更负。
实例20.根据实例19所述的方法,
其中,所述方法用于制造根据权利要求1-17中任一项所述的集成电路(200)。
Claims (20)
1.一种集成电路(200),所述集成电路包括:
-衬底(106),
-放大器-MOSFET(100),以及
-偏压端子(110),设置用于产生所述衬底(106)相对于所述放大器-MOSFET(100)的至少一个负载端子(101,102)的电势差,
其中,所述衬底(106)的电阻率不小于0.3kOhm cm,
其中,所述电势差是-3V或者更负。
2.根据权利要求1所述的集成电路(200),
其中,所述放大器-MOSFET(100)的栅极宽度大于100μm、可选地大于200μm、进一步可选地大于500μm。
3.根据权利要求1或2所述的集成电路(200),
其中,所述电阻率和所述电势差是衬底(106)在所述集成电路(200)的区域中的体特性。
4.根据前述权利要求中任一项所述的集成电路(200),还包括:
-至少一个输入端子(221,222),与所述放大器-MOSFET(100)的控制端子(103)连接并且设置用于接收至少一个输入信号,以及
-输出端子(231),被布置在朝向所述放大器-MOSFET(100)的至少一个负载端子(101,102)的一侧上并且设置用于将输出信号输出。
5.根据权利要求4所述的集成电路(200),还包括:
-电感(212),被布置在朝向所述放大器-MOSFET(100)的至少一个负载端子(101,102)的一侧上,
其中,所述放大器-MOSFET(100)和电感(212)被设置用于实现所述输出信号相对于所述至少一个输入信号的不小于10dB、优选地不小于15dB、特别优选地不小于18dB的放大系数。
6.根据权利要求4或5所述的集成电路(200),还包括:
-至少一个共源-共栅放大器-MOSFET(213,213-1,213-2),被布置在所述放大器-MOSFET(100)的至少一个负载端子(101,102)和所述输出端子(231)之间,
其中,所述至少一个共源-共栅放大器-MOSFET(213,213-1,213-2)和所述放大器-MOSFET(100)具有相同的栅极长度(103A)。
7.根据权利要求4-6中任一项所述的集成电路(200),还包括:
-至少一个开关(302,303,401,402),被布置为与所述至少一个输入端子(221,222)相邻,并且所述开关具有从开关-MOSFET(431)至地线(217)的串联电路,
其中,所述MOSFET开关(431)和所述放大器-MOSFET(100)具有相同的栅极长度(103A)。
8.根据权利要求7所述的集成电路(200),
其中,所述至少一个开关(302,303,401,402)被布置在一旁路支路(301)中,所述旁路支路在将所述放大器-MOSFET(100)旁路的情况下使所述至少一个输入端子(221,222)与所述输出端子(231)连接。
9.根据权利要求7或8所述的集成电路(200),
其中,所述集成电路(200)包括多个开关(302,303,401,402)和多个输入端子(221,222),
其中,所述多个开关(302,303,401,402)中的至少一些开关分别与所述多个输入端子(221,222)中的一个相应的输入端子相关联。
10.根据前述权利要求中任一项所述的集成电路(200),还包括:
-至少一个过压保护元件(601,602),所述过压保护元件具有至少一个ESD-MOSFET(611,831),
其中,所述至少一个ESD-MOSFET(611,831)和所述放大器-MOSFET(100)具有相同的栅极长度(103A)。
11.根据权利要求4-9和10中任一项所述的集成电路(200),
其中,所述至少一个过压保护元件(601,602)被布置在所述至少一个输入端子(221,222)和所述放大器-MOSFET(100)的控制端子(103)之间,和/或
其中,所述至少一个过压保护元件(601,602)被布置在所述放大器-MOSFET(100)的至少一个负载端子(101,102)和所述输出端子(231)之间。
12.根据权利要求7-9和10-11中任一项所述的集成电路(200),
其中,所述至少一个过压保护元件(601,602)通过所述至少一个开关(302,303,401,402)实现。
13.根据前述权利要求中任一项所述的集成电路(200),
其中,所述衬底(106)的电阻率不小于0.5kOhm cm、优选地不小于1kOhm cm、特别优选地不小于5kOhm cm。
14.根据前述权利要求中任一项所述的集成电路(200),
其中,电势差是-4V或者更负、优选-6V或者更负、特别优选-8V或者更负。
15.根据前述权利要求中任一项所述的集成电路,
其中,所述放大器-MOSFET(100)的至少一个负载端子(101,102)以体技术关于所述衬底(106)布置。
16.根据前述权利要求中任一项所述的集成电路,
其中,所述衬底(106)是硅。
17.根据前述权利要求中任一项所述的集成电路,
其中,所述放大器-MOSFET(100)实现抗噪的放大器或功率放大器。
18.一种高频收发器的模拟输出级,其包括:
-天线,以及
-根据前述权利要求中任一项所述的集成电路(200),
其中,所述天线与所述集成电路(200)的输入端子(221,222)连接。
19.一种方法,其包括:
-加工衬底(106),使得所述衬底具有不小于0.3kOhm cm的电阻率,以及
-将集成电路(200)提供到所述衬底(106),所述集成电路包括放大器-MOSFET(100)和偏压端子(110),其中,所述偏压端子被设置用于产生所述衬底(106)相对于所述放大器-MOSFET(100)的至少一个负载端子(101,102)的电势差,所述电势差是-3V或者更负。
20.根据权利要求19所述的方法,
其中,所述方法用于制造根据权利要求1-17中任一项所述的集成电路(200)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016115286.2 | 2016-08-17 | ||
DE102016115286.2A DE102016115286A1 (de) | 2016-08-17 | 2016-08-17 | Integrierte Schaltung mit Verstärker-MOSFET |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107769742A true CN107769742A (zh) | 2018-03-06 |
CN107769742B CN107769742B (zh) | 2021-03-16 |
Family
ID=61083526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710703215.3A Active CN107769742B (zh) | 2016-08-17 | 2017-08-16 | 具有放大器-mosfet的集成电路 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10156864B2 (zh) |
KR (1) | KR101982399B1 (zh) |
CN (1) | CN107769742B (zh) |
DE (1) | DE102016115286A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016111641A1 (de) * | 2016-06-24 | 2017-12-28 | Infineon Technologies Ag | Schalter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0043957A1 (de) * | 1980-07-10 | 1982-01-20 | Siemens-Elema AB | Monolithisch integrierte Schaltung und deren Verwendung in einem Herzschrittmacher |
CN1154578A (zh) * | 1995-12-30 | 1997-07-16 | 三星电子株式会社 | 半导体器件的静电泄放结构 |
CN1741269A (zh) * | 2004-08-27 | 2006-03-01 | 联华电子股份有限公司 | 使用三重阱结构的基底触发的静电保护电路 |
CN103812483A (zh) * | 2014-01-13 | 2014-05-21 | 智坤(江苏)半导体有限公司 | Cmos射频开关 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5489792A (en) * | 1994-04-07 | 1996-02-06 | Regents Of The University Of California | Silicon-on-insulator transistors having improved current characteristics and reduced electrostatic discharge susceptibility |
JPH09270515A (ja) * | 1996-04-01 | 1997-10-14 | Matsushita Electric Ind Co Ltd | 半導体装置 |
US5923067A (en) * | 1997-04-04 | 1999-07-13 | International Business Machines Corporation | 3-D CMOS-on-SOI ESD structure and method |
US6972619B2 (en) * | 2002-12-17 | 2005-12-06 | Matsushita Electric Industrial Co., Ltd. | Amplifier with a gain proportional to power source voltage |
US20090159968A1 (en) * | 2007-12-19 | 2009-06-25 | Texas Instruments Incorporated | BVDII Enhancement with a Cascode DMOS |
US7961052B2 (en) * | 2009-10-28 | 2011-06-14 | Peregrine Semiconductor Corporation | RF power amplifier integrated circuit and unit cell |
US20140001567A1 (en) | 2012-06-28 | 2014-01-02 | Skyworks Solutions, Inc. | Fet transistor on high-resistivity substrate |
US9305888B2 (en) * | 2012-07-05 | 2016-04-05 | Taiwan Semiconductor Manufacturing Co., Ltd. | Integrated antenna structure and array |
US8716097B2 (en) * | 2012-08-13 | 2014-05-06 | Texas Instruments Incorporated | MOS transistors having reduced leakage well-substrate junctions |
US9178058B2 (en) * | 2013-03-13 | 2015-11-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | RF switch on high resistive substrate |
CN104113293B (zh) * | 2013-10-22 | 2017-07-04 | 西安电子科技大学 | 一种高增益低噪声差分跨阻放大器 |
CN104158526B (zh) * | 2014-08-15 | 2017-02-08 | 中国电子科技集团公司第二十四研究所 | 一种提高mos管模拟开关线性度的方法及mos管模拟开关电路 |
KR101666752B1 (ko) * | 2015-06-18 | 2016-10-14 | 주식회사 동부하이텍 | 고비저항 기판 상에 형성된 반도체 소자 및 무선 주파수 모듈 |
US9806159B2 (en) * | 2015-10-08 | 2017-10-31 | Macom Technology Solutions Holdings, Inc. | Tuned semiconductor amplifier |
-
2016
- 2016-08-17 DE DE102016115286.2A patent/DE102016115286A1/de active Pending
-
2017
- 2017-08-16 CN CN201710703215.3A patent/CN107769742B/zh active Active
- 2017-08-17 KR KR1020170104113A patent/KR101982399B1/ko active Active
- 2017-08-17 US US15/679,263 patent/US10156864B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0043957A1 (de) * | 1980-07-10 | 1982-01-20 | Siemens-Elema AB | Monolithisch integrierte Schaltung und deren Verwendung in einem Herzschrittmacher |
CN1154578A (zh) * | 1995-12-30 | 1997-07-16 | 三星电子株式会社 | 半导体器件的静电泄放结构 |
CN1741269A (zh) * | 2004-08-27 | 2006-03-01 | 联华电子股份有限公司 | 使用三重阱结构的基底触发的静电保护电路 |
CN103812483A (zh) * | 2014-01-13 | 2014-05-21 | 智坤(江苏)半导体有限公司 | Cmos射频开关 |
Also Published As
Publication number | Publication date |
---|---|
KR20180020111A (ko) | 2018-02-27 |
US10156864B2 (en) | 2018-12-18 |
DE102016115286A8 (de) | 2018-04-12 |
CN107769742B (zh) | 2021-03-16 |
DE102016115286A1 (de) | 2018-02-22 |
US20180052479A1 (en) | 2018-02-22 |
KR101982399B1 (ko) | 2019-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12255587B2 (en) | Gate drivers for stacked transistor amplifiers | |
US11984852B2 (en) | Standby voltage condition for fast RF amplifier bias recovery | |
US11990874B2 (en) | Device stack with novel gate capacitor topology | |
US11777451B2 (en) | Cascode gain boosting and linear gain control using gate resistor | |
US7667499B2 (en) | MuGFET circuit for increasing output resistance | |
CN107769742B (zh) | 具有放大器-mosfet的集成电路 | |
US7112867B2 (en) | Resistive isolation between a body and a body contact | |
WO2017175296A1 (ja) | 増幅器 | |
US20060109054A1 (en) | Method and apparatus for limiting power amplifier voltage excursions | |
CN114362692A (zh) | 放大器装置与双工器电路 | |
CN110649920A (zh) | 开关电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |