CN107768254A - A kind of reduced graphene electrode MoS2The preparation method of field-effect transistor - Google Patents
A kind of reduced graphene electrode MoS2The preparation method of field-effect transistor Download PDFInfo
- Publication number
- CN107768254A CN107768254A CN201710963524.4A CN201710963524A CN107768254A CN 107768254 A CN107768254 A CN 107768254A CN 201710963524 A CN201710963524 A CN 201710963524A CN 107768254 A CN107768254 A CN 107768254A
- Authority
- CN
- China
- Prior art keywords
- mos2
- field effect
- effect transistor
- graphene electrode
- graphene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 28
- 230000005669 field effect Effects 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 229910052961 molybdenite Inorganic materials 0.000 claims abstract description 41
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000000523 sample Substances 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000004528 spin coating Methods 0.000 claims abstract 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 7
- 238000001020 plasma etching Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims 1
- 239000003292 glue Substances 0.000 claims 1
- 239000002356 single layer Substances 0.000 abstract description 5
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract description 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 2
- 238000005530 etching Methods 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 229910052682 stishovite Inorganic materials 0.000 abstract description 2
- 229910052905 tridymite Inorganic materials 0.000 abstract description 2
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- DYWNLSQWJMTVGJ-KUSKTZOESA-N Phenylpropanolamine hydrochloride Chemical compound Cl.C[C@H](N)[C@H](O)C1=CC=CC=C1 DYWNLSQWJMTVGJ-KUSKTZOESA-N 0.000 description 7
- 229960002305 phenylpropanolamine hydrochloride Drugs 0.000 description 7
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明目的在于提供一种大规模制备高性能混合结构石墨烯电极MoS2场效应晶体管的方法,该方法在SiO2/Si衬底上直接CVD生长MoS2并对进行MoS2图形化刻蚀,利用热式扫描探针技术直写出氧化石墨烯(GO)图形的尺寸与形状,通过旋涂GO并进行热还原得到石墨烯电极从而形成大规模石墨烯电极MoS2场效应晶体管。该方法使用热式扫描探针直写出旋涂GO的形状与尺寸,利用热还原GO作为电极,改善了MoS2场效应晶体管的接触电阻和迁移率等性能。单层MoS2拥有诸多优异的电学性能,如较大带隙(1.8eV),大开关比(~108)。使用石墨烯电极可增加电荷注入,改善MoS2场效应晶体管的电学性能。本方法制备的石墨烯电极MoS2场效应晶体管工艺简单且性能良好,可应用于大规模集成逻辑电路中。由于这种方法具有巨大的市场前景,可促进其商业化推广应用。
The purpose of the present invention is to provide a method for large-scale preparation of high-performance hybrid structure graphene electrode MoS2 field effect transistor, the method directly CVD grows MoS2 on SiO2 /Si substrate and carries out MoS2 pattern etching, utilizes thermal The scanning probe technology directly writes the size and shape of the graphene oxide (GO) pattern, and the graphene electrode is obtained by spin-coating GO and performing thermal reduction to form a large-scale graphene electrode MoS2 field effect transistor. This method uses a thermal scanning probe to directly write the shape and size of spin-coated GO, and uses thermally reduced GO as an electrode to improve the contact resistance and mobility of MoS2 field effect transistors. Single-layer MoS2 has many excellent electrical properties, such as a large band gap (1.8eV) and a large on-off ratio (~10 8 ). The use of graphene electrodes increases charge injection and improves the electrical performance of MoS2 field effect transistors. The graphene electrode MoS2 field effect transistor prepared by the method has simple process and good performance, and can be applied in large-scale integrated logic circuits. Because this method has a huge market prospect, it can promote its commercial application.
Description
技术领域technical field
本发明涉及微纳电子制造中的一种大规模制备高性能MoS2场效应晶体管的方法。The invention relates to a method for large-scale preparation of high-performance MoS2 field-effect transistors in micro-nano electronics manufacturing.
背景技术Background technique
近十几年,数字逻辑电路发展关键的在于制造出更小的金属-氧化物-半导体晶体管。而当传统晶体管的栅长小于10nm时,传统硅工艺制造出的晶体管稳定性变差(短沟道量子效应),10nm将成为硅基晶体管的极限。自 2004年Geim等人发现石墨烯以来,性能优异的二维材料一直吸引着各国科研工作者的注意。单层MoS2拥有1.8eV带隙且开关比接近108,使其具备作为高性能场效应晶体管沟道材料的潜质。由于MoS2的电子亲和能与金属功函数不匹配以及原子级厚度的MoS2表面没有悬挂键等问题,使得直接沉积常用金属电极时会出现较大接触电阻从而影响性能。为了更好的提升MoS2场效应晶体管电学性能,需要使用一定的方法来改善MoS2与电极之间的接触电阻。In the past ten years, the key to the development of digital logic circuits is to manufacture smaller metal-oxide-semiconductor transistors. When the gate length of traditional transistors is less than 10nm, the stability of transistors manufactured by traditional silicon processes will deteriorate (short channel quantum effect), and 10nm will become the limit of silicon-based transistors. Since the discovery of graphene by Geim et al. in 2004, two-dimensional materials with excellent performance have attracted the attention of researchers from all over the world. Single-layer MoS2 has a bandgap of 1.8eV and an on-off ratio close to 10 8 , making it a potential channel material for high-performance field-effect transistors. Due to the mismatch between the electron affinity of MoS2 and the metal work function and the lack of dangling bonds on the surface of MoS2 with atomic thickness, large contact resistance will appear when directly depositing commonly used metal electrodes, which will affect the performance. In order to better improve the electrical performance of MoS2 field effect transistors, it is necessary to use certain methods to improve the contact resistance between MoS2 and electrodes.
目前改善接触电阻的方法主要有选用低功函数金属作电极、化学掺杂法和石墨烯电极法等。然而这几种方法都存在一定程度的不足。选用低功函数金属作电极,可以一定程度上减少金属电极与MoS2之间的肖特基势垒从而减小接触电阻。然而由于单层MoS2表面不具有悬挂键,使得金属电极与原子级厚度的沟道材料之间很难形成共价键从而退化电学性能。此外功函数不完全匹配使得肖特基势垒也无法完全消除。化学掺杂是传统体材料晶体管减少接触电阻的有效办法,然而在原子级MoS2上应用需要严格控制条件以防止破坏沟道材料性能。由于石墨烯线性色散和有限态密度具有独特的关系,石墨烯的功函数和费米能级可以通过栅压进行调节并和MoS2实现很好的匹配。石墨烯电极也成为公认的改善接触电阻的优良方法。然而由于石墨烯与MoS2之间界面的洁净度会直接影响器件的性能,传统光刻技术由于光刻胶残留问题,很难适用于制备高性能的MoS2场效应晶体管。目前使用的干法转移可以获得高性能的石墨烯电极MoS2场效应晶体管,然而只适用于理论研究不适用于大规模制备。At present, the methods for improving contact resistance mainly include selecting low work function metals as electrodes, chemical doping, and graphene electrode methods. However, these methods all have certain deficiencies. Using low work function metals as electrodes can reduce the Schottky barrier between metal electrodes and MoS2 to a certain extent, thereby reducing contact resistance. However, since the monolayer MoS2 surface does not have dangling bonds, it is difficult to form covalent bonds between the metal electrode and the atomically thick channel material, thereby degrading the electrical performance. In addition, the Schottky barrier cannot be completely eliminated due to the incomplete matching of the work function. Chemical doping is an effective way to reduce the contact resistance of conventional bulk transistors, but the application on atomic-scale MoS2 requires strictly controlled conditions to prevent damage to the channel material properties. Due to the unique relationship between the linear dispersion of graphene and the finite density of states, the work function and Fermi level of graphene can be adjusted by the gate voltage to achieve a good match with MoS2. Graphene electrodes have also become recognized as an excellent method for improving contact resistance. However, since the cleanliness of the interface between graphene and MoS2 will directly affect the performance of the device, traditional photolithography technology is difficult to apply to the preparation of high-performance MoS2 field effect transistors due to the problem of photoresist residue. The currently used dry transfer method can obtain high-performance graphene electrode MoS2 field effect transistors, but it is only suitable for theoretical research and not suitable for large-scale preparation.
发明内容Contents of the invention
针对目前制备高性能的MoS2场效应晶体管的制备工艺复杂,不适用大规模制造等问题。本发明提出一种图形化GO热还原制备石墨烯电极的方法。For the current preparation of high-performance MoS2 field effect transistors, the preparation process is complicated and not suitable for large-scale manufacturing. The invention proposes a method for preparing graphene electrodes by patterned GO thermal reduction.
通过利用热式扫描探针直写技术,在SiO2/Si衬底上直接生长MoS2并对其进行图形化刻蚀。利用热式纳米探针加工技术直写出图形化GO的形状与尺寸,并利用热还原法制备出大规模石墨烯电极。本发明解决了传统光刻技术对石墨烯图形化时光刻胶残留问题,同时提出了一种简单高效的石墨烯电极制备MoS2场效应晶体管工艺。By using thermal scanning probe direct writing technology, MoS2 is directly grown on SiO 2 /Si substrate and patterned and etched. The shape and size of patterned GO were directly written by thermal nanoprobe processing technology, and large-scale graphene electrodes were prepared by thermal reduction method. The invention solves the problem of resist residue when graphene is patterned by traditional photolithography technology, and simultaneously proposes a simple and efficient process for preparing MoS2 field effect transistors from graphene electrodes.
附图说明Description of drawings
图1SiO2/Si衬底上CVD生长MoS2并进行图形化刻蚀示意图Fig.1 Schematic diagram of CVD growth of MoS2 on SiO 2 /Si substrate and patterned etching
图2热还原氧化石墨烯电极示意图Figure 2 Schematic diagram of thermally reduced graphene oxide electrode
图3蒸镀Au/Ti电极示意图Figure 3 Schematic diagram of evaporation Au/Ti electrode
图中:1—SiO2/Si衬底;2—少层MoS2;3—单层石墨烯;4—Au/Ti电极。In the figure: 1—SiO 2 /Si substrate; 2—few layer MoS2; 3—single layer graphene; 4—Au/Ti electrode.
具体实施方式Detailed ways
下面通过具体实施进一步说明本发明的实质性特点和显著的进步,但本发明决非仅仅限于所述的实施例。The substantive features and remarkable progress of the present invention will be further described below through specific implementation, but the present invention is by no means limited to the described embodiments.
具体实施步骤如下:The specific implementation steps are as follows:
1、将0.03g MoO3粉末和0.01g S粉末分别放置于管式炉中不同的石英盅内。MoO3与S粉末距离保持在18~20cm。将SiO2/Si衬底置于MoO3粉末石英盅上方。将管式炉加热至650℃并向管式炉内通入Ar气(10~20sccm),持续30~60min后得到单层MoS2。1. Place 0.03g MoO 3 powder and 0.01g S powder in different quartz cups in the tube furnace. The distance between MoO 3 and S powder is kept at 18-20cm. Place the SiO2 /Si substrate above the MoO3 powdered quartz cup. Heat the tube furnace to 650° C. and pass Ar gas (10-20 sccm) into the tube furnace for 30-60 min to obtain a single layer of MoS2.
2、在制备好的MoS2样品上,分别沉积PPA/SiO2/PPA(20nm/3nm/9nm),并利用热式扫描探针直写出所需MoS2沟道的尺寸和形状。采用O2/N2反应离子刻蚀法对9nm PPA进行减薄,随后通入CHF3反应离子刻蚀SiO2层,最后利用 O2反应离子刻蚀20nm PPA层和MoS2,得到所需的MoS2沟道。如图1所示。2. On the prepared MoS2 sample, deposit PPA/SiO 2 /PPA (20nm/3nm/9nm) respectively, and use a thermal scanning probe to directly write the size and shape of the desired MoS2 channel. The 9nm PPA is thinned by O 2 /N 2 reactive ion etching method, then the SiO 2 layer is etched by CHF 3 reactive ion etching, and finally the 20nm PPA layer and MoS2 are etched by O 2 reactive ion etching to obtain the required MoS2 ditch. As shown in Figure 1.
3、在图形化的MoS2沟道表面沉积20nm PPA,利用热式扫描探针直写出氧化石墨烯旋涂区域的尺寸与形状。在衬底上旋涂0.5μL GO溶液(0.5mg/ml),以1000~1500r/min转速匀胶1min。如图2所示。3. Deposit 20nm PPA on the surface of the patterned MoS2 channel, and use a thermal scanning probe to directly write the size and shape of the graphene oxide spin-coated region. Spin-coat 0.5 μL GO solution (0.5 mg/ml) on the substrate, and homogenize the gel at 1000-1500 r/min for 1 min. as shown in picture 2.
4、施加100nF负载力在探针针尖上,同时调整针尖温度至250~300℃,对GO表面进行扫描热还原。4. Apply a load force of 100nF on the tip of the probe, and adjust the temperature of the tip to 250-300°C at the same time, and perform scanning thermal reduction on the surface of GO.
5、在SiO2/Si衬底上分别沉积100~200nm聚甲基环己亚酸胺(PMGI)和 20nm盐酸苯丙醇胺(PPA),利用热式扫描探针纳米加工技术直写出电极图形,蒸镀60/20nm厚度的Au/Ti电极。如图3所示。5. Deposit 100-200nm polymethylcycloheximide (PMGI) and 20nm phenylpropanolamine hydrochloride (PPA) on the SiO 2 /Si substrate respectively, and use thermal scanning probe nanofabrication technology to directly write electrodes Graphics, vapor-deposited Au/Ti electrodes with a thickness of 60/20nm. As shown in Figure 3.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710963524.4A CN107768254A (en) | 2017-10-17 | 2017-10-17 | A kind of reduced graphene electrode MoS2The preparation method of field-effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710963524.4A CN107768254A (en) | 2017-10-17 | 2017-10-17 | A kind of reduced graphene electrode MoS2The preparation method of field-effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107768254A true CN107768254A (en) | 2018-03-06 |
Family
ID=61268602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710963524.4A Pending CN107768254A (en) | 2017-10-17 | 2017-10-17 | A kind of reduced graphene electrode MoS2The preparation method of field-effect transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107768254A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109321242A (en) * | 2018-09-26 | 2019-02-12 | 杭州电子科技大学 | A kind of preparation method of fluorescent material |
CN114899249A (en) * | 2022-03-17 | 2022-08-12 | 西北工业大学 | Self-driven photoelectric detector based on tungsten diselenide and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101941696A (en) * | 2010-09-15 | 2011-01-12 | 复旦大学 | Nanolithographic method applied to manufacture of graphene-based field effect tube |
CN102502605A (en) * | 2011-11-09 | 2012-06-20 | 复旦大学 | Electrically-induced reduction method for degraded graphene oxide |
US20140197459A1 (en) * | 2011-01-04 | 2014-07-17 | Ecole Polytechnique Federale De Lausanne (Epfl) | Semiconductor device |
KR20150059000A (en) * | 2013-11-21 | 2015-05-29 | 삼성전자주식회사 | Inverter including two-dimensional material, method of manufacturing the same and logic device including inverter |
CN107017303A (en) * | 2016-01-06 | 2017-08-04 | 台湾积体电路制造股份有限公司 | Semiconductor device structure |
CN107093559A (en) * | 2017-03-08 | 2017-08-25 | 镇江市电子管厂 | One kind prepares Graphene electrodes MoS based on Ni catalysis2The method of field-effect transistor |
-
2017
- 2017-10-17 CN CN201710963524.4A patent/CN107768254A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101941696A (en) * | 2010-09-15 | 2011-01-12 | 复旦大学 | Nanolithographic method applied to manufacture of graphene-based field effect tube |
US20140197459A1 (en) * | 2011-01-04 | 2014-07-17 | Ecole Polytechnique Federale De Lausanne (Epfl) | Semiconductor device |
CN102502605A (en) * | 2011-11-09 | 2012-06-20 | 复旦大学 | Electrically-induced reduction method for degraded graphene oxide |
KR20150059000A (en) * | 2013-11-21 | 2015-05-29 | 삼성전자주식회사 | Inverter including two-dimensional material, method of manufacturing the same and logic device including inverter |
CN107017303A (en) * | 2016-01-06 | 2017-08-04 | 台湾积体电路制造股份有限公司 | Semiconductor device structure |
CN107093559A (en) * | 2017-03-08 | 2017-08-25 | 镇江市电子管厂 | One kind prepares Graphene electrodes MoS based on Ni catalysis2The method of field-effect transistor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109321242A (en) * | 2018-09-26 | 2019-02-12 | 杭州电子科技大学 | A kind of preparation method of fluorescent material |
CN109321242B (en) * | 2018-09-26 | 2021-09-07 | 杭州电子科技大学 | A kind of preparation method of fluorescent material |
CN114899249A (en) * | 2022-03-17 | 2022-08-12 | 西北工业大学 | Self-driven photoelectric detector based on tungsten diselenide and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106910776B (en) | Large area molybdenum disulfide field effect transistor and its preparation based on high-k gate dielectric | |
CN101783366A (en) | Preparation method of graphene MOS transistor | |
CN103325836B (en) | Graphene field effect transistor and preparation method thereof | |
CN103311305B (en) | Silicon-based lateral nano wire multiple-gate transistor and preparation method thereof | |
CN108831928B (en) | Two-dimensional semiconductor material negative capacitance field effect transistor and preparation method thereof | |
CN106449968B (en) | Polarized graphene device of a kind of generation spin and preparation method thereof | |
CN105895704B (en) | Graphene field effect transistor and manufacturing method thereof | |
CN102354668B (en) | Preparation method of carbon-based nanometer material transistor | |
CN105845553B (en) | The preparation method of graphene field effect transistor array based on silicon carbide substrates | |
CN104766888A (en) | High dielectric constant gate dielectric composite channel field effect transistor and its preparation method | |
CN103000669A (en) | Source-drain buried graphene transistor device on diamond-like carbon substrate and manufacturing method | |
CN106887460B (en) | Super steep subthreshold slope field effect transistor of negative electron compression ratio-and preparation method thereof | |
CN103633123B (en) | Nanowire substrate structure and preparation method thereof | |
CN107768254A (en) | A kind of reduced graphene electrode MoS2The preparation method of field-effect transistor | |
CN102082096A (en) | Method for preparing Ge or SiGe nanowire field effect transistor | |
CN107093559B (en) | A method for preparing graphene electrode MoS2 field effect transistor based on Ni catalysis | |
CN112466930B (en) | A metal contact structure of a two-dimensional semiconductor material and a preparation method thereof | |
CN110148626A (en) | Polarization doping InN base tunneling field-effect transistor and preparation method thereof | |
CN108400165A (en) | Low-power consumption gallium nitride base negative capacitance field-effect transistor and preparation method | |
WO2024119841A1 (en) | Plasma doping-based method for regulating electrical properties of low-dimensional semiconductor material | |
CN102229421B (en) | The preparation method of nano thread structure | |
CN113707560B (en) | A method for improving the electrical contact of two-dimensional transition metal chalcogenides by inserting two-dimensional semiconductor indium selenide nanosheets | |
CN107731909A (en) | Based on MoO3/Al2O3The diamond field effect transistor and preparation method of double layer gate dielectric | |
CN115224126A (en) | Space transfer doped p-type high-mobility depletion type hydrogen terminal diamond field effect transistor and preparation method thereof | |
CN111540786A (en) | A kind of molybdenum disulfide nanobelt and preparation method thereof, electrode material of field effect transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180306 |
|
RJ01 | Rejection of invention patent application after publication |