CN107765426B - Self-focusing laser scanning projection device based on symmetrical out-of-focus double detectors - Google Patents
Self-focusing laser scanning projection device based on symmetrical out-of-focus double detectors Download PDFInfo
- Publication number
- CN107765426B CN107765426B CN201710992009.9A CN201710992009A CN107765426B CN 107765426 B CN107765426 B CN 107765426B CN 201710992009 A CN201710992009 A CN 201710992009A CN 107765426 B CN107765426 B CN 107765426B
- Authority
- CN
- China
- Prior art keywords
- focusing
- laser
- scanning
- self
- light intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 claims abstract description 34
- 238000001514 detection method Methods 0.000 claims abstract description 22
- 230000007246 mechanism Effects 0.000 claims abstract description 16
- 230000003287 optical effect Effects 0.000 claims abstract description 16
- 238000006073 displacement reaction Methods 0.000 claims abstract description 14
- 230000010287 polarization Effects 0.000 claims abstract description 8
- 230000005540 biological transmission Effects 0.000 claims abstract description 5
- 230000009977 dual effect Effects 0.000 claims description 5
- 238000005286 illumination Methods 0.000 claims description 4
- 210000001747 pupil Anatomy 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 230000004044 response Effects 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000006872 improvement Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/101—Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/40—Optical focusing aids
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/142—Adjusting of projection optics
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
基于对称离焦双探测器的自聚焦激光扫描投影装置属于先进加工制造技术领域。现有技术定焦准确度低,光强自动搜索扫描的横向分辨力低。本发明其特征在于,在1/4波片之后设置双轴扫描振镜;在偏振分光棱镜的标定反射光光路上设置对称离焦双探测器光强探测模块;在对称离焦双探测器光强探测模块中,在分光棱镜的透射、反射光路上各配备一组汇聚物镜、点探测针孔和光电探测器,点探测针孔位于汇聚物镜与光电探测器之间,两个光电探测器的感光面分别相对于各自对应的汇聚物镜离焦+ΔZ、‑ΔZ;两个光电探测器各自的光强电信号输出端分别连接到测量控制模块的两个光强模拟信号输入端;测量控制模块的调焦驱动信号输出端连接到动态自聚焦模块中的精密位移机构。
A self-focusing laser scanning projection device based on symmetrical defocusing double detectors belongs to the field of advanced processing and manufacturing technology. The prior art has low focusing accuracy and low lateral resolution of light intensity automatic search scanning. The invention is characterized in that a dual-axis scanning galvanometer is arranged behind the 1/4 wave plate; a symmetrical defocusing double detector light intensity detection module is arranged on the optical path of the calibrated reflected light of the polarization beam splitting prism; In the strong detection module, a set of converging objective lenses, a point detection pinhole and a photodetector are provided on the transmission and reflection optical paths of the beam splitting prism. The point detection pinhole is located between the converging objective lens and the photoelectric detector. The photosensitive surfaces are defocused by +ΔZ, ‑ΔZ respectively relative to the corresponding converging objective lenses; the respective light intensity electrical signal output ends of the two photodetectors are respectively connected to the two light intensity analog signal input ends of the measurement control module; the measurement control module The output terminal of the focusing drive signal is connected to the precise displacement mechanism in the dynamic self-focusing module.
Description
技术领域technical field
本发明涉及一种基于对称离焦双探测器的自聚焦激光扫描投影装置,在智能制造和装配过程中,用于各种零部件的激光辅助加工(如复合材料铺叠、蒙皮钻铆、焊接等)和指示定位装配,由扫描振镜实现激光循环扫描投影,将由三维CAD数模驱动的零部件三维外形轮廓激光线框准确投影显示在目标加工和装配区域,属于先进加工制造技术领域。The invention relates to a self-focusing laser scanning projection device based on symmetrical defocusing double detectors, which is used for laser-assisted processing of various parts (such as composite material layup, skin drilling and riveting, etc.) in the process of intelligent manufacturing and assembly. Welding, etc.) and indicating positioning and assembly, the scanning galvanometer realizes the laser circular scanning projection, and the laser wireframe of the three-dimensional outline of the parts driven by the three-dimensional CAD digital model is accurately projected and displayed in the target processing and assembly area, which belongs to the field of advanced processing and manufacturing technology.
背景技术Background technique
激光扫描投影装置是一种能够将待加工或者待装配的零部件,也就是待投影工件的三维外形轮廓以激光光线循环扫描投影的方式转换为激光线框并显示在目标加工和装配区域,该区域又称投影承接区域,从而实现各种零部件加工和装配辅助指示的精密光电仪器。The laser scanning projection device is a kind of device that can convert the parts to be processed or assembled, that is, the three-dimensional outline of the workpiece to be projected into a laser wireframe by cyclic scanning and projection of laser light, and display it in the target processing and assembly area. The area is also called the projection receiving area, so as to realize the precision optoelectronic instrument for various parts processing and assembly auxiliary instructions.
在现有激光扫描投影装置中,如图1所示,激光器1、聚焦模块2、分光棱镜3依次同轴排列;在分光棱镜3的透射光光路上设置双轴扫描振镜4;在分光棱镜3的标定反射光光路上设置光强探测模块5;光强探测模块5的光强电信号输出端连接到测量控制模块6的模拟信号输入端;计算机7与测量控制模块6的通过USB端口连接;测量控制模块6的调焦驱动信号输出端连接到聚焦模块2中的精密位移机构8;测量控制模块6的扫描驱动信号输出端连接到双轴扫描振镜4中的精密转角机构9。所述测量控制模块6是一块多功能数据采集卡,能够采集、存储和处理数据,所述处理包括数模、模数转换。In the existing laser scanning projection device, as shown in FIG. 1 , the laser 1, the focusing
所述激光扫描投影装置在工作过程中,首先是扫描投影激光光斑的聚焦调整。激光器1出射的扫描投影激光先后通过聚焦模块2、分光棱镜3和双轴扫描振镜4投影到投影承接区域10,由操作人员人眼观察并判断投影承接区域10中的激光光斑的聚焦情况,通过键盘操作由测量控制模块6向聚焦模块2中的精密位移机构8发送控制信号,驱动精密位移机构8前后移动,直到观察到的激光光斑达到最小,最大程度地保证沿光轴方向的定焦准确度,完成扫描投影激光光斑的聚焦调整。During the working process of the laser scanning projection device, the first step is to adjust the focus of the scanning projection laser spot. The scanning projection laser emitted by the laser 1 is successively projected to the
可见,现有技术未能利用扫描投影激光的标定反射光的光路分布来自动反馈控制扫描投影激光光斑的聚焦调整,定焦准确度的提高十分有限。It can be seen that the prior art fails to use the optical path distribution of the calibration reflected light of the scanning projection laser to automatically feedback control the focus adjustment of the scanning projection laser spot, and the improvement of the focusing accuracy is very limited.
其次是解算出双轴扫描振镜4的投影坐标系(P-XPYPZP)与待投影工件三维CAD数模的数模坐标系(O-XOYOZO)间的转换关系。The second is to calculate the conversion relationship between the projection coordinate system (PX P Y P Z P ) of the dual-
由于双轴扫描振镜4是精密转角器件,无法得知投影承接区域10的位置,无法确定反映待投影零部件三维外形轮廓特征的激光线框16应被扫描投影在哪里。这就需要确定投影承接区域10的位置,以及建立待投影工件三维CAD数模上任意点的三维坐标值与双轴扫描振镜4中的垂直扫描镜12和水平扫描镜13扫描角度值的对应关系,也就是建立双轴扫描振镜4的投影坐标系(P-XPYPZP)与待投影工件三维CAD数模的数模坐标系(O-XOYOZO)间的转换关系。Since the dual-
根据多元方程解算的需要,在投影承接区域10内选取4至6个非规则分布的扫描标定位置,各个扫描标定位置在数模坐标系(O-XOYOZO)中的三维坐标是已知的。在所述各个扫描标定位置上各布置一个背向反射合作目标11,用于扫描标定。由测量控制模块6发送的扫描驱动信号通过驱动双轴扫描振镜4中的两个精密转角机构9分别驱动双轴扫描振镜4中的垂直扫描镜12和水平扫描镜13,扫描背向反射合作目标11的反光区,扫描投影激光的一部分被背向反射合作目标11反射,作为标定反射光沿原光路返回,由分光棱镜3全反射到光强探测模块5,在光强探测模块5中由汇聚物镜14汇聚到光电探测器15上,由光电探测器15进行光电转换得到光强电信号,并传送给测量控制模块6。测量控制模块6根据光强电信号值以及获得该光强电信号时的垂直扫描镜12和水平扫描镜13各自的偏转角度,探测到一个背向反射合作目标11的反光区的光强峰值区域,该区域中心点就是所述扫描标定位置,其三维坐标值与一对偏转角度值对应,完成一个背向反射合作目标11中心位置的高精度扫描定位。重复上述过程,逐一对每个背向反射合作目标11的反光区进行扫描,获取各组三维坐标值和偏转角度值,由此即可精确解算出双轴扫描振镜4的投影坐标系(P-XPYPZP)与待投影工件三维CAD数模的数模坐标系(O-XOYOZO)间的转换关系。According to the needs of solving the multivariate equation, 4 to 6 irregularly distributed scanning calibration positions are selected in the
可见,如果能够增强激光扫描投影装置的光强自动搜索扫描的横向分辨力,将会更精确地解算出双轴扫描振镜4的投影坐标系(P-XPYPZP)与待投影工件三维CAD数模的数模坐标系(O-XOYOZO)间的转换关系。It can be seen that if the lateral resolution of the light intensity automatic search scanning of the laser scanning projection device can be enhanced, the projection coordinate system (PX P Y P Z P ) of the dual-
最后,完成待投影工件的三维外形轮廓在投影承接区域10的激光扫描投影。将待投影工件三维CAD数模导入到测量控制模块6中,根据待投影工件三维CAD数模中的位置、尺寸和形状等轮廓特征信息,驱动双轴扫描振镜4精确偏转和快速循环扫描,按三维CAD数模对待投影工件的位置、尺寸和形状等轮廓特征信息所做的定义,并按照所述两个坐标系的转换关系,将待投影工件的三维外形轮廓准确地循环显示在投影承接区域10中,形成激光线框16。Finally, the laser scanning projection of the three-dimensional outline of the workpiece to be projected on the
可见,在实际应用中将由三维CAD数模驱动的零部件三维外形轮廓激光线框准确投影显示在目标加工和装配区域,影响扫描投影定位准确度的本质因素是扫描投影激光的调焦,其对扫描投影定位准确度的影响表现有以下两方面:It can be seen that in practical applications, the laser wireframe of the three-dimensional outline of the parts driven by the three-dimensional CAD digital model is accurately projected and displayed in the target processing and assembly area. The essential factor affecting the accuracy of the scanning projection positioning is the focusing of the scanning projection laser, which affects the The influence of scanning projection positioning accuracy has the following two aspects:
一是激光扫描投影出的激光线框16的线宽,即在投影承接区域10中进行扫描投影时,激光光斑所能达到的最小尺寸。扫描投影激光经聚焦模块2在投影承接区域10中沿光轴方向的定焦准确度越高,激光光斑的尺寸就越小,激光光斑循环扫描投影的激光线框16的线宽就越窄,越能精确地辅助加工和指示装配;One is the line width of the
二是双轴扫描振镜4对背向反射合作目标11中心位置的扫描定位精度。当激光光斑尺寸越小,激光光斑在背向反射合作目标11上进行光强自动搜索扫描时的横向分辨力就越强,双轴扫描振镜4就能够以更小的扫描间隔进行更细致的扫描,同时,光强探测模块5也能够获取更多扫描标定位置的标定反射光的光强信息,也就能够更准确地获得与背向反射合作目标11中心位置对应的一对偏转角度值,进而解算出更准确的坐标系转换关系。The second is the scanning positioning accuracy of the dual-
所述现有激光扫描投影装置中的激光器1出射的激光波长为532nm,背向反射合作目标11的反光区直径为6mm,反光材料为玻璃微珠,最佳激光扫描投影定位距离为3~5m,在5m距离时的激光扫描设计线宽为0.5mm,激光扫描投影定位准确度定义为激光光线的半线宽,定位准确度为0.25mm。The laser wavelength emitted by the laser 1 in the existing laser scanning projection device is 532 nm, the diameter of the reflective area of the back-
发明内容SUMMARY OF THE INVENTION
本发明的目的在于,在双轴扫描振镜4的扫描精度和测量控制模块6的控制精度确定的前提下,进一步提高激光器1出射的扫描投影激光沿光轴方向的定焦准确度,获得尺寸最小的激光光斑,以及提高光强自动搜索扫描的横向分辨力,为此,我们发明了一种基于对称离焦双探测器的自聚焦激光扫描投影装置。由于激光扫描投影的定位准确度以激光半线宽定义,因此,所述定焦准确度的提高直接决定了激光扫描投影的定位准确度的提高;由于光强自动搜索扫描的横向分辨力直接关系到投影坐标系(P-XPYPZP)与数模坐标系(O-XOYOZO)转换关系的解算精确度,因此,横向分辨力的提高同样也直接决定了激光扫描投影的定位准确度的提高。The purpose of the present invention is to further improve the fixed focus accuracy of the scanning projection laser emitted by the laser 1 along the optical axis on the premise that the scanning accuracy of the dual-
如图2所示,本发明之基于对称离焦双探测器的自聚焦激光扫描投影装置其组成部分包括,激光器1、双轴扫描振镜4、测量控制模块6、计算机7,计算机7与测量控制模块6连接;测量控制模块6的扫描驱动信号输出端连接到双轴扫描振镜4中的精密转角机构9,所述测量控制模块6是一块多功能数据采集卡;其特征在于,激光器1、扩束准直镜组17、动态自聚焦模块18、偏振分光棱镜19、1/4波片20依次同轴排列;在偏振分光棱镜19的扫描透射光光路上,且在1/4波片20之后设置双轴扫描振镜4;在偏振分光棱镜19的标定反射光光路上设置对称离焦双探测器光强探测模块21;在对称离焦双探测器光强探测模块21中,在分光棱镜22的透射、反射光路上各配备一组汇聚物镜14、点探测针孔23和光电探测器15,点探测针孔23位于汇聚物镜14与光电探测器15之间,两个光电探测器15的感光面分别相对于各自对应的汇聚物镜14离焦+ΔZ、-ΔZ;两个光电探测器15各自的光强电信号输出端分别连接到测量控制模块6的两个光强模拟信号输入端;测量控制模块6的调焦驱动信号输出端连接到动态自聚焦模块18中的精密位移机构8。As shown in FIG. 2 , the components of the self-focusing laser scanning projection device based on the symmetrical defocusing dual detectors of the present invention include a laser 1, a dual-
若两个光电探测器15中的任何一个位于像方焦点处,探测到的轴向光强响应曲线为像方焦点处的轴向光强响应曲线,即图3中的曲线0;实际上两个光电探测器15分别探测到轴向光强响应曲线为偏离像方焦点-ΔZ处和偏离像方焦点+ΔZ处的轴向光强响应曲线,即图3中的曲线1和曲线2。此时来看,同在零点O,曲线1和曲线2的光强值仅相当于曲线0光强值的约0.707倍,而标定反射光的光强原本就维持在数十皮瓦(pW)的极微弱量级,看似本发明之效果适得其反,然而,在此条件下,能够以差分和加和的方式进行控制,从而获得预期效果。If any one of the two
由测量控制模块6将曲线1和曲线2的光强信号逐点相减,获得差分轴向光强响应曲线,即图3中的曲线3,曲线3在零点O与曲线0峰值点P精确对应。曲线0在P点附近的斜率接近于零,也就是光强值的变化对精密位移机构8的位移量的变化不敏感,即使由测量控制模块6根据曲线0向动态自聚焦模块18发送反馈控制信号,控制其中的精密位移机构8实现扫描投影激光光斑的轴向自聚焦,而非人眼观察手动调焦,扫描投影激光沿光轴方向的定焦准确度依旧难以提高。尽管曲线3在零点O的光强为零,但是,曲线3在零点O的斜率最大,也就是说此处随轴向位移光强变化最大,至此可见,利用曲线3与曲线0的这种特定关系,由测量控制模块6向动态自聚焦模块18发送反馈控制信号,控制其中的精密位移机构8实现扫描投影激光光斑的轴向自聚焦,不仅能够取代现有人眼观察手动调焦方式,而且轴向聚焦精度能够得到明显提高。The light intensity signals of curve 1 and
由测量控制模块6将曲线1和曲线2的光强信号逐点相加,获得加和轴向光强响应曲线,即图3中的曲线4;曲线4峰值点P″与曲线0的峰值点P相对应,且曲线4峰值约为曲线0峰值的1.414倍,因此,相比于现有单探测器激光扫描投影装置和方法,本发明能够对背向反射合作目标11进行高精度的横向扫描定位,从而能够更灵敏、更准确地建立投影坐标系(P-XPYPZP)与数模坐标系(O-XOYOZO)间的转换关系。The light intensity signals of curve 1 and
可见,本发明将差分式光强探测方法与加和式光强探测方法相结合,兼顾提高激光扫描投影装置的轴向定焦能力和横向扫描分辨能力。It can be seen that the present invention combines the differential light intensity detection method with the summation light intensity detection method, and takes into account the improvement of the axial focusing ability and the lateral scanning resolution ability of the laser scanning projection device.
设置扩束准直镜组17能够提高动态自聚焦模块18中的聚焦镜组的数值孔径3至5倍。根据汇聚物镜成像理论,其光斑直径d由下式得出:Setting the beam expander collimating
式中:λ为激光波长,n·sinα为汇聚镜组的数值孔径。可见,增大汇聚镜组的数值孔径,可以减小汇聚光斑的理论直径。当激光波长λ为532nm,汇聚镜组的工作距离为4600mm时,汇聚镜组组合焦距约为2500mm左右,激光入射在汇聚镜组上的有效口径为12mm,可计算获得艾里斑的理论直径约为0.27mm,意味着理论定位准确度提高到0.135mm。压缩扫描投影激光光斑尺寸,提高扫描投影激光光斑汇聚质量的附带的效果是,扫描投影激光光斑尺寸越小,可以随之减小所述背向反射合作目标11中的反光区的尺寸,如减小至4~5mm,这就意味着能够在更紧凑、更窄小的投影承接区域10进行精确的激光扫描投影,并因此而能够扩展本发明的应用领域。In the formula: λ is the laser wavelength, and n·sinα is the numerical aperture of the converging mirror group. It can be seen that increasing the numerical aperture of the converging lens group can reduce the theoretical diameter of the converging light spot. When the laser wavelength λ is 532nm, the working distance of the converging mirror group is 4600mm, the combined focal length of the converging mirror group is about 2500mm, and the effective aperture of the laser incident on the converging mirror group is 12mm, the theoretical diameter of the Airy disk can be calculated to be about It is 0.27mm, which means that the theoretical positioning accuracy is increased to 0.135mm. The secondary effect of compressing the scanning projection laser spot size and improving the scanning projection laser spot convergence quality is that the smaller the scanning projection laser spot size is, the size of the reflective area in the back-
附图说明Description of drawings
图1为现有激光扫描投影装置的结构示意图。FIG. 1 is a schematic structural diagram of a conventional laser scanning projection device.
图2为本发明之基于对称离焦双探测器的自聚焦激光扫描投影装置结构示意图。FIG. 2 is a schematic structural diagram of a self-focusing laser scanning projection device based on symmetrical defocusing dual detectors according to the present invention.
图3为采用本发明之基于对称离焦双探测器的自聚焦激光扫描投影装置获得的轴向光强响应曲线图,竖轴为光强I,横轴为轴向归一化坐标u,图中:Fig. 3 is the axial light intensity response curve diagram obtained by adopting the self-focusing laser scanning projection device based on the symmetrical defocusing double detector of the present invention, the vertical axis is light intensity I, the horizontal axis is the axial normalized coordinate u, Fig. middle:
曲线0为探测器位于像方焦点处的轴向光强响应曲线;
曲线1为探测器位于偏离像方焦点-ΔZ处的轴向光强响应曲线;Curve 1 is the axial light intensity response curve of the detector located at -ΔZ deviated from the image square focus;
曲线2为探测器位于偏离像方焦点+ΔZ处的轴向光强响应曲线;
曲线3为差分轴向光强响应曲线;Curve 3 is the differential axial light intensity response curve;
曲线4为加和轴向光强响应曲线。
具体实施方式Detailed ways
如图2所示,本发明之基于对称离焦双探测器的自聚焦激光扫描投影装置其组成部分包括,激光器1、双轴扫描振镜4、测量控制模块6、计算机7,计算机7与测量控制模块6连接;测量控制模块6的扫描驱动信号输出端连接到双轴扫描振镜4中的精密转角机构9,所述测量控制模块6是一块多功能数据采集卡。As shown in FIG. 2 , the components of the self-focusing laser scanning projection device based on the symmetrical defocusing dual detectors of the present invention include a laser 1, a dual-
激光器1、扩束准直镜组17、动态自聚焦模块18、偏振分光棱镜19、1/4波片20依次同轴排列。The laser 1 , the beam expander
扩束准直镜组17能够压缩来自于激光器1的扫描投影激光的发散角,并扩束至接近动态自聚焦模块18中的汇聚镜组满瞳的状态,增大了动态自聚焦模块18中的汇聚镜组的数值孔径,进而压缩扫描投影激光照射到投影承接区域10上的光斑尺寸。在扩束准直镜组17中设置照明针孔24,使得激光器1发出的激光以点照明的方式工作,同时消除杂散光干扰,提高光束质量,进一步减小光斑尺寸,在投影承接区域10中获得更理想的汇聚光斑。在动态自聚焦模块18中,调焦透镜25安装于精密位移机构8上,实现扫描投影激光光斑的轴向自聚焦。动态自聚焦模块18中的聚焦镜组为反远距型镜组,使得激光扫描投影定位距离范围达到1~10m,但是,这会导致聚焦镜组的数值孔径减小,约为10-3,不过,由于扩束准直镜组17的存在能够予以弥补。The beam expander
在偏振分光棱镜19的扫描透射光光路上,且在1/4波片20之后设置双轴扫描振镜4。在偏振分光棱镜19的标定反射光光路上设置对称离焦双探测器光强探测模块21。在与偏振分光棱镜19标定反射光光路相反的光路上设置陷波汇聚物镜26和陷波滤波器27,用于消除杂散光干扰。在对称离焦双探测器光强探测模块21中,在分光棱镜22的透射、反射光路上各配备一组汇聚物镜14、点探测针孔23和光电探测器15,点探测针孔23位于汇聚物镜14与光电探测器15之间,两个光电探测器15的感光面分别相对于各自对应的汇聚物镜14离焦+ΔZ、-ΔZ;两个光电探测器15各自的光强电信号输出端分别连接到测量控制模块6的两个光强模拟信号输入端。测量控制模块6的调焦驱动信号输出端连接到动态自聚焦模块18中的精密位移机构8。The
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2017105233730 | 2017-06-30 | ||
CN201710523373 | 2017-06-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107765426A CN107765426A (en) | 2018-03-06 |
CN107765426B true CN107765426B (en) | 2020-10-13 |
Family
ID=61269026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710992009.9A Active CN107765426B (en) | 2017-06-30 | 2017-10-23 | Self-focusing laser scanning projection device based on symmetrical out-of-focus double detectors |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107765426B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10712641B2 (en) * | 2018-03-28 | 2020-07-14 | Htc Corporation | Image projection apparatus |
CN110448266B (en) * | 2018-12-29 | 2022-03-04 | 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 | Random laser confocal line scanning three-dimensional ophthalmoscope and imaging method |
CN111412835B (en) * | 2020-04-14 | 2021-04-30 | 长春理工大学 | Novel laser scanning projection method |
CN111367138A (en) * | 2020-04-14 | 2020-07-03 | 长春理工大学 | Novel laser scanning projection device |
CN111521132B (en) * | 2020-04-14 | 2021-04-30 | 长春理工大学 | A Novel Self-Calibration Laser Scanning Projection Method |
CN111399330B (en) * | 2020-04-27 | 2021-12-10 | 江西师范大学 | A silicon crystal projection display |
CN114178679B (en) * | 2020-09-15 | 2024-07-02 | 台达电子工业股份有限公司 | Laser processing device |
CN113787722A (en) * | 2021-07-21 | 2021-12-14 | 武汉锐科光纤激光技术股份有限公司 | Packaging device and packaging method |
CN113917651B (en) * | 2021-09-29 | 2022-10-04 | 中国科学院西安光学精密机械研究所 | A low temperature optical system focusing device |
CN119140982A (en) * | 2024-11-13 | 2024-12-17 | 华中科技大学 | Laser three-dimensional automatic focus-following scanning processing optical system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103091299A (en) * | 2013-01-21 | 2013-05-08 | 北京理工大学 | Laser differential confocal map microimaging imaging method and device |
-
2017
- 2017-10-23 CN CN201710992009.9A patent/CN107765426B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103091299A (en) * | 2013-01-21 | 2013-05-08 | 北京理工大学 | Laser differential confocal map microimaging imaging method and device |
Non-Patent Citations (1)
Title |
---|
"激光大尺度3维动态聚焦扫描加工系统研究";李东华等;《激光技术》;20160731;第40卷(第4期);第466-471页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107765426A (en) | 2018-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107765426B (en) | Self-focusing laser scanning projection device based on symmetrical out-of-focus double detectors | |
US11439483B2 (en) | Intraoral scanner that compensates for non-fixed magnification | |
CN104236856B (en) | Wave aberration detection device of objective lens imaging system and system error correction method of wave aberration detection device | |
CN204165736U (en) | A kind of wave aberration high precision measuring device for object lens imaging system | |
CN107765425B (en) | Self-focusing laser scanning projection method based on symmetrical defocused dual detectors | |
CN112748510A (en) | Scanning type automatic focusing method and device with automatic leveling function | |
CN108152991A (en) | The assembly method and device of a kind of optical lens | |
CN112684572A (en) | Automatic focusing method and device with automatic leveling function | |
CN110456521A (en) | A kind of light path system of unsteady cavity solid state laser alignment adjustment | |
CN114688963B (en) | Light path beam combination quality detection and calibration method and system for multi-wavelength point diffraction interferometer | |
TWI431240B (en) | Three-dimensional measurement system | |
CN113703124B (en) | Method for correcting coaxiality of biconcave off-axis system | |
CN102628713A (en) | Curvature wave front sensor based on digital micro-mirror device | |
CN104729424A (en) | Confocal laser microscope based on self-mixing interference and scanning method of confocal laser microscope | |
CN209230924U (en) | Multi-optical axis consistency detection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240724 Address after: No. 89 Fanghua Road, Hengqin New District, Zhuhai City, Guangdong Province 519000, 9th Floor, 9-011 Patentee after: Zhuhai Longying Enterprise Management Partnership Enterprise (Limited Partnership) Country or region after: China Address before: 130022 No. 7089 Satellite Road, Changchun, Jilin, Chaoyang District Patentee before: CHANGCHUN University OF SCIENCE AND TECHNOLOGY Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240808 Address after: Room 204, No. 863-10, Shangshengou Village, Hunnan District, Shenyang City, Liaoning Province, China Patentee after: Shengke Liwei (Shenyang) Precision Optoelectronic Technology Co.,Ltd. Country or region after: China Address before: No. 89 Fanghua Road, Hengqin New District, Zhuhai City, Guangdong Province 519000, 9th Floor, 9-011 Patentee before: Zhuhai Longying Enterprise Management Partnership Enterprise (Limited Partnership) Country or region before: China |
|
TR01 | Transfer of patent right |