CN107764177B - System and method for monitoring dynamic gap width of subway switch machine indication rod - Google Patents
System and method for monitoring dynamic gap width of subway switch machine indication rod Download PDFInfo
- Publication number
- CN107764177B CN107764177B CN201710824202.1A CN201710824202A CN107764177B CN 107764177 B CN107764177 B CN 107764177B CN 201710824202 A CN201710824202 A CN 201710824202A CN 107764177 B CN107764177 B CN 107764177B
- Authority
- CN
- China
- Prior art keywords
- width
- snw
- gap width
- toplimit
- dynamic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000001514 detection method Methods 0.000 claims abstract description 107
- 230000003068 static effect Effects 0.000 claims abstract description 64
- 238000006073 displacement reaction Methods 0.000 claims abstract description 20
- 238000004891 communication Methods 0.000 claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims description 26
- 238000007791 dehumidification Methods 0.000 claims description 23
- 239000011324 bead Substances 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 230000007704 transition Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000000523 sample Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 239000000741 silica gel Substances 0.000 claims 1
- 229910002027 silica gel Inorganic materials 0.000 claims 1
- 238000012423 maintenance Methods 0.000 abstract description 23
- 230000008859 change Effects 0.000 abstract description 5
- 230000002265 prevention Effects 0.000 abstract 1
- 230000009471 action Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000003449 preventive effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 230000001568 sexual effect Effects 0.000 description 3
- 238000011179 visual inspection Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000027326 copulation Effects 0.000 description 1
- 230000009193 crawling Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004643 material aging Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Train Traffic Observation, Control, And Security (AREA)
Abstract
Description
技术领域technical field
本发明属地铁转辙机的监测技术范畴。特指采用电涡流/碰珠电触点的定量/性组合位移传感器,考虑销轴旷动的、表示杆动态缺口宽度监测系统和方法。The invention belongs to the monitoring technology category of subway switch machines. In particular, it refers to a quantitative/sexual combined displacement sensor using eddy current/ball-on-ball electrical contacts, and a monitoring system and method for the dynamic notch width of a rod, which considers the pin shaft to move.
背景技术Background technique
2012年10月,全长48km的杭州地铁1号线运营,当年日均客流量23.24万人次。地铁标配列车选用交流变频B型车,六辆编组、四动二拖、定员1240人;设计最高时速80km,行车间隔≥120s。2017年,1号线高峰时段线上列车46辆左右;非高峰36辆上下;线路繁忙可见一斑。地铁载客量大、节地,安全、准点、快捷、舒适、环保;拥有地面任何交通工具无可比拟的优越性。長期困扰全社会的公交出行分担率持续下降难题,终于迎来窘境破局者--地铁。2000年,杭州地面公交平均时速15.3km,出行分担率22.2%;2011年,时速逐年递减仅剩12.3km,分担率也降至历史谷底20%。2012年,时速和分担率止跌企稳。2013年,地铁运送8483.1万人次;当年分担率逆袭+3.20%,一举扭转公交出行日渐式微的颓势。2014年,地铁运送14450.4万人次;2015年,17629.5万人次。2022年,杭州十条地铁线路投运,总里程192km覆盖全市9区。2013~2016年,杭城交通拥堵痼疾呈现整体向好的缓解态势;地铁冶堵,居功至伟!In October 2012, Hangzhou Metro Line 1 with a total length of 48km was put into operation, with an average daily passenger flow of 232,400 people that year. The standard subway trains use AC frequency conversion B-type cars, with six groups, four-movement and two-trailer, with a capacity of 1,240 people; the design maximum speed is 80km per hour, and the travel interval is ≥120s. In 2017, there were about 46 trains on Line 1 during peak hours; 36 trains went up and down during off-peak hours; it is evident that the line is busy. The subway has a large passenger capacity, saves land, is safe, punctual, fast, comfortable, and environmentally friendly; it has the unparalleled advantages of any ground transportation. The long-term problem of the public transportation sharing rate that has plagued the whole society has continued to decline, and finally ushered in the dilemma-breaker-the subway. In 2000, the average speed of ground buses in Hangzhou was 15.3km per hour, and the travel sharing rate was 22.2%; In 2012, the speed and sharing rate stopped falling and stabilized. In 2013, the subway transported 84.831 million person-times; the share rate that year counterattacked +3.20%, reversing the declining trend of bus travel in one fell swoop. In 2014, the subway transported 144.504 million passengers; in 2015, 176.295 million passengers. In 2022, ten subway lines in Hangzhou will be put into operation, with a total mileage of 192km covering 9 districts in the city. From 2013 to 2016, the chronic problem of traffic congestion in Hangzhou has shown an overall improvement in alleviation; subway congestion has been greatly contributed to!
随着地铁发车密度的加大,公众关注点转向行车安全。隶属电务轨旁设备的道岔转换设备,直接接触轮轨,是地铁线路的交合分离节点;道岔转换设备作为地铁路线的咽喉,恰是线路薄弱环节,亦是事故多发点;统计表明,地铁≥50%的事故源自道岔转换设备。因此,道岔转换设备不仅关系线路的通过能力,而且成为行车安全的关键。道岔转换设备涉及道岔和转辙机;1825年,道岔问世,源远流长实至名归,其选材、结构和运维,成熟可靠;电动转辙机则不然。转辙机長年经受过车时的冲击,钢轨爬行和机械磨损,材料老化和温湿度变化的环境侵蚀;一旦发生道岔动作不到位、道岔断表示、道岔不解锁等故障,后果不堪设想。转辙机具有三项基本功能:道岔转换,锁闭和表示;道岔转换分三步实施:响应调度指令,推/拉尖轨或可动心轨,从定/反位转至反/定位(线路的交合分离)。With the increase in the density of subway trains, public attention has turned to driving safety. The turnout conversion equipment belonging to the electrical trackside equipment directly contacts the wheel and rail, and is the intersection and separation node of the subway line; as the throat of the subway line, the turnout conversion equipment is the weak link of the line and the point of frequent accidents; statistics show that the subway ≥ 50% of accidents originate from switch conversion equipment. Therefore, the switch conversion equipment is not only related to the passing capacity of the line, but also becomes the key to driving safety. Turnout conversion equipment involves turnouts and switch machines; in 1825, the turnout came out, and it deserves its name. Its material selection, structure and operation and maintenance are mature and reliable; electric switch machines are not. The switch machine has been subjected to the impact of the car for many years, the crawling of the rail and the mechanical wear, the environmental erosion of the material aging and the change of temperature and humidity; once the turnout action is not in place, the switch is broken, and the switch is not unlocked, the consequences are unimaginable. The switch machine has three basic functions: switch switching, locking and expressing; switch switching is implemented in three steps: responding to dispatch instructions, pushing/pulling the pointed rail or movable heart rail, from fixed/reverse position to reverse/positioning (line copulation separation).
转辙机的机电结构复杂、工作环境恶劣,安装数量众多、遍布地铁全线,导致转辙机的可靠性差强人意。另一方面,高频率高强度操作条件下,转辙机可靠性直面来自操作方面的压力;2017年,杭州地铁客运中心站道岔的转辙机定/反位操作≥200次/天;2022年,十条地铁线全部投运之日,转辙机操作强度倍增之时--可靠性的第二重压力,“亚历山大”!第三,地铁运营时转辙机始终处于工作状态,检修只能在停运“天窗”期进行;可靠性还得承受运维压力--三座大山!针对转辙机可靠可用性上的不足,铁道部颁布《信号维护规则技术标准》,标准规定“道岔状况必须具有动态监测设备,实时监测转辙机运行状态以保证列车运行的安全性”,“动态监测设备”旨在弥补和支撑转辙机可靠性上的不足。知名转辙机监测系统有德国Rodamaster2000,法国SURVAIG,河南辉煌科技股份有限公司TJWX-2006等。The mechanical and electrical structure of the switch machine is complex, the working environment is harsh, and the number of installations is large and spread across the entire subway line, resulting in the unsatisfactory reliability of the switch machine. On the other hand, under high-frequency and high-intensity operating conditions, the reliability of the switch machine faces the pressure from the operation; in 2017, the set/reverse operation of the switch machine at the Hangzhou Metro Passenger Transport Center Station was ≥ 200 times/day; in 2022 , the day when all ten subway lines are put into operation, when the operating intensity of the switch machine is doubled - the second pressure of reliability, "Alexander"! Third, the switch machine is always in working condition when the subway is in operation, and the maintenance can only be carried out during the "skylight" period of outage; the reliability has to bear the pressure of operation and maintenance - three mountains! In view of the lack of reliable availability of the switch machine, the Ministry of Railways promulgated the "Technical Standard for Signal Maintenance Rules", which stipulates that "the condition of the switch must be equipped with dynamic monitoring equipment to monitor the operating status of the switch machine in real time to ensure the safety of train operation", "dynamic "Monitoring Equipment" is designed to make up for and support the lack of reliability of the switch machine. Well-known switch machine monitoring systems include German Rodamaster2000, French SURVAIG, Henan Brilliant Technology Co., Ltd. TJWX-2006, etc.
转辙机监测系统实时监测表示杆缺口宽度和动作杆转换力,确保道岔转换性能和行车安全。转辙机动作杆、尖轨连接铁、尖轨、检测杆、表示连接杆、表示杆均借助销轴连接,直接测量转辙机转换力,“动作杆”和“道销”处需安装“柱销”状的力传感器,拆装转辙机是绕不过的坎;直接测量法的传感器安装“人为”因素多且偏差大,拆装转辙机受现场条件限制且不安全;所以业界摒弃直接测量法,推行间接测量法。通过专用芯片测量转辙机的电参数,推算动作杆转换力;间接法成熟、精度取得长足进步,得到业界认同;故本文未涉及动作杆转换力内容。The switch machine monitoring system monitors the notch width of the pole and the switching force of the action pole in real time to ensure the switching performance and driving safety of the switch. The switch machine action rod, point rail connecting iron, point rail, detection rod, indicating connecting rod and indicating rod are all connected by pin shafts to directly measure the switching force of the switch machine. The force sensor in the shape of a "pin", the disassembly and assembly of the switch machine is an unavoidable hurdle; the direct measurement method of the sensor installation has many "artificial" factors and large deviations, and the disassembly and assembly of the switch machine is limited by site conditions and unsafe; so the industry abandons Direct measurement method, the implementation of indirect measurement method. The electrical parameters of the switch machine are measured by a special chip, and the switching force of the action rod is calculated; the indirect method is mature and the accuracy has made great progress, which is recognized by the industry; therefore, the content of the switching force of the action rod is not covered in this paper.
目前,监测系统设计聚焦表示杆缺口宽度的检测,缺口宽度表征尖轨与基本轨的密贴状态。铁道部运基信号[2003]49号规定,“道岔表示缺口的检测误差为±0.1mm”;中国铁总运输局[2015]315号《道岔缺口监测系统技术规范》在传统(静态)缺口基础上,首次定义销轴旷动下的动态缺口。基于动态缺口,延拓创建监测系统的“动态缺口宽度”新理念;依据动态缺口宽度,推进盲目计划维修和被动故障维修向科学状态维修和主动预防维修的变革。转辙机销轴连接的间隙是不可避免的,只能减小无法完全消除,因为杆连接毕竟是活动连接;杆件旷动的内因就是“间隙”。过车冲击和震动,换岔操作的转换力,均会造成缺口宽度变大或变小;立足动态缺口宽度,可预估缺口宽度的量变趋势。迄今为止,缺口宽度监测经历了三个阶段:人工目测,碰珠电触点/光电传感器,视频图像和位移传感器(霍尔/磁致伸缩/光纤/电涡流传感器)。At present, the monitoring system design focuses on the detection of the bar gap width, and the gap width represents the close contact state of the tip rail and the base rail. The Ministry of Railways Yunji Signal [2003] No. 49 stipulates that "the detection error of the switch indicating the gap is ±0.1mm"; above, the dynamic gap under the pin open is defined for the first time. Based on the dynamic gap, the new concept of "dynamic gap width" of the monitoring system is extended; based on the dynamic gap width, the transformation from blind planned maintenance and passive fault maintenance to scientific state maintenance and active preventive maintenance is promoted. The gap between the pin shaft connection of the switch machine is unavoidable, and it can only be reduced but not completely eliminated, because the rod connection is an active connection after all; the internal cause of the rod moving is "gap". The impact and vibration of passing vehicles and the conversion force of the fork change operation will cause the notch width to become larger or smaller; based on the dynamic notch width, the quantitative trend of the notch width can be estimated. So far, notch width monitoring has gone through three stages: manual visual inspection, bead-touching electrical contacts/photoelectric sensors, video images, and displacement sensors (Hall/magnetostrictive/fiber/eddy-current sensors).
人工目测表示杆缺口宽度:非实时离线监测,安全保障先天欠缺;误差指标±0.1mm,人力勉为其难;“天窗”期维修作业量,往往不能满足现场需求;目测法落伍了。光电传感器对污染敏感,光衰误差随时间增加;时至今日难觅踪影。碰珠电触点传感器简单可靠,易用价廉;缺点是“定量”缺位,不支持状态与预防维修,难兼顾安全与运维需求。例如,宽度指标=1.5±0.5mm,安全上乘,运维失望(报警频繁、运维剧增);宽度指标=1.5±0.9mm,安全置疑,运维满意。碰珠传感器瑕不掩瑜,监测系统虚席以待。视频呈现缺口图像,摄像头易污染,“宽度”量化靠人,主观随意;图像传输需敷专线,增加了系统的复杂度。霍尔/磁致伸缩/光纤传感器技术复杂,现场安装有难度。电涡流传感器的检测量程、精度,抗干扰、易用性,较上述传感器更胜一筹。转辙机表示杆缺口宽度监测系统较有代表性的知识产权成果综述如下:Manual visual inspection indicates the width of the pole gap: non-real-time offline monitoring, inherent lack of safety guarantee; error index ±0.1mm, manpower is reluctant; the maintenance workload during the "skylight" period often cannot meet the on-site needs; the visual inspection method is outdated. Photoelectric sensors are sensitive to contamination, and light decay errors increase with time; they are hard to find today. The touch-bead electrical contact sensor is simple and reliable, easy to use and cheap; the disadvantage is that "quantitative" is absent, it does not support status and preventive maintenance, and it is difficult to take into account the needs of safety and operation and maintenance. For example, the width index = 1.5±0.5mm, the safety is excellent, and the operation and maintenance are disappointed (frequent alarms and sharp increase in the operation and maintenance); the width index = 1.5±0.9mm, the safety is doubtful, and the operation and maintenance is satisfactory. The bead-touching sensor does not hide its flaws, and the monitoring system is waiting. The video presents a gap image, the camera is easy to be polluted, and the "width" is quantified by people, which is subjective and arbitrary; image transmission requires a dedicated line, which increases the complexity of the system. Hall/magnetostrictive/fiber optic sensors are technically complex and difficult to install on site. The detection range, accuracy, anti-interference and ease of use of the eddy current sensor are better than those of the above sensors. The representative intellectual property achievements of the switch machine indicating rod notch width monitoring system are summarized as follows:
·发明专利“一种道岔转辙机远程监测系统”(ZL2012102696136),提出不影响既有设备前提下,加装监测设备记录牵引点S700K电流、开关量状态。The invention patent "A Remote Monitoring System for Switch Machines" (ZL2012102696136) proposes to install monitoring equipment to record the current and switch status of the traction point S700K without affecting the existing equipment.
·发明专利“直接采集铁路转辙机表示杆缺口图像测得缺口数据的方法”(ZL2011104258288),提出采集存储表示杆缺口图像,对缺口的边沿形态学滤波形成分析图像;对分析图像进行直方图统计,得缺口两边沿和边沿坐标。The invention patent "method of directly collecting the notch image of the railway switch machine to measure the notch data" (ZL2011104258288), proposes to collect and store the image representing the notch of the bar, and form an analysis image by morphological filtering of the edge of the notch; Statistics, get the two edges and edge coordinates of the gap.
·发明专利“铁路转辙机智能缺口监测系统及方法”(ZL2012103040694),提出转辙机表示杆上粘贴靶标,转辙机停止工作时根据靶标获取缺口偏移值。·The invention patent "Intelligent Gap Monitoring System and Method of Railway Switch Machine" (ZL2012103040694) proposes that the switch machine indicates that the target is pasted on the pole, and the switch machine stops working to obtain the gap offset value according to the target.
·发明专利“道岔转辙机表示杆缺口宽度监测系统及其电涡流传感器”(ZL2014104607598),提出采用电涡流传感器,获取转辙机表示杆缺口宽度。·The invention patent "Monitoring system and eddy current sensor for indicating bar gap width of switch machine" (ZL2014104607598), proposes to use eddy current sensor to obtain the bar gap width of switch machine.
上述有益探索,提出转辙机监测系统的架构,或图像或靶标或电涡流传感器获取表示杆缺口宽度的技术路线;相关知识产权的探索有参考价值,但成果仍存在局限;有必要作进一步的创新设计。首先,设计电涡流/碰珠电触点的定量/性组合位移传感器,结构和时间双冗余技术提高系统监测缺口宽度的可靠性。其次,考虑销轴旷动构建动态缺口宽度,令碰珠的静态缺口宽度区间1.5±0.7mm,其中0.7为静态缺口宽度的偏差;电涡流传感器检测静态缺口宽度和旷动幅度,旷动幅度=MAX动态缺口宽度-MIN动态缺口宽度;根据静态缺口宽度和旷动幅度,不报警、预警、报警、警报,推动计划/故障维修向状态/预防维修的变革,兼顾安全与运维。此外,杭州地铁梅雨季节平均湿度≥80%,定/反位表示电路的防潮是必须的;自定义通信标准使监测系统可靠性受损,亟待标准化。The above beneficial explorations put forward the structure of the switch machine monitoring system, or the technical route of obtaining the image or target or eddy current sensor to indicate the width of the rod gap; the exploration of related intellectual property rights has reference value, but the results are still limited; it is necessary to make further Innovative design. First of all, a quantitative/sexual combined displacement sensor of eddy current/ball contact electrical contacts is designed, and the structure and time double redundancy technology improves the reliability of the system monitoring the gap width. Secondly, consider the dynamic gap width of the pin shaft, and set the static gap width range of the bead to be 1.5±0.7mm, of which 0.7 is the deviation of the static gap width; the eddy current sensor detects the static gap width and the gap amplitude, and the gap amplitude = MAX dynamic gap width - MIN dynamic gap width; according to the static gap width and the swing amplitude, no alarm, early warning, alarm, and alarm are required to promote the change from planned/fault maintenance to state/preventive maintenance, taking into account safety and operation and maintenance. In addition, the average humidity of Hangzhou Metro during the rainy season is ≥80%, and the fixed/reverse position indicates that the moisture-proof of the circuit is necessary; the custom communication standard will damage the reliability of the monitoring system, which needs to be standardized.
发明内容SUMMARY OF THE INVENTION
本发明的目的是克服现有技术的不足,提供一种地铁转辙机表示杆动态缺口宽度的监测系统和方法。The purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a monitoring system and method for indicating the dynamic gap width of a pole in a subway switch machine.
地铁转辙机表示杆动态缺口宽度的监测系统,系统由电涡流宽度检测模块、碰珠电触点宽度检测模块、温湿度检测模块、加热除湿模块、信号处理主控模块、直流载波通信模块、动态缺口宽度监测主机组成,其中前六个模块统称动态缺口宽度监测终端,终端数=N≥1;电涡流宽度检测模块、碰珠电触点宽度检测模块、温湿度检测模块、加热除湿模块分别与信号处理主控模块相连,信号处理主控模块经直流载波通信模块与动态缺口宽度监测主机相连;动态缺口宽度监测终端与动态缺口宽度监测主机组网,遵循Modbus--RTU协议,动态缺口宽度监测主机为主机,动态缺口宽度监测终端为从机;The subway switch machine represents the monitoring system of the dynamic gap width of the pole. It consists of a dynamic gap width monitoring host, of which the first six modules are collectively referred to as dynamic gap width monitoring terminals, and the number of terminals = N≥1; the eddy current width detection module, the bead contact width detection module, the temperature and humidity detection module, and the heating and dehumidification module are respectively It is connected with the signal processing main control module, and the signal processing main control module is connected with the dynamic gap width monitoring host through the DC carrier communication module; the dynamic gap width monitoring terminal is networked with the dynamic gap width monitoring host, and follows the Modbus--RTU protocol. The monitoring host is the host, and the dynamic gap width monitoring terminal is the slave;
电涡流宽度检测模块和碰珠电触点宽度检测模块嵌入转辙机的指示标,电涡流宽度检测模块的电涡流位移传感器、碰珠电触点宽度检测模块的碰珠电触点位移传感器,并列平行排列;电涡流位移传感器的探头与指示标齐平,碰珠电触点位移传感器的两端各配1粒碰珠、碰珠凸出指示标的弦高=0.7mm;温湿度检测模块和加热除湿模块固定在转辙机速动开关盒内;电涡流宽度检测模块、碰珠电触点宽度检测模块、温湿度测量模块分别上传宽度数据、宽度开关量、温湿度数据至信号处理主控模块,信号处理主控模块控制加热除湿模块;动态缺口宽度监测主机读取列车自动监控系统ATS的缺口宽度检测时间、道岔转换和列车过岔时间,经直流载波通信模块,下发给动态缺口宽度监测终端,同时接收动态缺口宽度监测终端上传的信号。The eddy current width detection module and the bead-touching electrical contact width detection module are embedded in the indicator of the switch machine, the eddy-current displacement sensor of the eddy-current width detection module, and the bead-touching electrical contact displacement sensor of the bead-touching electrical contact width detection module, Arranged side by side and parallel; the probe of the eddy current displacement sensor is flush with the indicator, and the two ends of the bead-touching electrical contact displacement sensor are each equipped with a bead, and the chord height of the bead protruding indicator = 0.7mm; the temperature and humidity detection module and The heating and dehumidification module is fixed in the switch box of the switch machine; the eddy current width detection module, the width detection module of the contact bead, and the temperature and humidity measurement module respectively upload the width data, the width switch value, and the temperature and humidity data to the signal processing master control. Module, the signal processing main control module controls the heating and dehumidification module; the dynamic gap width monitoring host reads the gap width detection time, switch conversion and train crossing time of the automatic train monitoring system ATS, and sends it to the dynamic gap width through the DC carrier communication module. Monitor the terminal, and simultaneously receive the signal uploaded by the dynamic gap width monitoring terminal.
所述的动态缺口宽度监测终端的信号处理主控模块以ATmega128芯片为核心;电涡流宽度检测模块选用NCDT3005型电涡流位移传感器,NCDT3005端口1、3、2分别接24V、地、ATmega128脚61;碰珠电触点宽度检测模块位于指示标两侧的碰珠通过金属弹簧互连,一路经R201接24V,另一路与ATmega128的中断口脚25相连,表示杆缺口接地;温湿度检测模块以SHT11芯片为核心,SHT11脚1、4、3分别接地、5V、ATmega128脚58,SHT11脚2的一路经R301接5V、另一路与ATmega128脚59相连;加热除湿模块包括IRFP150型固态继电器SSR401、DRT-X型硅胶加热片SCS401,SSR401的控制端口接ATmega128脚48,SSR401的两个输出端口经电源、SCS401相连;ATmega128脚51、50、49分别与直流载波通信模块的MM1192脚1、5、6相连;The signal processing main control module of the dynamic gap width monitoring terminal is based on the ATmega128 chip; the eddy current width detection module selects the NCDT3005 eddy current displacement sensor, and the
直流载波通信模块以MM1192芯片为核心,MM1192脚6、1分别经R2、R1接地;C1两端分别与MM1192脚3、4相连,MM1192脚15、16分别经R7和C6、R6和C5接入载波输出的负、正端,MM1192脚11与VCC和C2一端相连,C2另一端与MM1192脚13相连;D1和D2串联、D3和D4串联、D2和D4另一端接地,D1和D3另一端分别与MM1192脚14、12相连;R3、R4的一端分别与MM1192脚14、12相连,另一端分别与MM1192脚9和L1一端、脚10和L2一端相连;L1、L2另一端并接R3,分别经C3、C4接入载波输出的正、负端;动态缺口宽度监测终端与动态缺口宽度监测主机构成直流载波Modbus网络,采用RTU报文帧格式:地址1字节,功能码1字节,数据占0~252字节,CRC校验2字节,报文帧之间≥3.5字符的时间间隔;报文帧的第一个字节为地址,地址取值范围为0~255,地址0为广播地址,功能码取值为1~255。The DC carrier communication module is based on the MM1192 chip. The MM1192 pins 6 and 1 are grounded through R 2 and R 1 respectively; the two ends of C 1 are connected to the MM1192 pins 3 and 4 respectively. R 6 and C 5 are connected to the negative and positive ends of the carrier output, MM1192 pin 11 is connected to one end of V CC and C 2 , the other end of C 2 is connected to
一种使用所述监测系统的动态缺口宽度监测方法,方法流程包括温湿度检测和加热除湿的流程,以及动态缺口宽度检测和报警的流程;A dynamic gap width monitoring method using the monitoring system, the method process includes a process of temperature and humidity detection and heating and dehumidification, and a process of dynamic gap width detection and alarm;
变量说明:Variable description:
水气密度Water_density,WDWater vapor density Water_density, WD
饱和水气密度SATUR_Water_density,WD_SATURSaturated water vapor density SATUR_Water_density, WD_SATUR
相对湿度relative_humidity,RHRelative humidity relative_humidity, RH
临界相对湿度critical_relative_humidity,CRHCritical relative humidity critical_relative_humidity, CRH
静态缺口宽度static nick width,SNWstatic nick width static nick width, SNW
静态缺口宽度上限static nick width toplimit,SNW_toplimitStatic nick width toplimit static nick width toplimit, SNW_toplimit
动态缺口宽度dynamic nick width,DNWdynamic nick width dynamic nick width, DNW
最大动态缺口宽度MAX dynamic nick width,DNW_MAXMAX dynamic nick width, DNW_MAX
最小动态缺口宽度MIN dynamic nick width,DNW_MINMIN dynamic nick width, DNW_MIN
旷动幅度Shaking width,SWShaking width, SW
旷动上限Shaking toplimit,S_toplimitShaking toplimit, S_toplimit
静态缺口宽度检测时间static nick width time,SNW_timeStatic nick width detection time static nick width time, SNW_time
道岔转换时间turnout convert time,TC_timeTurnout convert time, TC_time
道岔过车时间turnout via time,TV_timeTurnout via time, TV_time
宽度报警width alarm,WAwidth alarm width alarm, WA
算法说明:Algorithm Description:
相对湿度RH=WD/WD_SATUR×100% (1)Relative humidity RH=WD/WD_SATUR×100% (1)
旷动幅度SW=DNW_MAX-DNW_MIN (2)SW=DNW_MAX-DNW_MIN (2)
动/静态缺口宽度的数据结构采用关系数据库二维表,一次宽度检测映射为数据结构的一个元组或一条记录;毎条记录由6个字段组成,包括转辙机编号、静态宽度的检测时间、静态缺口宽度、MAX动态缺口宽度、MIN动态缺口宽度、静/动态缺口宽度报警;静/动态缺口宽度报警=0/1/10/11,分别表示不报警/预警/报警/警报;动态缺口宽度监测主机存储监测终端上传的宽度数据,按需建立索引表,提高查询效率;初始化时,数据库“转辙机编号”字段=转辙机编码,“静态宽度的检测时间”字段=999999.999,“静态缺口宽度、MAX动态缺口宽度、MIN动态缺口宽度”字段=9.99,“静/动态缺口宽度报警”字段=0;The data structure of the dynamic/static gap width adopts the relational database two-dimensional table, and a width detection is mapped to a tuple or a record of the data structure; each record consists of 6 fields, including the switch machine number and the detection time of the static width. , static gap width, MAX dynamic gap width, MIN dynamic gap width, static/dynamic gap width alarm; static/dynamic gap width alarm = 0/1/10/11, respectively indicating no alarm/warning/alarm/alarm; dynamic gap The width monitoring host stores the width data uploaded by the monitoring terminal, and builds an index table as needed to improve query efficiency; during initialization, the database "switch machine number" field = switch machine code, "static width detection time" field = 999999.999, " Static Gap Width, MAX Dynamic Gap Width, MIN Dynamic Gap Width" field = 9.99, "Static/Dynamic Gap Width Alarm" field = 0;
温湿度检测和加热除湿的流程如下:The process of temperature and humidity detection and heating dehumidification is as follows:
(一)读入温度~饱和水气密度T~WD_SATUR(1) Read in temperature ~ saturated water vapor density T ~ WD_SATUR
给定临界相对湿度CRH=0.65Given critical relative humidity CRH=0.65
检测温度、水气密度分别为T、WDThe detection temperature and water vapor density are T and WD respectively
(二)计算相对湿度RH=WD/WD_SATUR×100%(2) Calculate the relative humidity RH=WD/WD_SATUR×100%
(三)RH≤CRH断电,反之上电;(3) When RH≤CRH is powered off, it is powered on instead;
动态缺口宽度检测和报警的流程如下:The process of dynamic gap width detection and alarm is as follows:
①初始化①Initialization
静态缺口宽度上限SNW_toplimit=1.5+0.7Static gap width upper limit SNW_toplimit=1.5+0.7
旷动上限S_toplimit=0.4S_toplimit=0.4
宽度报警WA=0Width alarm WA=0
从ATS读,静态缺口宽度的检测时间SNW_time[iw],1≤iw≤MwRead from ATS, detection time of static gap width SNW_time[iw], 1≤iw≤Mw
道岔转换时间TC_time[ic],1≤ic≤McTurnout transition time TC_time[ic], 1≤ic≤Mc
道岔过车时间TV_time[iv],1≤iv≤MvTurnout passing time TV_time[iv], 1≤iv≤Mv
②缺口宽度检测②Notch width detection
②-1静态缺口宽度检测②-1 Static notch width detection
SNW_time[iw]时、采集SNWSNW_time[iw], collect SNW
Case1interrupt或SNW≥SNW_toplimit,WA=10Case1interrupt or SNW≥SNW_toplimit, WA=10
Case2WA=0Case2WA=0
存储上传SNW、WAStorage upload SNW, WA
②-2道岔转换时的动态缺口宽度检测②-2 Dynamic notch width detection during switch transition
道岔转换TC_time[ic]+15时、采集SNWWhen the switch changes TC_time[ic]+15, collect SNW
[TC_time[ic],TC_time[ic]+13]、采集DNW[TC_time[ic], TC_time[ic]+13], collect DNW
从DNW获DNW_MAX和DNW_MINGet DNW_MAX and DNW_MIN from DNW
计算旷动幅度SW=DNW_MAX-DNW_MINCalculate the swing amplitude SW=DNW_MAX-DNW_MIN
Case1 SNW<SNW_toplimit且SW<S_toplimit,WA=0Case1 SNW<SNW_toplimit and SW<S_toplimit, WA=0
Case2 SNW<SNW_toplimit且SW≥S_toplimit,WA=1Case2 SNW<SNW_toplimit and SW≥S_toplimit, WA=1
OR SNW+SW≥SNW_toplimit+0.5×S_toplimit,WA=1OR SNW+SW≥SNW_toplimit+0.5×S_toplimit, WA=1
Case3 SNW≥SNW_toplimit且SW<S_toplimit,WA=10Case3 SNW≥SNW_toplimit and SW<S_toplimit, WA=10
Case4 SNW≥SNW_toplimit且SW≥S_toplimit,WA=11Case4 SNW≥SNW_toplimit and SW≥S_toplimit, WA=11
存储上传SNW、WA、DNW_MAX、DNW_MINStorage upload SNW, WA, DNW_MAX, DNW_MIN
②-3道岔过车时的动态缺口宽度检测②-3 Dynamic gap width detection when the turnout is passing
道岔过车时TV_time[iv]-10、采集SNWTV_time[iv]-10, collect SNW when the turnout is passing
[TV_time[iv]-10,TV_time[iv]+10]、采集DNW[TV_time[iv]-10, TV_time[iv]+10], capture DNW
从DNW获DNW_MAX和DNW_MINGet DNW_MAX and DNW_MIN from DNW
计算旷动幅度SW=DNW_MAX-DNW_MINCalculate the swing amplitude SW=DNW_MAX-DNW_MIN
Case1 SNW<SNW_toplimit且SW<S_toplimit,WA=0Case1 SNW<SNW_toplimit and SW<S_toplimit, WA=0
Case2 SNW<SNW_toplimit且SW≥S_toplimit,WA=1Case2 SNW<SNW_toplimit and SW≥S_toplimit, WA=1
OR SNW+SW≥SNW_toplimit+0.5×S_toplimit,WA=1OR SNW+SW≥SNW_toplimit+0.5×S_toplimit, WA=1
Case3 SNW≥SNW_toplimit且SW<S_toplimit,WA=10Case3 SNW≥SNW_toplimit and SW<S_toplimit, WA=10
Case4 SNW≥SNW_toplimit且SW≥S_toplimit,WA=11Case4 SNW≥SNW_toplimit and SW≥S_toplimit, WA=11
存储上传SNW、WA、DNW_MAX、DNW_MINStorage upload SNW, WA, DNW_MAX, DNW_MIN
③“天窗”期③ "Skylight" period
动态缺口宽度监测终端打包上传当日宽度数据The dynamic gap width monitoring terminal packs and uploads the width data of the day
动态缺口宽度监测主机核对实时上传宽度数据。The dynamic gap width monitoring host checks the real-time uploaded width data.
本发明与背景技术相比,具有的有益效果是:Compared with the background technology, the present invention has the following beneficial effects:
电涡流/碰珠电触点的定量/性组合位移传感器,借助结构和时间双冗余技术提高了监测缺口宽度的可靠性;碰珠缺口宽度区间从1.5±0.5mm扩至1.5±0.7mm,不仅兼顾了安全与运维两方面的要求,而且减少了碰珠与表示杆缺口接触的次数,使接触式传感器演变成准非接触式传感器,提高了缺口宽度监测模块的可靠性。基于动态缺口宽度的理念,根据静态缺口宽度和旷动幅度:不报警、预警、报警、警报,推动计划/故障维修向状态/预防维修的变革,进一步提高了缺口宽度监测系统的可靠和可用性。定/反位表示电路的防潮措施和通信协议的标准化,使缺口宽度监测系统的可靠可用性更上一层楼。The quantitative/sexual combined displacement sensor of the eddy current/ball contact electrical contact improves the reliability of monitoring the gap width with the help of the structure and time double redundancy technology; the bead gap width is expanded from 1.5±0.5mm to 1.5±0.7mm, It not only takes into account the requirements of safety and operation and maintenance, but also reduces the number of contact between the bead and the gap of the indicating rod, so that the contact sensor evolves into a quasi-non-contact sensor, which improves the reliability of the gap width monitoring module. Based on the concept of dynamic gap width, according to the static gap width and swing range: no alarm, early warning, alarm, and alarm, it promotes the change from planned/fault maintenance to condition/preventive maintenance, and further improves the reliability and availability of the gap width monitoring system. The fixed/inverted position indicates that the moisture-proof measures of the circuit and the standardization of the communication protocol take the reliable availability of the notch width monitoring system to a higher level.
附图说明Description of drawings
图1(a)是动态缺口宽度监测系统的原理框图;Figure 1(a) is the principle block diagram of the dynamic gap width monitoring system;
图1(b)是电涡流传感器和碰珠电触点传感器的安装图;Figure 1(b) is the installation diagram of the eddy current sensor and the bead contact sensor;
图1(c)是道岔转换设备的结构简图;Figure 1(c) is a schematic diagram of the structure of the switch conversion equipment;
图1(d)是转辙机的结构简图;Figure 1(d) is a schematic diagram of the structure of the switch machine;
图2(a)是动态缺口宽度监测终端的电路图;Figure 2(a) is a circuit diagram of a dynamic gap width monitoring terminal;
图2(b)是直流载波通信模块的电路图;Figure 2(b) is a circuit diagram of a DC carrier communication module;
图2(c)是Modbus协议的RTU报文帧格式;Figure 2(c) is the RTU message frame format of the Modbus protocol;
图3(a)是动态缺口宽度监测方法流程图;Figure 3(a) is a flow chart of the dynamic gap width monitoring method;
图3(b)是动态缺口宽度的数据结构图;Fig. 3 (b) is the data structure diagram of dynamic gap width;
图3(c)是温湿度检测和加热除湿的流程图;Figure 3 (c) is a flow chart of temperature and humidity detection and heating and dehumidification;
图3(d)是动态缺口宽度检测和报警的流程图。Figure 3(d) is a flow chart of dynamic gap width detection and alarm.
具体实施方式Detailed ways
如图1(a)、图1(b)、图1(c)、图1(d)所示,地铁转辙机表示杆动态缺口宽度的监测系统由电涡流宽度检测模块100、碰珠电触点宽度检测模块200、温湿度检测模块300、加热除湿模块400、信号处理主控模块500、直流载波通信模块600、动态缺口宽度监测主机800组成,其中前六个模块统称动态缺口宽度监测终端,终端数=N≥1;电涡流宽度检测模块100、碰珠电触点宽度检测模块200、温湿度检测模块300、加热除湿模块400分别与信号处理主控模块500相连,信号处理主控模块500经直流载波通信模块600与动态缺口宽度监测主机800相连;动态缺口宽度监测终端与动态缺口宽度监测主机800组网,遵循Modbus--RTU协议,动态缺口宽度监测主机800为主机,动态缺口宽度监测终端为从机;As shown in Fig. 1(a), Fig. 1(b), Fig. 1(c), Fig. 1(d), the monitoring system for the dynamic gap width of the pole in the subway switch machine is composed of the eddy current
电涡流宽度检测模块100和碰珠电触点宽度检测模块200嵌入转辙机的指示标,电涡流宽度检测模块100的电涡流位移传感器、碰珠电触点宽度检测模块200的碰珠电触点位移传感器,并列平行排列;电涡流位移传感器的探头与指示标齐平,碰珠电触点位移传感器的两端各配1粒碰珠、碰珠凸出指示标的弦高=0.7mm;温湿度检测模块300和加热除湿模块400固定在转辙机速动开关盒内;电涡流宽度检测模块100、碰珠电触点宽度检测模块200、温湿度测量模块300分别上传宽度数据、宽度开关量、温湿度数据至信号处理主控模块500,信号处理主控模块500控制加热除湿模块400;动态缺口宽度监测主机800读取列车自动监控系统ATS的缺口宽度检测时间、道岔转换和列车过岔时间,经直流载波通信模块600,下发给动态缺口宽度监测终端,同时接收动态缺口宽度监测终端上传的信号;The eddy current
道岔转换设备的作业流程如下:地铁转辙机根据调度中心的指令,接通启动电路,电机顺/逆时针转动;锁闭块退出、解锁,转辙机电机的转动经齿轮组减速、摩擦联结器传动、带动滚珠丝杠转动,滚珠丝杠上的螺母将丝杠的转动转变为螺母的平动,螺母通过保持连结器驱动动作杆伸出/缩入移动;动作杆推/拉尖轨或可动心轨移动,检测杆随尖轨或可动心轨的道岔转换动作而动,与检测杆连接的表示杆随检测杆运动;道岔转换到位时,表示杆缺口与检查柱的指示标对中,两者的距离即为表示杆缺口宽度;表示杆缺口对准锁闭块、锁闭块弹出带动速动开关,断开原表示电路、接通新表示电路、断开启动电路。The operation process of the switch conversion equipment is as follows: the subway switch machine turns on the starting circuit according to the instructions of the dispatch center, and the motor rotates clockwise/counterclockwise; the locking block is withdrawn and unlocked, and the rotation of the switch machine motor is decelerated by the gear set and frictionally connected. The nut on the ball screw converts the rotation of the screw into the translation of the nut, and the nut drives the action rod to extend/retract to move through the holding connector; the action rod pushes/pulls the tip rail or The movable core rail moves, and the detection rod moves with the switch switching action of the point rail or movable core rail, and the indicator rod connected to the detection rod moves with the detection rod; The distance between the two is the width of the gap of the rod; it means that the gap of the rod is aligned with the locking block, and the locking block pops up to drive the quick-action switch, disconnect the original display circuit, connect the new display circuit, and disconnect the starting circuit.
说明1:考虑表述的完整性,简述道岔转换设备的组成,道岔和转辙机的工作流程,以及定/反位表示电路的切換,表示杆缺口宽度形成机理。地铁转辙机表示杆动态缺口宽度的监测系统独立于地铁信号系统,只读不写列车自动监控系统ATS;动态缺口宽度监测主机属公知知识范畴,文中仅提及不展开描述。Note 1: Considering the completeness of the presentation, briefly describe the composition of the switch conversion equipment, the work flow of the switch and the switch machine, and the switching of the fixed/reverse position indicating circuit, indicating the formation mechanism of the bar gap width. The monitoring system of the dynamic gap width of the subway switch machine is independent of the subway signal system, and the automatic train monitoring system ATS is read only and not written.
如图2(a)、图2(b)、图2(c)所示,动态缺口宽度监测终端的信号处理主控模块500以ATmega128芯片为核心;电涡流宽度检测模块100选用NCDT3005型电涡流位移传感器,NCDT3005端口1、3、2分别接24V、地、ATmega128脚61;碰珠电触点宽度检测模块200位于指示标两侧的碰珠通过金属弹簧互连,一路经R201接24V,另一路与ATmega128的中断口脚25相连,表示杆缺口接地;温湿度检测模块300以SHT11芯片为核心,SHT11脚1、4、3分别接地、5V、ATmega128脚58,SHT11脚2的一路经R301接5V、另一路与ATmega128脚59相连;加热除湿模块400包括IRFP150型固态继电器SSR401、DRT-X型硅胶加热片SCS401,SSR401的控制端口接ATmega128脚48,SSR401的两个输出端口经电源、SCS401相连;ATmega128脚51、50、49分别与直流载波通信模块600的MM1192脚1、5、6相连;As shown in Figure 2(a), Figure 2(b), and Figure 2(c), the signal processing main control module 500 of the dynamic gap width monitoring terminal is based on the ATmega128 chip; the eddy current width detection module 100 uses the NCDT3005 eddy current Displacement sensor, ports 1, 3 and 2 of NCDT3005 are respectively connected to 24V, ground, and pin 61 of ATmega128; the touch beads located on both sides of the indicator of the touch bead electrical contact width detection module 200 are interconnected by metal springs, and all the way through R 201 to connect to 24V, The other way is connected to the interrupt port pin 25 of ATmega128, indicating that the rod gap is grounded; the temperature and humidity detection module 300 takes the SHT11 chip as the core, SHT11 pins 1, 4, and 3 are grounded, 5V, ATmega128 pin 58, and all the way through R of SHT11 pin 2 301 is connected to 5V, and the other is connected to ATmega128 pin 59; the heating and dehumidification module 400 includes IRFP150 solid state relay SSR 401 , DRT-X silicone heating chip SCS 401 , the control port of SSR 401 is connected to ATmega128 pin 48, and the two outputs of SSR 401 The port is connected with power supply and SCS 401 ; ATmega128 pins 51, 50 and 49 are connected with MM1192 pins 1, 5 and 6 of DC carrier communication module 600 respectively;
直流载波通信模块600以MM1192芯片为核心,MM1192脚6、1分别经R2、R1接地;C1两端分别与MM1192脚3、4相连,MM1192脚15、16分别经R7和C6、R6和C5接入载波输出的负、正端,MM1192脚11与VCC和C2一端相连,C2另一端与MM1192脚13相连;D1和D2串联、D3和D4串联、D2和D4另一端接地,D1和D3另一端分别与MM1192脚14、12相连;R3、R4的一端分别与MM1192脚14、12相连,另一端分别与MM1192脚9和L1一端、脚10和L2一端相连;L1、L2另一端并接R3,分别经C3、C4接入载波输出的正、负端;动态缺口宽度监测终端与动态缺口宽度监测主机(800)构成直流载波Modbus网络,采用RTU报文帧格式:地址1字节,功能码1字节,数据占0~252字节,CRC校验2字节,报文帧之间≥3.5字符的时间间隔;报文帧的第一个字节为地址,地址取值范围为0~255,地址0为广播地址,功能码取值为1~255。The DC
说明2:借鉴DCS集中管理分散控制的思想:在动态缺口宽度监测主机上设置加热除湿模块启动条件,各动态缺口宽度监测终端根据所处地的温湿参数,就地进行加热除湿的分散控制;动态缺口宽度监测终端上传表示杆静态缺口宽度、旷动值,动态缺口宽度监测主机集中管理不报警或预警或报警或警报。Note 2: Learn from the idea of DCS centralized management and decentralized control: set the starting conditions of the heating and dehumidification module on the dynamic gap width monitoring host, and each dynamic gap width monitoring terminal performs decentralized control of heating and dehumidification on the spot according to the temperature and humidity parameters of the location; The dynamic gap width monitoring terminal uploads the static gap width and gap value of the pole, and the dynamic gap width monitoring host centrally manages no alarm or early warning or alarm or alarm.
如图3(a)、图3(b)、图3(c)、图3(d)所示,动态缺口宽度监测方法流程包括温湿度检测和加热除湿的流程,以及动态缺口宽度检测和报警的流程;As shown in Figure 3(a), Figure 3(b), Figure 3(c), Figure 3(d), the dynamic gap width monitoring method process includes temperature and humidity detection and heating and dehumidification processes, as well as dynamic gap width detection and alarm process;
变量说明:Variable description:
水气密度Water_density,WDWater vapor density Water_density, WD
饱和水气密度SATUR_Water_density,WD_SATURSaturated water vapor density SATUR_Water_density, WD_SATUR
相对湿度relative_humidity,RHRelative humidity relative_humidity, RH
临界相对湿度critical_relative_humidity,CRHCritical relative humidity critical_relative_humidity, CRH
静态缺口宽度static nick width,SNWstatic nick width static nick width, SNW
静态缺口宽度上限static nick width toplimit,SNW_toplimitStatic nick width toplimit static nick width toplimit, SNW_toplimit
动态缺口宽度dynamic nick width,DNWdynamic nick width dynamic nick width, DNW
最大动态缺口宽度MAX dynamic nick width,DNW_MAXMAX dynamic nick width, DNW_MAX
最小动态缺口宽度MIN dynamic nick width,DNW_MINMIN dynamic nick width, DNW_MIN
旷动幅度Shaking width,SWShaking width, SW
旷动上限Shaking toplimit,S_toplimitShaking toplimit, S_toplimit
静态缺口宽度检测时间static nick width time,SNW_timeStatic nick width detection time static nick width time, SNW_time
道岔转换时间turnout convert time,TC_timeTurnout convert time, TC_time
道岔过车时间turnout via time,TV_timeTurnout via time, TV_time
宽度报警width alarm,WAwidth alarm width alarm, WA
算法说明:Algorithm Description:
相对湿度RH=WD/WD_SATUR×100% (1)Relative humidity RH=WD/WD_SATUR×100% (1)
旷动幅度SW=DNW_MAX-DNW_MIN (2)SW=DNW_MAX-DNW_MIN (2)
动/静态缺口宽度的数据结构采用关系数据库二维表,一次宽度检测映射为数据结构的一个元组或一条记录;毎条记录由6个字段组成,包括转辙机编号、静态宽度的检测时间、静态缺口宽度、MAX动态缺口宽度、MIN动态缺口宽度、静/动态缺口宽度报警;静/动态缺口宽度报警=0/1/10/11,分别表示不报警/预警/报警/警报;动态缺口宽度监测主机800存储监测终端上传的宽度数据,按需建立索引表,提高查询效率;初始化时,数据库“转辙机编号”字段=转辙机编码,“静态宽度的检测时间”字段=999999.999,“静态缺口宽度、MAX动态缺口宽度、MIN动态缺口宽度”字段=9.99,“静/动态缺口宽度报警”字段=0;The data structure of the dynamic/static gap width adopts the relational database two-dimensional table, and a width detection is mapped to a tuple or a record of the data structure; each record consists of 6 fields, including the switch machine number and the detection time of the static width. , static gap width, MAX dynamic gap width, MIN dynamic gap width, static/dynamic gap width alarm; static/dynamic gap width alarm = 0/1/10/11, respectively indicating no alarm/warning/alarm/alarm; dynamic gap The
温湿度检测和加热除湿的流程如下:The process of temperature and humidity detection and heating dehumidification is as follows:
(一)读入温度~饱和水气密度T~WD_SATUR(1) Read in temperature ~ saturated water vapor density T ~ WD_SATUR
给定临界相对湿度CRH=0.65Given critical relative humidity CRH=0.65
检测温度、水气密度T、WDDetection temperature, water vapor density T, WD
(二)计算相对湿度RH=WD/WD_SATUR×100%(2) Calculate the relative humidity RH=WD/WD_SATUR×100%
(三)RH≤CRH断电,反之上电;(3) When RH≤CRH is powered off, it is powered on instead;
动态缺口宽度检测和报警的流程如下:The process of dynamic gap width detection and alarm is as follows:
①初始化①Initialization
静态缺口宽度上限SNW_toplimit=1.5+0.7Static gap width upper limit SNW_toplimit=1.5+0.7
旷动上限S_toplimit=0.4S_toplimit=0.4
宽度报警WA=0Width alarm WA=0
从ATS读,静态缺口宽度的检测时间SNW_time[iw],1≤iw≤MwRead from ATS, detection time of static gap width SNW_time[iw], 1≤iw≤Mw
道岔转换时间TC_time[ic],1≤ic≤McTurnout transition time TC_time[ic], 1≤ic≤Mc
道岔过车时间TV_time[iv],1≤iv≤MvTurnout passing time TV_time[iv], 1≤iv≤Mv
②缺口宽度检测②Notch width detection
②-1静态缺口宽度检测②-1 Static notch width detection
SNW_time[iw]时、采集SNWSNW_time[iw], collect SNW
Case1 interrupt或SNW≥SNW_toplimit,WA=10Case1 interrupt or SNW≥SNW_toplimit, WA=10
Case2 WA=0Case2 WA=0
存储上传SNW、WAStorage upload SNW, WA
②-2道岔转换时的动态缺口宽度检测②-2 Dynamic notch width detection during switch transition
道岔转换TC_time[ic]+15时、采集SNWWhen the switch changes TC_time[ic]+15, collect SNW
[TC_time[ic],TC_time[ic]+13]、采集DNW[TC_time[ic], TC_time[ic]+13], collect DNW
从DNW获DNW_MAX和DNW_MINGet DNW_MAX and DNW_MIN from DNW
计算旷动幅度SW=DNW_MAX-DNW_MINCalculate the swing amplitude SW=DNW_MAX-DNW_MIN
Case1 SNW<SNW_toplimit且SW<S_toplimit,WA=0Case1 SNW<SNW_toplimit and SW<S_toplimit, WA=0
Case2 SNW<SNW_toplimit且SW≥S_toplimit,WA=1Case2 SNW<SNW_toplimit and SW≥S_toplimit, WA=1
OR SNW+SW≥SNW_toplimit+0.5×S_toplimit,WA=1OR SNW+SW≥SNW_toplimit+0.5×S_toplimit, WA=1
Case3 SNW≥SNW_toplimit且SW<S_toplimit,WA=10Case3 SNW≥SNW_toplimit and SW<S_toplimit, WA=10
Case4 SNW≥SNW_toplimit且SW≥S_toplimit,WA=11Case4 SNW≥SNW_toplimit and SW≥S_toplimit, WA=11
存储上传SNW、WA、DNW_MAX、DNW_MINStorage upload SNW, WA, DNW_MAX, DNW_MIN
②-3道岔过车时的动态缺口宽度检测②-3 Dynamic gap width detection when the turnout is passing
道岔过车TV_time[iv]-10时、采集SNWTurnout crossing TV_time[iv]-10 hours, collecting SNW
[TV_time[iv]-10,TV_time[iv]+10]、采集DNW[TV_time[iv]-10, TV_time[iv]+10], capture DNW
从DNW获DNW_MAX和DNW_MINGet DNW_MAX and DNW_MIN from DNW
计算旷动幅度SW=DNW_MAX-DNW_MINCalculate the swing amplitude SW=DNW_MAX-DNW_MIN
Case1 SNW<SNW_toplimit且SW<S_toplimit,WA=0Case1 SNW<SNW_toplimit and SW<S_toplimit, WA=0
Case2 SNW<SNW_toplimit且SW≥S_toplimit,WA=1Case2 SNW<SNW_toplimit and SW≥S_toplimit, WA=1
OR SNW+SW≥SNW_toplimit+0.5×S_toplimit,WA=1OR SNW+SW≥SNW_toplimit+0.5×S_toplimit, WA=1
Case3 SNW≥SNW_toplimit且SW<S_toplimit,WA=10Case3 SNW≥SNW_toplimit and SW<S_toplimit, WA=10
Case4 SNW≥SNW_toplimit且SW≥S_toplimit,WA=11Case4 SNW≥SNW_toplimit and SW≥S_toplimit, WA=11
存储上传SNW、WA、DNW_MAX、DNW_MINStorage upload SNW, WA, DNW_MAX, DNW_MIN
③“天窗”期③ "Skylight" period
动态缺口宽度监测终端打包上传当日宽度数据The dynamic gap width monitoring terminal packs and uploads the width data of the day
动态缺口宽度监测主机核对实时上传宽度数据。The dynamic gap width monitoring host checks the real-time uploaded width data.
说明3:临界相对湿度区间CRH=[0.65,0.70],文中取0.65。动/静态缺口两侧的、宽度偏差绝对值关于指示标对称分布,表述简洁又不失一般性,文中的动/静态缺口宽度仅就正偏差一侧展开讨论。动态缺口宽度检测需在过车/换岔操作时完成,检测出的MAX/MIN动态缺口宽度有两个时间区间,而且“时间区间”具有隨机性和不确定性;因此,动/静态缺口宽度检测中,舍弃隨机的MAX/MIN动态缺口宽度的检测时间区间。道岔转换操作,静态缺口宽度检测时间取换岔指令下达时间TC_time[ic]+15,动态缺口宽度检测时间区间[TC_time[ic],TC_time[ic]+13]。列车的过岔时间存在误差,故静态缺口宽度检测时间取TV_time[iv]-10,动态缺口宽度检测时间区间[TV_time[iv]-10,TV_time[iv]+10]。定期的静态缺口宽度检测时间是SNW_time[iw],检测记录中MAX/MIN动态缺口宽度字段内容为初始值。Note 3: The critical relative humidity interval CRH=[0.65, 0.70], which is taken as 0.65 in the text. The absolute value of the width deviation on both sides of the dynamic/static gap is symmetrically distributed about the indicator, which is concise and general. The dynamic/static gap width in this paper is only discussed on the positive deviation side. The dynamic gap width detection needs to be completed during the vehicle passing/fork changing operation. The detected MAX/MIN dynamic gap width has two time intervals, and the "time interval" has randomness and uncertainty; therefore, the dynamic/static gap width In the width detection, the detection time interval of the random MAX/MIN dynamic gap width is discarded. Turnout switching operation, the static gap width detection time takes the time of switching the switch command issuing time TC_time[ic]+15, and the dynamic gap width detection time interval [TC_time[ic], TC_time[ic]+13]. There is an error in the train crossing time, so the static gap width detection time is TV_time[iv]-10, and the dynamic gap width detection time interval [TV_time[iv]-10, TV_time[iv]+10]. The regular static gap width detection time is SNW_time[iw], and the content of the MAX/MIN dynamic gap width field in the detection record is the initial value.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710824202.1A CN107764177B (en) | 2017-09-13 | 2017-09-13 | System and method for monitoring dynamic gap width of subway switch machine indication rod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710824202.1A CN107764177B (en) | 2017-09-13 | 2017-09-13 | System and method for monitoring dynamic gap width of subway switch machine indication rod |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107764177A CN107764177A (en) | 2018-03-06 |
CN107764177B true CN107764177B (en) | 2020-02-07 |
Family
ID=61265442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710824202.1A Expired - Fee Related CN107764177B (en) | 2017-09-13 | 2017-09-13 | System and method for monitoring dynamic gap width of subway switch machine indication rod |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107764177B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111174684B (en) * | 2018-11-12 | 2021-06-29 | 中国航发商用航空发动机有限责任公司 | System and method for detecting width of nose cone of blade reinforcing edge |
CN109677457A (en) * | 2019-01-09 | 2019-04-26 | 北京全路通信信号研究设计院集团有限公司 | Optical fiber sensing turnout point machine state monitoring device and method |
CN110816592A (en) * | 2019-09-27 | 2020-02-21 | 江苏奥崎电气科技有限公司 | Intelligent detection early warning system for switch indication gap of switch machine and monitoring method thereof |
CN110696874A (en) * | 2019-11-22 | 2020-01-17 | 佳讯飞鸿(北京)智能科技研究院有限公司 | Point switch fault prediction method and fault prediction system |
CN111145197B (en) * | 2019-12-10 | 2022-05-03 | 电子科技大学 | Accurate turnout switch machine notch edge positioning method based on histogram and local gradient |
CN111964883B (en) * | 2020-07-24 | 2021-12-24 | 西安铁路信号有限责任公司 | Method for detecting position of moving part in swing structure |
CN115218770A (en) * | 2022-06-24 | 2022-10-21 | 北京全路通信信号研究设计院集团有限公司 | Method and device for on-line monitoring of stroke of action rod of point switch |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2440721Y (en) * | 2000-08-30 | 2001-08-01 | 上海中崎电子有限公司 | Approaching switch style indicating bar gap sensor |
CN1569540A (en) * | 2004-05-13 | 2005-01-26 | 盛香山 | Railroad switch gap critical alarm system |
CN2825397Y (en) * | 2005-08-12 | 2006-10-11 | 上海中崎电子有限公司 | Gap detection sensor for electric switch machine |
CN102431577A (en) * | 2011-10-19 | 2012-05-02 | 赵建明 | Eddy current sensing monitoring technology for gap between switch gap inspection column and inspection block |
CN202508119U (en) * | 2012-03-23 | 2012-10-31 | 上海天沐自动化仪表有限公司 | Turnout gap monitoring system |
CN104197820A (en) * | 2014-09-11 | 2014-12-10 | 赵建明 | System for online real-time monitoring of switch machine indication bar notch width |
CN204515460U (en) * | 2014-11-27 | 2015-07-29 | 深圳市朗驰欣创科技有限公司 | A kind of goat monitoring system |
-
2017
- 2017-09-13 CN CN201710824202.1A patent/CN107764177B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2440721Y (en) * | 2000-08-30 | 2001-08-01 | 上海中崎电子有限公司 | Approaching switch style indicating bar gap sensor |
CN1569540A (en) * | 2004-05-13 | 2005-01-26 | 盛香山 | Railroad switch gap critical alarm system |
CN2825397Y (en) * | 2005-08-12 | 2006-10-11 | 上海中崎电子有限公司 | Gap detection sensor for electric switch machine |
CN102431577A (en) * | 2011-10-19 | 2012-05-02 | 赵建明 | Eddy current sensing monitoring technology for gap between switch gap inspection column and inspection block |
CN202508119U (en) * | 2012-03-23 | 2012-10-31 | 上海天沐自动化仪表有限公司 | Turnout gap monitoring system |
CN104197820A (en) * | 2014-09-11 | 2014-12-10 | 赵建明 | System for online real-time monitoring of switch machine indication bar notch width |
CN204515460U (en) * | 2014-11-27 | 2015-07-29 | 深圳市朗驰欣创科技有限公司 | A kind of goat monitoring system |
Also Published As
Publication number | Publication date |
---|---|
CN107764177A (en) | 2018-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107764177B (en) | System and method for monitoring dynamic gap width of subway switch machine indication rod | |
CN104700629B (en) | A monitoring and early warning system and method for expressway cluster fog | |
CN105547373B (en) | A kind of contact net state on_line monitoring/detection device based on public network transmission | |
CN201268315Y (en) | Axle counter track circuit | |
CN210402469U (en) | Vehicle-mounted intelligent track inspection system | |
CN103661502B (en) | Railway crossing automatic monitoring and control system | |
CN104061963B (en) | A kind of railway is powered insulator contamination on-line detecting system | |
CN101513886B (en) | Subway Train Operation Supervision System Based on Vector Electronic Map | |
CN202740674U (en) | Intelligent monitoring device of fire hydrant pressure of supply water and under-hydraulic-pressure state | |
CN109085456B (en) | A kind of AT sections of electricity consumption train position and the method for discrimination of high resistive fault position | |
CN106347172A (en) | Driverless public electric vehicle system and use method thereof | |
CN114543661A (en) | Subway vehicle 360-degree image detection system and detection method thereof | |
CN207320712U (en) | Power transmission line inspection monitors system | |
CN103085842A (en) | Detection system and detection method of straddle type light rail movable crossover line track sections | |
CN101304352A (en) | Railway marshalling yard information monitoring system based on wireless sensor network | |
CN207889724U (en) | A kind of lever bolt condition checkout gear | |
CN202783255U (en) | Pantograph state real time monitoring and alarming system for electric locomotive | |
CN201646779U (en) | Train approach intelligent early warning system | |
CN205352465U (en) | Contact net state on -line monitoring detection device based on public network transmission | |
CN209159732U (en) | A kind of anti-slip device for rolling stock for rail transit | |
CN200964113Y (en) | Intelligent Railway Track Inspection Vehicle | |
CN201825067U (en) | Multi-stage traction railroad switch secondary indication display device | |
CN1156822A (en) | Pantograph-catenary fault dynamic detection device | |
CN103085844A (en) | Detection system and detection method for high speed railway automatic splitting phase self-reset train position | |
CN207068247U (en) | A kind of traffic lights device of intelligent transportation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200207 Termination date: 20200913 |