CN107749424A - A kind of avalanche photodide and preparation method thereof - Google Patents
A kind of avalanche photodide and preparation method thereof Download PDFInfo
- Publication number
- CN107749424A CN107749424A CN201711000376.2A CN201711000376A CN107749424A CN 107749424 A CN107749424 A CN 107749424A CN 201711000376 A CN201711000376 A CN 201711000376A CN 107749424 A CN107749424 A CN 107749424A
- Authority
- CN
- China
- Prior art keywords
- layer
- single crystal
- crystal substrate
- ingaas
- heavily doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 86
- 239000013078 crystal Substances 0.000 claims abstract description 81
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 28
- 238000010521 absorption reaction Methods 0.000 claims abstract description 17
- 230000008569 process Effects 0.000 claims abstract description 8
- 150000002500 ions Chemical class 0.000 claims description 20
- 239000007943 implant Substances 0.000 claims description 10
- 238000004857 zone melting Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 238000004140 cleaning Methods 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 6
- 238000005468 ion implantation Methods 0.000 claims description 6
- 238000005538 encapsulation Methods 0.000 claims description 5
- 239000005416 organic matter Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 14
- 230000004888 barrier function Effects 0.000 abstract description 8
- 238000009827 uniform distribution Methods 0.000 abstract description 8
- 238000000407 epitaxy Methods 0.000 abstract description 7
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/225—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier working in avalanche mode, e.g. avalanche photodiodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
Landscapes
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种雪崩光电二极管及其制备方法,该雪崩光电二极管包括由上至下依次排列的N型重掺杂层、倍增层单晶衬底、金属键合层、吸收层InGaAs单晶衬底、P型重掺杂InGaAs层,通过金属键合层将倍增层单晶衬底和吸收层InGaAs单晶衬底键合在一起,无需进行外延,简化了雪崩光电二极管的结构,极大地缩短了生产时间,有利于大幅度降低生产成本,同时金属键合层可以有效提高电荷的均匀分布,降低电子进入倍增层势垒,提高器件的性能;制备方法适用范围广,可适用于制备各种波段的雪崩光电二极管,工序简单,可以有效减少生产设备投入。
The invention discloses an avalanche photodiode and a preparation method thereof. The avalanche photodiode comprises an N-type heavily doped layer, a multiplication layer single crystal substrate, a metal bonding layer, and an absorption layer InGaAs single crystal arranged in sequence from top to bottom. Substrate, P-type heavily doped InGaAs layer, the multiplication layer single crystal substrate and the absorption layer InGaAs single crystal substrate are bonded together through the metal bonding layer, without epitaxy, which simplifies the structure of the avalanche photodiode and greatly The production time is shortened, which is conducive to greatly reducing the production cost. At the same time, the metal bonding layer can effectively improve the uniform distribution of charges, reduce the barrier of electrons entering the multiplication layer, and improve the performance of the device; the preparation method has a wide range of applications and can be applied to the preparation of various The avalanche photodiode of various bands has a simple process and can effectively reduce the investment in production equipment.
Description
技术领域technical field
本发明涉及一种半导体光学器件技术领域,特别是一种雪崩光电二极管及其制备方法。The invention relates to the technical field of semiconductor optical devices, in particular to an avalanche photodiode and a preparation method thereof.
背景技术Background technique
随着社会和科技的发展进步,人工智能和智能家居已经成为社会发展的主流趋势。而这些技术的发展都离不开先进的各式各样的传感器。光电探测器,作为传感器的一个至为关键的单元,受到了研究人员的广泛关注。With the development and progress of society and technology, artificial intelligence and smart home have become the mainstream trend of social development. The development of these technologies is inseparable from various advanced sensors. Photodetectors, as a crucial unit of sensors, have received extensive attention from researchers.
雪崩二极管光电探测器(APD)具有高内部增益、高量子效率、高灵敏度等优点,是目前主流的光电探测器之一。然而,目前的APD中的倍增层大多是通过外延的方法获得的,其晶体质量还需要进一步提高(通常X-ray Rocking Curve的半峰宽大于150arcsec,要远远大于提拉法制备的50arcsec),才能达到较为理想的倍增效果。为了改善APD的器件性能,在吸收层InGaAs与InP之间往往需要插入InP电荷控制层和InGaAsP过渡层。此外,为了获得较好质量的吸收层InGaAs,在InP衬底上还需要先生长一层较厚的InP缓冲层。Avalanche diode photodetectors (APDs) have the advantages of high internal gain, high quantum efficiency, and high sensitivity, and are currently one of the mainstream photodetectors. However, most of the multiplication layers in the current APD are obtained by epitaxy, and the crystal quality needs to be further improved (usually the half-width of the X-ray Rocking Curve is greater than 150 arcsec, which is much larger than the 50 arcsec prepared by the pulling method) , in order to achieve a more ideal doubling effect. In order to improve the device performance of APD, it is often necessary to insert an InP charge control layer and an InGaAsP transition layer between the absorption layer InGaAs and InP. In addition, in order to obtain a better quality absorbing layer InGaAs, a thicker InP buffer layer needs to be grown on the InP substrate.
因此,为了获得高质量APD,简化APD的结构、提高吸收层InGaAs和倍增层的质量成为了研究人员努力方向。Therefore, in order to obtain high-quality APDs, simplifying the structure of APDs and improving the quality of the absorbing layer InGaAs and the multiplication layer have become the direction of researchers' efforts.
发明内容Contents of the invention
为解决上述问题,本发明的目的在于提供一种结构简单、性能优异的雪崩光电二极管及其制备方法。In order to solve the above problems, the object of the present invention is to provide an avalanche photodiode with simple structure and excellent performance and its preparation method.
本发明解决其问题所采用的技术方案是:The technical scheme that the present invention solves its problem adopts is:
一种雪崩光电二极管,其特征在于,包括:An avalanche photodiode, characterized in that it comprises:
由上至下依次排列的N型重掺杂层、倍增层单晶衬底、金属键合层、吸收层InGaAs单晶衬底、P型重掺杂InGaAs层。该雪崩光电二极管通过金属键合层将倍增层单晶衬底和吸收层InGaAs单晶衬底键合在一起,无需进行外延,简化了雪崩光电二极管的结构,极大地缩短了生产时间,有利于大幅度降低生产成本,同时金属键合层可以有效提高电荷的均匀分布,降低电子进入倍增层势垒,提高器件的性能。The N-type heavily doped layer, multiplication layer single crystal substrate, metal bonding layer, absorption layer InGaAs single crystal substrate, and P-type heavily doped InGaAs layer are arranged in order from top to bottom. In this avalanche photodiode, the multiplication layer single crystal substrate and the absorption layer InGaAs single crystal substrate are bonded together through a metal bonding layer, without epitaxy, which simplifies the structure of the avalanche photodiode, greatly shortens the production time, and is beneficial to The production cost is greatly reduced, and the metal bonding layer can effectively improve the uniform distribution of charges, reduce the barrier of electrons entering the multiplication layer, and improve the performance of the device.
进一步,所述倍增层单晶衬底和吸收层InGaAs单晶衬底都是通过提拉法或者区熔法制备的。通过提拉法或者区熔法制备倍增层单晶衬底和吸收层InGaAs单晶衬底可以有效增加二者的作用长度,提高器件的性能。Furthermore, both the multiplication layer single crystal substrate and the absorption layer InGaAs single crystal substrate are prepared by pulling method or zone melting method. The multiplication layer single crystal substrate and the absorption layer InGaAs single crystal substrate prepared by pulling method or zone melting method can effectively increase the action length of the two and improve the performance of the device.
进一步,所述倍增层单晶衬底的材料为Si、InP或者InAlAs。Further, the material of the multiplication layer single crystal substrate is Si, InP or InAlAs.
进一步,所述N型重掺杂层是通过对倍增层单晶衬底进行离子注入掺杂形成的。Further, the N-type heavily doped layer is formed by performing ion implantation doping on the multiplication layer single crystal substrate.
进一步,所述P型重掺杂InGaAs层是通过对吸收层InGaAs单晶衬底进行离子注入掺杂形成的。Further, the P-type heavily doped InGaAs layer is formed by performing ion implantation doping on the InGaAs single crystal substrate of the absorbing layer.
进一步,所述金属键合层的材料为AuZn或者AuSn合金。金属键合层可以有效提高电荷的均匀分布和降低电子进入倍增层势垒。Further, the material of the metal bonding layer is AuZn or AuSn alloy. The metal bonding layer can effectively improve the uniform distribution of charges and reduce the barrier of electrons entering the multiplication layer.
进一步,还包括蒸镀在N型重掺杂层的N型电极,和蒸镀在P型重掺杂InGaAs层的P型电极。Further, it also includes an N-type electrode vapor-deposited on the N-type heavily doped layer, and a P-type electrode vapor-deposited on the P-type heavily doped InGaAs layer.
一种雪崩光电二极管的制备方法,其特征在于,包括以下步骤:A method for preparing an avalanche photodiode, comprising the following steps:
(a)通过提拉法或者区熔法制备倍增层单晶衬底和吸收层InGaAs单晶衬底;(a) preparing a multiplication layer single crystal substrate and an absorbing layer InGaAs single crystal substrate by a pulling method or a zone melting method;
(b)采用标准清洗工艺清洗干净倍增层单晶衬底和吸收层InGaAs单晶衬底,去除衬底表面粘污颗粒和表面有机物,并使用甩干机甩干;(b) Clean the multiplication layer single crystal substrate and the absorption layer InGaAs single crystal substrate with a standard cleaning process, remove the dirt particles and surface organic matter on the surface of the substrate, and dry them with a spin dryer;
(c)采用离子注入机在倍增层单晶衬底的背面,即非用于键合的面,均匀注入离子,获得N型重掺杂层;(c) Using an ion implanter to uniformly implant ions on the back side of the multiplication layer single crystal substrate, that is, the surface not used for bonding, to obtain an N-type heavily doped layer;
(d)采用离子注入机在吸收层InGaAs单晶衬底的背面,即非用于键合的面,均匀注入离子,获得P型重掺杂InGaAs层;(d) Using an ion implanter to uniformly implant ions on the back of the absorbing layer InGaAs single crystal substrate, that is, the surface not used for bonding, to obtain a P-type heavily doped InGaAs layer;
(e)采用金属键合机将步骤c所制备的包含N型重掺杂层的倍增层单晶衬底,和步骤d所制备的包含P型重掺杂InGaAs层的吸收层InGaAs单晶衬底键合在一起;(e) Using a metal bonding machine, the multiplication layer single crystal substrate containing an N-type heavily doped layer prepared in step c, and the absorbing layer InGaAs single crystal substrate containing a P-type heavily doped InGaAs layer prepared in step d Bottom bonded together;
(f)分别在P型重掺杂InGaAs层和N型重掺杂层蒸镀P型电极和N型电极;(f) evaporating a P-type electrode and an N-type electrode on the P-type heavily doped InGaAs layer and the N-type heavily doped layer, respectively;
(g)进行裂片和封装。(g) Perform splitting and encapsulation.
该雪崩光电二极管制备方法适用范围广,可适用于制备各种波段的雪崩光电二极管,工序简单,无需进行外延,在减少设备投入的同时,极大地缩短了生产时间,有望大幅度降低生产成本。The preparation method of the avalanche photodiode has a wide range of applications and is applicable to the preparation of avalanche photodiodes in various wave bands. The process is simple and no epitaxy is required. While reducing equipment investment, the production time is greatly shortened, and the production cost is expected to be greatly reduced.
进一步,所述倍增层单晶衬底的材料为Si、InP或者InAlAs。Further, the material of the multiplication layer single crystal substrate is Si, InP or InAlAs.
进一步,步骤e选用AuZn或者AuSn合金材料进行键合,形成金属键合层。金属键合层可以有效提高电荷的均匀分布和降低电子进入倍增层势垒。Further, step e selects AuZn or AuSn alloy material for bonding to form a metal bonding layer. The metal bonding layer can effectively improve the uniform distribution of charges and reduce the barrier of electrons entering the multiplication layer.
本发明的有益效果是:本发明采用的一种雪崩光电二极管及其制备方法,通过金属键合层将倍增层单晶衬底和吸收层InGaAs单晶衬底键合在一起,无需进行外延,简化了雪崩光电二极管的结构,极大地缩短了生产时间,有利于大幅度降低生产成本,同时金属键合层可以有效提高电荷的均匀分布,降低电子进入倍增层势垒,提高器件的性能;制备方法适用范围广,可适用于制备各种波段的雪崩光电二极管,工序简单,可以有效减少生产设备投入。The beneficial effects of the present invention are: an avalanche photodiode adopted in the present invention and its preparation method, the multiplication layer single crystal substrate and the absorption layer InGaAs single crystal substrate are bonded together through the metal bonding layer, without epitaxy, The structure of the avalanche photodiode is simplified, the production time is greatly shortened, and the production cost is greatly reduced. At the same time, the metal bonding layer can effectively improve the uniform distribution of charges, reduce the barrier of electrons entering the multiplication layer, and improve the performance of the device; preparation The method has a wide application range, is suitable for preparing avalanche photodiodes in various wave bands, has simple procedures, and can effectively reduce production equipment investment.
附图说明Description of drawings
下面结合附图和实例对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing and example.
图1是本发明一种雪崩光电二极管的截面示意图;Fig. 1 is a schematic cross-sectional view of an avalanche photodiode of the present invention;
图2是本发明一种雪崩光电二极管制备方法的流程图。Fig. 2 is a flowchart of a method for preparing an avalanche photodiode of the present invention.
具体实施方式Detailed ways
参照图1,本发明的一种雪崩光电二极管,包括:With reference to Fig. 1, a kind of avalanche photodiode of the present invention comprises:
由下至上依次排列的N型重掺杂层15、倍增层单晶衬底14、金属键合层13、吸收层InGaAs单晶衬底12、P型重掺杂InGaAs层11。该雪崩光电二极管通过金属键合层13将倍增层单晶衬底14和吸收层InGaAs单晶衬底12键合在一起,无需进行外延,简化了雪崩光电二极管的结构,极大地缩短了生产时间,有利于大幅度降低生产成本,同时金属键合层13可以有效提高电荷的均匀分布,降低电子进入倍增层势垒,提高器件的性能。N-type heavily doped layer 15 , multiplication layer single crystal substrate 14 , metal bonding layer 13 , absorption layer InGaAs single crystal substrate 12 , and P-type heavily doped InGaAs layer 11 are arranged in sequence from bottom to top. In this avalanche photodiode, the multiplication layer single crystal substrate 14 and the absorption layer InGaAs single crystal substrate 12 are bonded together through the metal bonding layer 13, without epitaxy, the structure of the avalanche photodiode is simplified, and the production time is greatly shortened. , which is conducive to greatly reducing production costs, and at the same time, the metal bonding layer 13 can effectively improve the uniform distribution of charges, reduce the barrier of electrons entering the multiplication layer, and improve the performance of the device.
进一步,所述倍增层单晶衬底14和吸收层InGaAs单晶衬底12都是通过提拉法或者区熔法制备的。通过提拉法或者区熔法制备倍增层单晶衬底14和吸收层InGaAs单晶衬底12可以有效增加二者的作用长度,提高器件的性能。Furthermore, both the multiplication layer single crystal substrate 14 and the absorbing layer InGaAs single crystal substrate 12 are prepared by the pulling method or the zone melting method. Fabricating the multiplication layer single crystal substrate 14 and the absorbing layer InGaAs single crystal substrate 12 by the pulling method or the zone melting method can effectively increase the action length of the two and improve the performance of the device.
进一步,所述倍增层单晶衬底14的材料为Si、InP或者InAlAs。Further, the material of the multiplication layer single crystal substrate 14 is Si, InP or InAlAs.
进一步,所述N型重掺杂层15是通过对倍增层单晶衬底14进行离子注入掺杂形成的。Further, the N-type heavily doped layer 15 is formed by performing ion implantation doping on the multiplication layer single crystal substrate 14 .
进一步,所述P型重掺杂InGaAs层11是通过对吸收层InGaAs单晶衬底12进行离子注入掺杂形成的。Further, the P-type heavily doped InGaAs layer 11 is formed by performing ion implantation doping on the absorbing layer InGaAs single crystal substrate 12 .
进一步,所述金属键合层13的材料为AuZn或者AuSn合金。金属键合层13可以有效提高电荷的均匀分布和降低电子进入倍增层势垒。Further, the material of the metal bonding layer 13 is AuZn or AuSn alloy. The metal bonding layer 13 can effectively improve the uniform distribution of charges and reduce the barrier of electrons entering the multiplication layer.
进一步,还包括蒸镀在N型重掺杂层15的N型电极16,和蒸镀在P型重掺杂InGaAs层11的P型电极17。Further, it also includes an N-type electrode 16 evaporated on the N-type heavily doped layer 15 and a P-type electrode 17 evaporated on the P-type heavily doped InGaAs layer 11 .
参照图2,本发明的一种雪崩光电二极管的制备方法,包括以下步骤:Referring to Fig. 2, a kind of preparation method of avalanche photodiode of the present invention comprises the following steps:
(a)通过提拉法或者区熔法制备倍增层单晶衬底14和吸收层InGaAs单晶衬底12;(a) preparing the multiplication layer single crystal substrate 14 and the absorption layer InGaAs single crystal substrate 12 by the pulling method or the zone melting method;
(b)采用标准清洗工艺清洗干净倍增层单晶衬底14和吸收层InGaAs单晶衬底12,去除衬底表面粘污颗粒和表面有机物,并使用甩干机甩干;(b) cleaning the multiplication layer single crystal substrate 14 and the absorbing layer InGaAs single crystal substrate 12 by using a standard cleaning process, removing dirt particles and surface organic matter on the substrate surface, and drying them with a spin dryer;
(c)采用离子注入机在倍增层单晶衬底14的背面,即非用于键合的面,均匀注入离子,获得N型重掺杂层15;(c) Using an ion implanter to uniformly implant ions on the back side of the multiplication layer single crystal substrate 14, that is, the surface not used for bonding, to obtain an N-type heavily doped layer 15;
(d)采用离子注入机在吸收层InGaAs单晶衬底12的背面,即非用于键合的面,均匀注入离子,获得P型重掺杂InGaAs层11;(d) using an ion implanter to uniformly implant ions on the back side of the absorbing layer InGaAs single crystal substrate 12, that is, the surface not used for bonding, to obtain a P-type heavily doped InGaAs layer 11;
(e)采用金属键合机将步骤c所制备的包含N型重掺杂层15的倍增层单晶衬底14,和步骤d所制备的包含P型重掺杂InGaAs层11的吸收层InGaAs单晶衬底12键合在一起;(e) Using a metal bonding machine, the multiplication layer single crystal substrate 14 comprising the N-type heavily doped layer 15 prepared in step c and the absorbing layer InGaAs comprising the P-type heavily doped InGaAs layer 11 prepared in step d The single crystal substrates 12 are bonded together;
(f)分别在P型重掺杂InGaAs层11和N型重掺杂层15蒸镀P型电极17和N型电极16;(f) evaporating a P-type electrode 17 and an N-type electrode 16 on the P-type heavily doped InGaAs layer 11 and the N-type heavily doped layer 15, respectively;
(g)进行裂片和封装。(g) Perform splitting and encapsulation.
该雪崩光电二极管制备方法适用范围广,可适用于制备各种波段的雪崩光电二极管,工序简单,无需进行外延,在减少设备投入的同时,极大地缩短了生产时间,有望大幅度降低生产成本。The preparation method of the avalanche photodiode has a wide range of applications and is applicable to the preparation of avalanche photodiodes in various wave bands. The process is simple and no epitaxy is required. While reducing equipment investment, the production time is greatly shortened, and the production cost is expected to be greatly reduced.
进一步,所述倍增层单晶衬底14的材料为Si、InP或者InAlAs。Further, the material of the multiplication layer single crystal substrate 14 is Si, InP or InAlAs.
进一步,步骤e选用AuZn或者AuSn合金材料进行键合,形成金属键合层13。金属键合层13可以有效提高电荷的均匀分布和降低电子进入倍增层势垒。Further, step e selects AuZn or AuSn alloy material for bonding to form the metal bonding layer 13 . The metal bonding layer 13 can effectively improve the uniform distribution of charges and reduce the barrier of electrons entering the multiplication layer.
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。The present invention will be described in further detail below in conjunction with the examples, but the embodiments of the present invention are not limited thereto.
实施例1Example 1
本实施例的一种雪崩光电二极管的制备方法,包括以下步骤:A kind of preparation method of avalanche photodiode of the present embodiment, comprises the following steps:
(a)通过提拉法或者区熔法制备倍增层Si单晶衬底14和吸收层InGaAs单晶衬底12;(a) preparing the multiplication layer Si single crystal substrate 14 and the absorption layer InGaAs single crystal substrate 12 by the pulling method or the zone melting method;
(b)采用标准清洗工艺清洗干净倍增层Si单晶衬底14和吸收层InGaAs单晶衬底12,去除衬底表面粘污颗粒和表面有机物,并使用甩干机甩干;(b) Clean the multiplication layer Si single crystal substrate 14 and the absorbing layer InGaAs single crystal substrate 12 using a standard cleaning process, remove the dirt particles and surface organic matter on the substrate surface, and dry them with a spin dryer;
(c)采用离子注入机在倍增层Si单晶衬底14的背面,即非用于键合的面,均匀注入离子,获得N型重掺杂层15;(c) Using an ion implanter to uniformly implant ions on the back side of the multiplication layer Si single crystal substrate 14, that is, a surface not used for bonding, to obtain an N-type heavily doped layer 15;
(d)采用离子注入机在吸收层InGaAs单晶衬底12的背面,即非用于键合的面,均匀注入离子,获得P型重掺杂InGaAs层11;(d) using an ion implanter to uniformly implant ions on the back side of the absorbing layer InGaAs single crystal substrate 12, that is, the surface not used for bonding, to obtain a P-type heavily doped InGaAs layer 11;
(e)采用金属键合机将步骤c所制备的包含N型重掺杂层15的倍增层Si单晶衬底14,和步骤d所制备的包含P型重掺杂InGaAs层11的吸收层InGaAs单晶衬底12键合在一起;(e) Using a metal bonding machine, the multiplication layer Si single crystal substrate 14 comprising the N-type heavily doped layer 15 prepared in step c and the absorbing layer comprising the P-type heavily doped InGaAs layer 11 prepared in step d InGaAs single crystal substrates 12 are bonded together;
(f)分别在P型重掺杂InGaAs层11和N型重掺杂层15蒸镀P型电极17和N型电极16;(f) evaporating a P-type electrode 17 and an N-type electrode 16 on the P-type heavily doped InGaAs layer 11 and the N-type heavily doped layer 15, respectively;
(g)进行裂片和封装,即可获得可见光APD。(g) Perform splitting and encapsulation to obtain visible light APD.
如图1所示,本实施例制备的可见光APD,包括由下至上依次排列的N型重掺杂层15、倍增层Si单晶衬底14、金属键合层13、吸收层InGaAs单晶衬底12、P型重掺杂InGaAs层11。此外,还包括分别在P型重掺杂InGaAs层11和N型重掺杂层15蒸镀P型电极17和N型电极16。所制备的雪崩光电二极管,雪崩电压处暗电流为0.25nA。As shown in Figure 1, the visible light APD prepared in this embodiment includes an N-type heavily doped layer 15, a multiplication layer Si single crystal substrate 14, a metal bonding layer 13, and an absorption layer InGaAs single crystal substrate arranged in sequence from bottom to top. Bottom 12, P-type heavily doped InGaAs layer 11. In addition, it also includes evaporating a P-type electrode 17 and an N-type electrode 16 on the P-type heavily doped InGaAs layer 11 and the N-type heavily doped layer 15 respectively. The prepared avalanche photodiode has a dark current of 0.25nA at the avalanche voltage.
实施例2Example 2
本实施例的一种雪崩光电二极管的制备方法,包括以下步骤:A kind of preparation method of avalanche photodiode of the present embodiment, comprises the following steps:
(a)通过提拉法或者区熔法制备倍增层InP单晶衬底14和吸收层InGaAs单晶衬底12;(a) preparing the multiplication layer InP single crystal substrate 14 and the absorption layer InGaAs single crystal substrate 12 by the pulling method or the zone melting method;
(b)采用标准清洗工艺清洗干净倍增层InP单晶衬底14和吸收层InGaAs单晶衬底12,去除衬底表面粘污颗粒和表面有机物,并使用甩干机甩干;(b) cleaning the multiplication layer InP single crystal substrate 14 and the absorbing layer InGaAs single crystal substrate 12 by a standard cleaning process, removing the dirt particles and surface organic matter on the substrate surface, and drying them with a spin dryer;
(c)采用离子注入机在倍增层InP单晶衬底14的背面,即非用于键合的面,均匀注入离子,获得N型重掺杂层15;(c) using an ion implanter to uniformly implant ions on the back side of the multiplication layer InP single crystal substrate 14, that is, the surface not used for bonding, to obtain an N-type heavily doped layer 15;
(d)采用离子注入机在吸收层InGaAs单晶衬底12的背面,即非用于键合的面,均匀注入离子,获得P型重掺杂InGaAs层11;(d) using an ion implanter to uniformly implant ions on the back side of the absorbing layer InGaAs single crystal substrate 12, that is, the surface not used for bonding, to obtain a P-type heavily doped InGaAs layer 11;
(e)采用金属键合机将步骤c所制备的包含N型重掺杂层15的倍增层InP单晶衬底14,和步骤d所制备的包含P型重掺杂InGaAs层11的吸收层InGaAs单晶衬底12键合在一起;(e) Using a metal bonding machine, the multiplication layer InP single crystal substrate 14 comprising the N-type heavily doped layer 15 prepared in step c, and the absorbing layer comprising the P-type heavily doped InGaAs layer 11 prepared in step d InGaAs single crystal substrates 12 are bonded together;
(f)分别在P型重掺杂InGaAs层11和N型重掺杂层15蒸镀P型电极17和N型电极16;(f) evaporating a P-type electrode 17 and an N-type electrode 16 on the P-type heavily doped InGaAs layer 11 and the N-type heavily doped layer 15, respectively;
(g)进行裂片和封装,即可获得红外光APD。(g) Fragmentation and encapsulation are performed to obtain an infrared light APD.
本实施例制备的新型结构APD性能与实施例1类似,在此不再赘述。The performance of the novel structure APD prepared in this example is similar to that of Example 1, and will not be repeated here.
以上所述,只是本发明的较佳实施例而已,本发明并不局限于上述实施方式,只要其以相同的手段达到本发明的技术效果,都应属于本发明的保护范围。The above descriptions are only preferred embodiments of the present invention, and the present invention is not limited to the above-mentioned embodiments, as long as they achieve the technical effects of the present invention by the same means, they should all belong to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711000376.2A CN107749424B (en) | 2017-10-24 | 2017-10-24 | An avalanche photodiode and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711000376.2A CN107749424B (en) | 2017-10-24 | 2017-10-24 | An avalanche photodiode and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107749424A true CN107749424A (en) | 2018-03-02 |
CN107749424B CN107749424B (en) | 2023-11-07 |
Family
ID=61253786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711000376.2A Active CN107749424B (en) | 2017-10-24 | 2017-10-24 | An avalanche photodiode and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107749424B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108630781A (en) * | 2018-04-28 | 2018-10-09 | 中国科学院半导体研究所 | 3 ~ 5 μm of infrared band avalanche photodiode detectors and preparation method thereof |
CN108899380A (en) * | 2018-06-08 | 2018-11-27 | 清华大学 | Infrared semiconductor avalanche probe and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4857982A (en) * | 1988-01-06 | 1989-08-15 | University Of Southern California | Avalanche photodiode with floating guard ring |
CN1633699A (en) * | 2002-02-01 | 2005-06-29 | 派克米瑞斯公司 | Charge-controlled avalanche photodiode and method of manufacturing the same |
JP2007005697A (en) * | 2005-06-27 | 2007-01-11 | Ntt Electornics Corp | Avalanche photodiode |
WO2009071916A1 (en) * | 2007-12-06 | 2009-06-11 | The University Of Sheffield | Infrared avalanche photodiode structure with low excess noise and its manufacturing method |
CN101552304A (en) * | 2008-04-02 | 2009-10-07 | 中国科学院半导体研究所 | InP base plane type back incident avalanche optoelectronic diode and manufacturing method thereof |
JP2014032994A (en) * | 2012-08-01 | 2014-02-20 | Nippon Telegr & Teleph Corp <Ntt> | Avalanche photodiode and method for manufacturing the same |
JP2014099527A (en) * | 2012-11-15 | 2014-05-29 | Nippon Telegr & Teleph Corp <Ntt> | Avalanche photodiode and method of manufacturing the same |
CN105720129A (en) * | 2014-12-10 | 2016-06-29 | 硅光电科技股份有限公司 | High-Speed Germanium On Silicon Avalanche Photodiode |
CN207338397U (en) * | 2017-10-24 | 2018-05-08 | 江门市奥伦德光电有限公司 | A kind of avalanche photodide |
-
2017
- 2017-10-24 CN CN201711000376.2A patent/CN107749424B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4857982A (en) * | 1988-01-06 | 1989-08-15 | University Of Southern California | Avalanche photodiode with floating guard ring |
CN1633699A (en) * | 2002-02-01 | 2005-06-29 | 派克米瑞斯公司 | Charge-controlled avalanche photodiode and method of manufacturing the same |
JP2007005697A (en) * | 2005-06-27 | 2007-01-11 | Ntt Electornics Corp | Avalanche photodiode |
WO2009071916A1 (en) * | 2007-12-06 | 2009-06-11 | The University Of Sheffield | Infrared avalanche photodiode structure with low excess noise and its manufacturing method |
CN101552304A (en) * | 2008-04-02 | 2009-10-07 | 中国科学院半导体研究所 | InP base plane type back incident avalanche optoelectronic diode and manufacturing method thereof |
JP2014032994A (en) * | 2012-08-01 | 2014-02-20 | Nippon Telegr & Teleph Corp <Ntt> | Avalanche photodiode and method for manufacturing the same |
JP2014099527A (en) * | 2012-11-15 | 2014-05-29 | Nippon Telegr & Teleph Corp <Ntt> | Avalanche photodiode and method of manufacturing the same |
CN105720129A (en) * | 2014-12-10 | 2016-06-29 | 硅光电科技股份有限公司 | High-Speed Germanium On Silicon Avalanche Photodiode |
CN207338397U (en) * | 2017-10-24 | 2018-05-08 | 江门市奥伦德光电有限公司 | A kind of avalanche photodide |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108630781A (en) * | 2018-04-28 | 2018-10-09 | 中国科学院半导体研究所 | 3 ~ 5 μm of infrared band avalanche photodiode detectors and preparation method thereof |
CN108630781B (en) * | 2018-04-28 | 2020-10-20 | 中国科学院半导体研究所 | 3-5 mu m infrared band avalanche photodiode detector and manufacturing method thereof |
CN108899380A (en) * | 2018-06-08 | 2018-11-27 | 清华大学 | Infrared semiconductor avalanche probe and preparation method thereof |
CN108899380B (en) * | 2018-06-08 | 2020-05-12 | 清华大学 | Infrared semiconductor avalanche detector and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN107749424B (en) | 2023-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105006500B (en) | Transverse group IV element quantum well photodetector and preparation method | |
CN107644921B (en) | A novel avalanche diode photodetector and its preparation method | |
CN105580152B (en) | Photo-electric conversion element and its manufacture method | |
CN102157599B (en) | Energy band transmutation multiplication region structure for avalanche photodiode, and preparation method of energy band transmutation multiplication structure | |
EP3363050A1 (en) | High efficiency wide spectrum sensor | |
CN108666381B (en) | Heterojunction photoelectric sensor and preparation method thereof | |
CN104900731B (en) | Infrared photoelectric detector and its manufacture method | |
CN107342535B (en) | Strained multiple quantum well laser and preparation method thereof based on GeSn/SiGeSn material | |
CN105070779A (en) | Surface incident silicon-based germanium photoelectric detector with sub-wavelength grating structure, and preparation method thereof | |
CN107749424A (en) | A kind of avalanche photodide and preparation method thereof | |
CN104538481B (en) | InGaAs/QWIP two-color infrared detector and its preparation method | |
CN107437570A (en) | Avalanche photodide and its manufacture method | |
CN108493288A (en) | Highly sensitive infrared heterojunction photovoltaic sensor of one kind and preparation method thereof | |
WO2020107784A1 (en) | Unidirectional carrier transport photodetector and manufacturing method therefor | |
CN207458973U (en) | A kind of new snowslide diode photodetector | |
CN111863981A (en) | A gallium oxide solar-blind photodetector and preparation method thereof | |
CN207338397U (en) | A kind of avalanche photodide | |
CN116705892B (en) | Avalanche diode | |
CN105932077A (en) | Silicon infrared optical detector structure and manufacturing method therefor | |
CN107180889A (en) | A kind of quantum trap infrared detector for improving absorptivity and preparation method thereof | |
CN108493206B (en) | A CMOS Image Sensor with Improved Quantum Efficiency | |
CN104900729A (en) | Transverse GeSn/SiGeSn quantum well photoelectric luminescent device and preparation method thereof | |
JP2013513965A (en) | Back surface field type heterojunction solar cell and manufacturing method thereof | |
CN209418523U (en) | A flip-chip visible light-sensitized silicon-based avalanche photodiode array | |
CN107887486B (en) | Photoelectric transistor and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |