[go: up one dir, main page]

CN107748540A - A kind of estimation of multiple axes system profile errors and iteration control method based on Newton method - Google Patents

A kind of estimation of multiple axes system profile errors and iteration control method based on Newton method Download PDF

Info

Publication number
CN107748540A
CN107748540A CN201710965002.8A CN201710965002A CN107748540A CN 107748540 A CN107748540 A CN 107748540A CN 201710965002 A CN201710965002 A CN 201710965002A CN 107748540 A CN107748540 A CN 107748540A
Authority
CN
China
Prior art keywords
mrow
mover
msub
contour error
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710965002.8A
Other languages
Chinese (zh)
Inventor
胡楚雄
朱煜
汪泽
何苏钦
张鸣
杨开明
穆海华
胡金春
尹文生
徐登峰
成荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710965002.8A priority Critical patent/CN107748540A/en
Publication of CN107748540A publication Critical patent/CN107748540A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35353While machining compare real path with simulated, command path, contour display

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

一种基于牛顿法的多轴系统轮廓误差估计及迭代控制方法,属于多轴系统运动控制领域。所述方法利用牛顿法计算得到轮廓误差的准确值,并通过迭代学习的方式减小轮廓误差,以实现良好的多轴协调控制性能。所述方法中包括轮廓误差估计与轮廓误差控制两个部分:前者利用牛顿法,通过极值搜索的方式计算得到轮廓误差点(距离当前位置最近的期望点);后者利用轮廓误差点与当前位置的偏差作为迭代信息,通过迭代的方式生成并优化轨迹前馈补偿,从而实现轮廓控制性能的提升。本发明利用了牛顿法数值计算精确的特点,有效克服了传统轮廓控制方法在复杂轮廓情况下跟踪不准确的问题,且控制器结构简单,能够实现优良的轮廓控制效果。

A multi-axis system contour error estimation and iterative control method based on Newton's method belongs to the field of multi-axis system motion control. The method uses Newton's method to calculate the exact value of the contour error, and reduces the contour error through iterative learning to achieve good multi-axis coordinated control performance. The method includes two parts: contour error estimation and contour error control: the former uses Newton's method to calculate the contour error point (the expected point closest to the current position) by means of extremum search; the latter uses the contour error point and the current The position deviation is used as iterative information, and the trajectory feedforward compensation is generated and optimized in an iterative manner, so as to improve the performance of contour control. The invention utilizes the characteristic of accurate numerical calculation of Newton's method, effectively overcomes the problem of inaccurate tracking in complex contours in traditional contour control methods, and the controller has a simple structure and can achieve excellent contour control effects.

Description

一种基于牛顿法的多轴系统轮廓误差估计及迭代控制方法A Contour Error Estimation and Iterative Control Method for Multi-axis System Based on Newton's Method

技术领域technical field

本发明涉及数控系统多轴系统运动控制方法,具体涉及一种基于牛顿法的轮廓误差估计和迭代控制方法。The invention relates to a motion control method of a multi-axis system of a numerical control system, in particular to a contour error estimation and iterative control method based on Newton's method.

背景技术Background technique

在数控系统中,工件的加工精度很大程度上取决于机床的多轴轮廓运动精度,表征轮廓运动精度的指标为轮廓误差,即运动过程中的实际位置点到期望轮廓的最短距离。在实际的曲线(曲面)加工过程中,由于期望加工路径的复杂性和实际位置点的不确定性,轮廓误差通常不能直接通过测量确定。因此多轴运动系统中轮廓误差的估计与控制成为数控系统中重要的研究内容,现有的实际应用方法基本上采用各轴独立控制的方式或者交叉耦合的控制方式,这些现有的方式无法做到对于轮廓误差的精确估计,对于一些复杂的或者极端的轮廓(如高速大曲率轮廓)的加工过程,轮廓误差估计相比于真实情况有较大偏差;而且由于轮廓误差估计性能出现恶化,使得轮廓误差的控制效果得不到保证,影响在实际应用过程中的轮廓加工效果。In the CNC system, the machining accuracy of the workpiece depends largely on the multi-axis contour motion accuracy of the machine tool. The index that characterizes the contour motion accuracy is the contour error, that is, the shortest distance from the actual position point to the expected contour during the motion process. In the actual curve (curved surface) machining process, due to the complexity of the expected machining path and the uncertainty of the actual position point, the contour error usually cannot be directly determined by measurement. Therefore, the estimation and control of the contour error in the multi-axis motion system has become an important research content in the numerical control system. The existing practical application methods basically use the independent control of each axis or the cross-coupling control method, which cannot be done by these existing methods. As far as the accurate estimation of contour error is concerned, for some complex or extreme contours (such as high-speed and large-curvature contours), the contour error estimation has a large deviation compared with the real situation; and due to the deterioration of the contour error estimation performance, making The control effect of the contour error cannot be guaranteed, which affects the contour processing effect in the actual application process.

因此需要一种能有效应用于实际的多轴运动系统轮廓误差的估计及控制方法,能够实现在任意轮廓条件下的精确轮廓误差估计,同时根据估计的轮廓误差,保证轮廓运动控制性能。牛顿法是一种简单有效的数值计算方法,能够用于求函数最小值的问题,通过建立表征实际位置点到期望轮廓距离的函数,并求取该函数的最小值,即可求得轮廓误差点及轮廓误差。利用得到的轮廓误差信息,进行迭代学习,完成轮廓运动的期望轨迹预补偿,即可实现轮廓运动性能的提升。Therefore, there is a need for an estimation and control method of contour error that can be effectively applied to the actual multi-axis motion system, which can realize accurate contour error estimation under arbitrary contour conditions, and at the same time ensure the contour motion control performance according to the estimated contour error. Newton's method is a simple and effective numerical calculation method, which can be used to find the minimum value of the function. By establishing a function representing the distance from the actual position point to the desired contour, and calculating the minimum value of the function, the contour error can be obtained. Point and contour errors. Using the obtained contour error information, iterative learning is carried out to complete the expected trajectory pre-compensation of the contour motion, and the performance of the contour motion can be improved.

发明内容Contents of the invention

本发明目的在于提出一种基于牛顿法的轮廓误差估计及迭代控制方法,以解决上述背景技术中所提出的问题,使其能够应用于任意复杂轮廓或极端轮廓条件下,能够实现精确的轮廓误差估计以及良好的轮廓误差控制性能。The purpose of the present invention is to propose a contour error estimation and iterative control method based on Newton's method to solve the problems raised in the above-mentioned background technology, so that it can be applied to any complex contour or extreme contour conditions, and can achieve accurate contour error estimation and good contour error control performance.

为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:

S1:针对多轴系统中各独立轴的动力学特性,分别设计相应的反馈控制器;S1: According to the dynamic characteristics of each independent axis in the multi-axis system, design corresponding feedback controllers respectively;

S2:建立多轴系统中待确定的轮廓误差向量关于时间t的向量表示:S2: Establish the vector representation of the contour error vector to be determined with respect to time t in the multi-axis system:

其中,为期望运动轨迹,为实际运动位置,为轮廓误差向量;in, is the desired trajectory, is the actual motion position, is the contour error vector;

S3:建立表征轮廓误差的指标函数J(t):S3: Establish an index function J(t) that characterizes the contour error:

S4:根据如下迭代公式,对时间t进行迭代:S4: According to the following iteration formula, iterate the time t:

其中,ti表示第i次迭代时所对应的时间参数,m为总迭代次数,表示期望轮廓在第i次迭代的时间ti处的速度;Among them, t i represents the time parameter corresponding to the ith iteration, m is the total number of iterations, Denotes the velocity of the desired profile at time t i of the ith iteration;

S5:建立迭代计算停止的判据:在第i次迭代完成后,判断是否成立,其中σ为极小的正常数、为指标函数的导数在时间参数ti处的绝对值,若上述判断条件成立,则执行步骤S6,否则继续执行S4-S5,直至满足条件;S5: Establish the criterion for stopping the iterative calculation: after the i-th iteration is completed, judge Whether it is true, where σ is a very small constant, is the absolute value of the derivative of the index function at the time parameter t i , if the above judgment condition is established, then execute step S6, otherwise continue to execute S4-S5 until the condition is met;

S6:计算最优时间tm、轮廓误差点矢量和轮廓误差 S6: Calculate optimal time t m , contour error point vector and contour error

S7:计算低通滤波器Q(s):其中s为微分算子,ζ=0.7,表示该二阶低通滤波器的阻尼比,fs表示该滤波器的截止频率;S7: Calculate the low-pass filter Q(s): Wherein s is a differential operator, ζ=0.7, represents the damping ratio of this second-order low-pass filter, f s represents the cut-off frequency of this filter;

S8:使用步骤S7中的滤波器Q对步骤S6中计算得到的轮廓误差进行零相位低通滤波,得到平滑的轮廓误差信号:S8: Use the filter Q in step S7 to correct the contour error calculated in step S6 Perform zero-phase low-pass filtering to obtain a smooth contour error signal:

S9:将平滑后的轮廓误差作为轨迹预补偿项修正原有期望运动轨迹,得到修正后的期望轨迹为:S9: Use the smoothed contour error as a trajectory pre-compensation item to correct the original expected trajectory, and the corrected expected trajectory is:

S10:使用步骤S9中修正的期望轨迹进行实验,然后重复步骤S2-S9,直至轮廓性能满足要求为止。S10: Experiment with the expected trajectory corrected in step S9, and then repeat steps S2-S9 until the profile performance meets the requirements.

本发明具有以下优点及突出性的技术效果:首先本发明提出一种全新的轮廓误差估算的思路及方法,不同于现有技术手段中基于期望运动轨迹几何特征的轮廓误差计算方法,本发明通过数值计算的方式,离线计算求解得到相对准确的轮廓误差,实现对于任意复杂轮廓的精确误差估计,即使在高速大曲率等极端轮廓条件下,仍能保证误差估计的准确性;然后根据轮廓误差的精确估计,提出了通过迭代学习以实现期望轨迹预补偿的轮廓误差控制方法,能够有效提升轮廓控制性能。The present invention has the following advantages and prominent technical effects: firstly, the present invention proposes a brand-new idea and method of contour error estimation, which is different from the contour error calculation method based on the geometric characteristics of the expected motion track in the prior art means, and the present invention adopts The method of numerical calculation, off-line calculation and solution to obtain relatively accurate contour error, to achieve accurate error estimation for any complex contour, even under extreme contour conditions such as high speed and large curvature, the accuracy of error estimation can still be guaranteed; then according to the contour error Accurate estimation, a contour error control method that achieves desired trajectory pre-compensation through iterative learning is proposed, which can effectively improve the contour control performance.

附图说明Description of drawings

图1为基于牛顿法的轮廓误差估计与迭代控制框图。Figure 1 is a block diagram of contour error estimation and iterative control based on Newton's method.

图2本发明所提牛顿法与其它几种方法在圆周轮廓运动控制中轮廓误差的对比结果图(单位:m)。Fig. 2 is a comparison result diagram (unit: m) of the contour error of the Newton method proposed by the present invention and several other methods in the circular contour motion control.

具体实施方式Detailed ways

下面结合附图和本发明实例对本发明实施例中的技术方案进行清晰、完整描述,显然所描述的实施例为本发明用于直线电机二轴系统轮廓运动控制的一个具体实施方案,而并非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following is a clear and complete description of the technical solutions in the embodiments of the present invention in conjunction with the accompanying drawings and the examples of the present invention. Obviously, the described embodiment is a specific implementation of the present invention for the contour motion control of the linear motor two-axis system, and not all the embodiment. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

图1中各轴期望轨迹由实际加工需求所提供,牛顿算法以及轮廓误差迭代部分为所要实施的算法,多轴系统模型由各轴的动力学模型及所设计的反馈控制器决定,实际位置通过传感器测量信号获得。In Fig. 1, the expected trajectory of each axis is provided by the actual processing requirements. The Newton algorithm and the contour error iteration part are the algorithms to be implemented. The multi-axis system model is determined by the dynamic model of each axis and the designed feedback controller. The actual position is determined by The sensor measurement signal is obtained.

设计基于牛顿法的二轴直线电机轮廓运动控制系统的主体思想是:建立二轴系统中待确定的轮廓误差向量关于时间t的向量表示,通过牛顿法求该函数导数为零的点,即该函数的最小值,根据轮廓误差的定义,该最小值即为轮廓误差;所述基于牛顿法的求解过程需要的已知条件为各轴期望轨迹在任意时间的期望位置及期望速度,这对于多轴运动系统来说是便于实现的。求得轮廓误差后,计算出轮廓误差在各轴方向上分量的大小,再对各分量进行无相位偏差的零相位滤波,将滤波后的信号作为轨迹修正,对原有的期望轨迹进行预补偿后,再进行轮廓运动控制实验,并重复上述过程,以实现轮廓误差的收敛。对于二轴直线电机运动平台,其驱动电压由控制器输入信号(即控制作用)经过伺服驱动放大器的放大作用后得到,而安装于直线电机运动导轨上的光栅位移传感器可实时反馈各轴电机的位置信息,根据实际位置点及期望的轮廓的相对位置关系计算出轮廓误差;根据估算出的轮廓误差,可设计出各轴期望轨迹的预补偿,实现轮廓控制性能提升。结合图1中基于牛顿法的轮廓误差估计与迭代控制的框图,对具体步骤进行详细说明:The main idea of designing a two-axis linear motor contour motion control system based on Newton’s method is to establish the vector representation of the contour error vector to be determined in the two-axis system with respect to time t, and find the point where the derivative of the function is zero by Newton’s method, that is, the The minimum value of the function, according to the definition of the contour error, the minimum value is the contour error; the known conditions required by the solution process based on the Newton method are the desired position and the desired speed of the desired trajectory of each axis at any time, which is for many It is easy to implement for the axis motion system. After obtaining the contour error, calculate the size of the contour error components in each axis direction, and then perform zero-phase filtering on each component without phase deviation, and use the filtered signal as a trajectory correction to pre-compensate the original desired trajectory Finally, the contour motion control experiment is carried out, and the above process is repeated to achieve the convergence of the contour error. For the two-axis linear motor motion platform, the driving voltage is obtained by the input signal of the controller (ie, the control function) after the amplification of the servo drive amplifier, and the grating displacement sensor installed on the linear motor motion guide rail can feedback the motor of each axis in real time. Position information, calculate the contour error according to the relative position relationship between the actual position point and the expected contour; according to the estimated contour error, the pre-compensation of the expected trajectory of each axis can be designed to improve the contour control performance. Combined with the block diagram of contour error estimation and iterative control based on Newton's method in Figure 1, the specific steps are described in detail:

步骤S1:针对多轴系统中各独立轴的动力学特性,分别设计相应的反馈控制器。针对二轴系统中的X和Y轴,分别设计相应的反馈控制器,以保证各轴能完成独立稳定的运动控制;对于具体控制器的类型没有严格的要求,这里以自适应鲁棒控制器为例,使得两轴均能实现良好的轨迹跟踪控制。反馈控制器和各轴动力学模型所构成的闭环系统为图1中所示多轴系统模型(P1…P2…Pn)。Step S1: According to the dynamic characteristics of each independent axis in the multi-axis system, design corresponding feedback controllers respectively. For the X and Y axes in the two-axis system, the corresponding feedback controllers are designed respectively to ensure that each axis can complete independent and stable motion control; there are no strict requirements for the specific controller type, here the adaptive robust controller As an example, both axes can achieve good trajectory tracking control. The closed-loop system formed by the feedback controller and the dynamic models of each axis is the multi-axis system model (P 1 ... P 2 ... P n ) shown in Fig. 1 .

步骤S2:建立多轴系统中待确定的轮廓误差向量关于时间t的向量表示:Step S2: Establish the vector representation of the contour error vector to be determined with respect to time t in the multi-axis system:

其中,为期望运动轨迹,为实际运动位置,为轮廓误差向量,对于二轴系统而言,沿着X和Y轴方向的轮廓误差分量分别为:in, is the desired trajectory, is the actual motion position, is the contour error vector. For a two-axis system, the contour error components along the X and Y axes are:

εx(t)=Rdx(t)-Xx(t)ε x (t) = R dx (t) - X x (t)

εy(t)=Rdy(t)-Xy(t)ε y (t) = R dy (t) - X y (t)

其中Rdx(t)和Rdy(t)分别表示X和Y轴的期望轨迹,Xx(t)和Xy(t)分别表示X和Y轴的实际位置;Where R dx (t) and R dy (t) represent the desired trajectory of the X and Y axes respectively, and X x (t) and X y (t) represent the actual positions of the X and Y axes respectively;

步骤S3:建立表征轮廓误差的指标函数J(t):Step S3: Establish an index function J(t) that characterizes the contour error:

针对二轴系统来说,指标函数可以具体表示为:For the two-axis system, the index function can be specifically expressed as:

步骤S4:根据如下迭代公式,对时间t进行迭代:Step S4: According to the following iteration formula, time t is iterated:

其中ti表示第i次迭代时所对应的时间参数,m为总迭代次数,表示期望轮廓在第i次迭代的时间ti处的速度。针对二轴系统来说, 其中分别表示X和Y轴在ti时刻的期望速度;Where t i represents the time parameter corresponding to the ith iteration, m is the total number of iterations, Denotes the velocity of the desired profile at time t i of the ith iteration. For a two-axis system, in and Respectively represent the expected speed of the X and Y axes at the time t i ;

步骤S5:建立迭代计算停止的判据:在第i次迭代完成后,判断是否成立,其中σ=1×10-9,若上述判断条件成立,则执行步骤S6,否则继续执行S4-S5,直至满足条件;Step S5: establish the criterion for stopping the iterative calculation: after the i-th iteration is completed, judge Whether it is true, where σ=1×10 -9 , if the above judgment conditions are true, execute step S6, otherwise continue to execute S4-S5 until the conditions are met;

步骤S6:计算最优时间为tm、计算轮廓误差点矢量为计算轮廓误差为轮廓误差沿X和Y轴的分量分别为:Step S6: Calculate the optimal time as t m and calculate the contour error point vector as Calculate the contour error as The components of the contour error along the X and Y axes are:

步骤S7:设计低通滤波器Q:其中s为微分算子,ζ=0.7,表示该二阶低通滤波器的阻尼比,fs表示该滤波器的截止频率,根据二轴直线电机平台频率特性的实际情况fs=20Hz;Step S7: Design the low-pass filter Q: Among them, s is a differential operator, ζ=0.7, represents the damping ratio of the second-order low-pass filter, f s represents the cut-off frequency of the filter, according to the actual situation of the frequency characteristics of the two-axis linear motor platform f s =20Hz;

步骤S8:使用S7中的滤波器Q对S6中计算得到的轮廓误差进行零相位低通滤波,得到平滑的轮廓误差信号:Step S8: Use the filter Q in S7 to calculate the contour error in S6 Perform zero-phase low-pass filtering to obtain a smooth contour error signal:

X轴和Y轴的平滑轮廓误差分别为:The smoothed contour errors for the X-axis and Y-axis are:

实际操作过程中,零相位滤波本质上是将待滤波的轮廓误差的时域序列正向、反向分别通过数字滤波器,将平滑轮廓误差与之前一次的存储结果进行求和,作为新的平滑轮廓误差,并将其存储,具体操作流程如图1所示;In the actual operation process, zero-phase filtering is essentially to filter the contour error The forward and reverse of the time domain sequence pass through the digital filter respectively, and the smoothed contour error is summed with the previous storage result as a new smoothed contour error, and stored. The specific operation process is shown in Figure 1;

步骤S9:将平滑后的轮廓误差作为轨迹预补偿项修正原有期望轨迹,得到修正后的期望轨迹为:Step S9: Use the smoothed contour error as a trajectory pre-compensation item to correct the original expected trajectory, and the corrected expected trajectory is obtained as:

对于二轴系统来说,X轴和Y轴期望轨迹分别被修正为:For a two-axis system, the expected trajectories of the X-axis and Y-axis are respectively modified as:

步骤S10:使用S9中修正的轨迹再次进行实验,然后重复步骤S2-S9,直至轮廓性能满足要求为止。使用满足轮廓运动精度要求的轨迹与补偿应用于对应轮廓的实际加工过程中,即可减小轮廓误差。Step S10: Use the trajectory corrected in S9 to conduct an experiment again, and then repeat steps S2-S9 until the contour performance meets the requirements. The contour error can be reduced by using the trajectory and compensation that meet the contour motion accuracy requirements and applying it to the actual machining process of the corresponding contour.

根据图2,在圆周轮廓运动控制中,相比于ARC各轴独立控制、CCC、CCILC,所提出的牛顿法能达到最好的轮廓误差控制效果。According to Figure 2, in the circular contour motion control, compared with the independent control of each axis of ARC, CCC, and CCILC, the proposed Newton method can achieve the best contour error control effect.

Claims (1)

1. A multi-axis system contour error estimation and iteration control method based on Newton's method is characterized by comprising the following steps:
s1: and respectively designing corresponding feedback controllers aiming at the dynamic characteristics of each independent shaft in the multi-shaft system.
S2: establishing a vector representation of a contour error vector to be determined in a multiaxial system with respect to time t:
<mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;RightArrow;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>R</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mover> <mi>X</mi> <mo>&amp;RightArrow;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
wherein,in order to obtain the desired motion profile,in order to be able to actually move the position,is a contour error vector;
s3: establishing an index function J (t) for representing the contour error:
<mrow> <mi>J</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>|</mo> <mo>|</mo> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;RightArrow;</mo> </mover> <mrow> <mo>(</mo> <mover> <mi>t</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow>
s4: the time t is iterated according to the following iteration formula:
<mrow> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>-</mo> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>R</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mover> <mi>X</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>R</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>R</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow>
wherein, tiRepresents the time parameter corresponding to the ith iteration, m is the total iteration number,representing the time t of the desired profile at the i-th iterationiThe speed of the pump;
S5: establishing a criterion for stopping iterative computation: after the ith iteration is finished, judgingIf it is true, where σ is an extremely small normal number,As a derivative of the index function at a time parameter tiIf the above-mentioned judgment condition is true, executing step S6, otherwise, continuing executing S4-S5 until the condition is satisfied;
s6: calculating an optimal time tmContour error point vectorAnd contour error
S7: calculating the low-pass filter q(s):where s is a differential operator, ζ is 0.7, which represents the damping ratio of the second-order low-pass filter, and fsRepresenting the cut-off frequency of the filter;
s8: the contour error calculated in step S6 is corrected using the filter Q in step S7Performing zero-phase low-pass filtering to obtain a smooth contour error signal:
<mrow> <mover> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>Q</mi> <mi>T</mi> </msup> <msup> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>Q</mi> </mrow>
s9: correcting the original expected motion track by taking the smoothed contour error as a track precompensation term to obtain a corrected expected track which is as follows:
<mrow> <msub> <mover> <mi>R</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>R</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mover> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
s10: the experiment was performed using the desired trajectory corrected in step S9, and then steps S2-S9 were repeated until the profile performance satisfied the requirements.
CN201710965002.8A 2017-10-17 2017-10-17 A kind of estimation of multiple axes system profile errors and iteration control method based on Newton method Pending CN107748540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710965002.8A CN107748540A (en) 2017-10-17 2017-10-17 A kind of estimation of multiple axes system profile errors and iteration control method based on Newton method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710965002.8A CN107748540A (en) 2017-10-17 2017-10-17 A kind of estimation of multiple axes system profile errors and iteration control method based on Newton method

Publications (1)

Publication Number Publication Date
CN107748540A true CN107748540A (en) 2018-03-02

Family

ID=61253812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710965002.8A Pending CN107748540A (en) 2017-10-17 2017-10-17 A kind of estimation of multiple axes system profile errors and iteration control method based on Newton method

Country Status (1)

Country Link
CN (1) CN107748540A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110968037A (en) * 2019-10-31 2020-04-07 天津工业大学 Control method for reducing contour error of multi-axis motion system
CN111830905A (en) * 2020-08-10 2020-10-27 哈尔滨工业大学 A Method for Estimating Contour Error of Multidimensional System Based on Simplified Newton's Method
CN112004646A (en) * 2018-08-14 2020-11-27 拜克门寇尔特公司 System for Active Motion Displacement Control of Robots
CN113050428A (en) * 2021-03-26 2021-06-29 清华大学 Position pivot element contour tracking algorithm based on time-varying internal model
CN115070731A (en) * 2022-07-01 2022-09-20 哈尔滨工业大学(威海) Geometric error calibration method and system for parallel mechanism and electronic equipment
CN116184841A (en) * 2023-04-28 2023-05-30 山东大学 A Model Predictive Control Method of Offshore Trestle Based on Extremum Search Algorithm
CN116560222A (en) * 2023-03-13 2023-08-08 中国矿业大学 Cross-coupled iterative learning control method for time-varying uncertain batch processes
CN119439877A (en) * 2024-09-29 2025-02-14 深圳市金伟达金属材料有限公司 Intelligent control method and system for precision CNC machine tools

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898564A (en) * 2015-05-04 2015-09-09 大连理工大学 Method for reducing three-shaft linkage contour error
CN106020122A (en) * 2016-06-17 2016-10-12 浙江理工大学 Newton's method-based numerical control trajectory control method
CN106125674A (en) * 2016-08-03 2016-11-16 大连理工大学 A kind of high accuracy real time profile error estimation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898564A (en) * 2015-05-04 2015-09-09 大连理工大学 Method for reducing three-shaft linkage contour error
CN106020122A (en) * 2016-06-17 2016-10-12 浙江理工大学 Newton's method-based numerical control trajectory control method
CN106125674A (en) * 2016-08-03 2016-11-16 大连理工大学 A kind of high accuracy real time profile error estimation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZE WANG.ETC: "Newton-ILC Contouring Error Estimation and Coordinated Motion Control for Precision Multiaxis Systems With Comparative Experiments-IEEE Transactions on Industrial Electronics", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12023810B2 (en) 2018-08-14 2024-07-02 Beckman Coulter, Inc. System for active motion displacement control of a robot
CN112004646A (en) * 2018-08-14 2020-11-27 拜克门寇尔特公司 System for Active Motion Displacement Control of Robots
CN112004646B (en) * 2018-08-14 2024-12-13 拜克门寇尔特公司 System for active motion displacement control of robots
CN110968037A (en) * 2019-10-31 2020-04-07 天津工业大学 Control method for reducing contour error of multi-axis motion system
CN111830905A (en) * 2020-08-10 2020-10-27 哈尔滨工业大学 A Method for Estimating Contour Error of Multidimensional System Based on Simplified Newton's Method
CN113050428A (en) * 2021-03-26 2021-06-29 清华大学 Position pivot element contour tracking algorithm based on time-varying internal model
CN113050428B (en) * 2021-03-26 2021-12-07 清华大学 Position pivot element contour tracking algorithm based on time-varying internal model
CN115070731B (en) * 2022-07-01 2022-12-09 哈尔滨工业大学(威海) A geometric error calibration method, system and electronic equipment for parallel mechanism
CN115070731A (en) * 2022-07-01 2022-09-20 哈尔滨工业大学(威海) Geometric error calibration method and system for parallel mechanism and electronic equipment
CN116560222A (en) * 2023-03-13 2023-08-08 中国矿业大学 Cross-coupled iterative learning control method for time-varying uncertain batch processes
CN116560222B (en) * 2023-03-13 2023-11-21 中国矿业大学 Cross-coupled iterative learning control method for time-varying uncertain intermittent processes
CN116184841A (en) * 2023-04-28 2023-05-30 山东大学 A Model Predictive Control Method of Offshore Trestle Based on Extremum Search Algorithm
CN119439877A (en) * 2024-09-29 2025-02-14 深圳市金伟达金属材料有限公司 Intelligent control method and system for precision CNC machine tools

Similar Documents

Publication Publication Date Title
CN107748540A (en) A kind of estimation of multiple axes system profile errors and iteration control method based on Newton method
CN110948504B (en) Normal constant force tracking method and device for robot machining operation
CN111152224B (en) Dual-optimization robot motion trajectory optimization method
JP5340486B2 (en) Trajectory control device
CN104950678B (en) A kind of Neural Network Inversion control method of flexible mechanical arm system
CN102385342B (en) Self-adaptation dynamic sliding mode controlling method controlled by virtual axis lathe parallel connection mechanism motion
CN107479497A (en) A kind of five-axis robot track profile errors two close cycles compensation method
Hu et al. Accurate three-dimensional contouring error estimation and compensation scheme with zero-phase filter
Kuang et al. Simplified newton-based CEE and discrete-time fractional-order sliding-mode CEC
CN106200553B (en) It is servo-actuated to cooperate with compensation method online with profile errors
CN109857100B (en) Composite track tracking control algorithm based on inversion method and fast terminal sliding mode
CN112286139B (en) Contour control method and system of motion system based on neural network and disturbance observation
CN112091829A (en) A fuzzy adaptive sliding mode control method for sandblasting and derusting parallel robot to compensate sudden change in friction force
CN106354092B (en) One kind is servo-actuated and the adaptive real-time compensation method of profile errors
CN111427308B (en) An error compensation comprehensive control method for trajectory planning of CNC platform
CN114839921A (en) Five-axis contour control method based on data driving
CN117226613A (en) Robot constant force control polishing method based on PPO reinforcement learning
CN113219840B (en) Self-adaptive sliding mode cross-coupling contour control method for three-axis motion platform
CN115113582A (en) A five-axis position loop gain off-line correction method for part contour error
Duong et al. Contour error pre-compensation for five-axis high speed machining: offline gain adjustment approach
CN111679629A (en) A non-interference trajectory planning method for multi-spindle head machining
CN109283892B (en) Feed rate adaptive interpolation algorithm based on parametric curve geometric characteristics and bow-height error limitation
CN105929791B (en) The direct contour outline control method of plane rectangular coordinates kinematic system
CN106843146A (en) A kind of self adaptation variable-gain profile errors compensation method
CN111046510B (en) Vibration suppression method of flexible mechanical arm based on track segmentation optimization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180302

WD01 Invention patent application deemed withdrawn after publication