CN107735715B - Pattern drawing device and pattern drawing method - Google Patents
Pattern drawing device and pattern drawing method Download PDFInfo
- Publication number
- CN107735715B CN107735715B CN201680035608.5A CN201680035608A CN107735715B CN 107735715 B CN107735715 B CN 107735715B CN 201680035608 A CN201680035608 A CN 201680035608A CN 107735715 B CN107735715 B CN 107735715B
- Authority
- CN
- China
- Prior art keywords
- light
- light beam
- mirror
- scanning
- polygon mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/12—Scanning systems using multifaceted mirrors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/04—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
- H04N1/113—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Laser Beam Printer (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
Description
技术领域technical field
本发明关于一种扫描照射至被照射体上的光束的光点以描绘图案的图案描绘装置及图案描绘方法。The present invention relates to a pattern drawing device and a pattern drawing method for drawing a pattern by scanning a spot of a light beam irradiated on an object to be irradiated.
背景技术Background technique
如日本特开2004-117865号公报所揭示,已知有如下技术:于通过激光光束的扫描而于感光体上描绘图像的激光扫描装置(彩色激光列印机)中,使用一个多面镜扫描多条激光光束的各者,沿着多条扫描线描绘图像。As disclosed in Japanese Patent Application Laid-Open No. 2004-117865, there is known a technique in which, in a laser scanning device (color laser printer) that draws an image on a photoreceptor by scanning a laser beam, a single polygon mirror is used to scan a plurality of Each of the laser beams traces the image along multiple scan lines.
日本特开2004-117865号公报中,揭示有如下串接型激光扫描装置,该串接型激光扫描装置于被照射体的移动方向即副扫描方向上隔开地平行配置扫描线,该扫描线由利用一个多面镜的不同反射面的各者而偏向扫描的多条激光光束生成。对于日本特开2004-117865号公报所揭示的激光扫描装置而言,被照射体(感光鼓等)上所能描绘出的图像的扫描线方向(主扫描方向)最大尺寸,由一条扫描线的长度决定。因此,为了增大所能描绘出的图像的主扫描方向尺寸,需要以使扫描线变更长的方式,增大多面镜之后的扫描光学系统(透镜或面镜等)。另一方面,对于利用光点的扫描而描绘最小线宽为数μm~20μm左右的电子电路用的高精细图案且使其曝光的曝光装置而言,需要使光点的尺寸(直径)为最小线宽的数分之一(1/2~1/4)左右,并且需要与扫描线上的光点的投射位置同步且高精度及高速地控制与描绘图案的数据相对应的光点的强度调变。然而,若使通过通过多面镜的光束偏向扫描而生成的一条扫描线变长,则随着多面镜之后的扫描光学系统等的大型化,难以稳定地维持描绘高精细图案时所需的扫描线的配置精度或光学性能。Japanese Patent Laid-Open No. 2004-117865 discloses a tandem-type laser scanning device in which scanning lines are arranged in parallel and spaced apart in the moving direction of the object to be irradiated, that is, in the sub-scanning direction. Generated by multiple laser beams deflected to scan using each of the different reflective surfaces of a polygon mirror. For the laser scanning device disclosed in Japanese Patent Application Laid-Open No. 2004-117865, the maximum size in the scanning line direction (main scanning direction) of an image that can be drawn on the irradiated body (photosensitive drum, etc.) is determined by the size of one scanning line. Length decides. Therefore, in order to increase the size of the image that can be drawn in the main scanning direction, it is necessary to enlarge the scanning optical system (lens, mirror, etc.) after the polygon mirror so that the scanning line becomes longer. On the other hand, in an exposure apparatus that draws and exposes a high-definition pattern for electronic circuits with a minimum line width of about several μm to 20 μm by scanning a light spot, it is necessary to make the size (diameter) of the light spot the smallest line It is about a fraction of the width (1/2 to 1/4) of the width, and it is necessary to control the intensity adjustment of the light spot corresponding to the data of the drawing pattern with high precision and high speed in synchronization with the projection position of the light spot on the scanning line. Change. However, if one scan line generated by deflected scanning of the beam passing through the polygon mirror is lengthened, it becomes difficult to stably maintain the scan line required for drawing a high-definition pattern along with the enlargement of the scanning optical system after the polygon mirror, etc. configuration accuracy or optical performance.
发明内容SUMMARY OF THE INVENTION
本发明的第1态样是一种图案描绘装置,使来自光源装置的光束呈点状地聚光于被照射体上,使聚光后的光点沿着既定的扫描线进行主扫描,并且对上述被照射体进行副扫描,藉此在上述被照射体上描绘既定图案,其具备:旋转多面镜,为了上述主扫描而绕旋转轴旋转;第1导光光学系统,从第1方向朝上述旋转多面镜投射来自上述光源装置的第1光束;第2导光光学系统,从与上述第1方向不同的第2方向朝上述旋转多面镜投射来自上述光源装置的第2光束;第1投射光学系统,使由上述旋转多面镜反射的上述第1光束聚光并作为第1光点而投射至第1扫描线上;以及第2投射光学系统,使由上述旋转多面镜反射的上述第2光束聚光并作为第2光点而投射至第2扫描线上;以使上述第1扫描线与上述第2扫描线于上述被照射体上位于上述副扫描方向上的相同位置且在上述主扫描方向上错开的方式,配置上述第1投射光学系统与上述第2投射光学系统。A first aspect of the present invention is a pattern drawing device that condenses a light beam from a light source device on an object to be irradiated in a spot shape, and performs main scanning along a predetermined scanning line on the condensed light spot, and A predetermined pattern is drawn on the irradiated object by sub-scanning the irradiated object, and the irradiated object is provided with a rotating polygon mirror that rotates around a rotation axis for the main scanning, and a first light guide optical system that extends from a first direction toward The rotating polygon mirror projects the first light beam from the light source device; the second light guide optical system projects the second light beam from the light source device toward the rotating polygon mirror from a second direction different from the first direction; the first projection an optical system for condensing the first light beam reflected by the rotating polygon mirror and projecting it on a first scanning line as a first spot; and a second projection optical system for condensing the second light beam reflected by the rotating polygon mirror The light beam is condensed and projected on the second scanning line as a second light spot; so that the first scanning line and the second scanning line are located on the irradiated object at the same position in the sub-scanning direction and on the main scanning line. The said 1st projection optical system and the said 2nd projection optical system are arrange|positioned so that a scanning direction may be shifted|deviated.
本发明的第2态样是一种图案描绘装置,一边对可挠性的长条的片材基板即被照射体沿着长边方向进行副扫描、一边使基于描绘数据而强度调变的光点沿着于与上述被照射体的长边方向正交的宽度方向延伸的扫描线进行主扫描,藉此在上述被照射体上描绘与上述描绘数据相对应的图案,其具备:旋转多面镜,为了上述主扫描而绕旋转轴旋转;第1导光光学系统,从第1方向朝上述旋转多面镜投射第1光束;第2导光光学系统,从与上述第1方向不同的第2方向朝上述旋转多面镜投射第2光束;第1投射光学系统,使由上述旋转多面镜反射的上述第1光束聚光并作为第1光点而投射至第1扫描线上;以及第2投射光学系统,使由上述旋转多面镜反射的上述第2光束聚光并作为第2光点而投射至第2扫描线上;以将上述第1扫描线与上述第2扫描线的各扫描长度设为相同,并且于上述主扫描方向以上述扫描长度以下的间隔分离设定上述第1扫描线与上述第2扫描线的方式,配置上述第1投射光学系统与上述第2投射光学系统。A second aspect of the present invention is a pattern drawing apparatus that sub-scans the irradiated body, which is a flexible long sheet substrate, in the longitudinal direction, and controls light whose intensity is modulated based on drawing data. The dots are mainly scanned along a scanning line extending in the width direction perpendicular to the longitudinal direction of the irradiated object, whereby a pattern corresponding to the drawing data is drawn on the irradiated object, and includes: a rotating polygon mirror , which rotates around the rotation axis for the above-mentioned main scanning; the first light-guiding optical system projects the first light beam from the first direction toward the above-mentioned rotating polygon mirror; the second light-guiding optical system projects from the second direction different from the above-mentioned first direction projecting a second light beam toward the rotating polygon mirror; a first projection optical system for condensing the first light beam reflected by the rotating polygon mirror and projecting it on a first scanning line as a first spot; and a second projection optics a system for condensing the second light beam reflected by the rotating polygon mirror and projecting it on a second scanning line as a second light spot; the scanning lengths of the first scanning line and the second scanning line are set as In the same manner, the first projection optical system and the second projection optical system are arranged in such a manner that the first scanning line and the second scanning line are separately set in the main scanning direction at an interval equal to or less than the scanning length.
本发明的第3态样是一种图案描绘方法,使来自光源装置的光束呈点状地聚光于被照射体上,使聚光后的光点沿着既定的扫描线进行主扫描,并且对上述被照射体进行副扫描,藉此在上述被照射体上描绘既定图案,其包含如下步骤:将来自上述光源装置的第1光束从第1方向朝旋转多面镜投射;将来自上述光源装置的第2光束从与上述第1方向不同的第2方向朝上述旋转多面镜投射;通过上述旋转多面镜的旋转,对射入至上述旋转多面镜的不同反射面而反射的上述第1光束及上述第2光束进行偏向扫描;使由上述旋转多面镜反射的上述第1光束聚光并作为第1光点而投射至第1扫描线上;以及使由上述旋转多面镜反射的上述第2光束聚光并作为第2光点而投射至第2扫描线上;上述第1扫描线与上述第2扫描线于上述被照射体上位于上述副扫描方向上的相同位置,且于上述主扫描方向上错开。A third aspect of the present invention is a pattern drawing method in which a light beam from a light source device is condensed on an object to be irradiated in a spot shape, and the condensed light spot is subjected to main scanning along a predetermined scanning line, and Sub-scanning the irradiated object to draw a predetermined pattern on the irradiated object includes the steps of: projecting a first light beam from the light source device toward a rotating polygon mirror from a first direction; The second light beam is projected toward the rotating polygon mirror from a second direction different from the first direction; by the rotation of the rotating polygon mirror, the first light beams and performing deflection scanning on the second light beam; condensing the first light beam reflected by the rotating polygon mirror and projecting it on a first scanning line as a first spot; and causing the second light beam reflected by the rotating polygon mirror Condensing light and projecting it on a second scanning line as a second light spot; the first scanning line and the second scanning line are located on the irradiated object at the same position in the sub-scanning direction, and in the main scanning direction Stagger on.
本发明的第4态样是一种图案描绘方法,一边对可挠性的长条的片材基板即被照射体沿着长边方向进行副扫描、一边使基于描绘数据而强度调变的光点沿着于与上述被照射体的长边方向正交的宽度方向延伸的扫描线进行主扫描,藉此在上述被照射体上描绘与上述描绘数据相对应的图案,其包含如下步骤:将第1光束从第1方向朝旋转多面镜投射;将第2光束从与上述第1方向不同的第2方向朝上述旋转多面镜投射;通过上述旋转多面镜的旋转,对射入至上述旋转多面镜的不同反射面而反射的上述第1光束及上述第2光束进行偏向扫描;使由上述旋转多面镜反射的上述第1光束聚光并作为第1光点而投射至第1扫描线上;以及使由上述旋转多面镜反射的上述第2光束聚光并作为第2光点而投射至第2扫描线上;将上述第1扫描线与上述第2扫描线的各扫描长度设为相同,并且于上述主扫描方向以上述扫描长度以下的间隔分离设定上述第1扫描线与上述第2扫描线。A fourth aspect of the present invention is a pattern drawing method in which light whose intensity is modulated based on drawing data is sub-scanned in the longitudinal direction of an object to be irradiated, which is a flexible long sheet substrate. The dots are mainly scanned along a scanning line extending in a width direction perpendicular to the longitudinal direction of the irradiated object, whereby a pattern corresponding to the drawing data is drawn on the irradiated object, which includes the steps of: A first light beam is projected toward the rotating polygon mirror from a first direction; a second light beam is projected toward the rotating polygon mirror from a second direction different from the first direction; The above-mentioned first light beam and the above-mentioned second light beam reflected by different reflecting surfaces of the mirror are subjected to deflection scanning; the above-mentioned first light beam reflected by the above-mentioned rotating polygon mirror is condensed and projected on the first scanning line as a first light spot; and condensing the second light beam reflected by the rotating polygon mirror and projecting it on a second scanning line as a second light spot; setting the respective scanning lengths of the first scanning line and the second scanning line to be the same, And the said 1st scanning line and the said 2nd scanning line are set apart from the space|interval of the said scanning length or less in the said main scanning direction.
本发明的第5态样是一种图案描绘装置,一边沿着副扫描方向搬送被照射体、一边使来自光源装置的光束呈点状地聚光于上述被照射体上,使聚光后的光点沿着与上述副扫描方向正交的扫描线进行主扫描,藉此在上述被照射体上描绘既定图案,其具备:旋转多面镜,绕既定的旋转轴旋转;第1导光光学系统,从第1方向朝上述旋转多面镜投射来自上述光源装置的第1光束;第2导光光学系统,从与上述第1方向不同的第2方向朝上述旋转多面镜投射来自上述光源装置的第2光束;第1投射光学系统,使由上述旋转多面镜反射的上述第1光束聚光并作为第1光点而投射至第1扫描线上;以及第2投射光学系统,使由上述旋转多面镜反射的上述第2光束聚光并作为第2光点而投射至第2扫描线上;且具备描绘单元,该描绘单元以于上述被照射体上沿着上述主扫描方向及上述副扫描方向中的至少一个方向平行地错开配置上述第1扫描线与上述第2扫描线的方式,一体地保持上述旋转多面镜、上述第1导光光学系统、上述第2导光光学系统、上述第1投射光学系统及上述第2投射光学系统且可旋动;上述描绘单元的旋动中心轴,设定成相对于上述被照射体垂直地通过上述第1扫描线的中点与上述第2扫描线的中点之间。A fifth aspect of the present invention is a pattern drawing device that condenses a light beam from a light source device on the irradiated object in a point-like manner while conveying the irradiated object in the sub-scanning direction, and condenses the irradiated object. The light spot performs main scanning along a scanning line orthogonal to the sub-scanning direction, whereby a predetermined pattern is drawn on the irradiated object, and includes: a rotating polygon mirror that rotates around a predetermined rotation axis; a first light guide optical system , projecting the first light beam from the light source device from the first direction toward the rotating polygon mirror; the second light guide optical system projects the second light beam from the light source device toward the rotating polygon mirror from a second direction different from the first direction. 2 light beams; a first projection optical system for condensing the above-mentioned first light beam reflected by the above-mentioned rotating polygon mirror and projecting it on a first scanning line as a first light spot; and a second projection optical system for making the above-mentioned rotating polygon mirror The mirror-reflected second light beam is condensed and projected on a second scanning line as a second light spot; and a drawing unit is provided for the irradiated object along the main scanning direction and the sub-scanning direction The above-mentioned rotating polygon mirror, the above-mentioned first light guide optical system, the above-mentioned second light guide optical system, and the above-mentioned first light guide optical system are integrally held in such a manner that the first scanning line and the second scanning line are staggered in parallel in at least one of the directions. The projection optical system and the second projection optical system are rotatable; the rotation center axis of the drawing unit is set to pass through the midpoint of the first scanning line and the second scanning line perpendicular to the irradiated object between the midpoints.
本发明的第6态样是一种图案描绘方法,一边沿着副扫描方向搬送被照射体、一边使来自光源装置的光束呈点状地聚光于上述被照射体上,使聚光后的光点沿着于与上述副扫描方向正交的方向延伸的扫描线进行主扫描,藉此在上述被照射体上描绘既定图案,其包含如下步骤:将来自上述光源装置的第1光束从第1方向朝旋转多面镜投射;将来自上述光源装置的第2光束从与上述第1方向不同的第2方向朝上述旋转多面镜投射;通过上述旋转多面镜的旋转,对射入至上述旋转多面镜的不同反射面而反射的上述第1光束及上述第2光束进行偏向扫描;使由上述旋转多面镜反射的上述第1光束聚光并作为第1光点而投射至第1扫描线上;使由上述旋转多面镜反射的上述第2光束聚光并作为第2光点而投射至第2扫描线上;以及以旋动中心轴为中心,使上述第1扫描线与上述第2扫描线旋动,上述旋动中心轴相对于上述被照射体垂直,且设定于上述第1扫描线的中点与上述第2扫描线的中点之间。A sixth aspect of the present invention is a pattern drawing method for condensing a light beam from a light source device on the irradiated object in a spot shape while conveying the irradiated object in the sub-scanning direction, and condensing the condensed object. The light spot performs a main scan along a scanning line extending in a direction orthogonal to the sub-scanning direction, whereby a predetermined pattern is drawn on the irradiated object, which includes a step of: transmitting the first light beam from the light source device from the first Projecting the second light beam from the light source device toward the rotating polygon mirror in one direction; projecting the second light beam from the light source device toward the rotating polygon mirror from a second direction different from the first direction; The above-mentioned first light beam and the above-mentioned second light beam reflected by different reflecting surfaces of the mirror are subjected to deflection scanning; the above-mentioned first light beam reflected by the above-mentioned rotating polygon mirror is condensed and projected on the first scanning line as a first light spot; Condensing the second light beam reflected by the rotating polygon mirror and projecting it on a second scanning line as a second spot; For the rotation, the rotation center axis is perpendicular to the object to be irradiated, and is set between the midpoint of the first scanning line and the midpoint of the second scanning line.
本发明的第7态样是一种图案描绘装置,使来自光源装置的光束于被照射体上进行主扫描,并且使上述被照射体与上述光束沿着与上述主扫描交叉的方向相对地进行副扫描,藉此在上述被照射体上描绘图案,其具备:光偏向构件,为了上述主扫描而改变反射面的角度;第1投射光学系统,投射第1光束作为在上述被照射体上沿主扫描方向扫描的光束,上述第1光束为从第1方向投射至上述光偏向构件并由上述光偏向构件的反射面反射后的光束;以及第2投射光学系统,投射第2光束作为在上述被照射体上沿主扫描方向扫描的光束,上述第2光束为从与第1方向不同的第2方向投射至上述光偏向构件并由上述光偏向构件的反射面反射后的光束;以使通过上述第1光束的主扫描而形成的第1扫描线、与通过上述第2光束的主扫描而形成的第2扫描线在上述主扫描方向上错开的方式,配置上述第1投射光学系统与上述第2投射光学系统。A seventh aspect of the present invention is a pattern drawing device that performs a main scan on an object to be irradiated with a light beam from a light source device, and the object to be irradiated and the light beam to face the light beam in a direction intersecting with the main scan. A sub-scan, whereby a pattern is drawn on the object to be irradiated, comprising: a light deflecting member for changing the angle of the reflection surface for the main scan; and a first projection optical system for projecting a first light beam as an upper edge of the object to be irradiated The light beam scanned in the main scanning direction, the first light beam is a light beam projected from the first direction to the light deflection member and reflected by the reflection surface of the light deflection member; and a second projection optical system for projecting the second light beam as the The light beam scanned in the main scanning direction on the irradiated body, the second light beam is a light beam projected from a second direction different from the first direction to the light deflection member and reflected by the reflection surface of the light deflection member; The first projection optical system and the above-mentioned first projection optical system are arranged such that the first scanning line formed by the main scanning of the first light beam and the second scanning line formed by the main scanning of the second light beam are shifted in the main scanning direction. The second projection optical system.
附图说明Description of drawings
图1是显示第1实施形态的包含对基板实施曝光处理的曝光装置的元件制造系统的概略构成的图。FIG. 1 is a diagram showing a schematic configuration of a device manufacturing system including an exposure apparatus for exposing a substrate according to the first embodiment.
图2是显示图1所示的多个描绘单元的配置关系、及设置于基板的被照射面上的各描绘单元的描绘线的配置关系的图。2 is a diagram showing the arrangement relationship of the plurality of drawing units shown in FIG. 1 and the arrangement relationship of the drawing lines of each drawing unit provided on the irradiated surface of the substrate.
图3是显示使在主扫描方向相邻的描绘线的端部彼此一致时的各描绘单元的描绘线的配置关系的图。3 is a diagram showing the arrangement relationship of the drawing lines of each drawing unit when the ends of the drawing lines adjacent to each other in the main scanning direction are made to coincide with each other.
图4是显示使在扫描方向相邻的描绘线的端部彼此各重叠固定长度时的各描绘单元的描绘线的配置关系的图。4 is a diagram showing the arrangement relationship of the drawing lines of each drawing unit when the ends of the drawing lines adjacent to each other in the scanning direction are overlapped with each other by a fixed length.
图5是从-Yt(-Y)方向侧观察的图1所示的描绘单元的构成图。Fig. 5 is a configuration diagram of the drawing unit shown in Fig. 1 viewed from the -Yt (-Y) direction side.
图6是从+Zt方向侧观察的图5所示的描绘单元的构成图。FIG. 6 is a configuration diagram of the drawing unit shown in FIG. 5 viewed from the +Zt direction side.
图7是从+Zt方向侧观察通过图5所示的光学元件及准直透镜射入至反射镜的光束的光路的图。FIG. 7 is a diagram showing an optical path of a light flux incident on a mirror through the optical element and the collimator lens shown in FIG. 5 , viewed from the +Zt direction side.
图8是从+Xt方向侧观察从反射镜射入至描绘单元的反射镜的光束的光路的图。FIG. 8 is a diagram showing an optical path of a light beam incident from a mirror to a mirror of the drawing unit as viewed from the +Xt direction side.
图9是于XtZt面内观察图5所示的描绘单元内的作为反射构件的反射镜与聚光透镜的配置关系的图。FIG. 9 is a diagram showing an arrangement relationship between a reflection mirror and a condenser lens as a reflection member in the drawing unit shown in FIG. 5 when viewed in the XtZt plane.
图10是于XtYt面内观察图9所示的作为反射构件的反射镜与聚光透镜的配置关系的图。FIG. 10 is a diagram showing the arrangement relationship of the reflecting mirror and the condenser lens as the reflecting member shown in FIG. 9 when viewed in the XtYt plane.
图11A是从+Zt方向侧观察当使图5所示的描绘单元整体绕旋动中心轴旋动既定角度时,平行地射入至作为反射构件的反射镜的光束的反射方向发生变化的样子的图,图11B是从光束的前进方向侧观察使图5所示的描绘单元整体旋动既定角度时的作为反射构件的反射镜中的光束的位置变化的图。11A is a view of the state in which the reflection direction of a light beam incident in parallel on a mirror serving as a reflection member changes when the entire drawing unit shown in FIG. 5 is rotated by a predetermined angle around the central axis of rotation when viewed from the +Zt direction side FIG. 11B is a diagram showing the positional change of the light beam in the reflecting mirror as the reflecting member when the entire drawing unit shown in FIG. 5 is rotated by a predetermined angle from the side of the advancing direction of the light beam.
图12是从+Zt方向侧观察第1实施形态的变形例1中的利用多面镜的光束扫描系统时的图。FIG. 12 is a view of a beam scanning system using a polygon mirror in
图13是从+Xt方向侧观察图12的光束扫描系统时的图。FIG. 13 is a view when the beam scanning system of FIG. 12 is viewed from the +Xt direction side.
图14是从+Zt方向侧观察第1实施形态的变形例2中的射入至多面镜并反射的光束的光路时的图。FIG. 14 is a view of the optical path of a light beam incident on and reflected by a polygon mirror in
图15是从+Xt方向侧观察图14的光束扫描系统时的图。FIG. 15 is a view when the beam scanning system of FIG. 14 is viewed from the +Xt direction side.
图16A是从+Zt方向侧观察第1实施形态的变形例4中的利用多面镜的光束扫描系统时的图,图16B是从-Xt方向侧观察图16A的光束扫描系统时的图。16A is a view of the beam scanning system using a polygon mirror in Modification 4 of the first embodiment when viewed from the +Zt direction side, and FIG. 16B is a view of the beam scanning system of FIG. 16A viewed from the -Xt direction side.
图17是显示第2实施形态中的描绘单元的一部分的构成的图。FIG. 17 is a diagram showing the configuration of a part of the drawing unit in the second embodiment.
图18是从-Yt(-Y)方向侧观察的第3实施形态的描绘单元Ub的构成图。FIG. 18 is a configuration diagram of the drawing unit Ub of the third embodiment viewed from the -Yt (-Y) direction side.
图19是从+Xt方向侧观察图18所示的描绘单元中的自多面镜朝向+Zt侧的构成的图。FIG. 19 is a view showing the configuration from the polygon mirror toward the +Zt side in the drawing unit shown in FIG. 18 when viewed from the +Xt direction side.
图20是从+Zt方向侧观察图18所示的描绘单元中的自多面镜朝向-Zt方向侧的构成的图。FIG. 20 is a view showing the configuration from the polygon mirror toward the −Zt direction side in the drawing unit shown in FIG. 18 when viewed from the +Zt direction side.
图21是显示沿着Y(Yt)方向将基板上所形成的作为电子元件形成区域的曝光区域一分为六,通过6条描绘线对带状的多个分割区域的各者描绘图案的情形的一例。21 is a diagram showing a situation in which the exposure area formed on the substrate as the electronic component forming area is divided into six along the Y (Yt) direction, and the pattern is drawn for each of the plurality of strip-shaped divided areas by six drawing lines an example of .
图22是显示第3实施形态的设于fθ透镜之后的反射镜的配置角度的例子的图。FIG. 22 is a diagram showing an example of the arrangement angle of the mirrors provided after the fθ lens according to the third embodiment.
图23是显示用以将图1中所示的光源装置14所提供的两条光束分配至图2中的4个描绘单元的各者的光束分配系统的一例的构成的图。23 is a diagram showing a configuration of an example of a light beam distribution system for distributing two light beams provided by the
图24是对第4实施形态的描绘单元的多面镜与后续的反射镜之间的光束的偏向状态进行说明的图。FIG. 24 is a diagram for explaining the deflection state of the light beam between the polygon mirror and the subsequent reflecting mirrors of the drawing unit according to the fourth embodiment.
图25是显示基于图24的多面镜或反射镜中的反射率的入射角依存性的一例的特性的曲线图。FIG. 25 is a graph showing characteristics based on an example of the incident angle dependence of the reflectance in the polygon mirror or the reflecting mirror of FIG. 24 .
图26是显示用于对因反射镜的反射率的入射角依存性而产生的光束强度变动进行调整的声光调变元件(AOM)的控制系统的构成的图。FIG. 26 is a diagram showing the configuration of a control system of an acousto-optic modulation element (AOM) for adjusting the variation of the beam intensity due to the incident angle dependence of the reflectance of the mirror.
图27是显示图26的控制系统中的各部分的信号的波形或时序的一例的时序图。FIG. 27 is a timing chart showing an example of waveforms or timings of signals of each part in the control system of FIG. 26 .
具体实施方式Detailed ways
以下,揭示较佳实施形态且参照随附图式,详细地对本发明的态样的图案描绘装置及图案描绘方法进行说明。另外,本发明的态样并不限定于该等实施形态,亦包含添加有多种变更或改良的形态。即,以下所记载的构成要素中包含业者能够容易地设想的构成要素、实质上相同的构成要素,以下所记载的构成要素可适当地组合。又,能够于不脱离本发明宗旨的范围内,对构成要素进行各种省略、替换或变更。Hereinafter, the pattern drawing apparatus and pattern drawing method of the aspect of this invention are demonstrated in detail with reference to the accompanying drawings, with reference to a preferred embodiment. In addition, the aspect of this invention is not limited to these embodiment, The aspect which added various changes or improvement is included. That is, the constituent elements described below include constituent elements that can be easily assumed by the manufacturer, and substantially the same constituent elements, and the constituent elements described below can be appropriately combined. In addition, various omissions, substitutions, or changes of constituent elements can be made without departing from the scope of the present invention.
[第1实施形态][1st Embodiment]
图1是显示第1实施形态的包含对基板(被照射体)P实施曝光处理的曝光装置EX的元件制造系统10的概略构成的图。另外,于以下说明中,设定以重力方向作为Z方向的XYZ正交坐标系,只要无特别说明,则根据图示的箭头对X方向、Y方向及Z方向进行说明。FIG. 1 : is a figure which shows the schematic structure of the
元件制造系统10为构建有制造线的制造系统,该制造线例如制造作为电子元件的可挠性显示器(flexible display)、膜状触控面板、液晶显示面板用的膜状彩色滤光片、或焊接电子零件的可挠性配线片等。以下,以可挠性显示器为前提而对电子元件进行说明。作为可挠性显示器,例如存在有机EL(Electroluminescence,电致发光)显示器、液晶显示器等。元件制造系统10具有所谓的卷对卷(Roll To Roll)方式的构造,即,从将可挠性的片状(膜状)基板(片材基板)P卷绕为卷状而成的未图示的供给卷送出基板P,连续地对所送出的基板P实施各种处理之后,利用未图示的回收卷卷取各种处理后的基板P。基板P具有基板P的移动方向成为长边方向(长条),且宽度方向成为短边方向(短条)的带状的形状。从上述供给卷输送来的基板P,依序由处理装置PR1、曝光装置(图案描绘装置、光束扫描装置)EX及处理装置PR2等实施各种处理,且由上述回收卷卷取。The
另外,X方向是于水平面内从处理装置PR1经由曝光装置EX朝向处理装置PR2的方向(搬送方向)。Y方向是于水平面内与X方向正交的方向,且是基板P的宽度方向。Z方向是与X方向及Y方向正交的方向(上方向),且与重力作用方向平行。In addition, the X direction is a direction (conveyance direction) from the processing apparatus PR1 to the processing apparatus PR2 via the exposure apparatus EX in the horizontal plane. The Y direction is a direction orthogonal to the X direction in the horizontal plane, and is the width direction of the substrate P. As shown in FIG. The Z direction is a direction (upward direction) orthogonal to the X direction and the Y direction, and is parallel to the direction in which the gravitational force acts.
基板P例如可使用树脂膜、或者由不锈钢等金属或合金构成的箔(foil)等。作为树脂膜的材质,亦可使用例如包含有聚乙烯树脂、聚丙烯树脂、聚酯树脂、乙烯乙烯醇共聚物树脂、聚氯乙烯树脂、纤维素树脂、聚酰胺树脂、聚酰亚胺树脂、聚碳酸酯树脂、聚苯乙烯树脂及乙酸乙烯酯树脂中的至少一种以上者。又,基板P的厚度或刚性(杨氏模量)只要处于如下范围即可,该范围是指于通过曝光装置EX的搬送路径时,不会使基板P产生由压弯引起的折痕或不可逆的皱褶的范围。作为基板P的母材,厚度为25μm~200μm左右的PET(Polyethylene terephthalate,聚对苯二甲酸乙二酯)或PEN(Polyethylenenaphthalate,聚萘二甲酸乙二酯)等的膜为较佳的片材基板的典型。As the substrate P, for example, a resin film, or a foil made of a metal or alloy such as stainless steel, or the like can be used. As the material of the resin film, for example, polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl alcohol copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, At least one or more of polycarbonate resin, polystyrene resin and vinyl acetate resin. In addition, the thickness and rigidity (Young's modulus) of the substrate P may be within a range that does not cause the substrate P to be folded or irreversible when passing through the conveyance path of the exposure apparatus EX. range of folds. As the base material of the substrate P, films such as PET (Polyethylene terephthalate) or PEN (Polyethylenenaphthalate) having a thickness of about 25 μm to 200 μm are preferable sheets. Typical for substrates.
基板P有时会有在由处理装置PR1、曝光装置EX及处理装置PR2实施的各处理中受热的情形,因此,较佳为选定热膨胀系数明显不大的材质的基板P。例如,能够通过将无机填料混合于树脂膜而抑制热膨胀系数。无机填料例如亦可为氧化钛、氧化锌、氧化铝或氧化硅等。又,基板P可为利用浮式法等制造出的厚度为100μm左右的极薄玻璃的单层体,亦可为将上述树脂膜、箔等贴合于该极薄玻璃而成的积层体。Since the board|substrate P may receive heat in each process performed by the processing apparatus PR1, the exposure apparatus EX, and the processing apparatus PR2, it is preferable to select the board|substrate P of the material with a remarkably small thermal expansion coefficient. For example, the thermal expansion coefficient can be suppressed by mixing an inorganic filler into the resin film. The inorganic filler may also be, for example, titanium oxide, zinc oxide, aluminum oxide, or silicon oxide. Moreover, the board|substrate P may be a single-layer body of an ultra-thin glass having a thickness of about 100 μm produced by a float method or the like, or may be a laminated body obtained by bonding the above-mentioned resin film, foil, etc. to the ultra-thin glass. .
而且,基板P的可挠性(flexibility)是指即使对基板P施加自重(本身的重量)程度的力,亦不会使其折断或断裂而能弯曲该基板P的性质。又,因自重程度的力而弯曲的性质亦包含于可挠性。又,可挠性的程度会根据基板P的材质、大小、厚度、基板P上所形成的层构造、温度、湿度等环境而改变。总之,只要在将基板P正确地卷绕于本第1实施形态的元件制造系统10内的搬送路径中所设置的各种搬送用辊、旋转筒等搬送方向转换用的构件时,能够顺畅地搬送基板P而不会将其压弯而产生折痕或导致破损(裂开或划伤),则可谓处于可挠性的范围。Furthermore, the flexibility of the substrate P refers to the property of being able to bend the substrate P without being broken or broken even when a force of its own weight (its own weight) is applied to the substrate P. FIG. Moreover, the property which bends by the force of a self-weight degree is also included in flexibility. In addition, the degree of flexibility varies depending on the material, size, and thickness of the substrate P, the layer structure formed on the substrate P, and the environment such as temperature and humidity. In short, when the substrate P is correctly wound around the various conveyance rollers, rotary drums, and other conveyance direction changing members provided in the conveyance path in the
处理装置PR1对由曝光装置EX进行曝光处理的基板P进行前步骤处理。处理装置PR1往曝光装置EX输送已进行前步骤处理的基板P。通过该前步骤处理,往曝光装置EX输送的基板P为表面形成有感光性功能层(光感应层、感光层)的基板(感光基板)P。The processing apparatus PR1 performs pre-processing on the board|substrate P exposed by the exposure apparatus EX. The processing apparatus PR1 conveys the substrate P processed in the previous step to the exposure apparatus EX. By this pre-processing, the board|substrate P conveyed to the exposure apparatus EX becomes the board|substrate (photosensitive board|substrate) P on which the photosensitive functional layer (photosensitive layer, photosensitive layer) was formed in the surface.
该感光性功能层,作为溶液而涂布于基板P上,并通过进行干燥而成为层(膜)。典型的感光性功能层为光刻胶,但作为无需显影处理的材料,存在有将受紫外线照射后的部分的亲液疏液性改质的感光性硅烷耦合剂(SAM)、或使受到紫外线照射后的部分显露出镀敷还原基的感光性还原剂等。于使用感光性硅烷耦合剂作为感光性功能层的情形时,基板P上的由紫外线曝光后的图案部分从疏液性改质为亲液性。因此,选择含有导电性墨水(含有银或铜等导电性纳米粒子的墨水)或半导体材料的液体等并将其涂布于已成为亲液性的部分上,藉此能够形成成为构成薄膜晶体管(TFT)等的电极、半导体、绝缘或连接用的配线的图案层。于使用感光性还原剂作为感光性功能层的情形时,于基板P上的以紫外线曝光后的图案部分显露出镀敷还原基。因此,于曝光之后,立即将基板P于包含钯离子等的镀敷液中浸渍固定时间,藉此形成(析出)钯的图案层。此种镀敷处理为附加(additive)工艺,此外,于以作为消去(subtractive)工艺的刻蚀处理为前提的情形时,往曝光装置EX输送的基板P亦可为如下基板,将母材设为PET或PEN,于其表面完全或选择性地蒸镀铝(A1)或铜(Cu)等的金属性薄膜,进一步于该金属性薄膜上积层(层叠)光刻胶层而成者。This photosensitive functional layer is apply|coated on the board|substrate P as a solution, and it becomes a layer (film) by drying. A typical photosensitive functional layer is a photoresist, but as a material that does not require development treatment, there are photosensitive silane coupling agents (SAM) that modify the lyophilic and lyophobic properties of the part irradiated with ultraviolet rays, or a photosensitive silane coupling agent (SAM) that is exposed to ultraviolet rays. The photosensitive reducing agent etc. of the plating reducing group are exposed on the part after irradiation. In the case of using a photosensitive silane coupling agent as the photosensitive functional layer, the pattern part after exposure to ultraviolet rays on the substrate P is modified from lyophobicity to lyophilicity. Therefore, it is possible to form a thin-film transistor ( TFT) and other electrodes, semiconductors, and pattern layers for insulating or connecting wiring. When a photosensitive reducing agent is used as a photosensitive functional layer, a plating reducing group is exposed on the pattern part after exposure to ultraviolet rays on the board|substrate P. Therefore, immediately after exposure, the substrate P is immersed in a plating solution containing palladium ions or the like for a fixed period of time, thereby forming (precipitating) a patterned layer of palladium. Such a plating process is an additive process, and in the case where an etching process as a subtractive process is premised, the substrate P conveyed to the exposure apparatus EX may be a substrate in which a base material is provided. It is PET or PEN, a metallic thin film such as aluminum (A1) or copper (Cu) is completely or selectively vapor-deposited on the surface thereof, and a photoresist layer is further laminated (laminated) on the metallic thin film.
于本第1实施形态中,曝光装置EX为不使用光罩的直描方式的曝光装置,即所谓的光栅扫描(raster scan)方式的曝光装置。曝光装置EX对从处理装置PR1供给来的基板P的被照射面(感光面)照射与显示器用的电路或配线等既定图案相对应的光图案。虽于以下将详细地进行说明,但曝光装置EX一边往+X方向(副扫描方向)搬送基板P、一边于基板P上(基板P的被照射面上)沿着既定的扫描方向(Y方向)一维地扫描(主扫描)曝光用光束LB的光点SP,且根据图案数据(描绘数据)而高速地对光点SP的强度进行调变(导通/断开)。藉此,于基板P的被照射面曝光描绘与显示器用的电路或配线等既定图案相对应的光图案。也就是,利用基板P的副扫描与光点SP的主扫描,于基板P的被照射面上相对地二维扫描光点SP,从而于基板P曝光描绘既定图案。又,曝光装置EX对基板P反复进行电子元件用的图案曝光,且基板P沿着搬送方向(+X方向)被搬送,因此,沿着基板P的长条方向隔开既定间隔地设置多个通过曝光装置EX曝光图案的曝光区域W(参照图2)。由于在该曝光区域W形成电子元件,因此曝光区域W亦为电子元件形成区域。另外,电子元件由多个图案层(形成有图案的层)重叠而构成,因此通过曝光装置EX曝光对应各层的图案。In this 1st Embodiment, the exposure apparatus EX is the exposure apparatus of the direct drawing system which does not use a photomask, ie, the exposure apparatus of the so-called raster scan system. The exposure apparatus EX irradiates the irradiated surface (photosensitive surface) of the board|substrate P supplied from the processing apparatus PR1 with the light pattern corresponding to predetermined patterns, such as a circuit for a display, a wiring, etc.. Although it will be described in detail below, the exposure apparatus EX conveys the substrate P in the +X direction (sub-scanning direction), while following a predetermined scanning direction (Y direction) on the substrate P (irradiated surface of the substrate P). ) one-dimensionally scans (main scan) the light spot SP of the exposure light beam LB, and modulates (on/off) the intensity of the light spot SP at high speed according to pattern data (drawing data). Thereby, the light pattern corresponding to predetermined patterns, such as the circuit for a display, wiring, etc., is exposed and drawn on the irradiated surface of the board|substrate P. That is, by using the sub-scanning of the substrate P and the main scanning of the light spot SP, the light spot SP is relatively two-dimensionally scanned on the irradiated surface of the substrate P, and a predetermined pattern is drawn on the substrate P by exposure exposure. Moreover, since the exposure apparatus EX repeatedly subjects the substrate P to pattern exposure for electronic components, and the substrate P is conveyed along the conveyance direction (+X direction), a plurality of them are provided at predetermined intervals along the longitudinal direction of the substrate P. The exposure area W of the pattern is exposed by the exposure apparatus EX (refer to FIG. 2 ). Since the electronic element is formed in this exposure area W, the exposure area W is also an electronic element formation area. In addition, since an electronic element is comprised by overlapping a some pattern layer (patterned layer), the pattern corresponding to each layer is exposed by the exposure apparatus EX.
处理装置PR2对已由曝光装置EX进行曝光处理的基板P进行后步骤处理(例如镀敷处理或显影、刻蚀处理等)。通过该后步骤处理,于基板P上形成元件的图案层。The processing apparatus PR2 performs post-step processing (for example, plating processing, development, etching processing, etc.) on the substrate P subjected to the exposure processing by the exposure apparatus EX. By this post-processing, the pattern layer of an element is formed on the board|substrate P.
如上所述,电子元件通过重叠多个图案层而构成,因此经由元件制造系统10的至少各处理,生成一个图案层。因此,为了生成电子元件,必须至少两次经过如图1所示的元件制造系统10的各处理。因此,通过将卷取有基板P的回收卷作为供给卷而安装于其他元件制造系统10,能够积层图案层。反复地进行如上所述的动作,以形成电子元件。因此,处理后的基板P处于多个电子元件隔开既定间隔并沿着基板P的长条方向相连的状态。也就是,基板P成为多倒角用的基板。As described above, since an electronic component is formed by stacking a plurality of pattern layers, one pattern layer is generated through at least each process of the
将在电子元件相连的状态下形成的基板P回收而成的回收卷,亦可安装于未图示的切割装置。安装有回收卷的切割装置,就每一电子元件对处理后的基板P进行分割(切割(singulation)),藉此形成多个成为单片的电子元件。关于基板P的尺寸,例如宽度方向(短条方向)的尺寸为10cm~2m左右,长度方向(长条方向)的尺寸为10m以上。另外,基板P的尺寸并不限定于上述尺寸。The collection roll which collect|recovered the board|substrate P formed in the state connected with electronic components can also be attached to the dicing apparatus which is not shown in figure. The dicing device to which the collection roll is attached divides (singed) the processed substrate P for each electronic component, thereby forming a plurality of individual electronic components. The size of the substrate P is, for example, about 10 cm to 2 m in the width direction (longitudinal direction), and 10 m or more in the longitudinal direction (longitudinal direction). In addition, the size of the board|substrate P is not limited to the said size.
其次,详细地对曝光装置EX进行说明。曝光装置EX储存于温控室ECV内。该温控室ECV通过将内部保持于既定温度、既定湿度,抑制在内部搬送的基板P因温度所引起的形状变化,并且设定为考虑了基板P的吸湿性或带有伴随搬送而产生的静电等的湿度。温控室ECV通过被动或主动的防振单元SU1、SU2而配置于制造工场的设置面E。防振单元SU1、SU2减少来自设置面E的振动。该设置面E可为专门铺设于工场地面上的设置基座(台座)上的面,亦可为地面。曝光装置EX至少具备基板搬送机构12、光源装置14、曝光头16、控制装置18及对准显微镜AMa(AMa1~AMa4)、AMb(AMb1~AMb4)。Next, the exposure apparatus EX will be described in detail. The exposure apparatus EX is stored in a temperature-controlled chamber ECV. This temperature-controlled chamber ECV is set to take into consideration the hygroscopicity of the substrate P or the contamination of the substrate P caused by the transfer, by keeping the inside at a predetermined temperature and a predetermined humidity to suppress the temperature-induced change in the shape of the substrate P transferred inside. Humidity such as static electricity. The temperature control room ECV is arranged on the installation surface E of the manufacturing plant by passive or active vibration isolation units SU1 and SU2. The vibration isolation units SU1 and SU2 reduce vibration from the installation surface E. The installation surface E may be a surface specially laid on the installation base (pedestal) on the workshop floor, or may be the ground. The exposure apparatus EX is provided with at least the board|
基板搬送机构12,以既定速度将从处理装置PR1搬送来的基板P搬送至处理装置PR2。通过该基板搬送机构12规定于曝光装置EX内搬送的基板P的搬送路径。基板搬送机构12从基板P的搬送方向的上游侧(-X方向侧),依序具有边缘位置控制器EPC、驱动辊R1、张力调整辊RT1、旋转筒(圆筒滚筒台)DR1、张力调整辊RT2、旋转筒(圆筒滚筒台)DR2、张力调整辊RT3及驱动辊R2。The
边缘位置控制器EPC调整从处理装置PR1搬送来的基板P的宽度方向(Y方向即基板P的短条方向)位置。也就是,边缘位置控制器EPC以使于施加有既定张力的状态下搬送的基板P的宽度方向端部(边缘)的位置相对于目标位置处于±十数μm~数十μm左右的范围(允许范围)的方式,使基板P于宽度方向移动,调整基板P的宽度方向位置。边缘位置控制器EPC,具有以施加有既定张力的状态挂设基板P的辊、以及对基板P的宽度方向端部(边缘)的位置进行检测的未图示的边缘感测器(端部检测部)。边缘位置控制器EPC,基于上述边缘感测器所检测出的检测信号,使边缘位置控制器EPC的上述辊于Y方向移动,调整基板P的宽度方向位置。驱动辊(轧辊)R1,一边保持从边缘位置控制器EPC搬送来的基板P的表背两面、一边进行旋转,将基板P朝向旋转筒DR1搬送。边缘位置控制器EPC,以使搬送往旋转筒DR1的基板P的长条方向与旋转筒DR1的中心轴AXo1正交的方式,对基板P的宽度方向位置进行调整。将从驱动辊R1搬送来的基板P挂设于张力调整辊RT1之后,导引至旋转筒DR1。The edge position controller EPC adjusts the position in the width direction (Y direction, that is, the short direction of the substrate P) of the substrate P conveyed from the processing apparatus PR1. That is, the edge position controller EPC makes the position of the width direction end portion (edge) of the substrate P conveyed with a predetermined tension applied in a range of about ±tens of μm to several tens of μm with respect to the target position (allowable). range), the substrate P is moved in the width direction, and the width direction position of the substrate P is adjusted. The edge position controller EPC includes a roller that hangs the substrate P with a predetermined tension applied thereto, and an edge sensor (edge detection) (not shown) that detects the position of an end (edge) in the width direction of the substrate P. department). The edge position controller EPC moves the roller of the edge position controller EPC in the Y direction based on the detection signal detected by the edge sensor to adjust the widthwise position of the substrate P. The drive roller (roller) R1 rotates while holding the front and back surfaces of the substrate P conveyed from the edge position controller EPC, and conveys the substrate P toward the rotating drum DR1. The edge position controller EPC adjusts the width direction position of the board|substrate P so that the longitudinal direction of the board|substrate P conveyed to the rotary drum DR1 may become orthogonal to the central axis AXo1 of the rotary drum DR1. After the board|substrate P conveyed from the drive roller R1 is hung on the dancer roller RT1, it guide|induces to the rotating drum DR1.
旋转筒(第1旋转筒)DR1,具有沿Y方向延伸并且沿着与重力作用方向交叉的方向延伸的中心轴(第1中心轴)AXo1、以及与中心轴AXo1相距固定半径的圆筒状的外周面。旋转筒DR1使基板P的一部分效仿(模仿)其外周面(圆周面)而沿着长条方向呈圆筒面状地弯曲并支承,并且以中心轴AXo1为中心进行旋转而将基板P往+X方向搬送。旋转筒DR1于重力作用方向侧的相反侧(+Z方向侧),从形成有感光面的面的相反侧的面(背面)侧支承基板P。旋转筒DR1利用其圆周面,支承供来自后述的曝光头16的描绘单元U1、U2、U5、U6的各者的光束的光点投射的基板P上的区域(部分)。于旋转筒DR1的Y方向的两侧设有以旋转筒DR1绕中心轴AXo1旋转的方式由环状的轴承支承的轴Sft1。该轴Sft1通过施加来自受控制装置18控制的未图示的旋转驱动源(例如电机或减速机构等)的转矩而绕中心轴AXo1旋转。另外,为方便起见,将包含中心轴AXo1且与YZ平面平行的平面称为中心面Poc1。The rotating drum (first rotating drum) DR1 has a central axis (first central axis) AXo1 extending in the Y direction and extending in a direction intersecting the direction of gravitational force, and a cylindrical drum having a fixed radius from the central axis AXo1. peripheral surface. The rotating drum DR1 makes a part of the substrate P follow (imitation) its outer peripheral surface (circumferential surface), bends and supports it in the shape of a cylindrical surface along the longitudinal direction, and rotates around the central axis AXo1 to move the substrate P to + Transfer in the X direction. The rotating drum DR1 supports the substrate P from the surface (back surface) side opposite to the surface on which the photosensitive surface is formed on the opposite side (+Z direction side) to the gravitational action direction side. The rotary drum DR1 supports the area (portion) on the board|substrate P by which the light beam spot from each drawing unit U1, U2, U5, U6 of the exposure head 16 mentioned later is projected by the peripheral surface. A shaft Sft1 supported by an annular bearing so that the rotary drum DR1 rotates around the central axis AXo1 is provided on both sides in the Y direction of the rotary drum DR1. The axis Sft1 rotates around the central axis AXo1 by applying torque from a rotational drive source (for example, a motor, a reduction mechanism, or the like), which is not shown, controlled by the
从旋转筒DR1搬出的基板P,在挂设于张力调整辊RT2之后,被导引至设置在较旋转筒DR1更下游侧(+X方向侧)的旋转筒DR2。旋转筒(第2旋转筒)DR2具有与旋转筒DR1相同的构成。也就是,旋转筒DR2具有沿Y方向延伸并且沿着与重力作用方向交叉的方向延伸的中心轴(第2中心轴)AXo2、以及与中心轴AXo2相距固定半径的圆筒状的外周面。旋转筒DR2,使基板P的一部分效仿其外周面(圆周面)而于长条方向呈圆筒面状地弯曲并支承,并且以中心轴AXo2为中心而旋转以将基板P往+X方向搬送。旋转筒DR2于重力作用方向侧的相反侧(+Z方向侧),从背面侧支承基板P。旋转筒DR2利用其圆周面,支承供来自后述的曝光头16的描绘单元U3、U4的各者的描绘用的光束的光点投射的基板P上的区域(部分)。于旋转筒DR2亦设置有轴Sft2。该轴Sft2通过施加来自受控制装置18控制的未图示的旋转驱动源(例如电机或减速机构等)的转矩而绕中心轴AXo2旋转。旋转筒DR1的中心轴AXo1与旋转筒DR2的中心轴AXo2处于平行状态。另外,为方便起见,将包含中心轴AXo2且与YZ平面平行的平面称为中心面Poc2。After the board|substrate P carried out from the rotating drum DR1 is hung on the dancer roll RT2, it is guided to the rotating drum DR2 provided in the downstream side (+X direction side) rather than the rotating drum DR1. The rotating drum (second rotating drum) DR2 has the same configuration as that of the rotating drum DR1. That is, the rotating drum DR2 has a central axis (second central axis) AXo2 extending in the Y direction and extending in a direction intersecting the gravitational action direction, and a cylindrical outer peripheral surface having a fixed radius from the central axis AXo2. The rotating drum DR2 makes a part of the substrate P follow the outer peripheral surface (circumferential surface) of the substrate P to be bent and supported in a cylindrical shape in the longitudinal direction, and rotates around the central axis AXo2 to convey the substrate P in the +X direction . The rotating drum DR2 supports the board|substrate P from the back surface side on the opposite side (+Z direction side) of a gravitational action direction side. The rotary drum DR2 supports the area (portion) on the board|substrate P by which the light beam for drawing from each of the drawing units U3 and U4 of the exposure head 16 mentioned later is projected by its peripheral surface. The shaft Sft2 is also provided in the rotating drum DR2. The axis Sft2 rotates around the central axis AXo2 by applying torque from a rotational drive source (for example, a motor, a reduction mechanism, or the like), which is not shown, controlled by the
从旋转筒DR2搬出的基板P,在挂设于张力调整辊RT2之后,被导引至驱动辊R2。驱动辊(轧辊)R2与驱动辊R1同样地,一边保持基板P的表背两面、一边进行旋转,将基板P往处理装置PR2搬送。张力调整辊RT1~张力调整辊RT3,往-Z方向弹压,沿着长条方向对卷绕支承于旋转筒DR1、DR2的基板P施加既定张力。藉此,使对挂设于旋转筒DR1、DR2的基板P赋予的长条方向的张力稳定于既定范围内。另外,控制装置18通过对未图示的旋转驱动源(例如电机或减速机构等)进行控制,使驱动辊R1、R2旋转。The board|substrate P carried out from the rotating drum DR2 is guided to the drive roller R2 after being hung on the dancer roller RT2. The drive roll (roll) R2 rotates while holding the front and back of the board|substrate P similarly to the drive roll R1, and conveys the board|substrate P to the processing apparatus PR2. The tensioning roller RT1 - the tensioning roller RT3 are elastically pressed in -Z direction, and apply predetermined tension to the board|substrate P wound and supported by rotating drum DR1, DR2 along the longitudinal direction. Thereby, the tension|tensile_strength in the longitudinal direction which is given to the board|substrate P hung on rotating drum DR1, DR2 is stabilized in a predetermined range. Moreover, the
光源装置14具有光源(脉冲光源),且对描绘单元U1~描绘单元U6各者射出脉冲状的光束(脉冲光、激光)LB。该光束LB是于370nm以下的波长带中具有峰值波长的紫外光,将光束LB的发光频率设为Fs。光源装置14根据控制装置18的控制,以发光频率Fs发光射出光束LB。The
曝光头16具备来自光源装置14的光束LB所分别射入的多个描绘单元U(U1~U6)。曝光头16通过多个描绘单元U(U1~U6),对由旋转筒DR1、DR2的圆周面支承的基板P的一部分描绘图案。曝光头16通过具有构成相同的多个描绘单元U(U1~U6),而成为所谓的多光束型曝光头。描绘单元U1、U5、U2、U6设置于旋转筒DR1的上方,描绘单元U3、U4设置于旋转筒DR2的上方。描绘单元U1、U5相对于中心面Poc1配置于基板P的搬送方向的上游侧(-X方向侧),且沿Y方向隔开既定间隔地配置。描绘单元U2、U6相对于中心面Poc1配置于基板P的搬送方向的下游侧(+X方向侧),且沿Y方向隔开既定间隔地配置。又,描绘单元U3相对于中心面Poc2配置于基板P的搬送方向的上游侧(-X方向侧)。描绘单元U4相对于中心面Poc2配置于基板P的搬送方向的下游侧(+X方向侧)。描绘单元U1、U5与描绘单元U2、U6相对于中心面Poc1对称地设置,描绘单元U3与描绘单元U4相对于中心面Poc2对称地设置。The exposure head 16 includes a plurality of drawing units U ( U1 to U6 ) into which the light beams LB from the
各描绘单元U(U1~U6),使来自光源装置14的两条光束LB分别于基板P的被照射面上收敛并投射于基板P的被照射面(感光面),且沿着既定的两条描绘线(扫描线)SLa、SLb一维地扫描已于基板P的被照射面上收敛的两个光点SP。虽于以下将详细地说明该描绘单元U的构成,但对于本第1实施形态而言,在一个描绘单元U中设置有一个旋转多面镜(光束偏向器、光偏向构件)与两个fθ透镜系统(扫描光学系统),一个描绘单元U(U1~U6)于基板P上的不同的两处分别形成光点SP产生的扫描线。因此,两条光束LB从光源装置14被输送至各描绘单元U的各者。另外,来自光源装置14的光束LB,通过光束分配系统而分支成多条光束LB,成为两条光束LB而射入至各描绘单元U(U1~U6)的各者,上述光束分配系统通过未图示的反射镜及光束分光器等构成。Each of the drawing units U ( U1 to U6 ) causes the two light beams LB from the
各描绘单元U(U1~U6),于XZ平面中,以使两条光束LB朝向旋转筒DR1的中心轴AXo1或旋转筒DR2的中心轴AXo2前进的方式,朝向基板P照射两条光束LB。藉此,从各描绘单元U(U1~U6)朝向基板P上的两条描绘线SLa、SLb前进的两条光束LB的光路(光束中心轴),于XZ平面中,与基板P的被照射面的法线平行。于本第1实施形态中,从描绘单元U1、U5朝向旋转筒DR1前进的光束LB的光路(光束中心轴),以使相对于中心面Poc1的角度成为-θ1的方式设定。从描绘单元U2、U6朝向旋转筒DR2前进的光束LB的光路(光束中心轴),以使相对于中心面Poc1的角度成为+θ1的方式设定。又,从描绘单元U3朝向旋转筒DR2前进的光束LB的光路(光束中心轴),以使相对于中心面Poc2的角度成为-θ1的方式设定。从描绘单元U4朝向旋转筒DR2前进的光束LB的光路(光束中心轴),以使相对于中心面Poc2的角度成为+θ1的方式设定。又,各描绘单元U(U1~U6),以使照射于两条描绘线SLa、SLb的光束LB在与YZ平面平行的面内相对于基板P的被照射面垂直的方式,朝向基板P照射光束LB。亦即,于被照射面上的光点SP的主扫描方向上,投射于基板P的光束LB以远心(telecentric)状态扫描。Each drawing unit U ( U1 - U6 ) irradiates the substrate P with the two light beams LB in the XZ plane so that the two light beams LB advance toward the central axis AXo1 of the rotary drum DR1 or the central axis AXo2 of the rotary drum DR2 . As a result, the optical paths (central axes of the light beams) of the two light beams LB traveling from the respective drawing units U ( U1 to U6 ) toward the two drawing lines SLa and SLb on the substrate P are identical to the irradiated beams on the substrate P in the XZ plane. The normals of the faces are parallel. In the first embodiment, the optical path (beam center axis) of the light beam LB traveling from the drawing units U1 and U5 toward the rotating drum DR1 is set so that the angle with respect to the center plane Poc1 becomes -θ1. The optical path (light beam center axis) of the light beam LB traveling from the drawing units U2 and U6 toward the rotating drum DR2 is set so that the angle with respect to the center plane Poc1 becomes +θ1. Moreover, the optical path (light beam center axis) of the light beam LB advancing toward the rotating drum DR2 from the drawing unit U3 is set so that the angle with respect to the center plane Poc2 may be -θ1. The optical path (light beam center axis) of the light beam LB traveling from the drawing unit U4 toward the rotating drum DR2 is set so that the angle with respect to the center plane Poc2 becomes +θ1. Further, each drawing unit U ( U1 to U6 ) irradiates the substrate P so that the light beam LB irradiated on the two drawing lines SLa and SLb is perpendicular to the irradiated surface of the substrate P in a plane parallel to the YZ plane Beam LB. That is, in the main scanning direction of the light spot SP on the irradiated surface, the light beam LB projected on the substrate P is scanned in a telecentric state.
如图2所示,多个描绘单元U(U1~U6)以既定的配置关系配置。各描绘单元U(U1~U6)的两条描绘线SLa、SLb沿着主扫描方向即Y方向延伸,于基板P的被照射面上处于副扫描方向(X方向)上的相同位置,且于主扫描方向(Y方向)错开地配置。也就是,各描绘单元U(U1~U6)的描绘线SLa、SLb,以平行状态仅于主扫描方向(Y方向)上分隔地配置。又,描绘线SLa、SLb的扫描长度(长度)被设定为相同长度,并且描绘线SLa与描绘线SLb被设定为在主扫描方向上以扫描长度以下的间隔分隔。As shown in FIG. 2 , the plurality of rendering units U ( U1 to U6 ) are arranged in a predetermined arrangement relationship. The two drawing lines SLa and SLb of each drawing unit U ( U1 to U6 ) extend along the main scanning direction, that is, the Y direction, and are at the same position in the sub-scanning direction (X direction) on the irradiated surface of the substrate P, and are located at the same position in the sub-scanning direction (X direction). The main scanning direction (Y direction) is staggered and arranged. That is, the drawing lines SLa and SLb of the drawing units U ( U1 to U6 ) are arranged in a parallel state only in the main scanning direction (Y direction) separated from each other. In addition, the scanning lengths (lengths) of the drawing lines SLa and SLb are set to the same length, and the drawing lines SLa and SLb are set to be separated from each other at intervals equal to or less than the scanning length in the main scanning direction.
多个描绘单元U(U1~U6),配置成多个描绘单元U(U1~U6)的描绘线SLa、SLb如图2所示,在Y方向(基板P的宽度方向、主扫描方向)上相接而不彼此分离。各描绘单元U(U1~U6)可绕旋动中心轴AXr,例如于±1.5度的范围内,以μrad的解析度而微小旋动,以对XY面内的描绘线(扫描线)SLa、SLb的斜度进行调整。该旋动中心轴AXr是相对于基板P垂直地通过连接描绘线(第1扫描线)SLa的中点与描绘线(第2扫描线)SLb的中点的线段的中心点(中点)的轴。该轴的延长线,与图1中的旋转筒DR1的中心轴AXo1或旋转筒DR2的中心轴AXo2交叉。另外,于第1实施形态中,各描绘单元U(U1~U6)的描绘线SLa与描绘线SLb,于副扫描方向上为相同位置,且于主扫描方向上彼此分隔,因此,旋动中心轴AXr配置于通过描绘线SLa、SLb的直线上,且配置于描绘线SLa与描绘线SLb的间隙的中心点。The plurality of drawing units U ( U1 to U6 ) are arranged so that the drawing lines SLa and SLb of the plurality of drawing units U ( U1 to U6 ) are in the Y direction (the width direction of the substrate P, the main scanning direction) as shown in FIG. 2 . connected without being separated from each other. Each of the drawing units U ( U1 to U6 ) can be rotated slightly around the rotation center axis AXr, for example, within a range of ±1.5 degrees, with a resolution of μrad, to scan the drawing lines (scanning lines) SLa, The slope of SLb can be adjusted. The rotation center axis AXr is perpendicular to the substrate P and passes through the center point (midpoint) of a line segment connecting the midpoint of the drawing line (first scanning line) SLa and the midpoint of the drawing line (second scanning line) SLb axis. An extension line of this axis intersects the central axis AXo1 of the rotary drum DR1 or the central axis AXo2 of the rotary drum DR2 in FIG. 1 . In addition, in the first embodiment, the drawing line SLa and the drawing line SLb of each drawing unit U ( U1 to U6 ) are at the same position in the sub-scanning direction and are separated from each other in the main-scanning direction. Therefore, the center of rotation is The axis AXr is arranged on a straight line passing through the drawing lines SLa and SLb, and is arranged at the center point of the gap between the drawing line SLa and the drawing line SLb.
若描绘单元U(U1~U6)绕旋动中心轴AXr稍微旋动(旋转),则扫描光束LB的光点SP的描绘线SLa、SLb亦会相应地以旋动中心轴AXr为中心而旋动(旋转)。藉此,若描绘单元U(U1~U6)旋动固定角度,则描绘线SLa、SLb亦会相应地以旋动中心轴AXr为中心,相对于Y方向(Y轴)倾斜固定角度。上述各描绘单元U(U1~U6)在控制装置18的控制下,通过包含致动器的未图示的响应性高的驱动机构而绕旋动中心轴AXr旋动。If the drawing units U ( U1 to U6 ) are slightly rotated (rotated) around the rotation center axis AXr, the drawing lines SLa and SLb of the light spot SP of the scanning beam LB will also be rotated around the rotation center axis AXr accordingly. move (rotate). Accordingly, if the drawing units U ( U1 to U6 ) are rotated by a fixed angle, the drawing lines SLa and SLb are accordingly centered on the rotation center axis AXr and inclined by a fixed angle with respect to the Y direction (Y axis). Each of the above-described drawing units U ( U1 to U6 ) is rotated around the central axis of rotation AXr by a highly responsive drive mechanism including an actuator, not shown, under the control of the
另外,有时会以SL1a、SL1b表示描绘单元U1的两条描绘线SLa、SLb,同样地,以SL2a、SL2b~SL6a、SL6b表示描绘单元U2~U6的两条描绘线SLa、SLb。又,有时会将描绘线SLa、SLb仅总称为描绘线SL。In addition, the two drawing lines SLa and SLb of the drawing unit U1 may be represented by SL1a and SL1b, and similarly, the two drawing lines SLa and SLb of the drawing units U2 to U6 may be represented by SL2a, SL2b to SL6a, and SL6b. In addition, the drawing lines SLa and SLb may be collectively referred to only as the drawing line SL.
如图2所示,以使多个描绘单元U(U1~U6)完全覆盖曝光区域W的整个宽度方向的方式,由各描绘单元U(U1~U6)分担扫描区域。藉此,各描绘单元U(U1~U6)能够按沿基板P的宽度方向分割而成的多个区域描绘图案。例如,若将描绘线SL的扫描长度(长度)设为20mm~40mm左右,则通过沿Y方向配置共计6个描绘单元U,使所能描绘的Y方向宽度扩大至约240mm~480mm左右。各描绘线SL(SL1a、SL1b~SL6a、SL6b)的长度(扫描长度)原则上相同。也就是,沿着多条描绘线SL(SL1a、SL1b~SL6a、SL6b)的各者扫描的光束LB的光点SP的扫描距离原则上相同。另外,于欲扩大曝光区域W的宽度的情形时,能够通过延长描绘线SL(SLa、SLb)自身的长度、或增加沿Y方向配置的描绘单元U的数量加以应对。As shown in FIG. 2, the scanning area is shared by each drawing unit U ( U1 - U6 ) so that the whole width direction of the exposure area W may be completely covered by the plurality of drawing units U ( U1 - U6 ). Thereby, each drawing unit U ( U1 - U6 ) can draw a pattern in the some area|region divided|segmented along the width direction of the board|substrate P. For example, if the scanning length (length) of the drawing line SL is about 20 mm to 40 mm, by arranging a total of six drawing units U in the Y direction, the width in the Y direction that can be drawn is enlarged to about 240 mm to 480 mm. The lengths (scanning lengths) of the respective drawing lines SL ( SL1 a , SL1 b to SL6 a , SL6 b ) are basically the same. That is, the scanning distance of the light spot SP of the light beam LB scanned along each of the plurality of drawing lines SL ( SL1 a , SL1 b to SL6 a , SL6 b ) is basically the same. In addition, when the width of the exposure region W is to be increased, it can be dealt with by extending the length of the drawing lines SL (SLa, SLb) itself, or by increasing the number of drawing units U arranged in the Y direction.
描绘线SL1a、SL1b、SL2a、SL2b、SL5a、SL5b、SL6a、SL6b,位于由旋转筒DR1支承的基板P的被照射面上。描绘线SL1a、SL1b、SL2a、SL2b、SL5a、SL5b、SL6a、SL6b,夹着中心面Poc1而呈2行地沿旋转筒DR1的圆周方向配置。描绘线SL1a、SL1b、SL5a、SL5b,相对于中心面Poc1位于基板P的搬送方向的上游侧(-X方向侧)的基板P的被照射面上。描绘线SL2a、SL2b、SL6a、SL6b,相对于中心面Poc1位于基板P的搬送方向的下游侧(+X方向侧)的基板P的被照射面上。The drawing lines SL1a, SL1b, SL2a, SL2b, SL5a, SL5b, SL6a, and SL6b are located on the irradiated surface of the substrate P supported by the rotating drum DR1. The drawing lines SL1a, SL1b, SL2a, SL2b, SL5a, SL5b, SL6a, and SL6b are arranged in two rows along the circumferential direction of the rotating drum DR1 with the center plane Poc1 therebetween. The drawing lines SL1a, SL1b, SL5a, and SL5b are located on the irradiated surface of the substrate P on the upstream side (-X direction side) of the substrate P in the conveyance direction with respect to the center plane Poc1. The drawing lines SL2a, SL2b, SL6a, and SL6b are located on the irradiated surface of the substrate P on the downstream side (+X direction side) in the conveyance direction of the substrate P with respect to the center plane Poc1.
描绘线SL3a、SL3b、SL4a、SL4b,位于由旋转筒DR2支承的基板P的被照射面上。描绘线SL3a、SL3b、SL4a、SL4b,夹着中心面Poc2而呈2行地沿旋转筒DR2的圆周方向配置。描绘线SL3a、SL3b,相对于中心面Poc2位于基板P的搬送方向的上游侧(-X方向侧)的基板P的被照射面上。描绘线SL4a、SL4b,相对于中心面Poc2位于基板P的搬送方向的下游侧(+X方向侧)的基板P的被照射面上。描绘线SL1a、SL1b~SL6a、SL6b与基板P的宽度方向也就是旋转筒DR1、DR2的中心轴AXo1、AXo2大致并行。The drawing lines SL3a, SL3b, SL4a, and SL4b are located on the irradiated surface of the substrate P supported by the rotating drum DR2. The drawing lines SL3a, SL3b, SL4a, and SL4b are arranged along the circumferential direction of the rotating drum DR2 in two rows with the center plane Poc2 therebetween. The drawing lines SL3a and SL3b are located on the irradiated surface of the substrate P on the upstream side (-X direction side) of the substrate P in the conveyance direction with respect to the center plane Poc2. The drawing lines SL4a and SL4b are located on the irradiated surface of the substrate P on the downstream side (+X direction side) in the conveyance direction of the substrate P with respect to the center plane Poc2. The drawing lines SL1a, SL1b to SL6a, SL6b are substantially parallel to the width direction of the substrate P, that is, the central axes AXo1, AXo2 of the rotating drums DR1, DR2.
奇数号的描绘线SL1a、SL1b、SL3a、SL3b、SL5a、SL5b,在Y方向(基板P的宽度方向)上,沿着基板P的宽度方向(扫描方向)隔开既定间隔而配置于直线上。偶数号的描绘线SL2a、SL2b、SL4a、SL4b、SL6a、SL6b亦同样地在Y方向上,沿着基板P的宽度方向隔开既定间隔而配置于直线上。此时,描绘线SL1b在Y方向上配置于描绘线SL2a与描绘线SL2b之间。描绘线SL3a在Y方向上配置于描绘线SL2b与描绘线SL4a之间。描绘线SL3b在Y方向上配置于描绘线SL4a与描绘线SL4b之间。描绘线SL5a在Y方向上配置于描绘线SL4b与描绘线SL6a之间。描绘线SL5b在Y方向上配置于描绘线SL6a与描绘线SL6b之间。也就是,描绘线SL以如下方式配置:在Y方向上,从-Y方向侧起依序按照SL1a、SL2a、SL1b、SL2b、SL3a、SL4a、SL3b、SL4b、SL5a、SL6a、SL5b、SL6b的顺序所描绘的图案,以Y方向的端部相接。The odd-numbered drawing lines SL1a, SL1b, SL3a, SL3b, SL5a, and SL5b are arranged on a straight line along the width direction (scanning direction) of the substrate P in the Y direction (the width direction of the substrate P) at predetermined intervals. The even-numbered drawing lines SL2a, SL2b, SL4a, SL4b, SL6a, and SL6b are also arranged on a straight line at a predetermined interval along the width direction of the substrate P in the Y direction. At this time, the drawing line SL1b is arranged between the drawing line SL2a and the drawing line SL2b in the Y direction. The drawing line SL3a is arranged between the drawing line SL2b and the drawing line SL4a in the Y direction. The drawing line SL3b is arranged between the drawing line SL4a and the drawing line SL4b in the Y direction. The drawing line SL5a is arranged between the drawing line SL4b and the drawing line SL6a in the Y direction. The drawing line SL5b is arranged between the drawing line SL6a and the drawing line SL6b in the Y direction. That is, the drawing lines SL are arranged in the Y direction in the order of SL1a, SL2a, SL1b, SL2b, SL3a, SL4a, SL3b, SL4b, SL5a, SL6a, SL5b, SL6b in this order from the -Y direction side The drawn patterns are in contact with the ends in the Y direction.
沿着奇数号的描绘线SL1a、SL1b、SL3a、SL3b、SL5a、SL5b的各者扫描的光束LB的光点SP的扫描方向为一维方向,且为相同方向(+Y方向)。沿着偶数号的描绘线SL2a、SL2b、SL4a、SL4b、SL6a、SL6b的各者扫描的光束LB的光点SP的扫描方向为一维方向,且为相同方向(-Y方向)。沿着上述奇数号的描绘线SL1a、SL1b、SL3a、SL3b、SL5a、SL5b扫描的光束LB的光点SP的扫描方向(+Y方向)、与沿着偶数号的描绘线SL2a、SL2b、SL4a、SL4b、SL6a、SL6b扫描的光束LB的光点SP的扫描方向(-Y方向)为彼此相反的方向。藉此,于描绘线SL1b、SL3a、SL3b、SL5a、SL5b的描绘开始位置(描绘开始点的位置)、与描绘线SL2a、SL2b、SL4a、SL4b、SL6a的描绘开始位置所描绘的图案相接。又,于描绘线SL1a、SL1b、SL3a、SL3b、SL5a、SL5b的描绘结束位置(描绘结束点的位置)、与描绘线SL2a、SL2b、SL4a、SL4b、SL6a、SL6b的描绘结束位置所描绘的图案相接。另外,于初始状态下,位于直线上的奇数号的描绘线SL1a、SL1b、SL5a、SL5b、与位于直线上的偶数号的描绘线SL2a、SL2b、SL6a、SL6b沿着基板P的搬送方向(旋转筒DR1的圆周方向)隔开固定长度(间隔长度)配置。同样地,于初始状态下,位于直线上的奇数号的描绘线SL3a、SL3b、与位于直线上的偶数号的描绘线SL4a、SL4b沿着基板P的搬送方向(旋转筒DR2的圆周方向)隔开固定长度(间隔长度)配置。The scanning direction of the light spot SP of the light beam LB scanned along each of the odd-numbered drawing lines SL1a, SL1b, SL3a, SL3b, SL5a, and SL5b is a one-dimensional direction, and is the same direction (+Y direction). The scanning direction of the light spot SP of the light beam LB scanned along each of the even-numbered drawing lines SL2a, SL2b, SL4a, SL4b, SL6a, and SL6b is a one-dimensional direction, and is the same direction (-Y direction). The scanning direction (+Y direction) of the light spot SP of the light beam LB scanned along the above-mentioned odd-numbered drawing lines SL1a, SL1b, SL3a, SL3b, SL5a, SL5b, and the even-numbered drawing lines SL2a, SL2b, SL4a, The scanning directions (-Y direction) of the light spots SP of the light beams LB scanned by SL4b, SL6a, and SL6b are directions opposite to each other. Thereby, the pattern drawn at the drawing start positions of the drawing lines SL1b, SL3a, SL3b, SL5a, and SL5b (the positions of the drawing start points) and the drawing start positions of the drawing lines SL2a, SL2b, SL4a, SL4b, and SL6a are in contact with each other. In addition, the pattern drawn at the drawing end positions of the drawing lines SL1a, SL1b, SL3a, SL3b, SL5a, and SL5b (the positions of the drawing end points) and the drawing end positions of the drawing lines SL2a, SL2b, SL4a, SL4b, SL6a, and SL6b connected. In addition, in the initial state, the odd-numbered drawing lines SL1a, SL1b, SL5a, and SL5b located on the straight line and the even-numbered drawing lines SL2a, SL2b, SL6a, and SL6b located on the straight line are along the conveyance direction of the substrate P (rotational direction). The circumferential direction of the drum DR1) is arranged to be spaced apart by a fixed length (interval length). Similarly, in the initial state, the odd-numbered drawing lines SL3a, SL3b located on the straight line and the even-numbered drawing lines SL4a, SL4b located on the straight line are spaced apart along the conveyance direction of the substrate P (circumferential direction of the rotating drum DR2). Open fixed length (interval length) configuration.
另外,描绘线SL的宽度(X方向尺寸),为与光点SP的尺寸(直径)φ相对应的粗细度。例如,于光点SP的有效尺寸φ为3μm的情形时,描绘线SL的宽度亦为3μm。光点SP亦可以按照既定长度(例如光点SP的有效尺寸φ的一半)重叠的方式,沿着描绘线SL投射。又,在扫描方向上彼此相邻接的描绘线SL的端部(例如描绘线SL1a的描绘结束点与描绘线SL2a的描绘结束点),亦可按照既定长度(例如光点SP的尺寸φ的一半)在Y方向上重叠。In addition, the width (X-direction dimension) of the drawing line SL is a thickness corresponding to the dimension (diameter) φ of the light spot SP. For example, when the effective size φ of the light spot SP is 3 μm, the width of the drawing line SL is also 3 μm. The light spot SP may be projected along the drawing line SL so as to overlap with a predetermined length (for example, half of the effective size φ of the light spot SP). In addition, the ends of the drawing lines SL adjacent to each other in the scanning direction (for example, the drawing end point of the drawing line SL1a and the drawing end point of the drawing line SL2a) may have a predetermined length (for example, the size φ of the light spot SP) half) overlap in the Y direction.
图3是显示使在主扫描方向上相邻的描绘线SL的端部彼此一致(邻接)时的各描绘单元U的描绘线SLa、SLb的配置关系的图。如图3所示,将描绘单元U的描绘线SLa、SLb的扫描长度、及描绘单元U的描绘线SLa与描绘线SLb的Y方向分隔距离(间隙)均设为Lo。因此,能够以使在主扫描方向上相邻的描绘线SL彼此的端部在主扫描方向上邻接的方式,配置彼此相对向的描绘单元U1、U3、U5的描绘线SLa、SLb与描绘单元U2、U4、U6的描绘线SLa、SLb。另外,描绘单元U的旋动中心轴AXr,设定成通过描绘线SLa、SLb之间的分隔距离Lo的中心点。3 is a diagram showing the arrangement relationship of the drawing lines SLa and SLb of each drawing unit U when the ends of the drawing lines SL adjacent to each other in the main scanning direction are aligned (adjacent to each other). As shown in FIG. 3 , the scan lengths of the drawing lines SLa and SLb of the drawing unit U, and the Y-direction separation distance (gap) between the drawing line SLa and the drawing line SLb of the drawing unit U are all set to Lo. Therefore, the drawing lines SLa and SLb of the drawing units U1 , U3 , and U5 facing each other and the drawing units can be arranged so that the ends of the drawing lines SL adjacent to each other in the main scanning direction are adjacent to each other in the main scanning direction. Drawing lines SLa and SLb of U2, U4, and U6. In addition, the rotation center axis AXr of the drawing unit U is set to pass through the center point of the separation distance Lo between the drawing lines SLa and SLb.
图4是显示使在扫描方向上相邻的描绘线SL的端部彼此各重叠α/2(固定长度)时的各描绘单元U的描绘线SLa、SLb的配置关系的图。如图4所示,将描绘线SLa、SLb的扫描长度设为Lo,将描绘单元U的描绘线SLa与描绘线SLb的Y方向分隔距离(间隙)设为Lo-α。因此,能够以使在主扫描方向上相邻的描绘线SL彼此的端部在主扫描方向重叠α/2的方式,配置彼此相对向的描绘单元U1、U3、U5的描绘线SLa、SLb与描绘单元U2、U4、U6的描绘线SLa、SLb。另外,描绘单元U的旋动中心轴AXr,设定成通过描绘线SLa、SLb之间的分隔距离Lo-α的中心点。4 is a diagram showing an arrangement relationship of the drawing lines SLa and SLb of each drawing unit U when the ends of the drawing lines SL adjacent in the scanning direction are overlapped with each other by α/2 (fixed length). As shown in FIG. 4 , the scan lengths of the drawing lines SLa and SLb are represented by Lo, and the Y-direction separation distance (gap) between the drawing line SLa and the drawing line SLb of the drawing unit U is represented by Lo−α. Therefore, the drawing lines SLa, SLb and The drawing lines SLa and SLb of the drawing units U2, U4, and U6 are drawn. In addition, the rotation center axis AXr of the drawing unit U is set to pass through the center point of the separation distance Lo-α between the drawing lines SLa and SLb.
图1所示的控制装置18,对曝光装置EX的各部分进行控制。该控制装置18包含电脑与记录有程序的记录媒体等,该电脑通过执行程序而作为本第1实施形态的控制装置18发挥功能。又,图1所示的对准显微镜AMa(AMa1~AMa4)、AMb(AMb1~AMb4),用以检测图2所示的基板P上所形成的对准标记MK(MK1~MK4)。多个对准显微镜AMa(AMa1~AMa4)沿着Y方向设置。同样地,多个对准显微镜AMb(AMb1~AMb4)亦沿着Y方向设置。对准标记MK(MK1~MK4),用以使在基板P的被照射面上的曝光区域W描绘的图案与基板P相对地对准(alignment)的基准标记。对准显微镜AMa(AMa1~AMa4),在由旋转筒DR1的圆周面支承的基板P上,检测对准标记MK(MK1~MK4)。对准显微镜AMa(AMa1~AMa4),设置在较从描绘单元U1、U5照射至基板P的被照射面上的光束LB的光点SP的位置(描绘线SL1a、SL1b、SL5a、SL5b)更靠基板P的搬送方向的上游侧(-X方向侧)。又,对准显微镜AMb(AMb1~AMb4),在由旋转筒DR2的圆周面支承的基板P上,检测对准标记MK(MK1~MK4)。对准显微镜AMb(AMb1~AMb4)设置在较从描绘单元U3照射至基板P的被照射面上的光束LB的光点SP的位置(描绘线SL3a、SL3b)更靠基板P的搬送方向的上游侧(-X方向侧)。The
对准显微镜AMa(AMa1~AMa4)、AMb(AMb1~AMb4)具有未图示的将对准用的照明光投射至基板P的光源、与拍摄其反射光的摄影元件(CCD(Charge Coupled Device,电荷耦合元件)、CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)等)。对准显微镜AMa(AMa1~AMa4)、AMb(AMb1~AMb4)拍摄得的摄影信号,被发送至控制装置18。对准显微镜AMa(AMa1~AMa4)、AMb(AMb1~AMb4),拍摄存在于未图示的观察区域内的对准标记MK(MK1~MK4)。各对准显微镜AMa(AMa1~AMa4)、AMb(AMb1~AMb4)的观察区域沿着Y方向设置,且根据对准标记MK(MK1~MK4)的Y方向位置而配置。因此,对准显微镜AMa1、AMb1能够拍摄对准标记MK1,同样地,对准显微镜AMa2~AMa4、AMb2~AMb4能够拍摄对准标记MK2~MK4。基板P的被照射面上的该观察区域的大小,根据对准标记MK(MK1~MK4)的大小或对准精度(位置测定精度)而设定,其为100μm~500μm左右见方的大小。控制装置18,基于来自对准显微镜AMa(AMa1~AMa4)、AMb(AMb1~AMb4)的摄影信号,检测对准标记MK的位置。另外,对准用的照明光是对基板P的感光性功能层而言几乎不具有感度的波长带的光,例如波长为500nm~800nm左右的光。又,对准显微镜AMa、AMb的摄影元件,由于需要于基板P移动期间拍摄对准标记MK,因此其快门时间设定为与基板P的搬送速度相对应的高速快门时间(电荷储存时间等摄影时间)。The alignment microscopes AMa (AMa1 to AMa4) and AMb (AMb1 to AMb4) include a light source that projects illumination light for alignment on the substrate P, not shown, and an imaging element (Charge Coupled Device, CCD) that captures the reflected light. charge-coupled element), CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor), etc.). The imaging signals captured by the alignment microscopes AMa ( AMa1 to AMa4 ) and AMb ( AMb1 to AMb4 ) are sent to the
其次,对描绘单元U的构成进行说明。各描绘单元U具有相同构成,因此于本第1实施形态中,以描绘单元U2为例进行说明。以下,于描绘单元U的说明中,为了特定描绘单元U内的各构件或光束的配置而设定正交坐标系XtYtZt。正交坐标系XtYtZt的Yt轴设定成与正交坐标系XYZ的Y轴平行,正交坐标系XtYtZt设定成相对于正交坐标系XYZ绕Y轴倾斜固定角度。Next, the configuration of the drawing unit U will be described. Since each drawing unit U has the same structure, in this 1st Embodiment, the drawing unit U2 is demonstrated as an example. Hereinafter, in the description of the drawing unit U, the orthogonal coordinate system XtYtZt is set in order to specify the arrangement of each member or light beam in the drawing unit U. The Yt axis of the orthogonal coordinate system XtYtZt is set parallel to the Y axis of the orthogonal coordinate system XYZ, and the orthogonal coordinate system XtYtZt is set to be inclined at a fixed angle around the Y axis with respect to the orthogonal coordinate system XYZ.
图5是从-Yt(-Y)方向侧观察的描绘单元U2的构成图,图6是从+Zt方向侧观察的描绘单元U2的构成图。射入至描绘单元U2的两条光束LB中,以LBa表示一条光束LB,以LBb表示另一条光束LB。又,有时会以SPa表示光束(第1光束)LBa的光点SP,以SPb表示光束(第2光束)LBb的光点SP。光点(第1光点)SPa于描绘线SL2a(SLa)上扫描,光点(第2光点)SPb于描绘线SL2b(SLb)上扫描。FIG. 5 is a configuration diagram of the drawing unit U2 viewed from the -Yt (-Y) direction side, and FIG. 6 is a configuration diagram of the drawing unit U2 viewed from the +Zt direction side. Of the two light beams LB incident on the drawing unit U2, one light beam LB is represented by LBa, and the other light beam LB is represented by LBb. In addition, the light spot SP of the light beam (first light beam) LBa may be represented by SPa, and the light spot SP of the light beam (second light beam) LBb may be represented by SPb. The light spot (1st light spot) SPa scans on the drawing line SL2a (SLa), and the light spot (2nd light spot) SPb scans on the drawing line SL2b (SLb).
另外,于图6中,为了容易理解,以较描绘线SL2a、SL2b更粗的点表示光点SPa、SPb。又,于图5、图6中,将与旋动中心轴AXr平行的方向设为Zt方向,将处于与Zt方向正交的平面上、基板P从处理装置PR1经由曝光装置EX朝向处理装置PR2的方向设为Xt方向,将处于与Zt方向正交的平面上、与Xt方向正交的方向设为Yt方向。也就是,图5、图6的Xt、Yt、Zt的三维坐标,是以Y轴为中心而Z轴方向与旋动中心轴AXr平行的方式使图1的X、Y、Z的三维坐标旋转而成的三维坐标。In addition, in FIG. 6, for easy understanding, the light spots SPa and SPb are represented by thicker dots than the drawing lines SL2a and SL2b. 5 and 6 , the direction parallel to the rotation center axis AXr is the Zt direction, and the substrate P is placed on a plane orthogonal to the Zt direction from the processing apparatus PR1 to the processing apparatus PR2 via the exposure apparatus EX The direction of Xt is the Xt direction, and the direction perpendicular to the Xt direction on the plane orthogonal to the Zt direction is the Yt direction. That is, the three-dimensional coordinates of Xt, Yt, and Zt in FIGS. 5 and 6 are rotated around the Y-axis and the three-dimensional coordinates of X, Y, and Z in FIG. 1 are rotated so that the Z-axis direction is parallel to the rotation center axis AXr. the three-dimensional coordinates.
描绘单元U2具备反射镜M1、聚光透镜CD、三角反射镜M2、反射镜M3a、M3b、偏移光学构件(偏移光学板)SRa、SRb、光束成形光学系统BFa、BFb、反射镜M4、柱面透镜CY1、反射镜M5、多面镜PM、反射镜M6a、M6b、fθ透镜FTa、FTb、反射镜M7a、M7b及柱面透镜CY2a、CY2b的光学系统。该等光学系统(反射镜M1、聚光透镜CD等),作为一个描绘单元U2而一体地形成于高刚性的框体内。也就是,描绘单元U2一体地保持该等光学系统。对于两条光束LBa、LBb均射入的光学系统,仅加注参照符号,对于两条光束LBa、LBb各自分别地射入且两条光束LBa、LBb成对地设置的光学系统,在参照符号之后加注a、b。简单而言,对于仅光束LBa射入的光学系统,在参照符号之后加注a,对于仅光束LBb射入的光学系统,在参照符号之后加注b。The drawing unit U2 includes a mirror M1, a condenser lens CD, a triangular mirror M2, mirrors M3a, M3b, offset optical members (offset optical plates) SRa, SRb, beam shaping optical systems BFa, BFb, a mirror M4, Optical system of cylindrical lens CY1, mirror M5, polygon mirror PM, mirrors M6a, M6b, fθ lenses FTa, FTb, mirrors M7a, M7b, and cylindrical lenses CY2a, CY2b. These optical systems (reflecting mirror M1, condenser lens CD, etc.) are integrally formed in a highly rigid housing as one drawing unit U2. That is, the drawing unit U2 integrally holds these optical systems. For an optical system in which both light beams LBa and LBb are incident, only reference symbols are added, and for an optical system in which two light beams LBa and LBb are respectively incident and the two light beams LBa and LBb are arranged in pairs, the reference symbols are used in the optical system. Then add a and b. In short, for an optical system in which only the light beam LBa is incident, a is appended after the reference sign, and for an optical system in which only the light beam LBb is incident, b is appended after the reference sign.
如图5所示,来自光源装置14的两条光束LBa、LBb,在通过两个光学元件AOMa、AOMb及两个准直透镜CLa、CLb之后,由反射镜M8反射,以与Zt轴平行的状态射入至描绘单元U2。射入至描绘单元U2的两条光束LBa、LBb,于XtZt平面中,沿着描绘单元U2的旋动中心轴AXr射入至反射镜M1。图7是从+Zt方向侧观察通过光学元件AOMa、AOMb及准直透镜CLa、CLb而射入至反射镜M8的光束LBa、LBb的光路的图,图8是从+Xt方向侧观察从反射镜M8射入至描绘单元U2的反射镜M1的光束LBa、LBb的光路的图。另外,于图7、图8中,亦以Xt、Yt、Zt的三维坐标系表示。As shown in FIG. 5 , the two light beams LBa, LBb from the
光学元件AOMa、AOMb,是对光束LBa、LBb具有透射性者,是声光调变元件(AOM:Acousto-Optic Modulator)。光学元件AOMa、AOMb通过使用超音波(高频信号),使射入的光束LBa、LBb以与高频波的频率相对应的绕射角绕射,从而改变光束LBa、LBb的光路即前进方向。光学元件AOMa、AOMb,根据来自控制装置18的驱动信号(高频信号)的导通/断开,导通/断开产生使射入的光束LBa、LBb绕射而成的绕射光(一次绕射光束)。The optical elements AOMa and AOMb are permeable to the light beams LBa and LBb, and are acousto-optic modulation elements (AOM: Acousto-Optic Modulator). The optical elements AOMa and AOMb use ultrasonic waves (high-frequency signals) to diffract the incident light beams LBa and LBb at a diffraction angle corresponding to the frequency of the high-frequency wave, thereby changing the optical path of the light beams LBa and LBb, that is, the advancing direction. The optical elements AOMa and AOMb are turned on/off according to the drive signal (high-frequency signal) from the
光学元件AOMa于来自控制装置18的驱动信号(高频信号)为断开的状态时,不使射入的光束LBa绕射而使其通过。因此,于驱动信号为断开的状态时,通过光学元件AOMa的光束Lba,射入至未图示的吸收体而不射入至准直透镜CLa及反射镜M8。此意味着投射至基板P的被照射面上的光点SPa的强度被调变为低位准(零)。另一方面,于光学元件AOMa根据来自控制装置18的驱动信号(高频信号)而导通的状态时,产生使射入的光束LBa绕射而成的一次绕射光束。因此,于驱动信号为导通的状态时,利用光学元件AOMa而偏向的一次绕射光束(为了便于说明而设为来自光学元件AOMa的光束LBa),在通过准直透镜CLa之后,射入至反射镜M8。此意味着投射至基板P的被照射面上的光点SPa的强度被调变为高位准。When the drive signal (high frequency signal) from the
同样地,光学元件AOMb于来自控制装置18的驱动信号(高频信号)为断开的状态时,不使射入的光束LBb绕射而使其通过,因此,通过光学元件AOMb的光束LBb,射入至未图示的吸收体而不射入至准直透镜CLb及反射镜M8。此意味着投射至基板P的被照射面上的光点SPb的强度被调变为低位准(零)。另一方面,于光学元件AOMb根据来自控制装置18的驱动信号(高频信号)而导通的状态时,使射入的光束LBb绕射,因此,利用光学元件AOMb而偏向的光束LBb(一次绕射光束),在通过准直透镜CLb之后,射入至反射镜M8。此意味着投射至基板P的被照射面上的光点SPb的强度被调变为高位准。控制装置18根据描绘线SL2a所描绘的图案的图案数据(位元映射),高速地使施加至光学元件AOMa的驱动信号导通/断开,并且基于以描绘线SL2b描绘的图案的图案数据,高速地使施加至光学元件AOMb的驱动信号导通/断开。也就是,光点SPa、SPb的强度,根据图案数据而被调变为高位准与低位准。另外,射入至光学元件AOMa、AOMb的光束LBa、LBb,以于光学元件AOMa、AOMb内达到光束腰宽(beamwaist)的方式聚光,因此,利用光学元件AOMa、AOMb而偏向并输出的光束LBa、LBb(一次绕射光束)成为发散光,准直透镜CLa、CLb使该发散光成为既定光束直径的平行光束。Similarly, when the drive signal (high-frequency signal) from the
反射镜M8将射入的光束LBa、LBb往-Zt方向进行反射并导引至描绘单元U2的反射镜(反射构件)M1。经反射镜M8反射后的光束LBa、LBb,以相对于旋动中心轴AXr对称的方式射入至描绘单元U2的反射镜M1。此时,光束LBa、LBb可于反射镜M1上交叉,亦可不交叉。图6、图8中显示光束LBa、LBb于反射镜M1上的旋动中心轴AXr的位置交叉的例子。也就是,光束LBa、LBb相对于旋动中心轴AXr以固定角度射入至反射镜M1。于本第1实施形态中,光束LBa、LBb沿着Yt(Y)方向,以相对于旋动中心轴AXr对称的方式射入至反射镜M1。另外,亦可以如下方式进行设计,亦即,光束LBa、LBb以相对于旋动中心轴AXr对称的方式平行地射入至反射镜M1。The reflection mirror M8 reflects the incident light beams LBa and LBb in the −Zt direction, and guides them to the reflection mirror (reflection member) M1 of the drawing unit U2 . The light beams LBa and LBb reflected by the mirror M8 are incident on the mirror M1 of the drawing unit U2 in a symmetrical manner with respect to the rotation center axis AXr. At this time, the light beams LBa and LBb may or may not cross on the mirror M1. FIGS. 6 and 8 show an example in which the light beams LBa and LBb intersect at the position of the rotation center axis AXr on the mirror M1. That is, the light beams LBa and LBb are incident on the mirror M1 at a fixed angle with respect to the rotation center axis AXr. In the first embodiment, the light beams LBa and LBb are incident on the mirror M1 symmetrically with respect to the rotation center axis AXr along the Yt (Y) direction. In addition, it may be designed so that the light beams LBa and LBb are incident on the mirror M1 in parallel in a symmetrical manner with respect to the rotation center axis AXr.
返回至图5、图6的说明,反射镜M1将射入的光束LBa、LBb往+Xt方向进行反射。经反射镜M1反射后的光束LBa、LBb(各自为平行光束),如图6所示,于XtYt面内,彼此以固定的张开角逐渐分离。聚光透镜CD为如下透镜,使来自反射镜M1的光束LBa、LBb各自的中心轴于XtYt面内相互平行,并且使光束LBa、LBb各自聚光于既定的焦点位置。该聚光透镜CD的功能将于以下说明,而聚光透镜CD的前侧焦点位置以处于反射镜M1的反射面上或其附近的方式设定。三角反射镜M2将通过聚光透镜CD的光束LBa往-Yt(-Y)方向侧进行90度的反射并导引至反射镜M3a,并且将通过聚光透镜CD的光束LBb往+Yt(+Y)方向侧进行90度的反射并导引至反射镜M3b。Returning to the description of FIGS. 5 and 6 , the mirror M1 reflects the incident light beams LBa and LBb in the +Xt direction. The light beams LBa and LBb (respectively parallel light beams) reflected by the mirror M1 are gradually separated from each other by a fixed opening angle in the XtYt plane as shown in FIG. 6 . The condenser lens CD is a lens for condensing the respective central axes of the light beams LBa and LBb from the mirror M1 to be parallel to each other in the XtYt plane, and for condensing the light beams LBa and LBb at a predetermined focal position. The function of the condenser lens CD will be described below, and the front focal position of the condenser lens CD is set so as to be on or near the reflective surface of the mirror M1. The triangular mirror M2 reflects the light beam LBa passing through the condenser lens CD by 90 degrees to the -Yt (-Y) direction side and guides it to the mirror M3a, and directs the light beam LBb passing through the condenser lens CD to +Yt (+ The Y) direction side is reflected by 90 degrees and guided to the mirror M3b.
反射镜M3a将射入的光束LBa往+Xt方向侧进行90度的反射。经反射镜M3a反射的光束LBa,通过偏移光学构件(由平行平板形成的第1偏移光学构件)SRa及光束成形光学系统BFa而射入至反射镜M4。反射镜M3b将射入的光束LBb往+Xt方向侧进行90度的反射。经反射镜M3b反射的光束LBb,通过偏移光学构件(由平行平板形成的第2偏移光学构件)SRb及光束成形光学系统BFb而射入至反射镜M4。通过三角反射镜M2与反射镜M3a、M3b,使Yt方向上的通过聚光透镜CD后的光束LBa、LBb的各中心轴的距离扩大。偏移光学构件SRa、SRb在与光束LBa、LBb的前进方向正交的平面(YtZt平面)内,调整光束LBa、LBb的中心位置。偏移光学构件SRa、SRb,具有与YtZt平面平行的两块石英平行板,一块平行板可绕Yt轴倾斜,另一块平行板可绕Zt轴倾斜。上述两块平行板分别绕Yt轴、Zt轴倾斜,藉此,在与光束LBa、LBb的前进方向正交的YtZt平面中,二维地对光束LBa、LBb的中心的位置进行微量偏移。上述两块平行板于控制装置18的控制下,由未图示的致动器(驱动部)驱动。光束成形光学系统BFa、BFb是成形光束LBa、LBb的光学系统,例如使通过聚光透镜CD聚光的光束LBa、LBb的直径成形为预定大小的直径。The mirror M3a reflects the incident light beam LBa by 90 degrees toward the +Xt direction side. The light beam LBa reflected by the reflection mirror M3a passes through the offset optical member (first offset optical member formed of a parallel flat plate) SRa and the beam shaping optical system BFa, and enters the reflection mirror M4. The mirror M3b reflects the incident light beam LBb toward the +Xt direction side by 90 degrees. The light beam LBb reflected by the reflection mirror M3b passes through the offset optical member (second offset optical member formed of a parallel flat plate) SRb and the beam shaping optical system BFb, and enters the reflection mirror M4. The triangular mirror M2 and the mirrors M3a and M3b widen the distance between the respective central axes of the light beams LBa and LBb in the Yt direction after passing through the condenser lens CD. The shift optical members SRa and SRb adjust the center positions of the light beams LBa and LBb in a plane (YtZt plane) orthogonal to the advancing direction of the light beams LBa and LBb. The offset optical members SRa and SRb have two quartz parallel plates parallel to the YtZt plane, one parallel plate can be inclined around the Yt axis, and the other parallel plate can be inclined around the Zt axis. The two parallel plates are inclined around the Yt axis and the Zt axis, respectively, thereby slightly shifting the positions of the centers of the light beams LBa and LBb two-dimensionally in the YtZt plane orthogonal to the advancing directions of the light beams LBa and LBb. The above-mentioned two parallel plates are driven by an actuator (driving part) not shown under the control of the
如图5所示,反射镜M4使来自光束成形光学系统BFa、BFb的光束LBa、LBb往-Zt方向反射。经反射镜M4反射的光束LBa、LBb,通过第1柱面透镜CY1而射入至反射镜M5。反射镜M5将来自反射镜M4的光束LBa、LBb往-Xt方向进行反射并使该光束LBa、LBb射入至多面镜PM的各个反射面RP。光束LBa从第1方向射入至多面镜PM的第1反射面RP,光束LBb从与第1方向不同的第2方向射入至多面镜PM的其他的第2反射面RP。As shown in FIG. 5 , the mirror M4 reflects the light beams LBa and LBb from the beam shaping optical systems BFa and BFb in the −Zt direction. The light beams LBa and LBb reflected by the reflecting mirror M4 pass through the first cylindrical lens CY1 and are incident on the reflecting mirror M5. The reflecting mirror M5 reflects the light beams LBa and LBb from the reflecting mirror M4 in the −Xt direction and makes the light beams LBa and LBb incident on the respective reflecting surfaces RP of the polygon mirror PM. The light beam LBa is incident on the first reflecting surface RP of the polygon mirror PM from the first direction, and the light beam LBb is incident on the other second reflecting surface RP of the polygon mirror PM from a second direction different from the first direction.
多面镜PM将射入的光束LBa、LBb往fθ透镜FTa、FTb进行反射。为了使光束LBa、LBb的光点SPa、SPb于基板P的被照射面上进行扫描,多面镜PM以使射入的光束LBa、LBb偏向的方式进行反射。藉此,因多面镜PM旋转,光束LBa、LBb在与XtYt平面平行的面内,一维地进行偏向扫描。具体而言,多面镜PM是旋转多面镜,其具有沿着Zt轴方向延伸的旋转轴AXp、与以围绕旋转轴AXp的方式绕旋转轴AXp配置的多个反射面RP。于第1实施形态中,多面镜PM为具有8个与Zt轴平行的反射面RP且具有正八边形的形状的旋转多面镜。以旋转轴AXp为中心而使该多面镜PM往既定的旋转方向旋转,藉此,能够使照射至反射面RP的脉冲状的光束LBa、LBb的反射角连续地产生变化。藉此,能够分别通过第1反射面RP与第2反射面RP而将光束LBa、LBb的反射方向偏向,使照射至基板P的被照射面上的光束LBa、LBb的光点SPa、SPb沿着主扫描方向进行扫描。The polygon mirror PM reflects the incident light beams LBa and LBb to the fθ lenses FTa and FTb. The polygon mirror PM reflects the incident light beams LBa and LBb so as to deflect the light beams LBa and LBb to scan the light spots SPa and SPb of the light beams LBa and LBb on the irradiated surface of the substrate P. Thereby, by the rotation of the polygon mirror PM, the light beams LBa and LBb are deflected one-dimensionally scanned in a plane parallel to the XtYt plane. Specifically, the polygon mirror PM is a rotating polygon mirror having a rotation axis AXp extending in the Zt axis direction and a plurality of reflection surfaces RP arranged around the rotation axis AXp so as to surround the rotation axis AXp. In the first embodiment, the polygon mirror PM is a rotating polygon mirror having eight reflective surfaces RP parallel to the Zt axis and having a regular octagonal shape. By rotating the polygon mirror PM in a predetermined rotation direction about the rotation axis AXp, the reflection angles of the pulsed light beams LBa and LBb irradiated on the reflection surface RP can be continuously changed. As a result, the reflection directions of the light beams LBa and LBb can be deflected by the first reflecting surface RP and the second reflecting surface RP, respectively, so that the light beams LBa and LBb irradiated on the irradiated surface of the substrate P are irradiated on the surface SPa and SPb of the light beams LBa and LBb along the Scan in the main scanning direction.
多面镜PM的一个反射面RP,由于使光束LBa、LBb均进行偏向扫描,因此能够使光点SPa、SPb沿着描绘线SL2a、SL2b进行扫描。因此,多面镜PM旋转一周,则沿着基板P的被照射面上的描绘线SL2a、SL2b的光点SPa、SPb的扫描次数最大为与反射面RP的数量相同的8次。多面镜PM通过包含电机等的多面镜驱动部而以固定速度旋转。通过该多面镜驱动部,多面镜PM的旋转受控制装置18控制。One reflection surface RP of the polygon mirror PM can scan the light spots SPa and SPb along the drawing lines SL2a and SL2b by deflecting both the light beams LBa and LBb. Therefore, when the polygon mirror PM rotates once, the number of scans of the light spots SPa and SPb along the drawing lines SL2a and SL2b on the irradiated surface of the substrate P is 8 times at the maximum as the number of the reflecting surfaces RP. The polygon mirror PM is rotated at a constant speed by a polygon mirror drive unit including a motor or the like. The rotation of the polygon mirror PM is controlled by the
另外,当将描绘线SL2a、SL2b的长度例如设为30mm,使3μm的光点SPa、SPb以各重叠1.5μm的方式而脉冲发光,并且将光点SPa、SPb沿着描绘线SL2a、SL2b照射至基板P的被照射面上时,以一次扫描照射的光点SP的数量(脉冲发光数)为20000(30mm/1.5μm)。又,若将沿着描绘线SL2a、SL2b的光点SPa、SPb的扫描时间设为200μsec,则于此期间,必须进行20000次照射脉冲状的光点SP,因此,光源装置14的发光频率Fs为Fs≧20000次/200μsec=100MHz。In addition, when the lengths of the drawing lines SL2a and SL2b are, for example, 30 mm, the light spots SPa and SPb of 3 μm are pulsed so as to overlap each other by 1.5 μm, and the light spots SPa and SPb are irradiated along the drawing lines SL2a and SL2b. When reaching the irradiated surface of the substrate P, the number of light spots SP (pulse emission number) irradiated by one scan was 20000 (30 mm/1.5 μm). In addition, if the scanning time of the light spots SPa and SPb along the drawing lines SL2a and SL2b is 200 μsec, it is necessary to irradiate the pulsed light spots SP 20000 times during this period. Therefore, the light emission frequency Fs of the
第1柱面透镜CY1,在与由多面镜PM产生的扫描方向(旋转方向)正交的非扫描方向(Zt方向)上,使射入的光束LBa、LBb收敛于多面镜PM的反射面RP上。即使存在如下情形(反射面RP相对于XtYt平面的法线即Zt轴倾斜),亦能够抑制其影响,该情形是指因该母线与Yt方向平行的第1柱面透镜CY1、及后述的第2柱面透镜CY2a、CY2b,而使反射面RP相对于Zt方向倾斜。例如,能够抑制照射至基板P的被照射面上的光束LBa、LBb的光点SPa、SPb(描绘线SL2a、SL2b)的照射位置,因多面镜PM的各反射面RP的极小的斜度误差而于Xt方向上偏移。The first cylindrical lens CY1 converges the incident light beams LBa and LBb on the reflection surface RP of the polygon mirror PM in the non-scanning direction (Zt direction) orthogonal to the scanning direction (rotation direction) by the polygon mirror PM superior. Even if the reflection surface RP is inclined with respect to the Zt axis, which is the normal line of the XtYt plane, the influence can be suppressed even if the first cylindrical lens CY1 whose generatrix is parallel to the Yt direction, and the later-described first cylindrical lens CY1 The second cylindrical lenses CY2a and CY2b have the reflection surface RP inclined with respect to the Zt direction. For example, the irradiation positions of the light spots SPa and SPb (drawing lines SL2a and SL2b) of the light beams LBa and LBb irradiated on the irradiated surface of the substrate P can be suppressed due to the extremely small inclination of each reflecting surface RP of the polygon mirror PM. The error is offset in the Xt direction.
详细而言,多面镜PM将射入的光束LBa往-Yt(-Y)方向侧进行反射并导引至反射镜M6a。又,多面镜PM将射入的光束LBb往+Yt(+Y)方向侧进行反射并导引至反射镜M6b。反射镜M6a将射入的光束LBa往-Xt方向侧进行反射并导引至具有沿着Xt轴方向延伸的光轴AXfa的fθ透镜FTa。反射镜M6b将射入的光束LBb往-Xt方向侧进行反射并导引至具有沿着Xt轴方向延伸的光轴AXfb(与光轴AXfa平行)的fθ透镜FTb。Specifically, the polygon mirror PM reflects the incident light beam LBa toward the -Yt (-Y) direction side, and guides it to the reflecting mirror M6a. Moreover, the polygon mirror PM reflects the incident light beam LBb toward the +Yt (+Y) direction side, and guides it to the reflecting mirror M6b. The mirror M6a reflects the incident light beam LBa toward the −Xt direction side, and guides it to the fθ lens FTa having the optical axis AXfa extending in the Xt axis direction. The mirror M6b reflects the incident light beam LBb toward the −Xt direction side, and guides it to the fθ lens FTb having an optical axis AXfb (parallel to the optical axis AXfa) extending in the Xt axis direction.
fθ(f-θ)透镜FTa、FTb为远心系统的扫描透镜,其于XtYt平面中,将经反射镜M6a、M6b反射的来自多面镜PM的光束LBa、LBb,以与光轴AXfa、AXfb平行的方式投射至反射镜M7a、M7b。反射镜M7a将射入的光束LBa朝向基板P的被照射面并往-Zt方向进行反射,反射镜M7b将射入的光束LBb朝向基板P的被照射面并往-Zt方向进行反射。经反射镜M7a反射的光束Lba,通过第2柱面透镜CY2a而投射至基板P的被照射面,经反射镜M7b反射的光束LBb,通过第2柱面透镜CY2b而投射至基板P的被照射面。通过该fθ透镜FTa及母线与Yt方向平行的第2柱面透镜CY2a,投射至基板P的光束LBa于基板P的被照射面上,收敛为有效直径为数μm左右(例如3μm)的微小的光点SPa。同样地,通过fθ透镜FTb及母线与Yt方向平行的第2柱面透镜CY2b,投射至基板P的光束LBb于基板P的被照射面上,收敛为有效直径为数μm左右(例如3μm)的微小的光点SPb。投射至该基板P的被照射面上的光点SPa、SPb,通过一个多面镜PM旋转而沿着于主扫描方向(Yt方向、Y方向)延伸的描绘线SL2a、SL2b同时一维地扫描。The fθ(f-θ) lenses FTa and FTb are the scanning lenses of the telecentric system, and in the XtYt plane, the light beams LBa and LBb from the polygon mirror PM reflected by the mirrors M6a and M6b are aligned with the optical axes AXfa and AXfb. Projected to mirrors M7a, M7b in parallel. The mirror M7a reflects the incident light beam LBa toward the irradiated surface of the substrate P in the -Zt direction, and the mirror M7b reflects the incident light beam LBb in the -Zt direction toward the irradiated surface of the substrate P. The light beam Lba reflected by the mirror M7a passes through the second cylindrical lens CY2a and is projected onto the irradiated surface of the substrate P, and the light beam LBb reflected by the reflecting mirror M7b passes through the second cylindrical lens CY2b and is projected to the irradiated surface of the substrate P. noodle. Through the fθ lens FTa and the second cylindrical lens CY2a whose generatrix is parallel to the Yt direction, the light beam LBa projected on the substrate P converges on the irradiated surface of the substrate P into a minute light with an effective diameter of about several μm (for example, 3 μm). Click Spa. Similarly, through the fθ lens FTb and the second cylindrical lens CY2b whose generatrix is parallel to the Yt direction, the light beam LBb projected on the substrate P converges on the irradiated surface of the substrate P to a small effective diameter of about several μm (for example, 3 μm). the light spot SPb. The light spots SPa and SPb projected on the irradiated surface of the substrate P are simultaneously one-dimensionally scanned along drawing lines SL2a and SL2b extending in the main scanning direction (Yt direction, Y direction) by rotating one polygon mirror PM.
往fθ透镜FTa、FTb射入的光束的入射角θ(相对于光轴的角度),会根据多面镜PM的旋转角(θ/2)而改变。fθ透镜FTa,将光束LBa的光点SPa投射至与光束LBa的入射角成比例的基板P的被照射面上的像高位置。同样地,fθ透镜FTb,将光束LBb的光点SPb投射至与光束LBb的入射角成比例的基板P的被照射面上的像高位置。若将焦点距离设为f,将像高位置设为y,则fθ透镜FTa、FTb具有y=f×θ的关系(畸变像差(distortion))。因此,可通过该fθ透镜FTa、FTb,使光束LBa、LBb的光点SPa、SPb沿着Yt方向(Y方向)正确地进行等速扫描。当往fθ透镜FTa、FTb射入的光束LBa、LBb的入射角θ为0度时,射入至fθ透镜FTa、FTb的光束LBa、LBb沿着光轴AXfa、AXfb上前进。The incident angle θ (angle with respect to the optical axis) of the light beams incident on the fθ lenses FTa and FTb changes according to the rotation angle (θ/2) of the polygon mirror PM. The fθ lens FTa projects the spot SPa of the light beam LBa to an image height position on the irradiated surface of the substrate P proportional to the incident angle of the light beam LBa. Similarly, the fθ lens FTb projects the spot SPb of the light beam LBb to the image height position on the irradiated surface of the substrate P proportional to the incident angle of the light beam LBb. If the focal length is f and the image height position is y, the fθ lenses FTa and FTb have a relationship of y=f×θ (distortion). Therefore, by the fθ lenses FTa and FTb, the light spots SPa and SPb of the light beams LBa and LBb can be accurately scanned at constant velocity along the Yt direction (Y direction). When the incident angle θ of the light beams LBa and LBb incident on the fθ lenses FTa and FTb is 0 degrees, the light beams LBa and LBb incident on the fθ lenses FTa and FTb travel along the optical axes AXfa and AXfb.
以上的聚光透镜CD、三角反射镜M2、反射镜M3a、偏移光学构件SRa、光束成形光学系统BFa、反射镜M4、第1柱面透镜CY1及反射镜M5,作为从第1方向朝多面镜PM导引光束LBa的第1导光光学系统20而发挥功能。又,聚光透镜CD、三角反射镜M2、反射镜M3b、偏移光学构件SRb、光束成形光学系统BFb、反射镜M4、第1柱面透镜CY1及反射镜M5,作为从与第1方向不同的第2方向朝多面镜PM导引光束LBb的第2导光光学系统22而发挥功能。另外,虽将聚光透镜CD、三角反射镜M2、反射镜M4、第1柱面透镜CY1及反射镜M5设为第1导光光学系统20与第2导光光学系统22共通的构件,但亦可按第1导光光学系统20与第2导光光学系统22而个别地设置该等构件中的至少一部分。又,反射镜M6a、fθ透镜FTa、反射镜M7a及第2柱面透镜CY2a,作为第1投射光学系统24而发挥功能,该第1投射光学系统24使由多面镜PM反射的光束LBa聚光并作为光点SPa而投射至描绘线SL2a(SLa)上。同样地,反射镜M6b、fθ透镜FTb、反射镜M7b及第2柱面透镜CY2b,作为第2投射光学系统26而发挥功能,该第2投射光学系统26使由多面镜PM反射的光束LBb聚光并作为光点SPb而投射至描绘线SL2b(SLb)上。该第1投射光学系统24与第2投射光学系统26,以如下方式配置,即,使描绘线SLa、SLb于副扫描方向上处于相同位置且于主扫描方向上分隔。又,以使描绘线SLa、SLb于主扫描方向上以扫描长度以下的间隔分隔的方式配置第1投射光学系统24与第2投射光学系统26。The above condenser lens CD, triangular mirror M2, mirror M3a, offset optical member SRa, beam shaping optical system BFa, mirror M4, first cylindrical lens CY1, and mirror M5 are multi-faceted from the first direction. The mirror PM functions as the first light guide
于本第1实施形态的情形下,即使当使光束LBa、LBb射入至反射镜M1上的旋动中心轴AXr通过的位置时,光束LBa、LBb亦不会与旋动中心轴AXr平行地射入至反射镜M1,而是如图8所示,以相对于旋动中心轴AXr以固定斜度于反射镜M1上(或其附近)交叉的方式射入。因此,若描绘单元U2整体绕旋动中心轴AXr旋动,则光束LBa、LBb相对于反射镜M1的入射角度相对地产生变化。藉此,描绘单元U2内的经反射镜M1反射的光束LBa、LBb的反射方向,根据描绘单元U2绕旋动中心轴AXr的旋动而二维地产生变化。In the case of the first embodiment, even when the light beams LBa and LBb are incident on the mirror M1 at the position where the rotation center axis AXr passes, the light beams LBa and LBb are not parallel to the rotation center axis AXr. The incident light is incident on the mirror M1, but as shown in FIG. 8, it is incident on the mirror M1 (or its vicinity) at a constant inclination with respect to the rotation center axis AXr. Therefore, when the entire drawing unit U2 rotates around the rotation center axis AXr, the incident angles of the light beams LBa and LBb with respect to the mirror M1 are relatively changed. Thereby, the reflection directions of the light beams LBa and LBb reflected by the mirror M1 in the drawing unit U2 are two-dimensionally changed according to the rotation of the drawing unit U2 around the rotation center axis AXr.
图9、图10是夸张地显示描绘单元U2未绕旋动中心轴AXr旋动的初始位置状态、与描绘单元U2从初始位置旋动Δθz后的状态下的描绘单元U2内的光束LBa的反射方向的变化(光束前进路径的变化)的图。图9是于XtZt面内观察反射镜(反射构件)M1与聚光透镜CD的配置关系的图,图10是于XtYt面内观察反射镜M1与聚光透镜CD的配置关系的图。另外,描绘单元U2内的光束LBb的反射方向于描绘单元U2绕旋动中心轴AXr旋动时产生变化的原理,与光束LBa的情形相同,因此仅针对光束LBa进行说明。此处,聚光透镜CD的光轴AXc,设定为于反射镜M1的反射面(相对于XtYt面设定为45°)上与旋动中心轴AXr交叉,反射镜M1的反射面设定于聚光透镜CD的前侧焦点距离fa的位置。进一步地,光束LBa、LBb,于聚光透镜CD的后侧焦点距离fb的位置的面Pcd(后侧焦点面),以达到光束腰宽(最小直径)的方式收敛之后发散。于图9、图10中,以实线所示的光束LBa-1,表示描绘单元U2整体未旋转的初始位置状态,也就是描绘线SL2a与Yt(Y)方向平行的状态时的光束LBa。以两点链线所示的光束LBa-2,表示描绘单元U2整体绕旋动中心轴AXr旋动Δθz后的状态时的光束LBa。FIGS. 9 and 10 are exaggeratedly showing the reflection of the light beam LBa in the drawing unit U2 in the initial position state in which the drawing unit U2 is not rotated about the rotation center axis AXr, and the state in which the drawing unit U2 is rotated by Δθz from the initial position. A graph of the change in direction (change in the path the beam travels). 9 is a diagram showing the arrangement relationship between the mirror (reflection member) M1 and the condenser lens CD in the XtZt plane, and FIG. 10 is a diagram showing the arrangement relationship between the mirror M1 and the condenser lens CD in the XtYt plane. In addition, the principle that the reflection direction of the light beam LBb in the drawing unit U2 changes when the drawing unit U2 rotates around the rotation center axis AXr is the same as that of the light beam LBa, so only the light beam LBa will be described. Here, the optical axis AXc of the condenser lens CD is set to intersect the rotation center axis AXr on the reflection surface of the mirror M1 (set at 45° with respect to the XtYt plane), and the reflection surface of the mirror M1 is set to intersect with the rotation center axis AXr. at the position of the front focal distance fa of the condenser lens CD. Furthermore, the light beams LBa and LBb converge on the surface Pcd (back focal plane) at the position of the rear focal distance fb of the condenser lens CD so as to reach the beam waist (minimum diameter) and then diverge. In FIGS. 9 and 10 , the light beam LBa-1 shown by the solid line represents the light beam LBa when the drawing unit U2 as a whole is not rotated at the initial position, that is, when the drawing line SL2a is parallel to the Yt(Y) direction. The light beam LBa- 2 indicated by the two-dotted chain line represents the light beam LBa in a state in which the entire drawing unit U2 is rotated by Δθz around the rotational center axis AXr.
当描绘单元U2绕旋动中心轴AXr旋动时,光束LBa(LBb)相对于反射镜M1的反射面的相对性的入射角度产生变化。如图10所示,若将投射至反射镜M1之前的反射镜M8的反射面上的光束LBa设为LBa(M8),则根据图8的光束配向状态可知:于初始位置状态下,XtYt面内的投射至反射镜M1上的光束LBa与光束LBa(M8)的各位置,在与Yt轴平行的方向上分隔。于描绘单元U2整体从初始位置状态旋转(倾斜)角度Δθz的情形时,若从反射镜M1观察,则反射镜M8上的光束LBa(M8)的位置对应于角度Δθz而相对地于Xt方向上偏移(实际上绕旋动中心轴AXr旋转)。When the drawing unit U2 rotates around the rotation center axis AXr, the relative incidence angle of the light beam LBa (LBb) with respect to the reflection surface of the mirror M1 changes. As shown in FIG. 10 , if the light beam LBa projected on the reflection surface of the mirror M8 before the mirror M1 is LBa( M8 ), it can be seen from the beam alignment state of FIG. 8 that in the initial position state, the XtYt plane Each position of the light beam LBa projected on the mirror M1 and the light beam LBa ( M8 ) in the inside is separated in a direction parallel to the Yt axis. When the entire drawing unit U2 is rotated (inclined) by the angle Δθz from the initial position, when viewed from the mirror M1, the position of the light beam LBa (M8) on the mirror M8 corresponds to the angle Δθz and is relatively in the Xt direction. Offset (actually rotate around the rotation center axis AXr).
藉此,于初始位置状态时经反射镜M1反射的光束LBa-1的光路(中心线),在描绘单元U2整体旋转角度Δθz之后,成为光束LBa-2并于XtYt面内倾斜。另外,于图10中,XtYt面内的初始位置状态时的光束LBa-1的中心线与聚光透镜CD的光轴AXc的交叉角,与图8所示的YtZt面内的光束LBa的中心线与旋动中心轴AXr的交叉角一致。因此,后侧焦点面Pcd内的初始位置状态下的光束LBa-1的收敛位置BW1,在描绘单元U2整体旋转角度Δθz之后,作为后侧焦点面Pcd内的光束LBa-2的收敛位置BW2,在Yt方向上位置错开(平行偏移)ΔYh。根据与角度Δθz之间的ΔYh=fy(Δθz)的几何学关系式,唯一地求出该位置偏移量ΔYh。另外,从聚光透镜CD朝向后侧焦点面Pcd的光束LBa-1与光束LBa-2的各中心线,均与光轴AXc平行。Thereby, the optical path (center line) of the light beam LBa-1 reflected by the mirror M1 in the initial position state becomes the light beam LBa-2 after the overall rotation angle Δθz of the unit U2 is drawn, and is inclined in the XtYt plane. In addition, in FIG. 10 , the intersection angle between the center line of the light beam LBa-1 in the initial position state in the XtYt plane and the optical axis AXc of the condenser lens CD, and the center of the light beam LBa in the YtZt plane shown in FIG. 8 The line coincides with the intersection angle of the rotation center axis AXr. Therefore, the convergence position BW1 of the light beam LBa-1 in the initial position state in the rear focal plane Pcd is the convergence position BW2 of the light beam LBa-2 in the rear focal plane Pcd after the entire drawing unit U2 is rotated by the angle Δθz, The position is shifted (parallel offset) by ΔYh in the Yt direction. This positional shift amount ΔYh is uniquely obtained from the geometric relational expression of ΔYh=fy(Δθz) with respect to the angle Δθz. In addition, each center line of the light beam LBa- 1 and the light beam LBa- 2 from the condenser lens CD toward the rear focal plane Pcd is parallel to the optical axis AXc.
另一方面,如图9夸张所示,若于XtZt面内观察使描绘单元U2整体从初始位置状态旋转角度Δθz之后的光束LBa-2的配向状态,则射入至反射镜M1的光束LBa的中心线相对于旋动中心轴AXr在Yt方向上倾斜,因此,光束LBa-2从旋转角度Δθz之后的反射镜M1,相对于初始位置状态下的光束LBa-1(与光轴AXc平行)向Zt轴方向倾斜地前进并射入至聚光透镜CD。因此,后侧焦点面Pcd内的初始位置状态下的光束LBa-1的收敛位置BW1,在描绘单元U2整体旋转角度Δθz之后,作为后侧焦点面Pcd内的光束LBa-2的收敛位置BW2,向Zt方向位置错开(平行偏移)ΔZh。根据与角度Δθz之间的ΔZh=fz(Δθz)的几何学关系式,唯一地求出该位置偏移量ΔZh。另外,于本第1实施形态的构成中,Zt轴方向的位置偏移量ΔZh大于Yt轴方向的位置偏移量ΔYh。以上的作用对于光束LBb而言亦相同,在使描绘单元U2整体旋转角度Δθz之后,通过聚光透镜CD而收敛之后侧焦点面Pcd内的光束LBb-2的位置,相对于后侧焦点面Pcd内的初始位置状态时的光束LBb-1的位置,在Yt方向与Zt方向上位置偏移。On the other hand, as exaggeratedly shown in FIG. 9 , if the alignment state of the light beam LBa-2 after the entire drawing unit U2 is rotated by the angle Δθz from the initial position state is observed in the XtZt plane, the light beam LBa incident on the mirror M1 is The center line is inclined in the Yt direction with respect to the rotation center axis AXr, so that the light beam LBa-2 goes from the mirror M1 after the rotation angle Δθz to the light beam LBa-1 (parallel to the optical axis AXc) in the initial position state. It advances obliquely in the Zt-axis direction and is incident on the condenser lens CD. Therefore, the convergence position BW1 of the light beam LBa-1 in the initial position state in the rear focal plane Pcd is the convergence position BW2 of the light beam LBa-2 in the rear focal plane Pcd after the entire drawing unit U2 is rotated by the angle Δθz, The position is shifted (parallel shift) ΔZh in the Zt direction. This positional shift amount ΔZh is uniquely obtained from the geometric relational expression of ΔZh=fz(Δθz) with respect to the angle Δθz. In addition, in the configuration of the first embodiment, the positional shift amount ΔZh in the Zt axis direction is larger than the positional shift amount ΔYh in the Yt axis direction. The above action is also the same for the light beam LBb. After the entire drawing unit U2 is rotated by the angle Δθz, the position of the light beam LBb-2 in the rear focal plane Pcd is converged by the condenser lens CD with respect to the rear focal plane Pcd. The position of the light beam LBb-1 in the initial position state of the inside is shifted in the Yt direction and the Zt direction.
如上所述,于本第1实施形态中,因具备如反射镜M1的反射面处于前侧焦点距离fa的位置的聚光透镜CD,而能够始终使从聚光透镜CD射出的光束LBa-2(LBb-2)的中心线与光束LBa-1(LBb-1)的中心线平行。因此,通过聚光透镜CD之后配置的偏移光学构件SRa、SRb的斜度调整,以使描绘单元U2整体旋转角度Δθz之后所产生的光束LBa、LBb的位置偏移量ΔYh、ΔZh为零的方式进行修正。藉此,能够使两条光束LBa、LBb沿着初始位置状态时的光路而正确地通过之后的光学系统。通过使用基于几何学关系式即ΔYh=fy(Δθz)、ΔZh=fz(Δθz)而预先作成的角度Δθz与斜度调整量的关系表等,能够高速地执行偏移光学构件SRa、SRb的斜度调整。藉此,即使是描绘单元U2整体旋动的情形,亦能够使光束LBa、LBb射入至多面镜PM的反射面RP的适当位置。As described above, in the first embodiment, since the condenser lens CD is provided such that the reflection surface of the mirror M1 is located at the position of the front focal distance fa, the light beam LBa-2 emitted from the condenser lens CD can always be The centerline of (LBb-2) is parallel to the centerline of light beam LBa-1 (LBb-1). Therefore, the inclination of the offset optical members SRa and SRb arranged after the condenser lens CD is adjusted so that the positional shift amounts ΔYh and ΔZh of the light beams LBa and LBb generated after the entire drawing unit U2 is rotated by the angle Δθz are zero. way to correct. Thereby, the two light beams LBa and LBb can be correctly passed through the subsequent optical system along the optical path in the initial position state. By using the relationship table of the angle Δθz and the inclination adjustment amount prepared in advance based on the geometrical expressions ΔYh=fy(Δθz), ΔZh=fz(Δθz), etc., the inclination of the offset optical members SRa and SRb can be performed at high speed. degree adjustment. Thereby, even when the whole drawing unit U2 is rotated, the light beams LBa and LBb can be made incident on the appropriate position of the reflection surface RP of the polygon mirror PM.
另外,只要能够使来自反射镜M8的光束LBa、LBb在与旋动中心轴AXr相同的轴上射入至反射镜M1,则光束LBa、LBb相对于反射镜M1的入射角度不会因描绘单元U绕旋动中心轴AXr旋动而产生变化。因此,于描绘单元U内,经反射镜M1反射的光束LBa、LBb的反射方向不会因描绘单元U的旋动而产生变化。使射入至反射镜M1的两条光束LBa、LBb处于同一轴上,且于反射镜M1以后的描绘单元U2内,在空间上使两条光束LBa、LBb分离的一个方法在于组成如下系统,将偏振光束分光器(polarizing beam-splitter)等配置于反射镜M1之后,对偏振状态彼此正交的光束LBa、LBb进行同轴合成,使其射入至反射镜M1,且利用偏振光束分光器等进行偏振分离。In addition, as long as the light beams LBa and LBb from the mirror M8 can be made incident on the mirror M1 on the same axis as the rotation center axis AXr, the incident angle of the light beams LBa and LBb with respect to the mirror M1 does not depend on the drawing unit. U rotates around the rotation center axis AXr and changes. Therefore, in the drawing unit U, the reflection directions of the light beams LBa and LBb reflected by the mirror M1 do not change due to the rotation of the drawing unit U. One method of spatially separating the two light beams LBa and LBb in the drawing unit U2 after the mirror M1 so that the two light beams LBa and LBb incident on the mirror M1 are on the same axis is to form the following system, After arranging a polarizing beam-splitter or the like on the mirror M1, the beams LBa and LBb whose polarization states are orthogonal to each other are coaxially combined and incident on the mirror M1, and the polarizing beam splitter is used. and so on for polarization separation.
于图9、图10中以如下情形为例进行说明,该情形使相对于旋动中心轴AXr以固定斜度且相对于旋动中心轴AXr对称的光束LBa、LBb(平行光束)射入至反射镜M1的相同位置,现针对使相对于旋动中心轴AXr在Yt方向上对称且与旋动中心轴AXr彼此平行地配向的两条光束LBa、LBb(平行光束)射入至反射镜M1的情形进行说明。图11A是从+Zt方向侧夸张地显示当使描绘单元U2整体绕旋动中心轴AXr旋动角度(既定角度)Δθz时,射入至反射镜(反射构件)M1的光束LBa、LBb的反射方向产生变化的样子的图,图11B是从光束LBa、LBb的前进方向侧(+Xt方向侧)观察使描绘单元U2整体旋动角度Δθz时的反射镜M1中的光束LBa、LBb的位置变化的图。In FIGS. 9 and 10 , a case where the beams LBa and LBb (parallel beams) having a fixed inclination with respect to the rotation center axis AXr and symmetrical with respect to the rotation center axis AXr are incident on the At the same position of the mirror M1, two beams LBa and LBb (parallel beams) that are symmetrical in the Yt direction with respect to the rotation center axis AXr and aligned parallel to each other with the rotation center axis AXr are incident on the reflection mirror M1 situation is explained. 11A is an exaggerated view showing reflections of light beams LBa and LBb incident on the mirror (reflection member) M1 when the entire drawing unit U2 is rotated by an angle (predetermined angle) Δθz around the rotation center axis AXr from the +Zt direction side Fig. 11B shows changes in the positions of the light beams LBa and LBb in the mirror M1 when the entire drawing unit U2 is rotated by an angle Δθz when viewed from the advancing direction side (the +Xt direction side) of the light beams LBa and LBb. 's diagram.
另外,于图11A中,正交坐标系XtYtZt是针对描绘单元U2所设定的正交坐标系,因此,描绘单元U2整体旋动角度Δθz之后的正交坐标系XtYtZt如以虚线所示,成为绕Zt轴倾斜角度Δθz后的正交坐标系。因此,于描绘单元U2未旋动的初始位置状态时,沿着描绘线SL2的光点SP的主扫描方向(Yt方向)与Y方向平行,但于描绘单元U2整体旋动角度Δθz的情形时,沿着旋动后的描绘单元U2的描绘线SL2的光点SP的主扫描方向(Yt方向),相对于Y方向倾斜。又,如图11A、图11B所示,将以于两条光束LBa、LBb的Yt方向的中间位置沿Xt方向延伸的方式设定、且与旋动中心轴AXr正交的线设为中心轴AXt。该中心轴AXt相当于前面的图9、图10中的聚光透镜CD的光轴AXc。进一步地,如图11A、图11B所示,于经反射镜M1反射的两条光束LBa、LBb与中心轴AXt平行地前进的情形时,将前面的图9、图10中所说明的聚光透镜CD改为较小直径的聚光透镜,且个别地设置于两条光束LBa、LBb各自的光路中。In addition, in FIG. 11A, since the orthogonal coordinate system XtYtZt is the orthogonal coordinate system set for the drawing unit U2, the orthogonal coordinate system XtYtZt after the entire rotation angle Δθz of the drawing unit U2 becomes as indicated by the dotted line. An orthogonal coordinate system tilted by an angle Δθz around the Zt axis. Therefore, in the initial position state in which the drawing unit U2 is not rotated, the main scanning direction (Yt direction) of the light spot SP along the drawing line SL2 is parallel to the Y direction, but when the entire drawing unit U2 is rotated by the angle Δθz , the main scanning direction (Yt direction) of the light spot SP along the drawing line SL2 of the rotated drawing unit U2 is inclined with respect to the Y direction. Also, as shown in FIGS. 11A and 11B , a line that is set so as to extend in the Xt direction at an intermediate position in the Yt direction of the two light beams LBa and LBb and is orthogonal to the rotation center axis AXr is set as the center axis AXt. The central axis AXt corresponds to the optical axis AXc of the condenser lens CD in the aforementioned FIGS. 9 and 10 . Further, as shown in FIGS. 11A and 11B , when the two light beams LBa and LBb reflected by the mirror M1 travel in parallel with the central axis AXt, the light beams described in the previous FIGS. 9 and 10 are condensed. The lens CD is changed to a condenser lens with a smaller diameter, and is individually arranged in the respective optical paths of the two light beams LBa, LBb.
于图11A中,以实线所示的反射镜M1,表示描绘单元U2未旋动的初始位置状态、也就是描绘线SL2a、SL2b与Y方向平行的状态时的反射镜M1。又,以实线所示的光束LBa-1、LBb-1,表示朝向初始位置状态时的反射镜M1的入射位置、及由该反射镜M1往Xt轴方向反射的光束LBa、LBb。又,以两点链线所示的反射镜M1’,夸张地表示描绘单元U2旋动角度Δθz的状态时的反射镜M1的配置。进一步地,以两点链线所示的光束LBa-2、LBb-2,表示描绘单元U2旋动角度Δθz的状态时的由反射镜M1’反射的光束LBa、LBb。In FIG. 11A , the mirror M1 indicated by the solid line represents the mirror M1 when the drawing unit U2 is not rotated at the initial position, that is, when the drawing lines SL2a and SL2b are parallel to the Y direction. In addition, the light beams LBa-1 and LBb-1 shown by solid lines indicate the incident position of the mirror M1 in the initial position state, and the light beams LBa and LBb reflected by the mirror M1 in the Xt-axis direction. In addition, the mirror M1' shown by the two-dot chain line is an exaggerated representation of the arrangement of the mirror M1 in the state in which the unit U2 is rotated by the angle Δθz. Furthermore, the light beams LBa-2 and LBb-2 indicated by the two-dotted chain line represent the light beams LBa-2 and LBb reflected by the mirror M1' when the drawing unit U2 is rotated by the angle Δθz.
当描绘单元U2旋动时,于XtYt平面中,由反射镜M1’反射的光束LBa-2、LBb-2的反射方向亦根据描绘单元U2的旋动而旋转。进一步地,光束LBa、LBb射入至反射镜M1的相对位置(尤其是Zt方向的位置)因描绘单元U2的旋动而产生变化,因此,在与中心轴AXt垂直的平面Pv(与YtZt面平行)中,由反射镜M1’反射的光束LBa-2、LBb-2的各中心线,如图11B所示,与中心轴AXt平行,但位置绕中心轴AXt产生变化。When the drawing unit U2 rotates, in the XtYt plane, the reflection directions of the light beams LBa-2 and LBb-2 reflected by the mirror M1' also rotate according to the rotation of the drawing unit U2. Further, the relative positions (especially the positions in the Zt direction) of the light beams LBa and LBb incident on the mirror M1 are changed due to the rotation of the drawing unit U2. In parallel), the respective center lines of the light beams LBa-2 and LBb-2 reflected by the mirror M1' are parallel to the center axis AXt as shown in FIG. 11B, but their positions vary around the center axis AXt.
如图11B所示,于描绘单元U2为初始位置状态时,由反射镜M1反射的光束LBa-1、LBb-1,以往±Yt(Y)方向与中心轴AXt隔开固定距离的方式平行配置。然而,若描绘单元U2旋动角度Δθz,则与此对应地,以中心轴AXt为中心而描绘出圆弧的方式,由反射镜M1反射的光束LBa-2往-Zt方向及+Yt方向移动,由反射镜M1反射的光束LBb-2往+Zt方向及-Yt方向移动。因此,将导致通过反射镜M1之后的各光学构件的两条光束LBa、LBb的各光路与初始位置状态时的光路不同,而无法使光束LBa、LBb射入至多面镜PM的反射面RP的适当位置。As shown in FIG. 11B , when the drawing unit U2 is in the initial position state, the light beams LBa- 1 and LBb- 1 reflected by the mirror M1 are conventionally arranged in parallel with the center axis AXt in the ±Yt (Y) direction at a constant distance from the center axis AXt . However, when the drawing unit U2 is rotated by the angle Δθz, the light beam LBa-2 reflected by the mirror M1 moves in the −Zt direction and the +Yt direction so as to draw an arc with the central axis AXt as the center. , the light beam LBb-2 reflected by the mirror M1 moves to the +Zt direction and the -Yt direction. Therefore, the optical paths of the two light beams LBa and LBb of the optical members after passing through the reflecting mirror M1 are different from those in the initial position state, so that the light beams LBa and LBb cannot be incident on the reflecting surface RP of the polygon mirror PM. appropriate location.
然而,于本第1实施形态中,于反射镜M1之后设置有偏移光学构件SRa、SRb,因此,能够于平面Pv内,在Yt方向与Zt方向上二维地对光束LBa、LBb各自的中心线进行调整。因此,即使是描绘单元U2整体旋动的情形,亦能够于描绘单元U2内的偏移光学构件SRa、SRb以后,将光束LBa、LBb各自的光路修正(调整)为描绘单元U未旋动的初始位置状态时的正确的光路。藉此,能够使光束LBa、LBb射入至多面镜PM的反射面RP的适当位置。However, in the first embodiment, since the offset optical members SRa and SRb are provided after the mirror M1, it is possible to two-dimensionally reflect the respective light beams LBa and LBb in the Yt direction and the Zt direction within the plane Pv. Adjust the center line. Therefore, even when the entire drawing unit U2 is rotated, the optical paths of the light beams LBa and LBb can be corrected (adjusted) after the offset optical members SRa and SRb in the drawing unit U2 so that the drawing unit U does not rotate. Correct optical path in the initial position state. Thereby, the light beams LBa and LBb can be made incident on an appropriate position of the reflection surface RP of the polygon mirror PM.
另外,通过三角反射镜M2与反射镜M3a、M3b,使由反射镜M1反射的光束LBa、LBb的中心线在XtYt面内的Yt方向上的间隔扩大,因此,能够缩短射入至描绘单元U2的反射镜M1的两条光束LBa、LBb的各中心线的间隔,且能够使射入至描绘单元U2(反射镜M1)的光束LBa、LBb靠近旋动中心轴AXr。其结果,即使是描绘单元Ub旋动的情形,亦能够将平面Pv内的伴随该旋动的光束LBa、LBb的各中心线的位置变化量抑制为较小。In addition, by the triangular mirror M2 and the mirrors M3a and M3b, the distance between the center lines of the light beams LBa and LBb reflected by the mirror M1 in the Yt direction in the XtYt plane is widened, so that the incident to the drawing unit U2 can be shortened. The distance between the respective center lines of the two light beams LBa and LBb of the reflecting mirror M1 can make the light beams LBa and LBb incident on the drawing unit U2 (mirror M1 ) close to the rotation center axis AXr. As a result, even when the drawing unit Ub is rotated, the amount of positional change of the respective center lines of the light beams LBa and LBb in the plane Pv accompanying the rotation can be suppressed to be small.
而且,控制装置18能够基于使用对准显微镜AMa(AMa1~AMa4)、AMb(AMb1~AMb4)而检测出的对准标记MK(MK1~MK4)的位置,检测曝光区域W的倾斜(斜度)或歪斜(变形)。关于该曝光区域W的倾斜(斜度)或歪斜,例如存在有因卷绕于旋转筒DR1、DR2而被搬送的基板P的长条方向相对于中心轴AXo1、AXo2倾斜或歪斜,而使曝光区域W倾斜或歪斜的情形。又,即使是卷绕于旋转筒DR1、DR2而被搬送的基板P未倾斜或未歪斜的情形,当形成下层的图案层时,有时会因基板P倾斜(倾倒)或歪斜地被搬送而导致曝光区域W自身歪斜。此外,有时亦会有因在前步骤中对基板P施加的热影响,而导致基板P自身呈线性或非线性地产生变形。Furthermore, the
因此,控制装置18,根据使用对准显微镜AMa(AMa1~AMb4)而检测出的曝光区域W的整体或一部分的倾斜(斜度)或歪斜,使描绘单元U1、U2、U5、U6绕旋动中心轴AXr旋动。又,控制装置18,根据使用对准显微镜AMb(AMb1~AMb4)而检测出的曝光区域W的整体或一部分的倾斜(斜度)或歪斜,使描绘单元U3、U4绕旋动中心轴AXr旋动。此时,控制装置18,亦根据描绘单元U(U1~U6)的旋动角,驱动偏移光学构件SRa、SRb。Therefore, the
具体而言,例如由于卷绕于旋转筒DR1、DR2而被搬送的基板P倾斜(倾倒)或歪斜,因此需要对应于该倾斜(倾倒)、歪斜而使描绘的既定图案亦倾斜或歪斜。又,作为其他例子,当重新将既定图案重叠于下层图案上而进行描绘时,需要对应于下层图案的整体或一部分的倾斜或歪斜而使描绘的既定图案亦倾斜或歪斜。因此,为了使描绘的既定图案倾斜或歪斜,控制装置18使描绘单元U(U1~U6)个别地旋动,从而使描绘线SLa、SLb相对于Y方向倾斜。Specifically, for example, the substrate P conveyed by being wound around the rotary drums DR1 and DR2 inclines (falls) or slants, so the predetermined pattern to be drawn needs to be slanted or slanted in accordance with the inclination (fall) and the slant. As another example, when the predetermined pattern is re-overlaid on the lower layer pattern and drawn, the drawn predetermined pattern needs to be inclined or skewed according to the inclination or skew of the whole or part of the lower layer pattern. Therefore, in order to incline or skew the predetermined pattern to be drawn, the
如此,于第1实施形态中,描绘单元U使用一个多面镜PM而使光束LBa、LBb的光点SPa、SPb沿着描绘线SLa、SLb扫描,以使描绘线SLa、SLb在基板P上位于副扫描方向上的相同位置,且在主扫描方向上隔开的方式,配置第1投射光学系统24与第2投射光学系统26。进一步地,将描绘单元U的旋动中心轴设定于主扫描方向上的两条描绘线SLa、SLb之间的位置,较佳为设定于将主扫描方向上的描绘线SLa、SLb各自的中点位置二等分的位置。As described above, in the first embodiment, the drawing unit U uses one polygon mirror PM to scan the spots SPa and SPb of the light beams LBa and LBb along the drawing lines SLa and SLb so that the drawing lines SLa and SLb are located on the substrate P. The first projection
藉此,即使描绘单元U旋动,亦能够抑制通过描绘单元U扫描光束LBa、LBb的光点SPa、SPb的描绘线SLa、SLb在基板P上的位置偏移增大,且可简单地对描绘线SLa、SLb的斜度进行调整。相反地,于以在主扫描方向上处于相同位置、且在副扫描方向上彼此隔开的方式设置有多条扫描线的日本特开2004-117865号公报中,于使激光扫描装置旋动而对多条扫描线的斜度进行调整的情形时,扫描线会以激光扫描装置的旋动中心位置为中心而描绘出圆弧的方式移动。因此,扫描线越远离旋动中心位置,则由激光扫描装置旋动引起的被照射体上的扫描线的位置偏移越大。亦即,于本第1实施形态中,由于以在副扫描方向上处于相同位置、且在主扫描方向上隔开的方式设定描绘线SLa、SLb,因此能够不使由描绘单元U的旋动引起的基板P上的描绘线SLa、SLb的位置偏移过分地增大。又,由于能够缩短描绘线SL的扫描长度,因此能够稳定地维持描绘超详细图案所需的扫描线的配置精度或光学性能。Thereby, even if the drawing unit U rotates, it is possible to suppress an increase in the positional deviation of the drawing lines SLa and SLb of the light spots SPa and SPb of the light beams LBa and LBb scanned by the drawing unit U on the substrate P, and it is possible to easily The inclinations of the drawing lines SLa and SLb are adjusted. On the contrary, in Japanese Patent Laid-Open No. 2004-117865 A, in which a plurality of scanning lines are provided at the same position in the main scanning direction and spaced apart from each other in the sub-scanning direction, the laser scanning device is rotated to When adjusting the inclination of a plurality of scan lines, the scan lines move so as to draw an arc around the rotational center position of the laser scanning device. Therefore, the farther the scanning line is from the rotation center position, the greater the positional shift of the scanning line on the irradiated object caused by the rotation of the laser scanning device. That is, in the first embodiment, since the drawing lines SLa and SLb are set at the same position in the sub-scanning direction and spaced apart in the main-scanning direction, the rotation of the drawing unit U can be avoided. The positional displacement of the drawing lines SLa and SLb on the substrate P due to the movement increases excessively. In addition, since the scan length of the drawing line SL can be shortened, it is possible to stably maintain the arrangement accuracy and optical performance of the scan line required for drawing an ultra-detailed pattern.
以将描绘线SLa、SLb的各扫描长度设定为相同,并且在主扫描方向上以扫描长度以下的间隔分离设定描绘线SLa、SLb的方式,配置第1投射光学系统24与第2投射光学系统26。藉此,可通过多个描绘单元U,使各描绘单元U的描绘线SLa、SLb在主扫描方向上相接,并且能够抑制基板P上的各描绘单元U的描绘线SLa、SLb的位置偏移增大,且可简单地对描绘线SLa、SLb的斜度进行调整。The first projection
描绘单元U的旋动中心轴AXr,是相对于基板P垂直地通过连接描绘单元U的描绘线SLa、SLb各自的中点的线段的中心点。藉此,能够使伴随描绘单元U的旋动的描绘线SLa、SLb的位置偏移为最小限度,且能够简单地对描绘线SLa、SLb的斜度进行调整。The rotation center axis AXr of the drawing unit U is the center point of a line segment passing through the respective midpoints of the drawing lines SLa and SLb of the drawing unit U perpendicularly with respect to the substrate P. As shown in FIG. Thereby, the positional deviation of the drawing lines SLa and SLb accompanying the rotation of the drawing unit U can be minimized, and the inclinations of the drawing lines SLa and SLb can be easily adjusted.
来自光源装置14的光束LBa、LBb,以相对于旋动中心轴AXr对称的方式而射入至描绘单元U,因此,即使是描绘单元U绕旋动中心轴AXr旋动的情形,亦能够抑制通过描绘单元U内的光束LBa、LBb的各中心线的位置偏移变大。The light beams LBa and LBb from the
描绘单元U于旋动中心轴AXr通过的位置具备反射镜M1,该反射镜M1对射入的光束LBa、LBb进行反射并导引至第1导光光学系统20及第2导光光学系统22。藉此,即使是描绘单元U旋动的情形,由于来自光源装置14的光束LBa、LBb于描绘单元U内首先射入至反射镜M1,因此能够将光束LBa、LBb的光点SPa、SPb投射至描绘线SLa、SLb上。The drawing unit U includes a mirror M1 at a position where the rotation center axis AXr passes, and the mirror M1 reflects the incident light beams LBa and LBb and guides them to the first light guide
第1导光光学系统20具备偏移光学构件SRa,该偏移光学构件SRa使由反射镜M1反射的光束LBa的位置在与光束LBa的前进方向交叉的平面上偏移,第2导光光学系统22具备偏移光学构件SRb,该偏移光学构件SRb使由反射镜M1反射的光束LBb的位置在与光束LBb的前进方向交叉的平面上偏移。藉此,即使是描绘单元U旋动的情形,亦能够使光束LBa、LBb通过描绘单元U内的适当光路而射入至多面镜PM。因此,能够抑制因描绘单元U的旋动而使光点SPa、SPb未照射至基板P的被照射面、或光点SPa、SPb投射至偏离斜度调整后的描绘线SLa、SLb的位置等问题产生。The first light guide
多个描绘单元U,是以使各条描绘线SLa、SLb沿着主扫描方向(基板P的宽度方向)相接(接合)的方式配置。藉此,能够使基板P的宽度方向上的可描绘范围扩大。The plurality of drawing units U are arranged such that the respective drawing lines SLa and SLb are in contact (joined) along the main scanning direction (the width direction of the substrate P). Thereby, the drawable range in the width direction of the board|substrate P can be enlarged.
以使多个描绘单元U中的既定数量的描绘单元U的描绘线SLa、SLb位于旋转筒DR1的外周面所支承的基板P上,且使剩余的描绘单元的描绘线SLa、SLb位于旋转筒DR2的外周面所支承的基板P上的方式,配置多个描绘单元U。藉此,无需将全部的描绘单元U配置于一个旋转筒DR,使描绘单元U的配置自由度提高。另外,亦可设置3个以上的旋转筒DR,对于3个以上的旋转筒DR各自配置一个以上的描绘单元U。The drawing lines SLa and SLb of a predetermined number of drawing units U among the plurality of drawing units U are positioned on the substrate P supported by the outer peripheral surface of the rotating drum DR1, and the drawing lines SLa and SLb of the remaining drawing units are positioned on the rotating drum. In the form of the board|substrate P supported by the outer peripheral surface of DR2, several drawing units U are arrange|positioned. Thereby, it becomes unnecessary to arrange|position all the drawing units U in one rotary drum DR, and the freedom degree of arrangement|positioning of drawing units U improves. In addition, three or more rotating drums DR may be provided, and one or more drawing units U may be arranged for each of the three or more rotating drums DR.
使描绘线SLa、SLb(描绘单元)旋动(倾斜),以使应描绘于基板P的被照射面上的既定图案倾斜。藉此,能够使与基板P的搬送状态或基板P的曝光区域W的形状相对应的描绘的既定图案的形状产生变化。又,当重新将既定图案重叠于基板P的被照射面上所预先形成的下层图案上以进行描绘时,能够基于下层图案的整体或一部分的斜度、或非线性变形的测量结果,使描绘线SLa、SLb旋动(倾斜)。藉此,相对于形成于下层的图案的重叠精度提高。The drawing lines SLa and SLb (drawing means) are rotated (inclined) so that the predetermined pattern to be drawn on the irradiated surface of the substrate P is inclined. Thereby, the shape of the predetermined pattern drawn according to the conveyance state of the board|substrate P or the shape of the exposure area W of the board|substrate P can be changed. In addition, when a predetermined pattern is again superimposed on the lower layer pattern formed in advance on the irradiated surface of the substrate P for drawing, the drawing can be made based on the measurement result of the inclination of the whole or part of the lower layer pattern, or the nonlinear deformation. Lines SLa, SLb swirl (tilt). Thereby, the superimposition accuracy with respect to the pattern formed in the lower layer improves.
另外,将各描绘单元U(U1~U6)的描绘线SLa、SLb配置于副扫描方向上的相同位置,但亦可配置于副扫描方向上的不同位置。总之,描绘线SLa、SLb只要在主扫描方向上彼此隔开即可。即使是该情形,旋动中心轴AXr亦相对于基板P的被照射面垂直地通过设定于描绘线SLa的中点与描绘线SLb的中点之间的点、或连接描绘线SLa与描绘线SLb的各中点的线段上所设定的中心点,因此,能够使伴随描绘单元U的旋动的描绘线SLa、SLb的位置偏移减小。In addition, although the drawing lines SLa and SLb of each drawing unit U ( U1 - U6 ) are arranged at the same position in the sub-scanning direction, they may be arranged at different positions in the sub-scanning direction. In short, the drawing lines SLa and SLb only need to be spaced apart from each other in the main scanning direction. Even in this case, the rotation center axis AXr passes through a point set between the midpoint of the drawing line SLa and the midpoint of the drawing line SLb perpendicular to the irradiated surface of the substrate P, or connects the drawing line SLa and the drawing line Since the center point is set on the line segment of each midpoint of the line SLb, the positional deviation of the drawing lines SLa and SLb accompanying the rotation of the drawing unit U can be reduced.
进一步地,于本第1实施形态中,利用一个多面镜PM进行分别沿着两条描绘线SLa、SLb的光点SPa、SPb的主扫描,因此,如图2所示,即使是与Y方向宽度大的基板P上的曝光区域W相对应地设定12条描绘线SL1a~SL6a、SL1b~SL6b的情形,多面镜PM的数量亦只要一半即6个即可。因此,伴随多面镜PM的高速旋转(例如两万rpm以上)而产生的振动或噪音(风噪音)亦受到抑制。Furthermore, in the first embodiment of the present invention, the main scanning of the light spots SPa and SPb along the two drawing lines SLa and SLb is performed by one polygon mirror PM. Therefore, as shown in FIG. In the case where 12 drawing lines SL1a to SL6a and SL1b to SL6b are set to correspond to the exposure region W on the substrate P having a large width, the number of polygon mirrors PM may be only half, that is, six. Therefore, the vibration and noise (wind noise) which generate|occur|produce accompanying the high-speed rotation (for example, 20,000 rpm or more) of the polygon mirror PM are suppressed.
[第1实施形态的变形例][Variation of the first embodiment]
上述第1实施形态,亦可有如下所述的变形例。The above-mentioned first embodiment may have the following modifications.
(变形例1)图12是从+Zt方向侧观察上述第1实施形态的变形例1中的利用多面镜PM的光束扫描系统时的图,图13是从+Xt方向侧观察图12的光束扫描系统时的图。另外,针对与上述第1实施形态相同的构成标记同一符号且省略其说明,仅对与上述第1实施形态不同的部分进行说明。本变形例1的多面镜PM,亦如图12所示为具有8个反射面RPa~反射面RPh的正八边形,位于夹着旋转轴AXp而对称的位置的两个反射面(例如反射面RPa与反射面RPe、反射面RPc与反射面RPg等)彼此平行。(Modification 1) FIG. 12 is a view of the beam scanning system using the polygon mirror PM in
如图13所示,反射镜M4a将通过光束成形光学系统BFa而往+Xt方向前进的光束LBa,往-Zt方向进行反射。通过反射镜M4a往-Zt方向反射的光束LBa,在通过母线被设定为与Xt轴平行的第1柱面透镜CY1a之后,射入至反射镜M5a。反射镜M5a将射入的光束LBa往+Yt方向进行反射并导引至多面镜PM的第1反射面RPc。如图12所示,多面镜PM将射入的光束LBa往反射镜M5a侧(-Yt方向侧)进行反射并导引至反射镜M6a。如上述第1实施形态中所述,反射镜M6a将射入的光束Lba往-Xt方向进行反射并导引至fθ透镜FTa。同样地,反射镜M4b将通过光束成形光学系统BFb而往+X方向前进的光束LBb,往-Zt方向进行反射。通过反射镜M4b而往-Zt方向反射的光束LBb,在通过母线被设定为与Xt轴平行的第1柱面透镜CY1b之后,射入至反射镜M5b。反射镜M5b将射入的光束LBb往-Yt方向进行反射并导引至多面镜PM的第2反射面RPg。多面镜PM,将射入的光束LBb往反射镜M5b侧(+Yt方向侧)进行反射并导引至反射镜M6b。如上述第1实施形态中所述,反射镜M6b将射入的光束LBb往-Xt方向进行反射并导引至fθ透镜FTb。反射镜M6a、M6b,配置于Zt方向上的相同位置。而且,反射镜M5a配置在较反射镜M6a更靠-Zt方向侧,反射镜M5b配置在较反射镜M6b更靠+Zt方向侧。又,反射镜M5a、M5b与反射镜M6a、M6b设置于Xt方向上的大致相同的位置。也就是,反射镜M5a、M5b、反射镜M6a、M6b沿着Yt方向设置。As shown in FIG. 13 , the mirror M4a reflects the light beam LBa traveling in the +Xt direction through the beam shaping optical system BFa in the −Zt direction. The light beam LBa reflected in the -Zt direction by the mirror M4a passes through the first cylindrical lens CY1a whose generatrix is set to be parallel to the Xt axis, and then enters the mirror M5a. The reflection mirror M5a reflects the incident light beam LBa in the +Yt direction and guides it to the first reflection surface RPc of the polygon mirror PM. As shown in FIG. 12 , the polygon mirror PM reflects the incident light beam LBa toward the reflection mirror M5a (the −Yt direction side), and guides it to the reflection mirror M6a. As described in the above-described first embodiment, the mirror M6a reflects the incident light beam Lba in the −Xt direction and guides it to the fθ lens FTa. Similarly, the mirror M4b reflects the light beam LBb traveling in the +X direction through the beam shaping optical system BFb in the −Zt direction. The light beam LBb reflected in the -Zt direction by the mirror M4b passes through the first cylindrical lens CY1b whose generatrix is set to be parallel to the Xt axis, and then enters the mirror M5b. The reflection mirror M5b reflects the incident light beam LBb in the −Yt direction, and guides it to the second reflection surface RPg of the polygon mirror PM. The polygon mirror PM reflects the incident light beam LBb toward the reflection mirror M5b side (+Yt direction side), and guides it to the reflection mirror M6b. As described in the first embodiment, the mirror M6b reflects the incident light beam LBb in the −Xt direction and guides it to the fθ lens FTb. The mirrors M6a and M6b are arranged at the same position in the Zt direction. Furthermore, the mirror M5a is arranged on the -Zt direction side rather than the mirror M6a, and the mirror M5b is arranged on the +Zt direction side rather than the mirror M6b. In addition, the mirrors M5a and M5b and the mirrors M6a and M6b are provided at substantially the same position in the Xt direction. That is, the mirrors M5a, M5b, and the mirrors M6a, M6b are arranged along the Yt direction.
取代上述第1实施形态的反射镜M4而设置上述反射镜M4a、M4b,该等反射镜M4a、M4b具有与反射镜M4同等的功能。又,取代上述第1实施形态的第1柱面透镜CY1而设置第1柱面透镜CY1a、CY1b,该等第1柱面透镜CY1a、CY1b具有与第1柱面透镜CY1同等的功能。也就是,柱面透镜CY1a、CY1b,在与由多面镜PM产生的扫描方向(旋转方向)正交的非扫描方向(Zt方向)上,使射入的光束LBa、LBb收敛于多面镜PM的反射面RP上。同样地,取代上述第1实施形态的反射镜M5而设置反射镜M5a、M5b,该等反射镜M5a、M5b具有与反射镜M5同等的功能。如此,于第1导光光学系统20与第2导光光学系统22各个中个别地设置有上述第1实施形态的反射镜M4、第1柱面透镜CY1及反射镜M5而成者,成为反射镜M4a、M4b、第1柱面透镜CY1a、CY1b及反射镜M5a、M5b。The above-mentioned mirrors M4a and M4b are provided in place of the mirror M4 of the above-described first embodiment, and these mirrors M4a and M4b have the same function as the mirror M4. Furthermore, the first cylindrical lenses CY1a and CY1b are provided in place of the first cylindrical lens CY1 of the first embodiment, and these first cylindrical lenses CY1a and CY1b have the same functions as the first cylindrical lens CY1. That is, the cylindrical lenses CY1a and CY1b converge the incident light beams LBa and LBb on the polygon mirror PM in the non-scanning direction (Zt direction) orthogonal to the scanning direction (rotation direction) by the polygon mirror PM. on the reflective surface RP. Similarly, mirrors M5a and M5b are provided in place of the mirror M5 in the above-described first embodiment, and these mirrors M5a and M5b have functions equivalent to those of the mirror M5. In this way, the reflection mirror M4, the first cylindrical lens CY1, and the reflection mirror M5 of the first embodiment described above are individually provided in each of the first light guide
另外,XtYt面内的射入至反射镜M4a、M4b的光束LBa、LBb的Yt方向距离,通过图6中所示的三角反射镜M2与反射镜M3a、M3b,而以大于多面镜PM的Yt方向的尺寸(直径)的方式扩大。In addition, the distance in the Yt direction of the light beams LBa and LBb incident on the mirrors M4a and M4b in the XtYt plane is greater than the Yt of the polygon mirror PM through the triangular mirror M2 and the mirrors M3a and M3b shown in FIG. 6 . The direction of the size (diameter) way to expand.
于本变形例1中,如图13所示,以使多面镜PM的旋转轴AXp从与Zt轴平行的状态在Yt方向上倾斜固定角度θy(不满45°)的方式,倾斜配置多面镜PM整体。因此,多面镜PM的各反射面RP中,位于在旋转过程中分别与反射镜M6a、M6b相向的位置的反射面RPc、RPg,相对于Zt轴在Yt方向上倾斜固定角度θy。图12、图13显示此种多面镜PM的反射面RPc、与夹着旋转轴AXp而与反射面RPc相对向的反射面RPg均与Xt轴平行的瞬间的状态。此时,从与旋转轴AXp正交的Xt方向观察,射入至多面镜PM的反射面RPc、RPg的光束LBa、LBb,相对于各反射面RPc、RPg倾斜地以入射角θy射入,因此,能够使通过多面镜PM产生的光束LBa、LBb的反射位置为Zt方向上的相同的高度位置。亦即,能够使反射镜M6a、M6b各自的Zt方向位置相同。进一步地,能够将由多面镜PM反射并朝向反射镜M6a、M6b的光束LBa、LBb的各中心线(前进方向)设定为与XtYt面平行。藉此,能够使第1投射光学系统24及第2投射光学系统26的Zt方向的位置为相同位置,容易将基板P的被照射面上的描绘线SLa、SLb配置于直线上。In this
另外,如图13所示,当构成为使多面镜PM倾斜角度θy,使光束LBa、LBb各自从Yt方向投射至多面镜PM的彼此平行的两个反射面RPc、RPg的各者,且使反射面RPc上的光束LBa的投射位置与反射面RPg上的光束LBb的投射位置的Zt方向高度对齐时,若增大倾斜角度θy,则亦必须增大旋转轴AXp方向上的反射面RPa~反射面RPh的高度尺寸。于本变形例1的情形时,若增大多面镜PM的倾斜角度θy,则虽容易配置反射镜M5a、M5b、M6a、M6b等,但旋转轴AXp方向上的多面镜PM的反射面RPa~反射面RPh的尺寸变大,使多面镜PM的质量增大。因此,于优先考虑减小多面镜PM的质量以实现旋转高速化的情形时,亦可在Zt方向上,使反射面RPc上的光束LBa的投射位置与反射面RPg上的光束LBb的投射位置不同。In addition, as shown in FIG. 13 , when the polygon mirror PM is inclined by the angle θy, the light beams LBa and LBb are projected from the Yt direction to each of the two parallel reflection surfaces RPc and RPg of the polygon mirror PM, and When the projection position of the light beam LBa on the reflection surface RPc and the projection position of the light beam LBb on the reflection surface RPg are highly aligned in the Zt direction, if the inclination angle θy is increased, the reflection surface RPa in the direction of the rotation axis AXp must also be increased. Height dimension of reflecting surface RPh. In the case of this
又,如图13所示,从与旋转轴AXp正交的Xt方向观察,使射入至多面镜PM的有助于描绘的反射面RPc、RPg的光束LBa、LBb,在YtZt面内相对于反射面RPc、RPg倾斜地射入,藉此,能够使光束LBa、LBb的入射方向与反射方向在旋转轴AXp方向或Zt方向上不同。藉此,于从旋转轴AXp方向或Zt方向观察多面镜PM的情形时(图12的状态),能够使各光束LBa、LBb以大致正交的方式射入至有助于描绘的反射面RPc、RPg。亦即,于在XtYt面内进行观察的情形时,能够将由反射镜M5a、M5b反射并朝向多面镜PM的反射面RPc、RPg的光束LBa、LBb的各中心线AXs的延长线,设定为均通过多面镜PM的旋转轴AXp。Also, as shown in FIG. 13 , when viewed from the Xt direction orthogonal to the rotation axis AXp, the light beams LBa and LBb incident on the reflection surfaces RPc and RPg of the polygon mirror PM which contribute to the drawing are made relative to the YtZt plane in the YtZt plane. The reflection surfaces RPc and RPg are incident obliquely, whereby the incident direction and the reflection direction of the light beams LBa and LBb can be made different in the rotation axis AXp direction or the Zt direction. Thereby, when the polygon mirror PM is viewed from the rotation axis AXp direction or the Zt direction (the state of FIG. 12 ), the respective light beams LBa and LBb can be incident on the reflection surface RPc that contributes to the drawing in a substantially orthogonal manner. , RPg. That is, when observing in the XtYt plane, the extension line of each center line AXs of the light beams LBa and LBb reflected by the mirrors M5a and M5b and directed to the reflection surfaces RPc and RPg of the polygon mirror PM can be set as: Both pass through the rotation axis AXp of the polygon mirror PM.
通过如上所述的构成,当于XtYt面内进行观察时,由多面镜PM的有助于描绘的反射面RPc、RPg的各者反射的光束LBa、LBb,以中心线AXs为中心并在固定的角度范围θs内偏向扫描的状态下,被导引至第1投射光学系统24(具体而言为fθ透镜FTa)及第2投射光学系统26(具体而言为fθ透镜FTb)。因此,于从旋转轴AXp方向或Zt方向观察的情形时,能够将连续射入至一个反射面RP(RPc、RPg)的脉冲状的光束LBa、LBb的有效反射角范围(θs)分为以中心线AXs为中心的均等的角度范围(±θs/2),以一次扫描沿着描绘线SLa、SLb的光点SPa、SPb。藉此,以多面镜PM扫描的光束LBa、LBb或光点SPa、SPb的光学性能(像差特性、聚焦特性、光点品质等)或等速性提高,使扫描精度提高。With the above configuration, when viewing in the XtYt plane, the light beams LBa and LBb reflected by the reflecting surfaces RPc and RPg of the polygon mirror PM which contribute to the drawing are fixed at the center line AXs. It is guided to the 1st projection optical system 24 (specifically, fθ lens FTa) and the 2nd projection optical system 26 (specifically, fθ lens FTb) in the state of deflecting scanning within the angular range θs. Therefore, when viewed from the rotation axis AXp direction or the Zt direction, the effective reflection angle range (θs) of the pulsed light beams LBa and LBb continuously incident on one reflection surface RP (RPc, RPg) can be divided into The light spots SPa and SPb along the drawing lines SLa and SLb are scanned once in an equal angular range (±θs/2) centered on the center line AXs. Thereby, the optical performance (aberration characteristics, focusing characteristics, spot quality, etc.) or isokinetic properties of the light beams LBa, LBb or the light spots SPa, SPb scanned by the polygon mirror PM are improved, and the scanning accuracy is improved.
(变形例2)图14是从+Zt方向侧观察上述第1实施形态的变形例2中的利用多面镜PMa的光束扫描系统时的图,图15是从+Xt方向侧观察图14的光束扫描系统时的图。另外,针对与上述第1实施形态的变形例1相同的构成标记相同符号,仅对不同部分进行说明。另外,反射镜M5a、M5b处于Zt方向上的相同位置,且配置在较反射镜M6a、M6b更靠+Zt方向侧。又,反射镜M5a、M5b与反射镜M6a、M6b设置于Xt方向上大致相同的位置。(Modification 2) FIG. 14 is a view of the beam scanning system using the polygon mirror PMa in
于本变形例2中,使具有8个反射面RPa~反射面RPh的多面镜PMa的旋转轴AXp与Zt轴平行,且以相对于旋转轴AXp倾斜角度θy的方式形成多面镜PMa的各反射面RPa~反射面RPh。图14、图15显示此种多面镜PMa的第1反射面RPc、与夹着旋转轴AXp而与反射面RPc相对向的第2反射面RPg均与Xt轴平行的瞬间的状态。而且,如图15所示,从与旋转轴AXp正交的Xt方向观察,若相对于反射面RPc、RPg从斜上方(+Zt方向)投射朝向多面镜PMa的反射面RPc的光束LBa、朝向反射面RPg的光束LBb的各者,则能够将各反射面RPc、RPg上的光束LBa、LBb的反射位置设定为在与XtYt面平行的面内、即Zt方向上相同的高度位置。也就是,能够使Zt方向上的多面镜PMa所反射的光束LBa、LBb的中心线的位置相同。藉此,与上述第1实施形态的变形例1同样地,能够使第1投射光学系统24及第2投射光学系统26的Zt方向的位置为相同位置,而容易将基板P的被照射面上的描绘线SLa、SLb配置于直线上。In this
又,从Xt方向观察,使射入至多面镜PMa的反射面RPa~反射面RPh中的夹着旋转轴AXp而相对向的两个反射面RP(例如RPc与RPg)的各者的光束LBa、LBb,相对于反射面RP在Z方向上倾斜地射入,因此,若于YtZt面内进行观察,则如图15所示,能够使光束LBa、LBb的入射角度方向与反射角度方向于旋转轴AXp方向(Zt方向)隔开角度2θy。藉此,于从旋转轴AXp方向(Zt方向)观察多面镜PMa的情形时,如图14所示,能够使光束LBa、LBb各自的入射方向与反射方向为相同方向。其结果,由多面镜PMa反射的来自反射镜M5a、M5b的光束LBa、LBb射入至反射镜M6a、M6b而不会返回至反射镜M5a、M5b。In addition, when viewed from the Xt direction, the light beam LBa is made incident on each of the two reflecting surfaces RP (for example, RPc and RPg) facing each other with the rotation axis AXp between the reflecting surfaces RPa to RPh of the polygon mirror PMa. , LBb are incident obliquely in the Z direction with respect to the reflection surface RP. Therefore, if observed in the YtZt plane, as shown in FIG. 15 , the incident angle direction and the reflection angle direction of the light beams LBa and LBb can be rotated The axis AXp direction (Zt direction) is separated by an angle 2θy. Thereby, when the polygon mirror PMa is observed from the rotation axis AXp direction (Zt direction), as shown in FIG. As a result, the light beams LBa and LBb from the mirrors M5a and M5b reflected by the polygon mirror PMa are incident on the mirrors M6a and M6b and do not return to the mirrors M5a and M5b.
本变形例2亦与前面的图12的变形例1同样地,由多面镜PMa的有助于描绘的反射面RPc、RPg的各者反射的光束LBa、LBb,以中心线AXs为中心并在固定的角度范围θs内偏向扫描的状态下,导引至第1投射光学系统24(具体而言为fθ透镜FTa)及第2投射光学系统26(具体而言为fθ透镜FTb)。因此,能够将连续射入至一个反射面RP(RPc、RPg)的脉冲状的光束LBa、LBb的有效反射角范围(θs)分为以中心线AXs为中心的均等的角度范围(±θs/2),以一次扫描沿着描绘线SLa、SLb的光点。藉此,以多面镜PMa扫描的光束LBa、LBb或光点SPa、SPb的光学性能(像差特性、聚焦特性、光点品质等)或等速性提高,使扫描精度提高。In the
(变形例3)于上述第1实施形态的变形例1中,使多面镜PM的旋转轴AXp相对于Zt轴在Yz方向上倾斜角度θy,于上述变形例2中,使多面镜PMa的旋转轴AXp与Zt轴平行,且以相对于Zt轴倾斜角度θy的方式形成多面镜PMa的各反射面RPa~反射面RPh。但是,多面镜PM的配置或各反射面RP(RPa~RPh)的构成并不限定于上述变形例1、变形例2。例如,亦可使用如上述第1实施形态般的构成的多面镜PM,使光束LB相对于与各反射面RP(与Zt轴及旋转轴AXp平行)垂直的面(与XtYt面平行)从斜上方(或下方)射入。藉此,于从多面镜PM的旋转轴AXp方向观察多面镜PM的情形时,在各反射面RP以光束LBa、LBb垂直射入的方式配置的状态下,能够使光束LBa、LBb的入射方向与反射方向相同,且能够使光束LBa、LBb的入射方向与反射方向在旋转轴AXp(Zt轴)方向错开。因此,多面镜PM能够使由两个反射面RP的各者反射的光束LBa、LBb,以中心线AXs为中心并在固定的角度范围θs(以中心线AXs为中心的角度±θs/2的分配)内偏向,并将其导引至第1投射光学系统24(具体而言为fθ透镜FTa)及第2投射光学系统26(具体而言为fθ透镜FTb)。如此,即使是变形例3的情形,亦与上述第1实施形态的变形例1、变形例2同样地,以多面镜PM扫描的光束LBa、LBb或光点SPa、SPb的光学性能(像差特性、聚焦特性、光点品质等)或等速性提高,使扫描精度提高。(Modification 3) In the
(变形例4)如图16A、图16B所示,亦可使用偏振光束分光器PBS(PBSa、PBSb)作为其他构成,该其他构成使用正八边形的多面镜PM,且如前面的变形例1~变形例3的各者般,使射入至有助于描绘的多面镜PM的反射面RP的光束LBa、LBb的入射方向与其反射方向,于在XtYt面内进行观察时为相同方向,上述正八边形的多面镜PM如上述变形例3般,旋转轴AXp与Zt轴平行,且各反射面RPa~反射面RPh亦与旋转轴AXp平行。图16A是从+Zt方向侧观察上述第1实施形态的变形例4中的利用多面镜PM的光束扫描系统时的图,图16B是从-Xt方向侧观察图16A的光束扫描系统时的图。另外,对与前面的第1实施形态、变形例1~变形例3的各者中所说明的构件相同的构件标记相同符号,仅对不同部分进行说明。(Modification 4) As shown in FIGS. 16A and 16B , polarizing beam splitters PBS (PBSa, PBSb) may also be used as another configuration using a regular octagonal polygon mirror PM, as in the
如图16A、图16B所示,于本变形例4中,在多面镜PM与反射镜M6a之间,配置光束的入射出射面与XtYt面、XtZt面的各者平行的长方体状的偏振光束分光器PBSa,在多面镜PM与反射镜M6b之间,配置光束的入射出射面与XtYt面、XtZt面的各者平行的长方体状的偏振光束分光器PBSb。偏振光束分光器PBSa、PBSb各自的偏振光分离面,设定为相对于XtYt面与XtZt面均倾斜45°。进一步地,于偏振光束分光器PBSa与多面镜PM之间设置1/4波长板QPa,于偏振光束分光器PBSb与多面镜PM之间设置1/4波长板QPb。As shown in FIGS. 16A and 16B , in this modification 4, between the polygon mirror PM and the reflecting mirror M6a, a rectangular parallelepiped-shaped polarized beam splitting with the incident and exit plane of the light beam parallel to each of the XtYt plane and the XtZt plane is arranged. In the device PBSa, between the polygon mirror PM and the reflecting mirror M6b, a rectangular parallelepiped-shaped polarizing beam splitter PBSb in which the incident and exit surfaces of the light beams are parallel to the XtYt plane and the XtZt plane is arranged. The polarization splitting surfaces of the polarization beam splitters PBSa and PBSb are set to be inclined by 45° with respect to both the XtYt plane and the XtZt plane. Further, a quarter wavelength plate QPa is arranged between the polarization beam splitter PBSa and the polygon mirror PM, and a quarter wavelength plate QPb is arranged between the polarization beam beam splitter PBSb and the polygon mirror PM.
于以上构成中,利用光学元件(声光调变元件)AOMa(参照图5、图7)而受到调变后的光束LBa,如图16B所示,在通过母线与Xt轴平行的第1柱面透镜CY1a而于Yt方向上收敛的状态下,与Zt轴平行地从+Zt方向侧射入至偏振光束分光器PBSa。使光束LBa成为直线S偏振光之后,光束LBa大部分由偏振光束分光器PBSa的偏振光分离面反射,通过1/4波长板QPa而成为圆偏振光,并朝向多面镜PM。当多面镜PM的旋转角度位置,例如如图16A所示,处于从有助于光束LBa的描绘的一个反射面PRc与XtZt面平行的状态起的角度±θs/2的范围内时,通过1/4波长板QPa的光束LBa由反射面PRc反射,再次通过1/4波长板QPa而成为直线P偏振光,且返回至偏振光束分光器PBSa。因此,由反射面PRc反射的光束LBa的大部分,通过偏振光束分光器PBSa的偏振光分离面而朝向反射镜M6a。In the above configuration, the light beam LBa modulated by the optical element (acousto-optic modulation element) AOMa (see FIGS. 5 and 7 ) passes through the first column parallel to the Xt axis as shown in FIG. 16B . The surface lens CY1a is incident on the polarization beam splitter PBSa from the +Zt direction side parallel to the Zt axis in a state where the surface lens CY1a converges in the Yt direction. After the light beam LBa is linearly S-polarized, most of the light beam LBa is reflected by the polarization splitting surface of the polarizing beam splitter PBSa, passes through the quarter-wave plate QPa, becomes circularly polarized, and goes toward the polygon mirror PM. When the rotational angle position of the polygon mirror PM is within the range of the angle ±θs/2 from the state where the one reflecting surface PRc that contributes to the drawing of the light beam LBa is parallel to the XtZt plane, as shown in FIG. 16A , passing 1 The light beam LBa of the /4-wavelength plate QPa is reflected by the reflection surface PRc, passes through the quarter-wavelength plate QPa again, becomes linear P-polarized light, and returns to the polarization beam splitter PBSa. Therefore, most of the light beam LBa reflected by the reflection surface PRc goes toward the reflection mirror M6a through the polarization separation surface of the polarization beam splitter PBSa.
同样地,利用光学元件(声光调变元件)AOMb(参照图5、图7)而受到调变后的光束LBb,如图16B所示,在通过母线与Xt轴平行的第1柱面透镜CY1b而于Yt方向上收敛的状态下,与Zt轴平行地从+Zt方向侧射入至偏振光束分光器PBSb。使光束LBb成为直线S偏振光之后,光束LBb大部分由偏振光束分光器PBSb的偏振光分离面反射,通过1/4波长板QPb而成为圆偏振光,并朝向多面镜PM。当多面镜PM的旋转角度位置如图16A所示,处于从有助于光束LBb的描绘的一个反射面PRg与XtZt面平行的状态起的角度±θs/2的范围内时,通过1/4波长板QPb的光束LBb由反射面PRg反射,再次通过1/4波长板QPb而成为直线P偏振光,并返回至偏振光束分光器PBSb。因此,由反射面PRg反射的光束LBb的大部分,通过偏振光束分光器PBSb的偏振光分离面而朝向反射镜M6b。Similarly, the light beam LBb modulated by the optical element (acousto-optic modulation element) AOMb (see FIGS. 5 and 7 ) passes through the first cylindrical lens parallel to the Xt axis as shown in FIG. 16B . In a state where CY1b converges in the Yt direction, it is incident on the polarization beam splitter PBSb from the +Zt direction side in parallel with the Zt axis. After the light beam LBb is linearly S-polarized, most of the light beam LBb is reflected by the polarization splitting surface of the polarization beam splitter PBSb, passes through the quarter-wave plate QPb, becomes circularly polarized, and goes toward the polygon mirror PM. As shown in FIG. 16A , when the rotational angle position of the polygon mirror PM is within the range of the angle ±θs/2 from the state in which one reflecting surface PRg contributing to the drawing of the light beam LBb is parallel to the XtZt plane, 1/4 The light beam LBb of the wavelength plate QPb is reflected by the reflection surface PRg, passes through the quarter wavelength plate QPb again, becomes linear P-polarized light, and returns to the polarization beam splitter PBSb. Therefore, most of the light beam LBb reflected by the reflection surface PRg goes toward the reflection mirror M6b through the polarization separation surface of the polarization beam splitter PBSb.
通过如上所述的构成,由反射镜M6a反射的光束LBa、由反射镜M6b反射的光束LBb各自在与XtYt面平行的面内,于角度范围θs内扫描。又,以如下方式配置:反射镜M6a之后所配置的第1投射光学系统24(具体而言为fθ透镜FTa)的光轴AXfa的延长线,通过反射镜M6a弯折90°而与多面镜PM的旋转轴AXp交叉,反射镜M6b之后所配置的第2投射光学系统26(具体而言为fθ透镜FTb)的光轴AXfb的延长线,通过反射镜M6b弯折90°而与多面镜PM的旋转轴AXp交叉。因此,于本变形例4中,多面镜PM能够使由两个反射面(例如RPc与RPg)的各者反射的光束LBa、LBb,以光轴AXfa、AXfb为中心并在固定的角度范围θs(以光轴AXfa、AXfb为中心的角度±θs/2的分配)内偏向,并将其导引至第1投射光学系统24(fθ透镜FTa)及第2投射光学系统26(fθ透镜FTb)。如此,即使是变形例4的情形,以多面镜PM扫描的光束LBa、LBb或光点SPa、SPb的光学性能(像差特性、聚焦特性、光点品质等)或等速性提高,使扫描精度提高。又,与前面的第1实施形态及其变形例1~变形例3同样地,于本变形例4中,通过一个多面镜PM的两条光束LBa、LBb各自的偏向扫描所生成的描绘线SLa、SLb,亦能够设定为如下长度例如30mm~80mm左右,该长度为能够以与应描绘的图案的微细度(最小线宽)或光点SPa、SPb的有效尺寸(直径)相对应的精度而保持直线性的长度。With the above-described configuration, the light beam LBa reflected by the mirror M6a and the light beam LBb reflected by the mirror M6b are each scanned within the angle range θs in a plane parallel to the XtYt plane. Moreover, it is arranged so that the extension line of the optical axis AXfa of the first projection optical system 24 (specifically, the fθ lens FTa) arranged after the mirror M6a is bent by 90° by the mirror M6a to be connected with the polygon mirror PM. The rotation axis AXp of the 2nd projection optical system 26 (specifically, the fθ lens FTb) arranged after the reflection mirror M6b intersects with the optical axis AXfb of the extension line, which is bent by 90° by the reflection mirror M6b and is connected with the polygon mirror PM. The axis of rotation AXp crosses. Therefore, in this modification 4, the polygon mirror PM can make the light beams LBa and LBb reflected by each of the two reflecting surfaces (for example, RPc and RPg) fall within a fixed angular range θs centered on the optical axes AXfa and AXfb (distribution of angles ±θs/2 centered on the optical axes AXfa, AXfb) is deflected inward, and is guided to the first projection optical system 24 (fθ lens FTa) and the second projection optical system 26 (fθ lens FTb) . In this way, even in the case of Modification 4, the optical performance (aberration characteristics, focusing characteristics, spot quality, etc.) or isokinetic properties of the light beams LBa, LBb or the light spots SPa, SPb scanned by the polygon mirror PM are improved, and the scanning is improved. Accuracy improved. Also, in the present modification 4, the drawing line SLa generated by the deflection scanning of the two light beams LBa and LBb of the one polygon mirror PM is similar to the above-mentioned first embodiment and its modification examples 1 to 3. , SLb can also be set to a length of, for example, about 30 mm to 80 mm, and the length can be set to a precision corresponding to the fineness (minimum line width) of the pattern to be drawn or the effective size (diameter) of the light spots SPa and SPb while maintaining a linear length.
另外,于以上的变形例4中,以多面镜PM偏向扫描的光束LBa、LBb,如图16A所示,在与描绘线SLa、SLb的长度相对应的有效角度范围θs内,射入至偏振光束分光器PBSa、PBSb。因此,偏振光束分光器PBSa、PBSb的P偏振光与S偏振光的分离程度即消光比,被设定为最大达到该角度范围θs以上。作为如上所述的偏振光束分光器PBSa、PBSb的一例,于偏振光分离面反复积层有氧化铪(HfO2)膜与二氧化硅(SiO2)膜而成的偏振光束分光器已揭示于国际公开第2014/073535号公报。In addition, in the above modification 4, the light beams LBa and LBb deflectedly scanned by the polygon mirror PM, as shown in FIG. 16A , are incident on the polarization within the effective angle range θs corresponding to the lengths of the drawing lines SLa and SLb. Beam splitters PBSa, PBSb. Therefore, the degree of separation of the P-polarized light and the S-polarized light of the polarization beam splitters PBSa and PBSb, that is, the extinction ratio is set to be the maximum angle range θs or more. As an example of the above-described polarizing beam splitters PBSa and PBSb, a polarizing beam splitter in which a hafnium oxide (HfO2) film and a silicon dioxide (SiO2) film are laminated on a polarized light separation surface has been disclosed in International Publication Gazette No. 2014/073535.
[第2实施形态][Second Embodiment]
图17是显示第2实施形态中的描绘单元Ua的一部分的构成的图。各描绘单元Ua具有相同构成,因此,于本第2实施形态中,亦以沿着描绘线SL2a、SL2b上扫描光点SPa、SPb的描绘单元Ua2为例进行说明。另外,针对与上述第1实施形态相同的构成标记相同符号。又,仅对与上述第1实施形态不同的部分进行说明。FIG. 17 is a diagram showing the configuration of a part of the drawing unit Ua in the second embodiment. Since each drawing unit Ua has the same configuration, in the second embodiment, the drawing unit Ua2 that scans the light spots SPa and SPb along the drawing lines SL2a and SL2b is also described as an example. In addition, the same code|symbol is attached|subjected to the same structure as the said 1st Embodiment. In addition, only the part different from the said 1st Embodiment is demonstrated.
于第2实施形态中,多面镜PM以使旋转轴AXp沿着Xt轴方向延伸的方式设置,fθ透镜FTa、FTb以使其光轴AXfa、AXfb沿着Zt轴方向延伸的方式设置。往-Zt轴方向前进的光束LBa、LBb射入至该多面镜PM的8个反射面RP中的于YtZt面内彼此形成90°夹角的两个反射面RP(图17中为反射面RPb、RPh)。多面镜PM的第1反射面RP(此处为RPh),将从第1方向射入的光束LBa往-Yt方向侧进行反射并导引至反射镜M6a。由反射镜M6a反射的光束Lba往-Zt方向前进,在通过fθ透镜FTa及柱面透镜CY2a之后,射入至基板P。通过该fθ透镜FTa及柱面透镜CY2a,射入至基板P的光束LBa于基板P的被照射面上成为光点SPa。又,多面镜PM的第2反射面RP(此处为RPb),将从与第1方向不同的第2方向射入的光束LBb往+Yt方向侧进行反射并导引至反射镜M6b。由反射镜M6b反射的光束LBb往-Zt方向前进,在通过fθ透镜FTb及柱面透镜CY2b之后,射入至基板P。通过该fθ透镜FTb及柱面透镜CY2b,射入至基板P的光束LBb于基板P的被照射面上成为光点SPb。投射至基板P的被照射面上的光点SPa、SPb,通过多面镜PM的旋转而于描绘线SL2a、SL2b上等速扫描。In the second embodiment, the polygon mirror PM is provided so that the rotation axis AXp extends in the Xt axis direction, and the fθ lenses FTa and FTb are provided so that the optical axes AXfa and AXfb extend in the Zt axis direction. The light beams LBa and LBb advancing in the -Zt axis direction are incident on two reflecting surfaces RP (reflection surfaces RPb in FIG. 17 , which form an angle of 90° with each other in the YtZt plane among the eight reflecting surfaces RP of the polygon mirror PM). , RPh). The first reflection surface RP (here, RPh) of the polygon mirror PM reflects the light beam LBa incident from the first direction toward the −Yt direction side, and guides it to the reflection mirror M6a. The light beam Lba reflected by the mirror M6a advances in the −Zt direction, passes through the fθ lens FTa and the cylindrical lens CY2a, and then enters the substrate P. Through the fθ lens FTa and the cylindrical lens CY2a, the light beam LBa incident on the substrate P becomes a light spot SPa on the irradiated surface of the substrate P. As shown in FIG. In addition, the second reflecting surface RP (here, RPb) of the polygon mirror PM reflects the light beam LBb incident from the second direction different from the first direction toward the +Yt direction side, and guides it to the reflecting mirror M6b. The light beam LBb reflected by the mirror M6b advances in the −Zt direction, passes through the fθ lens FTb and the cylindrical lens CY2b, and then enters the substrate P. Through the fθ lens FTb and the cylindrical lens CY2b, the light beam LBb incident on the substrate P becomes a light spot SPb on the irradiated surface of the substrate P. As shown in FIG. The light spots SPa and SPb projected on the irradiated surface of the substrate P are scanned at the same speed on the drawing lines SL2a and SL2b by the rotation of the polygon mirror PM.
如此,以旋转轴AXp沿着Xt轴方向延伸的方式设置多面镜PM,且以其光轴AXfa、AXfb沿着Zt轴方向延伸的方式设置fθ透镜FTa、FTb,因此,无需如上述第1实施形态般设置反射镜M7a、M7b,该反射镜M7a、M7b将通过fθ透镜FTa、FTb的往-Xt方向前进的光束LBa、LBb往-Z方向进行反射。此种构成亦能够获得与上述第1实施形态相同的效果。In this way, since the polygon mirror PM is provided so that the rotation axis AXp extends in the Xt axis direction, and the fθ lenses FTa and FTb are provided so that the optical axes AXfa and AXfb thereof extend in the Zt axis direction, there is no need for the above-described first embodiment. Reflecting mirrors M7a and M7b are provided in the same form, and the mirrors M7a and M7b reflect the light beams LBa and LBb traveling in the -Xt direction through the fθ lenses FTa and FTb in the -Z direction. Even in this configuration, the same effects as those of the first embodiment described above can be obtained.
另外,于本第2实施形态中,反射镜M6a、fθ透镜FTa及柱面透镜CY2a作为第1投射光学系统24a而发挥功能,反射镜M6b、fθ透镜FTb及柱面透镜CY2b作为第2投射光学系统26a而发挥功能。本第2实施形态的描绘单元Ua亦可绕旋动中心轴AXr旋动,旋动中心轴AXr通过连接描绘线SL2a的中点与描绘线SL2b的中点的线段的中心点,且相对于基板P的被照射面垂直地通过。In addition, in the second embodiment, the reflecting mirror M6a, the fθ lens FTa and the cylindrical lens CY2a function as the first projection
又,于本第2实施形态中,虽无特别图示,但取代上述第1实施形态的第1导光光学系统20及第2导光光学系统22,以使来自光源装置14的光束LBa、LBb往-Z方向前进并射入至多面镜PM的方式,配置将光束LBa、LBb导引至多面镜PM的第1导光光学系统及第2导光光学系统。In addition, in the second embodiment, although not shown in the drawings, the first light guide
如上述第1实施形态的变形例3中所述,使光束LB相对于与反射面RP的旋转方向交叉的方向(多面镜PM的旋转轴AXp延伸的方向)倾斜地射入至反射面RP,藉此,亦能够使光束LBa、LBb的入射方向与反射方向在旋转轴AXp方向错开。因此,能够获得与上述第1实施形态的变形例3相同的效果。As described in Modification 3 of the first embodiment, the light beam LB is incident on the reflection surface RP obliquely with respect to the direction intersecting the rotation direction of the reflection surface RP (the direction in which the rotation axis AXp of the polygon mirror PM extends), Thereby, the incident direction and the reflection direction of the light beams LBa and LBb can also be shifted in the direction of the rotation axis AXp. Therefore, the same effects as those of Modification 3 of the first embodiment described above can be obtained.
又,亦可如上述第1实施形态的变形例1中所述,在从与旋转轴AXp正交的方向观察多面镜PM的情形时,使多面镜PM的旋转轴AXp相对于Xt方向倾斜。又,亦可使用上述第1实施形态的变形例2中所说明的多面镜PMa。亦即,亦可使图17中的多面镜PM的旋转轴AXp与Xt轴平行,且以从与旋转轴AXp平行的状态如图15所示般倾斜角度θy的方式,形成多面镜PM的各反射面RP(RPa~RPh)。藉此,从与旋转轴AXp正交的方向观察,通过使射入至多面镜PM的各反射面RP(RPa~RPh)的光束LBa、LBb相对于各反射面RP倾斜地射入,而能够获得与上述第1实施形态的变形例1、变形例2相同的效果。Also, as described in
[第3实施形态][third embodiment]
图18是从-Yt(-Y)方向侧观察的第3实施形态的描绘单元Ub的构成图,图19是从+Xt方向侧观察自多面镜PMb朝向+Zt侧的描绘单元Ub的构成的图,图20是从+Zt方向侧观察自多面镜PMb朝向-Zt方向侧的描绘单元Ub的构成的图。另外,针对与上述第1实施形态相同的构成标记相同符号。又,仅对与上述第1实施形态不同的部分进行说明。18 is a configuration diagram of the drawing unit Ub according to the third embodiment viewed from the -Yt (-Y) direction side, and FIG. 19 is a configuration diagram of the drawing unit Ub from the polygon mirror PMb to the +Zt side viewed from the +Xt direction side FIG. 20 is a diagram showing the configuration of the drawing unit Ub from the polygon mirror PMb toward the −Zt direction side as viewed from the +Zt direction side. In addition, the same code|symbol is attached|subjected to the same structure as the said 1st Embodiment. In addition, only the part different from the said 1st Embodiment is demonstrated.
如图19所示,描绘单元Ub具备棱线与Xt轴平行的三角反射镜(直角镜)M10、反射镜M11a、M11b、偏移光学构件SRa、SRb、母线与Xt轴平行的柱面透镜CY1a、CY1b、8个反射面RP的多面镜PMb、反射镜M12a、M12b、反射镜M13a、M13b、反射镜M14a、M14b、fθ透镜FTa、FTb、反射镜M15a、M15b、及母线与Yt轴平行的柱面透镜CY2a、CY2b的光学系统。对于关于两条光束LBa、LBb成对地设置的光学系统,在参照符号的后加注a、b。As shown in FIG. 19 , the drawing unit Ub includes a triangular mirror (right-angle mirror) M10 whose ridge line is parallel to the Xt axis, mirrors M11a, M11b, offset optical members SRa, SRb, and a cylindrical lens CY1a whose generatrix is parallel to the Xt axis , CY1b, polygon mirror PMb with 8 reflecting surfaces RP, mirrors M12a, M12b, mirrors M13a, M13b, mirrors M14a, M14b, fθ lenses FTa, FTb, mirrors M15a, M15b, and the busbar parallel to the Yt axis Optical system of cylindrical lenses CY2a, CY2b. For an optical system in which the two light beams LBa, LBb are arranged in pairs, a, b are added after the reference symbols.
如图19所示,来自光源装置14的两条光束LBa、LBb(均为平行光束),夹着旋动中心轴AXr而平行地排列并往-Zt方向前进,射入至夹着描绘单元Ub的三角反射镜M10的棱线的不同的反射面M10a、M10b。该光束LBa、LBb以相对于与Zt轴平行的旋动中心轴AXr在Yt方向上对称的方式,射入至描绘单元Ub的三角反射镜M10的各反射面M10a、M10b。三角反射镜M10的反射面M10a,将光束LBa往-Yt方向进行反射并导引至反射镜M11a,三角反射镜M10的反射面M10b,将光束LBb往+Yt方向进行反射并导引至反射镜M11b。由反射镜M11a反射的光束Lba往-Zt方向前进,在通过偏移光学构件SRa及柱面透镜CY1a之后,射入至多面镜PMb的反射面RP(例如反射面RPa)。由反射镜M11b反射的光束LBb,往-Zt方向前进,在通过偏移光学构件SRb及柱面透镜CY1b之后,射入至多面镜PMb的反射面RP(例如反射面RPe)。多面镜PMb的反射面RPa与反射面RPe,位于夹着多面镜PMb的旋转轴AXp而对称的位置。As shown in FIG. 19 , the two light beams LBa and LBb (both are parallel light beams) from the
于本第3实施形态中,如图20所示,多面镜PMb的旋转轴AXp设定为与旋动中心轴AXr同轴。利用三角反射镜M10及反射镜M11a、M11b(参照图19),使射入至多面镜PMb的光束LBa、LBb的各中心线之间的Yt方向距离扩大。藉此,能够缩短射入至描绘单元Ub的光束LBa、LBb的光轴间的距离,且能够使射入至描绘单元Ub(三角反射镜M10)的光束LBa、LBb靠近旋动中心轴AXr。其结果,即使是描绘单元Ub整体旋动的情形,亦能够抑制伴随该旋动的光束LBa、LBb的各中心线的位置于描绘单元Ub内大幅度地产生变化。伴随描绘单元Ub的旋动的光束LBa、LBb的各中心线的位置变化,通过与第1实施形态同样地发挥功能的偏移光学构件SRa、SRb修正。In the third embodiment, as shown in FIG. 20 , the rotation axis AXp of the polygon mirror PMb is set to be coaxial with the rotation center axis AXr. The triangular mirror M10 and the mirrors M11a and M11b (see FIG. 19 ) widen the distance in the Yt direction between the respective center lines of the light beams LBa and LBb incident on the polygon mirror PMb. Thereby, the distance between the optical axes of the light beams LBa and LBb incident on the drawing unit Ub can be shortened, and the light beams LBa and LBb incident on the drawing unit Ub (triangular mirror M10 ) can be brought closer to the rotation center axis AXr. As a result, even when the entire drawing unit Ub rotates, the position of the respective center lines of the light beams LBa and LBb accompanying the rotation can be suppressed from greatly changing within the drawing unit Ub. The positional change of the respective center lines of the light beams LBa and LBb accompanying the rotation of the drawing unit Ub is corrected by the offset optical members SRa and SRb which function similarly to the first embodiment.
另外,三角反射镜M10的反射面M10a、反射镜M11a、偏移光学构件SRa及柱面透镜CY1a作为将光束LBa朝向多面镜PMb的第1反射面RP(RPa)导引的第1导光光学系统20b而发挥功能。又,三角反射镜M10的反射面M10b、反射镜M11b、偏移光学构件SRb及柱面透镜CY1b作为将光束LBb朝向多面镜PMb的与第1反射面不同的第2反射面RP(RPe)导引的第2导光光学系统22b而发挥功能。另外,三角反射镜M10的各反射面M10a、M10b,亦可为个别地设置于第1导光光学系统20b与第2导光光学系统22b的平面镜。另外,柱面透镜CY1a(CY1b亦相同)具有仅在Yt方向上使作为平行光束射入的光束LBa(LBb)收敛的折射能力,因此,沿着Xt方向呈狭缝状延伸的光点投射至多面镜PMb的反射面RPa(反射面RPe)上。In addition, the reflection surface M10a of the triangular mirror M10, the reflection mirror M11a, the shift optical member SRa, and the cylindrical lens CY1a serve as the first light guide optics for guiding the light beam LBa toward the first reflection surface RP (RPa) of the polygon mirror PMb The
若于XtYt面内进行观察,本第3实施形态的多面镜PMb如图20所示,外形呈正八边形,形成于其周围的8个反射面RPa~反射面RPh(图19图示有RPa~RPe)各自以相对于旋转轴AXp(旋动中心轴AXr)倾斜45度的方式形成。亦即,多面镜PMb成为如沿着中心线方向以适当厚度对正八角锥体进行切割而成的形状,该正八角锥体的底面为正八边形且8个侧面各自相对于中心线倾斜45度。因此,多面镜PMb的各反射面(RPa~RPh),将往-Zt方向前进的光束Lba往-Yt方向侧呈直角地进行反射并导引至反射镜M12a,且将往-Zt方向前进的光束LBb往+Yt方向侧呈直角地进行反射并导引至反射镜M12b。因此,如上述第1实施形态的变形例2般,多面镜PMb能够以各中心线AXs(与两个fθ透镜FTa、FTb的各光轴AXfa、AXfb同轴)为中心,在固定的角度范围θs内,对由8个反射面RPa~反射面RPh中的例如反射面RPa、RPe反射的光束LBa、LBb进行反射。藉此,通过多面镜PMb的光束LBa、LBb的光点SPa、SPb的光学性能、扫描直线性、等速性提高,使扫描精度(描绘精度)提高。When observed in the XtYt plane, as shown in FIG. 20 , the polygon mirror PMb of the third embodiment has a regular octagon shape, and eight reflective surfaces RPa to RPh are formed around it (in FIG. 19 , RPa is shown in the figure). -RPe) are each formed so as to be inclined by 45 degrees with respect to the rotation axis AXp (rotation center axis AXr). That is, the polygon mirror PMb has a shape obtained by cutting a regular octagonal pyramid with an appropriate thickness along the direction of the center line, the bottom surface of which is a regular octagon, and each of the eight side surfaces is inclined by 45° with respect to the center line. Spend. Therefore, the respective reflecting surfaces (RPa to RPh) of the polygon mirror PMb reflect the light beam Lba traveling in the -Zt direction at right angles to the -Yt direction side, guide it to the reflecting mirror M12a, and reflect the light beam Lba traveling in the -Zt direction at a right angle. The light beam LBb is reflected at right angles to the +Yt direction side and guided to the mirror M12b. Therefore, as in
如图18、图20所示,通过反射镜M12a而往-Xt方向反射的来自多面镜PMb(例如反射面RPa)的光束LBa,经由反射镜M13a、M14a而被导引至fθ透镜FTa。同样地,通过反射镜M12b而往+Xt方向反射的来自多面镜PMb(例如反射面RPe)的光束LBb,经由反射镜M13b、M14b而被导引至fθ透镜FTb。反射镜M13a于弯折位置p13a将从反射镜M12a往-Xt方向前进的光束LBa往-Zt方向反射,且反射镜M14a于弯折位置p14a将来自反射镜M13a的光束LBa往+Xt方向反射并导引至fθ透镜FTa。反射镜M13b于弯折位置p13b将从反射镜M12b往+Xt方向前进的光束LBb往-Zt方向反射,且反射镜M14b于弯折位置p14b将来自反射镜M13a的光束LBb往-Xt方向反射并导引至fθ透镜FTb。另外,虽于图20中省略图示,但通过反射镜M12a、M13a、M14a射入至fθ透镜FTa的光束Lba,通过柱面透镜CY1a的作用,若于XtYt面内观察时,成为大致平行的光束,若于XtZt面内观察时,则如图18所示般成为发散光束。As shown in FIGS. 18 and 20 , the light beam LBa from the polygon mirror PMb (eg, reflecting surface RPa) reflected in the −Xt direction by the mirror M12a is guided to the fθ lens FTa via the mirrors M13a and M14a. Similarly, the light beam LBb from the polygon mirror PMb (for example, the reflection surface RPe) reflected in the +Xt direction by the mirror M12b is guided to the fθ lens FTb via the mirrors M13b and M14b. The reflection mirror M13a reflects the light beam LBa from the reflection mirror M12a in the -Xt direction at the bending position p13a in the -Zt direction, and the reflection mirror M14a reflects the light beam LBa from the reflection mirror M13a in the +Xt direction at the bending position p14a. Lead to the fθ lens FTa. The reflection mirror M13b reflects the light beam LBb from the reflection mirror M12b in the +Xt direction at the bending position p13b in the -Zt direction, and the reflection mirror M14b reflects the light beam LBb from the reflection mirror M13a in the -Xt direction at the bending position p14b. Lead to fθ lens FTb. 20, the light beam Lba incident on the fθ lens FTa through the mirrors M12a, M13a, and M14a becomes substantially parallel when viewed in the XtYt plane by the action of the cylindrical lens CY1a. When the light beam is observed in the XtZt plane, it becomes a diverging light beam as shown in FIG. 18 .
通过fθ透镜FTa(光轴AXfa与Xt轴平行)往+Xt方向前进的光束LBa,于远心状态下,通过反射镜M15a往-Zt方向反射,在通过柱面透镜CY2a之后,成为圆形的光点SPa投射至基板P的被照射面上。同样地,通过fθ透镜FTb(光轴AXfb与Xt轴平行)往-Xt方向前进的光束LBb,于远心状态下,通过反射镜M15b往-Zt方向反射,在通过柱面透镜CY2b之后,成为圆形的光点SPb投射至基板P的被照射面上。通过fθ透镜FTa及柱面透镜CY2a,投射至基板P的光束LBa于基板P的被照射面上收敛成微小的光点SPa。同样地,通过fθ透镜FTb及柱面透镜CY2b,投射至基板P的光束LBb于基板P的被照射面上收敛成微小的光点SPb。投射至基板P的被照射面上的两个光点SPa、SPb,因一个多面镜PMb的旋转而同时于描绘线SLa、SLb上进行一维扫描。于本第3实施形态的构成的情形中,两个光点SPa、SPb沿着描绘线SLa、SLb彼此逆向地进行扫描移动。继而,如图20所示以如下方式进行设定,即,当使多面镜PMb于XtYt面内顺时针旋转时,成为描绘图案的Yt方向连接部的描绘线SLa的+Yt方向端部与描绘线SLb的-Yt方向端部分别成为光点SPa、SPb的扫描结束位置。相反地,当使多面镜PMb于XtYt面内逆时针旋转时,成为描绘图案的Yt方向连接部的描绘线SLa的+Yt方向端部与描绘线SLb的-Yt方向端部分别成为光点SPa、SPb的扫描开始位置。The light beam LBa traveling in the +Xt direction through the fθ lens FTa (the optical axis AXfa is parallel to the Xt axis) is reflected in the -Zt direction by the mirror M15a in the telecentric state, and becomes a circular shape after passing through the cylindrical lens CY2a The light spot SPa is projected on the irradiated surface of the substrate P. As shown in FIG. Similarly, the light beam LBb traveling in the -Xt direction through the fθ lens FTb (the optical axis AXfb is parallel to the Xt axis) is reflected in the -Zt direction by the mirror M15b in the telecentric state, and after passing through the cylindrical lens CY2b, it becomes The circular light spot SPb is projected on the irradiated surface of the substrate P. As shown in FIG. By the fθ lens FTa and the cylindrical lens CY2a, the light beam LBa projected on the substrate P converges on the irradiated surface of the substrate P into a minute light spot SPa. Similarly, through the fθ lens FTb and the cylindrical lens CY2b, the light beam LBb projected on the substrate P converges on the irradiated surface of the substrate P into a minute light spot SPb. The two light spots SPa and SPb projected on the irradiated surface of the substrate P simultaneously perform one-dimensional scanning on the drawing lines SLa and SLb by the rotation of one polygon mirror PMb. In the case of the configuration of the third embodiment, the two light spots SPa and SPb scan and move in opposite directions to each other along the drawing lines SLa and SLb. Next, as shown in FIG. 20 , when the polygon mirror PMb is rotated clockwise in the XtYt plane, the +Yt direction end of the drawing line SLa that becomes the Yt direction connecting portion of the drawing pattern and the drawing The ends in the −Yt direction of the line SLb are the scanning end positions of the light spots SPa and SPb, respectively. Conversely, when the polygon mirror PMb is rotated counterclockwise in the XtYt plane, the +Yt direction end of the drawing line SLa and the −Yt direction end of the drawing line SLb that become the Yt direction connecting portion of the drawing pattern become the light spots SPa, respectively. , the scan start position of SPb.
于以上构成中,反射镜M12a、M13a、M14a、M15a、fθ透镜FTa及柱面透镜CY2a,作为第1投射光学系统24b而发挥功能,该第1投射光学系统24b使由多面镜PMb反射并偏向扫描的光束LBa聚光以作为光点SPa而投射至描绘线SLa上。又,反射镜M12b、M13b、M14b、M15b、fθ透镜FTb及柱面透镜CY2b,作为第2投射光学系统26b而发挥功能,该第2投射光学系统26b使由多面镜PMb反射并偏向扫描的光束LBb聚光以作为光点SPb而投射至描绘线SLb上。In the above configuration, the mirrors M12a, M13a, M14a, M15a, the fθ lens FTa, and the cylindrical lens CY2a function as the first projection
又,如图18、图20所示,于第3实施形态中,自多面镜PMb的反射面RP至fθ透镜FTa、FTb为止的光路长度,通过其间的反射镜M12a~M14a、M12b~M14b延长,因此,作为fθ透镜FTa、FTb能够使用光束入射侧的焦点距离长者。一般而言,多面镜PM(PMa、PMb亦相同)的反射面,配置于远心的fθ透镜FTa(FTb)的光束入射侧的焦点距离fs的位置(光瞳位置)或其附近。因此,若将被照射面上的描绘线SLa(SLb)的长度设为Lss,将此时射入至fθ透镜的光束的偏向角度范围设为θs,则可近似地表示Lss≒fs·sin(θs)的关系。因此,于将描绘线SLa(SLb)的长度Lss设为固定值的情形时,只要使用焦点距离fs长的fθ透镜,便能够与此对应地减小偏向角度范围θs。此意味着有助于沿着描绘线SLa(SLb)的光点SPa(SPb)的一次扫描的多面镜PM(PMa、PMb)的旋转角度范围θs/2变小,具有有利于高速化的优点。Furthermore, as shown in FIGS. 18 and 20 , in the third embodiment, the optical path length from the reflection surface RP of the polygon mirror PMb to the fθ lenses FTa and FTb is extended by the reflection mirrors M12a to M14a and M12b to M14b therebetween. , therefore, as the fθ lenses FTa and FTb, the longer focal distance on the light beam incident side can be used. In general, the reflection surface of the polygon mirror PM (the same applies to PMa and PMb) is arranged at or near the focal distance fs (pupil position) on the beam incident side of the telecentric fθ lens FTa (FTb). Therefore, if the length of the drawing line SLa (SLb) on the irradiated surface is Lss, and the deflection angle range of the light beam entering the fθ lens at this time is θs, it can be approximated that Lss≒fs·sin( θs) relationship. Therefore, when the length Lss of the drawing line SLa (SLb) is set to a fixed value, the deflection angle range θs can be reduced correspondingly by using an fθ lens with a long focal length fs. This means that the rotation angle range θs/2 of the polygon mirror PM (PMa, PMb) that contributes to one scan of the light spot SPa (SPb) along the drawing line SLa (SLb) is reduced, which is advantageous for speeding up .
本第3实施形态的描绘单元Ub,如图20所示,在Yt方向上错开地设定描绘线SLa与描绘线SLb,以使扫描光点SPa、光点SPb的各者的描绘线SLa与描绘线SLb在副扫描方向上彼此分隔,且在主扫描方向上,端部邻接或一部分重叠。也就是,描绘线SLa、SLb以于平行状态下在副扫描方向(基板P的搬送方向)上分隔,且在主扫描方向上无间隙地连续的方式配置。因此,于配置多个此种描绘单元Ub的情形时,例如以图21的方式进行配置。In the drawing unit Ub according to the third embodiment, as shown in FIG. 20, the drawing line SLa and the drawing line SLb are set to be shifted in the Yt direction so that the drawing line SLa of each of the scanning light spot SPa and the light spot SPb is different from the drawing line SLa. The drawing lines SLb are spaced apart from each other in the sub-scanning direction, and in the main-scanning direction, the ends adjoin or partially overlap. That is, the drawing lines SLa and SLb are spaced apart in the sub-scanning direction (the conveyance direction of the substrate P) in a parallel state, and are arranged so as to be continuous without a gap in the main-scanning direction. Therefore, in the case of arranging a plurality of such drawing units Ub, for example, it is arranged as shown in FIG. 21 .
图21显示如下情形的一例,对应于前面的图2,沿着Y(Yt)方向将基板P上所形成的作为电子元件形成区域的曝光区域W一分为六,通过6条描绘线SL1a、SL1b、SL2a、SL2b、SL3a、SLb,于带状的多个分割区域WS1~分割区域WS6的各者中描绘图案。此处,与如前面的图18~图20般的描绘单元Ub为相同构成的第1描绘单元Ub1的两条描绘线SL1a、SL1b,设定成分别于沿着Y方向相邻接的分割区域WS1、WS2描绘图案。同样地,与描绘单元Ub为相同构成的第2描绘单元Ub2的两条描绘线SL2a、SL2b,设定成分别于沿着Y方向相邻接的分割区域WS3、WS4描绘图案,与描绘单元Ub为相同构成的第3描绘单元Ub3的两条描绘线SL3a、SL3b,设定成分别于沿着Y方向相邻接的分割区域WS5、WS6描绘图案。以在分割区域WS1与分割区域WS2的连接部STa、分割区域WS2与分割区域WS3的连接部STb、分割区域WS3与分割区域WS4的连接部STc、分割区域WS4与分割区域WS5的连接部STd及分割区域WS5与分割区域WS6的连接部STe,6条描绘线SL1a、…、SL3a、SL3b各自的端部在Y方向上精密地一致或稍微重叠的方式,精密地调整各描绘线的Y方向位置或各描绘线的描绘倍率。FIG. 21 shows an example of a situation in which, corresponding to the previous FIG. 2 , the exposure area W formed on the substrate P as the electronic component forming area is divided into six along the Y (Yt) direction, and the six drawing lines SL1a, SL1a, SL1b, SL2a, SL2b, SL3a, and SLb draw patterns in each of the plurality of band-shaped divided regions WS1 to WS6. Here, the two drawing lines SL1a and SL1b of the first drawing unit Ub1 having the same configuration as the drawing unit Ub described above in FIGS. 18 to 20 are set to the divided regions adjacent to each other along the Y direction. WS1, WS2 draw patterns. Similarly, the two drawing lines SL2a, SL2b of the second drawing unit Ub2 having the same configuration as the drawing unit Ub are set to draw patterns on the divided areas WS3, WS4 adjacent to the Y direction, respectively, and the drawing unit Ub The two drawing lines SL3a and SL3b of the third drawing unit Ub3 having the same configuration are set to draw patterns on the divided regions WS5 and WS6 adjacent to each other along the Y direction, respectively. At the connection part STa of the divided area WS1 and the divided area WS2, the connection part STb of the divided area WS2 and the divided area WS3, the connection part STc of the divided area WS3 and the divided area WS4, the connection part STd of the divided area WS4 and the divided area WS5, and At the connection portion STe of the divided area WS5 and the divided area WS6, the Y-direction position of each of the drawing lines is precisely adjusted so that the ends of the six drawing lines SL1a, . Or the drawing magnification of each drawing line.
如此,于本第3实施形态中,设定成利用描绘单元Ub(Ub1~Ub3)而扫描光点SPa、SPb的两条描绘线SLa、SLb,在副扫描方向上彼此分隔,且在主扫描方向上,端部邻接或一部分重叠。即使于该情形,使描绘单元Ub整体稍微旋转时的旋动中心轴AXr,亦能够设定成相对于基板P垂直地通过连接两条描绘线SLa、SLb的中点的线段的中心点。因此,即使是为了获得高重合精度而使描绘单元Ub整体绕旋动中心轴AXr旋动的情形,亦能够抑制通过描绘单元Ub而扫描光点SPa、SPb的两条描绘线SLa、SLb在基板P上的位置偏移变大,因此,能够一边进行高精度的图案描绘、一边简单地对描绘线SLa、SLb的斜度(被照射面内的相对于Y轴的斜度)进行调整。In this way, in the third embodiment, the two drawing lines SLa and SLb for scanning the light spots SPa and SPb by the drawing units Ub ( Ub1 to Ub3 ) are set so as to be separated from each other in the sub-scanning direction and to be separated from each other in the main scanning direction. In the direction, the ends abut or partially overlap. Even in this case, the rotation center axis AXr when the entire drawing unit Ub is slightly rotated can be set to pass through the center point of a line segment connecting the midpoints of the two drawing lines SLa and SLb perpendicular to the substrate P. Therefore, even in the case where the entire drawing unit Ub is rotated about the rotational center axis AXr in order to obtain high superposition accuracy, the two drawing lines SLa and SLb that scan the light spots SPa and SPb by the drawing unit Ub can be suppressed from being swept on the substrate. Since the positional displacement on P becomes large, it is possible to easily adjust the inclination of the drawing lines SLa and SLb (inclination with respect to the Y axis in the irradiated surface) while performing high-precision pattern drawing.
另外,于上述各实施形态(亦包含变形例)中,多个描绘单元U、Ua、Ub的描绘线SL均设为相同的扫描长度,但亦可使扫描长度不同。于该情形时,可于描绘单元U、Ua、Ub之间,使描绘线SL的扫描长度不同,亦可于同一描绘单元U、Ua、Ub中,使描绘线SLa、SLb的扫描长度不同。进一步地,虽使旋动中心轴AXr相对于基板P垂直地通过连接描绘单元U、Ua、Ub的描绘线SLa、SLb各自的中点的线段的中心点,但该旋动中心轴AXr亦可为相对于基板P垂直的方向,且设定于连接描绘线SLa、SLb各自的中点的线段上。In addition, in each of the above-described embodiments (including modifications), the drawing lines SL of the plurality of drawing units U, Ua, and Ub are all set to the same scan length, but the scan lengths may be different. In this case, the scan lengths of the drawing lines SL may be different between the drawing units U, Ua, Ub, or the scan lengths of the drawing lines SLa, SLb may be different in the same drawing units U, Ua, Ub. Further, the rotation center axis AXr may pass through the center point of a line segment connecting the respective midpoints of the drawing lines SLa and SLb of the drawing units U, Ua, Ub perpendicular to the substrate P, but the rotation center axis AXr may be It is a direction perpendicular|vertical with respect to the board|substrate P, and is set on the line segment which connects each midpoint of the drawing lines SLa and SLb.
在以上的第3实施形态的情形中,为了如第1实施形态般,于沿着长条方向呈圆筒面状地由旋转筒DR1、DR2支承的基板P的被照射面进行图案描绘,如图22所示,只要以使通过描绘单元Ub的fθ透镜FTa(FTb)之后的反射镜M15a(M15b)而弯折的光轴AXfa(AXfb)的延长线朝向旋转筒DR1或DR2的中心轴(旋转中心轴)AXo1或AXo2的方式,将XZ面内的反射镜M15a(M15b)的斜度设定为45度以外的角度,且亦以于倾斜的光轴AXfa(AXfb)上聚焦的方式,相对于XY面倾斜配置柱面透镜CY2a(CY2b)即可。另外,于与XY面平行地平坦支承基板P的情形时,例如能够使用国际公开第2013/150677号公报所揭示的搬送装置。又,亦可取代旋转筒DR1、DR2而使用垫构件(基板支承保持具),该垫构件(基板支承保持具)于呈圆筒面状地弯曲的表面形成有多个微细的气体喷出孔(及多个微细的抽吸孔),且利用气体轴承以非接触或低摩擦状态支承基板P的背面侧,以使基板P沿着长条方向呈圆筒状地弯曲并支承该基板P。又,于上述第1实施形态~第2实施形态及其等的变形例中,可取代旋转筒DR1、DR2,而使用国际公开第2013/150677号公报所揭示的与XY面平行地平坦支承基板P的搬送装置,亦可使用利用气体轴承以非接触或低摩擦状态支承基板P的背面侧的上述垫构件(基板支承保持具)。In the case of the above third embodiment, in order to perform pattern drawing on the irradiated surface of the substrate P supported by the rotating drums DR1 and DR2 in a cylindrical shape along the longitudinal direction as in the first embodiment, as follows: As shown in FIG. 22, as long as the extension line of the optical axis AXfa (AXfb) bent by the mirror M15a (M15b) after the fθ lens FTa (FTb) of the drawing unit Ub is directed toward the central axis ( Rotate the central axis) AXo1 or AXo2, set the inclination of the mirror M15a (M15b) in the XZ plane to an angle other than 45 degrees, and also focus on the inclined optical axis AXfa (AXfb), The cylindrical lens CY2a (CY2b) may be arranged obliquely with respect to the XY plane. Moreover, when supporting the board|substrate P flatly parallel to the XY plane, for example, the conveyance apparatus disclosed in International Publication No. WO 2013/150677 can be used. Moreover, instead of the rotating drums DR1 and DR2, a pad member (substrate support and holder) having a plurality of fine gas ejection holes formed on the surface curved in a cylindrical shape may be used. (and a plurality of fine suction holes), and the back side of the substrate P is supported by a gas bearing in a non-contact or low friction state so that the substrate P is bent cylindrically in the longitudinal direction and supports the substrate P. Moreover, in the above-described first to second embodiments and their modifications, the rotating drums DR1 and DR2 may be replaced with the flat support substrate parallel to the XY plane disclosed in International Publication No. WO 2013/150677. As the conveying device of P, the above-mentioned pad member (substrate support holder) that supports the back side of the substrate P in a non-contact or low friction state by a gas bearing may be used.
[第1实施形态~第3实施形态的变形例][Modifications of the first to third embodiments]
第1实施形态~第3实施形态亦可有如下所述的变形例。The first embodiment to the third embodiment may have the following modified examples.
(变形例1)图23是显示光束分配系统的一例的构成的图,该光束分配系统用于将从图1中所示的光源装置14提供的光束LB(两条光束LBa、LBb)例如分配至图2中的4个描绘单元U1、U2、U5、U6的各者。另外,该光束分配系统不仅可适用于第1实施形态的描绘装置,亦可适用于第2实施形态、第3实施形态及其等的变形例的描绘装置。(Modification 1) FIG. 23 is a diagram showing a configuration of an example of a beam distribution system for distributing, for example, the light beam LB (two light beams LBa, LBb) supplied from the
于光源装置14中设置输出紫外线区域的高辉度的激光光束(连续光或脉冲光)的激光光源LS、将来自激光光源LS的光束转换为既定直径(例如数mm直径)的平行光束的光束扩展器BX、将成为平行光束的光束一分为二的第1光束分光器(半反射镜)BS1及面镜MR1。由光束分离器BS1反射的光束作为光束LBa而射入至第2光束分离器BS2a,通过光束分光器BS1的光束由面镜MR1反射以作为光束LBb而射入至第2光束分离器BS2b。光束分离器BS1的分割比为1:1,光束LBa、LBb的各光强度(照度)大致相等。射入至光束分离器BS2a的光束LBa、及射入至光束分离器BS2b的光束LBb进一步以相等的强度比而一分为二。The
射入至光束分离器BS2a的光束LBa中,通过光束分离器BS2a的光束LBa射入至第3光束分光器BS3a(分割比为1:1)。射入至光束分光器BS2b的光束LBb中,通过光束分光器BS2b的光束LBb射入至第3光束分光器BS3b(分割比为1:1)。由光束分光器BS3a、BS3b的各者反射的两条光束LBa、LBb,夹着描绘单元U1的旋动中心轴AXr相互平行,通过相对应的光学元件AOMa、AOMb(参照图5等)而朝向描绘单元U1。继而,通过光束分光器BS3a、BS3b的各者的两条光束LBa、LBb分别由面镜MR2a、MR2b反射之后,夹着描绘单元U2的旋动中心轴AXr相互平行,通过相对应的光学元件AOMa、AOMb而朝向描绘单元U2。Among the light beams LBa incident on the beam splitter BS2a, the light beam LBa passing through the beam splitter BS2a is incident on the third beam splitter BS3a (the division ratio is 1:1). Of the light beams LBb incident on the beam splitter BS2b, the light beam LBb passing through the beam splitter BS2b is incident on the third beam splitter BS3b (the division ratio is 1:1). The two light beams LBa, LBb reflected by each of the beam splitters BS3a, BS3b are parallel to each other with the rotation center axis AXr of the drawing unit U1 interposed therebetween, and are directed toward the corresponding optical elements AOMa, AOMb (see FIG. 5, etc.). Draw unit U1. Then, after the two light beams LBa, LBb passing through each of the beam splitters BS3a, BS3b are reflected by the mirrors MR2a, MR2b, respectively, they are parallel to each other with the rotation center axis AXr of the drawing unit U2 sandwiched therebetween, and pass through the corresponding optical element AOMa. , AOMb toward the rendering unit U2.
进一步地,前面的由光束分光器BS2a反射的光束LBa射入至第4光束分光器BS4a(分割比为1:1),前面的由光束分光器BS2b反射的光束LBb射入至第4光束分光器BS4b(分割比为1:1)。由光束分光器BS4a、BS4b的各者反射的两条光束LBa、LBb,夹着描绘单元U5的旋动中心轴AXr相互平行,通过相对应的光学元件AOMa、AOMb而朝向描绘单元U5。继而,通过光束分光器BS4a、BS4b的各者的两条光束LBa、LBb分别由面镜MR3a、MR3b反射之后,夹着描绘单元U6的旋动中心轴AXr相互平行,通过相对应的光学元件AOMa、AOMb而朝向描绘单元U6。通过以上的构成,分配至4个描绘单元U1、U2、U5的各者的光束LBa、LBb均被设定为大致相等的光强度。Further, the previous light beam LBa reflected by the beam splitter BS2a is incident on the fourth beam splitter BS4a (the division ratio is 1:1), and the previous light beam LBb reflected by the beam splitter BS2b is incident on the fourth beam splitter. BS4b (split ratio is 1:1). The two light beams LBa, LBb reflected by each of the beam splitters BS4a, BS4b are parallel to each other across the rotation center axis AXr of the drawing unit U5, and head toward the drawing unit U5 through the corresponding optical elements AOMa, AOMb. Then, after the two light beams LBa, LBb passing through each of the beam splitters BS4a, BS4b are reflected by the mirrors MR3a, MR3b, respectively, they are parallel to each other with the rotation center axis AXr of the drawing unit U6 sandwiched therebetween, and pass through the corresponding optical element AOMa. , AOMb toward the rendering unit U6. With the above configuration, the light beams LBa and LBb distributed to each of the four drawing units U1 , U2 , and U5 are all set to substantially equal light intensities.
而且,光源装置14内的激光光源,只要是放射出紫外线区域波长的高辉度的光束,则亦可为固体激光、气体激光中的任一种激光。若使用光纤激光光源作为固体激光,则尽管是相对较精小的框体,仍能够获得高输出的紫外光束,且容易装入至曝光装置(描绘装置)EX的本体内,上述光纤激光光源利用光纤放大器将来自半导体激光二极体的红外线区域波长的光束(数百MHz的脉冲光)放大之后,通过波长转换元件而放射出紫外线区域波长的光束(脉冲光)。进一步地,于以上的第1实施形态~第3实施形态及各变形例中,虽为在曝光装置EX本体内,可以旋动中心轴AXr为中心而旋转的描绘单元U(Ua、Ub)内未设有描绘用的光源的构成,但于可利用来自半导体激光二极体(LD)或发光二极体(LED)等的光束的强度而充分地描绘(曝光)图案的情形时,亦可于各描绘单元U(Ua、Ub)内设置供给光束LBa、LBb的LD或LED。但是,由上述LD或LED形成的光源部于图案描绘动作中,温度会相当地上升,因此,需要设置对描绘单元U(Ua、Ub)内的光源部进行隔热、冷却等的温度调整机构,以将描绘单元U(Ua、Ub)整体的温度变化抑制得较小。于该情形时,亦将如图5所示的光学元件AOMa、AOMb设置于各描绘单元U(Ua、Ub)内。Further, the laser light source in the
(变形例2)于以上的第1实施形态~第3实施形态及其等的各变形例中,多面镜PM(PMa、PMb)设为绕旋转轴AXp以45度的间隔配置有8个反射面而成的8面体(或八角锥体状),但反射面的数量亦可为任意数量,能够同样地使用3面~6面、9面、10面、12面、15面、16面、18面、20面等的多面镜。一般而言,即使多面镜的直径相同,反射面数越多,则风损越小,因此可使其更高速地旋转。又,于第1实施形态~第3实施形态及其等的各变形例中,虽省略了图示及说明,但于多面镜PM(PMa、PMb)周围的两处设置有原点感测器,该原点感测器于多面镜PM(PMa、PMb)的不同反射面的各者所反射的两条光束LBa、LBb朝向与描绘线(扫描线)SLa、SLb上的光点SPa、SPb的扫描开始点分别对应的反射方向时,输出原点信号。沿着描绘线SLa、SLb的光点SPa、SPb的扫描位置的管理(偏移设定等)或基于图案数据的光点SPa、SPb的强度调变(光学元件AOMa、AOMb的导通/断开)的时序等,是基于该原点信号与对应于光点SPa、SPb的扫描速度的时脉信号而控制。(Modification 2) In each of the above-described first to third embodiments and their modifications, the polygon mirrors PM (PMa, PMb) have eight reflections arranged at intervals of 45 degrees around the rotation axis AXp Although the number of reflecting surfaces may be any number, 3 to 6 surfaces, 9 surfaces, 10 surfaces, 12 surfaces, 15 surfaces, 16 surfaces, 18-sided, 20-sided, etc. polygon mirrors. In general, even if the diameter of the polygon mirror is the same, the larger the number of reflecting surfaces, the smaller the wind loss, so that it can be rotated at a higher speed. In addition, in each of the first to third embodiments and their modifications, although illustration and description are omitted, origin sensors are provided at two places around the polygon mirror PM (PMa, PMb). Scanning of the two light beams LBa, LBb reflected by the origin sensor on each of the different reflecting surfaces of the polygon mirror PM (PMa, PMb) and the light spots SPa, SPb on the drawing lines (scanning lines) SLa, SLb When the starting point corresponds to the corresponding reflection direction, the origin signal is output. Management of scanning positions of light spots SPa and SPb along drawing lines SLa and SLb (offset setting, etc.) or intensity modulation of light spots SPa and SPb based on pattern data (on/off of optical elements AOMa and AOMb) The timing and the like of ON) are controlled based on the origin signal and the clock signal corresponding to the scanning speed of the light spots SPa and SPb.
[第4实施形态][4th Embodiment]
于以上的第1实施形态~第3实施形态及其等的各变形例中,在自多面镜PM(PMa、PMb)至fθ透镜FTa、FTb为止的光路中,设置有反射镜M6a、M6b或M12a、M12b,该反射镜M6a、M6b或M12a、M12b于使多面镜PM(PMa、PMb)所反射的光束LBa、LBb偏向的面(于图5、图6的实施形态、图12~图16的各实施形态、图18~图20的实施形态中为与XtYt面平行的面,于图17的实施形态中为与YtZt面平行的面)内,使光束LBa、LBb弯折。于来自光源装置14的光束LB(LBa、LBb)处于较240nm左右的波长更长的紫外线波长带的情形时,多面镜PM(PMa、PMb)或各反射镜的反射面,于玻璃或陶瓷母材的表面蒸镀具有高反射率的铝层,进一步于该铝层上蒸镀用于防止氧化等的介电体薄膜(单层或多层)而制成。于多面镜PM的情形时,利用铝进行形成母材本体的加工,对成为反射面的部分进行光学研磨之后,于其表面蒸镀介电体薄膜(单层或多层)。对于具有此种反射面的构造的多面镜PM(PMa、PMb)或反射镜M6a、M6b、M12a、M12b,射入至反射面的光束LBa、LBb的入射角会根据用于主扫描的光束偏向角度而大幅度地改变,于光束LBa、LBb具有偏振特性的情形时,有时并无法忽视反射后的光束的强度根据入射角的变化而产生变化的倾向,即反射面的反射率的入射角依存性的影响。In the above-described first to third embodiments and their modifications, the optical paths from the polygon mirror PM (PMa, PMb) to the fθ lenses FTa and FTb are provided with mirrors M6a, M6b or M12a, M12b, the reflecting mirrors M6a, M6b or M12a, M12b are on the surface that deflects the light beams LBa, LBb reflected by the polygon mirror PM (PMa, PMb) (in the embodiment of FIG. 5, FIG. 6, FIGS. 12 to 16 18 to 20, the plane parallel to the XtYt plane, and in the embodiment of FIG. 17, the plane parallel to the YtZt plane), the light beams LBa and LBb are bent. When the light beams LB (LBa, LBb) from the
图24是于YtZt面内,对投射至前面的图17所说明的多面镜PM与反射镜M6a的各者的光束LBa的入射角或反射角的状况进行说明的图。图24所说明的状况,亦可同样地产生于其他实施形态(图5、图6、图12~图16、图18~图20)中。于图24中,当YtZt面内的多面镜PM的一个反射面RPh的角度θo为45°时,与Zt轴平行地射入的光束LBa以与Yt轴平行的方式由反射面RPh反射之后,利用反射镜M6a而弯折90°,且与后续的fθ透镜FTa的光轴AXfa同轴地前进。若多面镜PM设为于图24中顺时针旋转的多面镜,则沿着描绘线SL2a(SLa)的光点SPa的有效扫描的开始点为反射面RPh在YtZt面内达到角度θo-Δθa的时点,光点SPa的有效扫描的结束点为反射面RPh在YtZt面内达到角度θo+Δθa的时点。因此,由多面镜PM的反射面RPh反射并朝向反射镜M6a的光束LBa相对于光轴AXfa的偏向角度范围为±2Δθa。当光束LBa相对于光轴AXfa的偏向角为+2Δθa时,投射至反射镜M6a的反射面的光束LBa的入射角θm1为θm1=45°-2Δθa,当光束LBa相对于光轴AXfa的偏向角为-2Δθa时,投射至反射镜M6a的反射面的光束LBa的入射角θm2为θm2=45°+2Δθa。FIG. 24 is a diagram illustrating the state of the incident angle or reflection angle of the light beam LBa projected on each of the polygon mirror PM and the mirror M6a described in FIG. 17 in the YtZt plane. The situation described in FIG. 24 can be similarly generated in other embodiments ( FIGS. 5 , 6 , 12 to 16 , and 18 to 20 ). In FIG. 24, when the angle θo of one reflecting surface RPh of the polygon mirror PM in the YtZt plane is 45°, the light beam LBa incident parallel to the Zt axis is reflected by the reflecting surface RPh so as to be parallel to the Yt axis, It bends by 90° by the mirror M6a, and advances coaxially with the optical axis AXfa of the subsequent fθ lens FTa. If the polygon mirror PM is a polygon mirror rotated clockwise in FIG. 24 , the starting point of effective scanning of the light spot SPa along the drawing line SL2a (SLa) is the point where the reflection surface RPh reaches the angle θo−Δθa in the YtZt plane. The time point, the end point of the effective scanning of the light spot SPa, is the time point when the reflection surface RPh reaches the angle θo+Δθa in the YtZt plane. Therefore, the deflection angle range of the light beam LBa reflected by the reflection surface RPh of the polygon mirror PM and directed toward the reflection mirror M6a with respect to the optical axis AXfa is ±2Δθa. When the deflection angle of the light beam LBa with respect to the optical axis AXfa is +2Δθa, the incident angle θm1 of the light beam LBa projected on the reflection surface of the mirror M6a is θm1=45°−2Δθa, when the deflection angle of the light beam LBa with respect to the optical axis AXfa When it is -2Δθa, the incident angle θm2 of the light beam LBa projected on the reflection surface of the mirror M6a is θm2=45°+2Δθa.
此处,使用图25说明由往反射镜M6a射入的光束LBa的入射角的变化所产生的影响。图25是说明使具有紫外线波长带的偏振特性的光束射入至由铝层与介电体薄膜构成的反射面时所观察到的反射率的入射角依存性的特性CV1的曲线图,纵轴表示反射面的反射率(%),横轴表示往反射面射入的光束的入射角(度)。一般而言,当将光束以0°的入射角(即垂直入射)投射至反射面时,反射率最大。对于图25的特性CV1而言,最大反射率为90%左右。当入射角为45°左右时,反射率约为87%,但随着入射角进一步增大,反射率会大幅度地降低。于多面镜PM的各反射面(RPh)的反射率与特性CV1相同的情形时,如图24所示,射入至多面镜PM的反射面RPh的光束LBa的入射角,以45°为中心而于±Δθa的范围内产生变化。此处,若为了扫描描绘线SLa而射入至fθ透镜系统FTa的光束LBa的最大偏向角度范围±2Δθa为以光轴AXfa为中心的±15°,则由于Δθa为7.5°,因此往多面镜PM的反射面RPh射入的光束LBa的入射角,以45°为中心而于37.5°~52.5°的范围内产生变化。于特性CV1方面,入射角为37.5°时的反射率约为88%,入射角为52.5°时的反射率约为85.5%。Here, the influence of the change in the incident angle of the light beam LBa incident on the mirror M6a will be described with reference to FIG. 25 . 25 is a graph illustrating the incident angle-dependent characteristic CV1 of the reflectance observed when a light beam having a polarization characteristic in the ultraviolet wavelength band is incident on a reflective surface composed of an aluminum layer and a dielectric thin film, with the vertical axis The reflectance (%) of the reflective surface is shown, and the horizontal axis represents the incident angle (degree) of the light beam incident on the reflective surface. In general, the reflectivity is maximized when a light beam is projected onto a reflective surface at an angle of incidence of 0° (ie, normal incidence). For the characteristic CV1 of FIG. 25 , the maximum reflectance is about 90%. When the incident angle is about 45°, the reflectivity is about 87%, but as the incident angle further increases, the reflectivity decreases greatly. When the reflectance of each reflecting surface (RPh) of the polygon mirror PM is the same as the characteristic CV1, as shown in FIG. 24, the incident angle of the light beam LBa incident on the reflecting surface RPh of the polygon mirror PM is centered at 45° Instead, changes occur within the range of ±Δθa. Here, if the maximum deflection angle range ±2Δθa of the light beam LBa incident on the fθ lens system FTa for scanning the drawing line SLa is ±15° with the optical axis AXfa as the center, since Δθa is 7.5°, the polygon mirror The incident angle of the light beam LBa incident on the reflection surface RPh of the PM varies within a range of 37.5° to 52.5° with a center of 45°. Regarding the characteristic CV1, the reflectance at an incident angle of 37.5° was about 88%, and the reflectance at an incident angle of 52.5° was about 85.5%.
根据以上的内容,于使由多面镜PM反射的光束LBa维持原状态射入至fθ透镜系统FTa的情形时,根据特性CV1,描绘线SLa上的扫描开始点处的光点SPa的强度、与扫描结束点处的光点SPa的强度产生了88%-85.5%=2.5%的差。此意味着若以描绘线SLa的中央附近的光点SPa的强度为基准,则于描绘线SLa的两端部,强度误差为±1.25%。于基板P上形成的感光性功能层为光刻胶或干膜的情形时,主扫描过程中的光点SP的强度偏差的允许范围可谓为±2%左右,若强度误差(偏差)为±1.25%,则可被允许。From the above, when the light beam LBa reflected by the polygon mirror PM is incident on the fθ lens system FTa in its original state, the intensity of the light spot SPa at the scanning start point on the drawing line SLa and the The intensity of the light spot SPa at the scanning end point produces a difference of 88%−85.5%=2.5%. This means that the intensity error is ±1.25% at both ends of the drawing line SLa based on the intensity of the light spot SPa in the vicinity of the center of the drawing line SLa. When the photosensitive functional layer formed on the substrate P is a photoresist or a dry film, the allowable range of the intensity deviation of the light spot SP during the main scanning process can be said to be about ±2%. If the intensity error (deviation) is ± 1.25% may be allowed.
然而,如图24所示,于多面镜PM之后亦存在有入射角会因用于光束LBa的主扫描的偏向而大幅度地产生变化的反射镜M6a,因此,投射至基板P上的光点SPa的强度会在主扫描方向上产生更大的强度误差。如前面的说明所述,射入至反射镜M6a的光束LBa的入射角,于θm1~θm2之间产生变化。于将Δθa设为7.5°的情形时,θm1=45°-15°=30°,θm2=45°+15°=60°。若反射镜M6a的反射率的入射角依存性亦与图25的特性CV1相同,则于描绘线SLa上的光点SPa的扫描开始点,往反射镜M6a射入的光束LBa的入射角为θm1=30°,因此,该入射角下的反射镜M6a的反射率约为88.5%。因此,根据与多面镜PM的反射面RPh的反射率88%的积,于光点SPa的扫描开始点,反射率总计为77.9%(88%×88.5%)。又,于描绘线SLa上的光点SPa的扫描结束点,往反射镜M6a射入的光束LBa的入射角为θm2=60°,因此,该入射角下的反射镜M6a的反射率约为81%。因此,根据与多面镜PM的反射面RPh的反射率85.5%的积,于光点SPa的扫描结束点,反射率总计为69.3%(85.5%×81%)。根据以上的内容,多面镜PM的反射面与反射镜M6a的反射面中的总计的反射率的入射角依存性变成图25中的特性CV2般。另外,当光束LBa相对于多面镜PM的反射面与反射镜M6a的反射面该两者的入射角为45°时,总计的反射率约为75.7%(87%×87%)。However, as shown in FIG. 24 , after the polygon mirror PM, there is also a mirror M6a whose incident angle is greatly changed due to the deflection of the light beam LBa for main scanning, so that the light spot projected on the substrate P is The intensity of the SPa produces a larger intensity error in the main scan direction. As described above, the incident angle of the light beam LBa incident on the mirror M6a varies between θm1 and θm2. When Δθa is set to 7.5°, θm1=45°−15°=30°, and θm2=45°+15°=60°. If the incident angle dependence of the reflectance of the mirror M6a is also the same as the characteristic CV1 of FIG. 25 , the incident angle of the light beam LBa incident on the mirror M6a at the scanning start point of the light spot SPa on the drawing line SLa is θm1 =30°, therefore, the reflectivity of the mirror M6a at this incident angle is about 88.5%. Therefore, the total reflectance at the scanning start point of the light spot SPa is 77.9% (88%×88.5%) based on the product of 88% of the reflectance of the reflection surface RPh of the polygon mirror PM. In addition, at the scanning end point of the light spot SPa on the drawing line SLa, the incident angle of the light beam LBa incident on the mirror M6a is θm2=60°, so the reflectance of the mirror M6a at this incident angle is about 81 %. Therefore, the total reflectance at the scanning end point of the light spot SPa is 69.3% (85.5%×81%) based on the product of 85.5% of the reflectance of the reflection surface RPh of the polygon mirror PM. From the above, the incident angle dependence of the total reflectance of the reflection surface of the polygon mirror PM and the reflection surface of the reflection mirror M6a becomes like the characteristic CV2 in FIG. 25 . In addition, when the incident angle of the light beam LBa with respect to both the reflection surface of the polygon mirror PM and the reflection surface of the reflection mirror M6a is 45°, the total reflectance is about 75.7% (87%×87%).
如上所述,反射镜M6a(M6b、M12a、M12b亦相同)具有与使由多面镜PM反射的光束LBa(LBb)偏向的面(于图17的实施形态中与YtZt面平行,于其他实施形态中与XtYt面平行)正交的反射面,因此,光束LBa(LBb)的入射角的变化大,对于图25的特性CV2而言,于扫描开始点与扫描结束点,光点SPa(SPb)的强度会产生约8.6%的误差。该值未必处于允许范围,若有必要,较为理想的是设置某些修正(调整)机构。图25所示的特性CV1为一例,于反射镜的反射面由介电体的多层膜构成的情形时,相对于入射角的反射率的变化率(斜度)有时亦会进一步增大。因此,预先通过实验或模拟等而求出实际所使用的多面镜PM与反射镜M6a(M6b)各自的反射率的特性CV1,且预先求出相对于描绘线SLa(SLb)上的光点SPa(SPb)的扫描位置的光束强度的变化倾向(强度偏差、斜度等)。As described above, the mirror M6a (the same is true for M6b, M12a, and M12b) has a surface that deflects the light beam LBa (LBb) reflected by the polygon mirror PM (parallel to the YtZt surface in the embodiment of FIG. 17 , and in other embodiments Since the reflective surface is perpendicular to the XtYt plane, the change in the incident angle of the light beam LBa (LBb) is large, and for the characteristic CV2 of FIG. 25, the light spot SPa (SPb) The intensities will yield an error of about 8.6%. This value is not necessarily within the allowable range, and if necessary, it is desirable to provide some correction (adjustment) mechanism. The characteristic CV1 shown in FIG. 25 is an example, and when the reflecting surface of the mirror is formed of a multilayer film of a dielectric, the change rate (slope) of the reflectance with respect to the incident angle may further increase. Therefore, the characteristic CV1 of the reflectance of each of the polygon mirror PM and the mirror M6a (M6b) actually used is obtained in advance through experiments, simulations, etc., and is obtained in advance with respect to the light spot SPa on the drawing line SLa (SLb). The change tendency (intensity deviation, gradient, etc.) of the beam intensity at the scanning position of (SPb).
于上述光束强度的变化倾向为允许范围以上的情形时,于反射镜M6a、M6b、M12a、M12b之后的光束光路中,设置主扫描方向上的透射率连续或阶段性地产生变化的中性密度滤光(ND滤光)板,能够以光学方式抑制或修正相对于基板P上的光点SPa(SPb)的扫描位置的强度变化的倾向(强度偏差、斜度等)。中性密度滤光板能够配置于反射镜M6a、M6b(M12a、M12b)与fθ透镜系统FTa、FTb之间的光路中、或fθ透镜系统FTa、FTb与基板P之间的光路中。于fθ透镜系统FTa、FTb之后的光路中,以覆盖描绘线SLa、SLb的尺寸设置有平凸状的第2柱面透镜CY2a、CY2b,因此,亦可于该柱面透镜CY2a、CY2b的附近设置中性密度滤光板。又,如图5、图18、图22所示,于设置有以垂直射入至基板P的方式使从fθ透镜系统FTa、FTb射出的扫描光束LBa、LBb弯折的反射镜M7a、M7b、M15a、M15b的情形时,亦可于反射面蒸镀使主扫描方向上的反射镜M7a、M7b、M15a、M15b的反射率连续或阶段性地产生变化的薄膜,或于反射面积层由厚度为0.1mm以下的薄玻璃所形成的中性密度滤光板,以光学方式调整(修正)相对于光点SPa(SPb)的主扫描位置的强度偏差。When the change tendency of the above-mentioned beam intensity is above the allowable range, in the beam path after the mirrors M6a, M6b, M12a, and M12b, set the neutral density in which the transmittance in the main scanning direction changes continuously or in stages. The filter (ND filter) can optically suppress or correct the tendency (intensity deviation, gradient, etc.) of the intensity change with respect to the scanning position of the light spot SPa (SPb) on the substrate P. The neutral density filter can be arranged in the optical path between the mirrors M6a, M6b (M12a, M12b) and the fθ lens systems FTa, FTb, or in the optical path between the fθ lens systems FTa, FTb and the substrate P. Plano-convex second cylindrical lenses CY2a and CY2b are provided in the optical paths after the fθ lens systems FTa and FTb so as to cover the drawing lines SLa and SLb. Therefore, the second cylindrical lenses CY2a and CY2b may also be located in the vicinity of the cylindrical lenses CY2a and CY2b. Set up a neutral density filter. Further, as shown in FIGS. 5 , 18 , and 22 , mirrors M7a, M7b, M7b, M7b, M7b, M7b, LBb, LBb, and LBb emitted from the fθ lens systems FTa, FTb are provided so as to be perpendicular to the substrate P. In the case of M15a and M15b, a thin film that continuously or stepwise changes the reflectance of the mirrors M7a, M7b, M15a, and M15b in the main scanning direction may be deposited on the reflective surface, or the reflective area layer may have a thickness of The neutral density filter plate formed of thin glass of 0.1 mm or less optically adjusts (corrects) the intensity deviation with respect to the main scanning position of the light spot SPa (SPb).
亦可通过电气性的修正机构修正相对于光点SPa(SPb)的扫描位置的强度变化的倾向(强度偏差、斜度等)。图26是显示为了根据描绘数据使射入至描绘单元的多面镜PM(PMa、PMb)之前的光束导通/断开,而以前面的图5、图7所示的方式设置的光学元件(声光调变元件、强度调变构件)AOMa、AOMb的控制系统的一例的方框图。于图26中,驱动电路100将导通/断开用的高频驱动信号Sdv输出至光学元件AOMa(AOMb)。此处,所谓的光学元件AOMa(AOMb)的断开状态,是指未对光学元件AOMa(AOMb)施加高频驱动信号Sdv,而将来自光源装置14的光束LB在维持原状态下作为0次光束LBu而使其通过的状态;所谓的导通状态,是指对光学元件AOMa(AOMb)施加高频驱动信号Sdv,将来自光源装置14的光束LB的一次绕射光作为光束LBa(LBb),以既定绕射角使其偏向而加以输出的状态。该绕射角由驱动信号Sdv(高频信号)的频率(例如80MHz)决定。进一步地,若改变驱动信号Sdv的振幅,则绕射效率会产生变化,而能够对作为一次绕射光的光束LBa(LBb)的强度进行调整。The tendency (intensity deviation, gradient, etc.) of the intensity change with respect to the scanning position of the light spot SPa (SPb) may be corrected by an electrical correction mechanism. 26 is a diagram showing optical elements ( A block diagram of an example of a control system of acousto-optic modulation element, intensity modulation means) AOMa, AOMb. In FIG. 26, the
驱动电路100,将频率固定且振幅稳定的来自高频振荡器SF的高频信号、以像素单位按位元串列从存储器读出的描绘位元信号CLT、及控制信号DE予以输入,该存储器存储有使一个像素与1位元相对应而成的位元映射形式的描绘数据(图案数据)。驱动电路100于描绘位元信号CLT为逻辑值“1”的期间,输出来自高频振荡器SF的高频信号作为驱动信号Sdv,于描绘位元信号CLT为逻辑值“0”的期间,禁止送出驱动信号Sdv。进一步地,驱动电路100内设置有功率放大器,该功率放大器能够根据控制信号DE而改变来自高频振荡器SF的高频信号的振幅。控制信号DE为模拟信号或数字信号,例如为指示功率放大器的放大率(增益)的值。此处,将控制信号DE设为模拟信号。The
此处,使用图27的时序图对如下情况进行说明,该情况是指于沿着描绘线SLa(SLb)扫描光点SPa(SPb)的图案描绘动作中,对光束LBa(LBb)的强度进行调整。于图27中,原点信号在多面镜PM的反射面旋转至既定的角度位置并开始在基板P上扫描光点SPa(SPb)之前的时点,产生脉冲波形。因此,于多面镜PM的反射面为8个面的情形时,原点信号的脉冲波形在多面镜PM旋转一周的过程中产生8次。从产生原点信号的脉冲波形起经过固定的延迟时间Tsq之后,产生描绘导通信号(逻辑值“1”),描绘位元信号CLT施加至驱动电路100,从而开始通过光束LBa(LBb)描绘图案。此时,控制信号DE的值(模拟电压)以如下特性CCv而变迁,即,从描绘导通信号变为逻辑值“1”时的值Ra起增大,且在描绘导通信号从逻辑值“1”变为“0”时达到值Rb。于图27中,于控制信号DE的值为Ro的情形时,驱动电路100内的功率放大器的增益被设定为初始值(例如10倍)。于图27的情形时,设定为Ra<Ro<Rb,因此,于描绘导通信号上升至“1”的描绘线SLa上的扫描开始点附近,功率放大器的增益被设定为低于初始值,因此投射至基板P的光点SPa(SPb)的强度小于初始值。又,于描绘导通信号下降至“0”的描绘线SLa上的扫描结束点附近,功率放大器的增益被设定为高于初始值,因此,投射至基板P的光点SPa(SPb)的强度大于初始值。藉此,能够电气性地调整(修正)根据光点SPa(SPb)的主扫描方向位置而产生的强度偏差。Here, a case in which the intensity of the light beam LBa (LBb) is adjusted in the pattern drawing operation of scanning the light spot SPa (SPb) along the drawing line SLa (SLb) will be described using the timing chart of FIG. 27 . Adjustment. In FIG. 27 , the origin signal generates a pulse waveform before the reflection surface of the polygon mirror PM rotates to a predetermined angular position and starts to scan the light spot SPa (SPb) on the substrate P. Therefore, when the reflective surfaces of the polygon mirror PM are eight, the pulse waveform of the origin signal is generated eight times during one rotation of the polygon mirror PM. After a fixed delay time Tsq elapses from the generation of the pulse waveform of the origin signal, a drawing ON signal (logical value "1") is generated, the drawing bit signal CLT is applied to the
如上所述的控制信号DE的波形,能够通过将描绘导通信号或原点信号予以输入的简单的时间常数电路(积分电路等)而生成。又,控制信号DE的特性CCv于图27中呈线性地产生变化,但亦可通过适当的滤波器电路而呈非线性地产生变化。于以数字信息而非模拟波形授予控制信号DE的情形时,只要以能够以控制信号DE的数字值改变功率放大器的增益的方式进行变形即可。The waveform of the control signal DE as described above can be generated by a simple time constant circuit (integration circuit or the like) to which the drawing ON signal or the origin signal is input. In addition, although the characteristic CCv of the control signal DE changes linearly in FIG. 27, it may change non-linearly by an appropriate filter circuit. In the case where the control signal DE is given as digital information instead of an analog waveform, it is only necessary to deform it so that the gain of the power amplifier can be changed by the digital value of the control signal DE.
如以上的图26、图27中所述,使授予光学元件AOMa(AOMb)的高频驱动信号Sdv的振幅产生变化而对投射至基板P的光束LBa(LBb)的强度进行调整的电气调整机构,在对从多个描绘单元的各者投射至基板P的光束间的相对强度差进行调整时亦有效果。另外,电气性地对光束LBa(LBb)的强度进行调整的机构,亦可实现例如于光源装置14为产生紫外线波长带的激光光束的半导体激光光源或高辉度LED光源的情形时,对光源的发光辉度自身进行调整。As described above in FIGS. 26 and 27 , an electrical adjustment mechanism for adjusting the intensity of the light beam LBa (LBb) projected on the substrate P by changing the amplitude of the high-frequency drive signal Sdv applied to the optical element AOMa (AOMb) , is also effective when adjusting the relative intensity difference between the light beams projected onto the substrate P from each of the plurality of drawing units. In addition, the mechanism for electrically adjusting the intensity of the light beam LBa (LBb) can be realized, for example, when the
又,如以上的图5、图6、图17所示,当于朝向反射面为8个面的多面镜PM的两条光束LBa、LBb相互平行的状态下,利用多面镜PM的反射面中的彼此成90°的关系的反射面的各者而使光束LBa与光束LBb反射时,光束LBa的光点SPa与光束LBb的光点SPb以相同时序于基板P上进行扫描。然而,如国际公开第2015/166910号公报所揭示,于分时(time-sharing)地将来自一个光源装置14的光束LB分成光束LBa与光束LBb的情形时,需要进行设定,以使光点SPa的主扫描与光点SPb的主扫描不会以相同时序被执行。为此的简单的实施形态,为于图5、图6、图17所示的构成中,使用反射面为9个面的多面镜作为多面镜PM。于多面镜为9个面的情形时,例如光束LBa射入至一个反射面的旋转方向中央的时序,为其他光束LBb射入至9个面的多面镜的反射面与反射面之间(棱线部)的时序。亦即,通过改变反射面的数量,可使光点SPa的主扫描与光点SPb的主扫描的时序错开。又,对于图5、图6、图17所示的构成,于多面镜PM为8个面,且使光点SPa的主扫描与光点SPb的主扫描的时序错开的情形时,只要将朝向多面镜PM的光束LBa与光束LBb从相互平行的状态设为不平行的状态即可。Furthermore, as shown in FIGS. 5 , 6 , and 17 above, in a state where the two light beams LBa and LBb directed toward the polygon mirror PM having eight reflective surfaces are parallel to each other, using the reflective surface of the polygon mirror PM When the light beam LBa and the light beam LBb are reflected by each of the reflecting surfaces having a 90° relationship, the light beam LBa and the light beam LBb spot SPa scan on the substrate P at the same timing. However, as disclosed in International Publication No. WO 2015/166910, in the case of dividing the light beam LB from one
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010601959.6A CN111665687B (en) | 2015-06-17 | 2016-06-17 | Pattern drawing device |
CN202010601953.9A CN111665686B (en) | 2015-06-17 | 2016-06-17 | Pattern drawing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015121839 | 2015-06-17 | ||
JP2015-121839 | 2015-06-17 | ||
PCT/JP2016/068075 WO2016204267A1 (en) | 2015-06-17 | 2016-06-17 | Pattern drawing device and pattern drawing method |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010601959.6A Division CN111665687B (en) | 2015-06-17 | 2016-06-17 | Pattern drawing device |
CN202010601953.9A Division CN111665686B (en) | 2015-06-17 | 2016-06-17 | Pattern drawing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107735715A CN107735715A (en) | 2018-02-23 |
CN107735715B true CN107735715B (en) | 2020-07-17 |
Family
ID=57546184
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010601959.6A Active CN111665687B (en) | 2015-06-17 | 2016-06-17 | Pattern drawing device |
CN201680035608.5A Active CN107735715B (en) | 2015-06-17 | 2016-06-17 | Pattern drawing device and pattern drawing method |
CN202010601953.9A Active CN111665686B (en) | 2015-06-17 | 2016-06-17 | Pattern drawing method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010601959.6A Active CN111665687B (en) | 2015-06-17 | 2016-06-17 | Pattern drawing device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010601953.9A Active CN111665686B (en) | 2015-06-17 | 2016-06-17 | Pattern drawing method |
Country Status (6)
Country | Link |
---|---|
JP (3) | JP6627875B2 (en) |
KR (2) | KR102680203B1 (en) |
CN (3) | CN111665687B (en) |
HK (1) | HK1243772A1 (en) |
TW (2) | TWI689788B (en) |
WO (1) | WO2016204267A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7136601B2 (en) * | 2018-06-25 | 2022-09-13 | 川崎重工業株式会社 | Light guide device and laser processing device |
TWI693482B (en) * | 2018-12-22 | 2020-05-11 | 財團法人工業技術研究院 | Exposure apparatus |
CN115461685A (en) * | 2020-05-09 | 2022-12-09 | 英视股份有限公司 | Drawing method, drawing device, and program |
JP7443176B2 (en) * | 2020-07-15 | 2024-03-05 | シャープ株式会社 | Optical scanning device and image forming device |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58105117A (en) * | 1981-12-18 | 1983-06-22 | Fujitsu Ltd | optical scanning device |
JPS6016058A (en) * | 1983-07-08 | 1985-01-26 | Hitachi Ltd | Light beam scanning device |
JPH1048558A (en) * | 1996-07-29 | 1998-02-20 | Nec Niigata Ltd | Laser scanning optical unit |
US5969347A (en) * | 1996-12-26 | 1999-10-19 | Asahi Kogaku Kogyo Kabushiki Kaisha | Synchronizing apparatus of a cascade scanning optical system having tilting measurement of reflecting surfaces |
CN1189040A (en) * | 1997-01-06 | 1998-07-29 | 旭光学工业株式会社 | Scanning apparatus having cascade scanning optical system |
US6288817B2 (en) * | 1998-01-21 | 2001-09-11 | Avanex Corporation | High duty cycle synchronized multi-line scanner |
JP4141056B2 (en) * | 1999-06-25 | 2008-08-27 | 株式会社リコー | Multi-beam image forming apparatus |
FR2800968B1 (en) * | 1999-11-05 | 2002-09-13 | Automa Tech Sa | LASER RADIATION PANEL EXPOSURE MACHINE |
JP2001162863A (en) * | 1999-12-13 | 2001-06-19 | Asahi Optical Co Ltd | Resolution variable light scanning device |
JP4315573B2 (en) * | 2000-05-08 | 2009-08-19 | 富士フイルム株式会社 | Optical recording method and optical recording apparatus using the same |
JP2002023089A (en) * | 2000-07-04 | 2002-01-23 | Asahi Optical Co Ltd | Scanning-type plotting device |
JP4731761B2 (en) * | 2001-08-24 | 2011-07-27 | 株式会社リコー | Optical writing apparatus and image forming apparatus |
JP2003140069A (en) * | 2001-10-30 | 2003-05-14 | Panasonic Communications Co Ltd | Optical scanner and its adjusting method |
JP2006058795A (en) * | 2004-08-23 | 2006-03-02 | Ricoh Co Ltd | Light beam scanner and image forming apparatus |
JP2006251688A (en) * | 2005-03-14 | 2006-09-21 | Ricoh Co Ltd | Optical scanner/image forming apparatus |
JP2007118329A (en) * | 2005-10-27 | 2007-05-17 | Noritsu Koki Co Ltd | Exposure method, exposure device, and photograph processor using the same |
JP5223211B2 (en) * | 2006-03-15 | 2013-06-26 | 株式会社リコー | Image processing method and image processing apparatus |
JP5034632B2 (en) * | 2007-04-12 | 2012-09-26 | 株式会社ニコン | Pattern generator, pattern forming apparatus, and pattern generation method |
JP2011090188A (en) * | 2009-10-23 | 2011-05-06 | Sharp Corp | Optical scanner and image forming apparatus using the same |
JP2012163868A (en) * | 2011-02-09 | 2012-08-30 | Ricoh Co Ltd | Optical scanner, and image forming apparatus |
JP5772165B2 (en) * | 2011-04-08 | 2015-09-02 | 株式会社リコー | Optical scanning apparatus and image forming apparatus |
KR102291281B1 (en) * | 2012-03-26 | 2021-08-20 | 가부시키가이샤 니콘 | Pattern forming device |
JP5906115B2 (en) * | 2012-03-29 | 2016-04-20 | 川崎重工業株式会社 | Optical scanning apparatus and laser processing apparatus |
KR101923360B1 (en) * | 2012-09-14 | 2018-11-28 | 가부시키가이샤 니콘 | Substrate processing device and device manufacturing method |
JP6349924B2 (en) * | 2014-04-28 | 2018-07-04 | 株式会社ニコン | Pattern drawing device |
KR101998541B1 (en) * | 2014-04-28 | 2019-07-09 | 가부시키가이샤 니콘 | Pattern drawing device, pattern drawing method, and device manufacturing method |
-
2016
- 2016-06-17 JP JP2017524853A patent/JP6627875B2/en active Active
- 2016-06-17 CN CN202010601959.6A patent/CN111665687B/en active Active
- 2016-06-17 KR KR1020177036155A patent/KR102680203B1/en active Active
- 2016-06-17 CN CN201680035608.5A patent/CN107735715B/en active Active
- 2016-06-17 CN CN202010601953.9A patent/CN111665686B/en active Active
- 2016-06-17 TW TW105119103A patent/TWI689788B/en active
- 2016-06-17 WO PCT/JP2016/068075 patent/WO2016204267A1/en active Application Filing
- 2016-06-17 TW TW109106180A patent/TWI736147B/en active
- 2016-06-17 KR KR1020237042530A patent/KR20230173214A/en active Pending
-
2018
- 2018-03-02 HK HK18103077.0A patent/HK1243772A1/en unknown
- 2018-12-17 JP JP2018235057A patent/JP6614319B2/en active Active
-
2019
- 2019-11-29 JP JP2019215971A patent/JP6911907B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111665687A (en) | 2020-09-15 |
TW201702762A (en) | 2017-01-16 |
JP6627875B2 (en) | 2020-01-08 |
CN111665686B (en) | 2024-01-05 |
JP2019074748A (en) | 2019-05-16 |
KR20180018568A (en) | 2018-02-21 |
TWI736147B (en) | 2021-08-11 |
CN107735715A (en) | 2018-02-23 |
JP6614319B2 (en) | 2019-12-04 |
CN111665686A (en) | 2020-09-15 |
KR102680203B1 (en) | 2024-07-02 |
KR20230173214A (en) | 2023-12-26 |
JP2020064306A (en) | 2020-04-23 |
WO2016204267A1 (en) | 2016-12-22 |
TWI689788B (en) | 2020-04-01 |
TW202022506A (en) | 2020-06-16 |
JPWO2016204267A1 (en) | 2018-04-12 |
CN111665687B (en) | 2023-06-16 |
HK1243772A1 (en) | 2018-07-20 |
JP6911907B2 (en) | 2021-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6911907B2 (en) | Pattern drawing device | |
JP7074160B2 (en) | Pattern drawing device | |
JP2022008529A (en) | Drawing device | |
WO2016136974A1 (en) | Substrate processing device, device manufacturing system, and device manufacturing method | |
JP6702487B2 (en) | Pattern forming equipment | |
JP6806139B2 (en) | Beam scanning device and pattern drawing device | |
JP2017102280A (en) | Device forming apparatus, pattern forming apparatus, device forming method, and pattern forming method | |
JP2017107036A (en) | Pattern drawing device and pattern drawing method | |
JP2017102272A (en) | Beam scanning apparatus, beam scanning method, and pattern writing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1243772 Country of ref document: HK |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1243772 Country of ref document: HK |