CN107731890A - Fin formula field effect transistor and forming method thereof - Google Patents
Fin formula field effect transistor and forming method thereof Download PDFInfo
- Publication number
- CN107731890A CN107731890A CN201610664323.XA CN201610664323A CN107731890A CN 107731890 A CN107731890 A CN 107731890A CN 201610664323 A CN201610664323 A CN 201610664323A CN 107731890 A CN107731890 A CN 107731890A
- Authority
- CN
- China
- Prior art keywords
- fin
- groove
- doped region
- field effect
- effect transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 103
- 230000005669 field effect Effects 0.000 title claims abstract description 57
- 238000002955 isolation Methods 0.000 claims abstract description 86
- 239000004065 semiconductor Substances 0.000 claims abstract description 82
- 239000000463 material Substances 0.000 claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 29
- -1 carbon ion Chemical class 0.000 claims description 92
- 229910052799 carbon Inorganic materials 0.000 claims description 69
- 150000002500 ions Chemical class 0.000 claims description 59
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 44
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- 238000005468 ion implantation Methods 0.000 claims description 16
- 238000011049 filling Methods 0.000 claims description 8
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims 6
- 238000002347 injection Methods 0.000 claims 4
- 239000007924 injection Substances 0.000 claims 4
- 230000004913 activation Effects 0.000 claims 2
- 239000007943 implant Substances 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 12
- 239000010410 layer Substances 0.000 description 122
- 239000012535 impurity Substances 0.000 description 56
- 229910052731 fluorine Inorganic materials 0.000 description 37
- 239000011737 fluorine Substances 0.000 description 37
- 229910052796 boron Inorganic materials 0.000 description 29
- 230000015572 biosynthetic process Effects 0.000 description 25
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 15
- 238000009792 diffusion process Methods 0.000 description 15
- 229910015900 BF3 Inorganic materials 0.000 description 12
- 238000002513 implantation Methods 0.000 description 12
- 238000001994 activation Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000000407 epitaxy Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910001439 antimony ion Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910001449 indium ion Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910015801 BaSrTiO Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910006501 ZrSiO Inorganic materials 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/112—Constructional design considerations for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layers, e.g. by using channel stoppers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0188—Manufacturing their isolation regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0193—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices the components including FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/853—Complementary IGFETs, e.g. CMOS comprising FinFETs
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种鳍式场效应晶体管及其形成方法,所述形成方法包括:提供半导体衬底,半导体衬底上形成有凸起的第一鳍部和第二鳍部,第一鳍部中形成有P型阱区,第二鳍部中形成有N型阱区,第一鳍部和第二鳍部之间具有第一沟槽,第一沟槽暴露出第一鳍部和第二鳍部的侧壁,第一鳍部的远离第一沟槽的一侧具有第二沟槽,第二鳍部远离第一沟槽的一侧具有第三沟槽;在第一沟槽和第二沟槽暴露的第一鳍部的侧壁表面形成第一掺杂区;在第一沟槽和第三沟槽暴露的第二鳍部的侧壁表面形成第二掺杂区;在形成第一掺杂区和第二掺杂区后,在第一沟槽、第二沟槽和第三沟槽中填充隔离材料,形成浅沟槽隔离结构。本发明方法形成的晶体管防止漏电流的产生和短沟道效应的产生。
A fin field effect transistor and its forming method, the forming method comprising: providing a semiconductor substrate, on which a raised first fin and a second fin are formed, and a P is formed in the first fin type well region, an N-type well region is formed in the second fin, a first trench is formed between the first fin and the second fin, and the first trench exposes the sides of the first fin and the second fin The wall, the side of the first fin portion away from the first groove has a second groove, and the side of the second fin portion away from the first groove has a third groove; the first groove and the second groove are exposed The first doped region is formed on the sidewall surface of the first fin; the second doped region is formed on the sidewall surface of the second fin exposed by the first trench and the third trench; the first doped region is formed After the second doped region and the first trench, the second trench and the third trench are filled with isolation material to form a shallow trench isolation structure. The transistor formed by the method of the invention prevents the generation of leakage current and the generation of short channel effect.
Description
技术领域technical field
本发明涉及半导体制作领域,特别涉及一种鳍式场效应晶体管及其形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a fin field effect transistor and a forming method thereof.
背景技术Background technique
随着半导体工艺技术的不断发展,工艺节点逐渐减小,后栅(gate-last)工艺得到了广泛应用,以获得理想的阈值电压,改善器件性能。但是当器件的特征尺寸(CD,CriticalDimension)进一步下降时,即使采用后栅工艺,常规的MOS场效应管的结构也已经无法满足对器件性能的需求,鳍式场效应晶体管(Fin FET)作为常规器件的替代得到了广泛的关注。With the continuous development of semiconductor process technology, process nodes are gradually reduced, and gate-last (gate-last) process has been widely used to obtain an ideal threshold voltage and improve device performance. However, when the feature size (CD, Critical Dimension) of the device is further reduced, even if the gate-last process is adopted, the structure of the conventional MOS field effect transistor can no longer meet the requirements for device performance, and the fin field effect transistor (Fin FET) as a conventional Device substitution has received extensive attention.
现有技术的一种鳍式场效应晶体管,包括:半导体衬底,所述半导体衬底上形成有凸出的鳍部,鳍部一般是通过对半导体衬底刻蚀后得到的;隔离层,覆盖所述半导体衬底的表面以及鳍部的侧壁的一部分;栅极结构,横跨在所述鳍部上,覆盖所述鳍部的顶端和侧壁,栅极结构包括栅介质层和位于栅介质层上的栅电极;位于栅极结构两侧内的源区和漏区。A fin field effect transistor in the prior art includes: a semiconductor substrate on which protruding fins are formed, and the fins are generally obtained by etching the semiconductor substrate; an isolation layer, Covering the surface of the semiconductor substrate and a part of the sidewall of the fin; the gate structure straddles the fin and covers the top and sidewall of the fin, the gate structure includes a gate dielectric layer and A gate electrode on the gate dielectric layer; a source region and a drain region located on both sides of the gate structure.
为了提高鳍式场效应晶体管的性能,通常在鳍式场效应晶体管的沟道区引入应力,以提高鳍式场效应晶体管沟道区载流子的迁移率,具体的,在P型的鳍式场效应晶体管的源区和漏区形成硅锗材料,在N型的鳍式场效应晶体管管的源区和漏区形成碳硅材料。In order to improve the performance of the fin field effect transistor, stress is usually introduced into the channel region of the fin field effect transistor to improve the mobility of carriers in the channel region of the fin field effect transistor, specifically, in the p-type fin field effect transistor The source region and drain region of the field effect transistor are formed of silicon germanium material, and the source region and drain region of the N-type fin field effect transistor are formed of carbon silicon material.
但是现有技术形成的鳍式场效应晶体管的性能仍有待提高。However, the performance of the fin field effect transistor formed by the prior art still needs to be improved.
发明内容Contents of the invention
本发明解决的问题是怎样提高晶体管的性能。The problem solved by the invention is how to improve the performance of the transistor.
为解决上述问题,本发明提供一种鳍式场效应晶体管的形成方法,包括:In order to solve the above problems, the present invention provides a method for forming a fin field effect transistor, comprising:
提供半导体衬底,所述半导体衬底上形成有凸起的第一鳍部和第二鳍部,所述第一鳍部中形成有P型阱区,第二鳍部中形成有N型阱区,第一鳍部和第二鳍部之间具有第一沟槽,所述第一沟槽暴露出第一鳍部和第二鳍部的侧壁,第一鳍部的远离第一沟槽的一侧具有第二沟槽,第二鳍部远离第一沟槽的一侧具有第三沟槽;在第一沟槽和第二沟槽暴露的第一鳍部的侧壁表面形成第一掺杂区,所述第一掺杂区用于防止P型阱区中的杂质离子向后续形成的浅沟槽隔离结构中扩散;在第一沟槽和第三沟槽暴露的第二鳍部的侧壁表面形成第二掺杂区,所述第二掺杂区用于防止后续在N型阱区中形成的源漏区中的杂质离子沿着第二鳍部的侧壁向沟道区扩散以及向后续形成的浅沟槽隔离结构中扩散;在形成第一掺杂区和第二掺杂区后,在第一沟槽、第二沟槽和第三沟槽中填充隔离材料,形成浅沟槽隔离结构。A semiconductor substrate is provided, a raised first fin and a second fin are formed on the semiconductor substrate, a P-type well region is formed in the first fin, and an N-type well is formed in the second fin region, there is a first groove between the first fin and the second fin, the first groove exposes the sidewalls of the first fin and the second fin, and the first fin is far away from the first groove There is a second groove on one side of the second fin, and a third groove on the side of the second fin away from the first groove; a first groove is formed on the side wall surface of the first fin exposed in the first groove and the second groove. Doped region, the first doped region is used to prevent impurity ions in the P-type well region from diffusing into the subsequently formed shallow trench isolation structure; the second fin exposed in the first trench and the third trench The second doped region is formed on the sidewall surface of the fin, and the second doped region is used to prevent the impurity ions in the source and drain regions formed in the N-type well region from moving from the sidewall of the second fin to the channel region. Diffusion and diffusion into the subsequently formed shallow trench isolation structure; after the first doped region and the second doped region are formed, the isolation material is filled in the first trench, the second trench and the third trench to form shallow trench isolation structure.
可选的,所述第一掺杂区为碳掺杂区,所述第二掺杂区为氟掺杂区。Optionally, the first doped region is a carbon doped region, and the second doped region is a fluorine doped region.
可选的,所述碳掺杂区的深度为2nm~12nm,碳掺杂区中碳离子的浓度为5e18~5e19atom/cm3。Optionally, the carbon-doped region has a depth of 2nm-12nm, and the concentration of carbon ions in the carbon-doped region is 5e18-5e19atom/cm 3 .
可选的,所述碳掺杂区的形成过程为:采用第一离子注入工艺,在第一沟槽和第二沟槽暴露的第一鳍部的侧壁的表面材料中掺杂碳离子,形成碳掺杂区。Optionally, the formation process of the carbon-doped region is: using the first ion implantation process, doping carbon ions in the surface material of the sidewall of the first fin exposed in the first trench and the second trench, A carbon doped region is formed.
可选的,所述第一离子注入工艺的注入角度为5~25度,注入的能量为2~8KeV,注入的剂量为5e13~5e14atom/cm2。Optionally, the implantation angle of the first ion implantation process is 5-25 degrees, the implantation energy is 2-8KeV, and the implantation dose is 5e13-5e14atom/cm 2 .
可选的,所述氟掺杂区的深度为2nm~12nm,氟掺杂区中氟离子的浓度为5e18~1e20atom/cm3。Optionally, the depth of the fluorine-doped region is 2nm-12nm, and the concentration of fluorine ions in the fluorine-doped region is 5e18-1e20atom/cm 3 .
可选的,所述氟掺杂区的形成过程为:采用第二离子注入工艺,在第一沟槽和第三沟槽暴露的第二鳍部的侧壁的表面材料中掺杂氟离子,形成氟掺杂区。Optionally, the formation process of the fluorine-doped region is: using the second ion implantation process, doping fluorine ions in the surface material of the sidewall of the second fin exposed in the first trench and the third trench, A fluorine-doped region is formed.
可选的,所述第二离子注入工艺的注入角度为5~25度,注入的能量为4~12KeV,注入的剂量为1e14~1e15atom/cm2。Optionally, the implantation angle of the second ion implantation process is 5-25 degrees, the implantation energy is 4-12 KeV, and the implantation dose is 1e14-1e15 atom/cm 2 .
可选的,所述碳掺杂区的形成过程为:在所述在第一沟槽和第二沟槽暴露的第一鳍部的侧壁表面上形成含有碳离子的第一半导体外延层,所述第一半导体外延层作为碳掺杂区。Optionally, the formation process of the carbon-doped region is: forming a first semiconductor epitaxial layer containing carbon ions on the sidewall surfaces of the first fin exposed in the first trench and the second trench, The first semiconductor epitaxial layer serves as a carbon doped region.
可选的,所述第一半导体外延层作为第一鳍部的一部分,所述第一半导体外延层的材料为硅或碳化硅,所述浅沟槽隔离结构覆盖第一半导体外延层的表面。Optionally, the first semiconductor epitaxial layer is used as a part of the first fin, the material of the first semiconductor epitaxial layer is silicon or silicon carbide, and the shallow trench isolation structure covers the surface of the first semiconductor epitaxial layer.
可选的,所述氟掺杂区的形成过程为:在所述在第一沟槽和第三沟槽暴露的第二鳍部的侧壁表面上形成含有氟离子的第二半导体外延层,所述第二半导体外延层作为氟掺杂区。Optionally, the formation process of the fluorine-doped region is: forming a second semiconductor epitaxial layer containing fluorine ions on the sidewall surfaces of the second fin exposed in the first trench and the third trench, The second semiconductor epitaxial layer serves as a fluorine-doped region.
可选的,所述第二半导体外延层作为第二鳍部的一部分,所述第二半导体外延层的材料为硅或锗化硅,所述浅沟槽隔离结构覆盖第二半导体外延层的表面。Optionally, the second semiconductor epitaxial layer is used as a part of the second fin, the material of the second semiconductor epitaxial layer is silicon or silicon germanium, and the shallow trench isolation structure covers the surface of the second semiconductor epitaxial layer .
可选的,所述碳掺杂区的形成过程为:在所述在第一沟槽和第二沟槽暴露的第一鳍部的侧壁表面上形成含有碳离子的第一中间层,通过激活工艺使得第一中间层中的碳离子扩散到第一鳍部的侧壁表面,在第一鳍部的侧壁表面形成碳掺杂区。Optionally, the formation process of the carbon-doped region is: forming a first intermediate layer containing carbon ions on the sidewall surfaces of the first fin exposed in the first trench and the second trench, by The activation process makes the carbon ions in the first intermediate layer diffuse to the sidewall surface of the first fin, forming a carbon doped region on the sidewall surface of the first fin.
可选的,所述氟掺杂区的形成过程为:在所述在第一沟槽和第三沟槽暴露的第二鳍部的侧壁表面上形成含有氟离子的第二中间层,通过激活工艺使得第二中间层中的氟离子扩散到第二鳍部的侧壁表面,在第二鳍部的侧壁表面形成氟掺杂区。Optionally, the formation process of the fluorine-doped region is: forming a second intermediate layer containing fluorine ions on the sidewall surfaces of the second fin exposed in the first trench and the third trench, by The activation process makes the fluorine ions in the second intermediate layer diffuse to the sidewall surface of the second fin, forming a fluorine doped region on the sidewall surface of the second fin.
可选的,还包括:回刻蚀去除部分厚度的浅沟槽结构,暴露出第一鳍部和第二鳍部的部分侧墙。Optionally, further comprising: etching back to remove part of the shallow trench structure, exposing part of the sidewalls of the first fin and the second fin.
可选的,形成横跨部分第一鳍部的顶部和侧壁表面的第一栅极结构;形成横跨部分第二鳍部的顶部和侧壁表面的第二栅极结构。Optionally, a first gate structure is formed across part of the top and sidewall surfaces of the first fin; a second gate structure is formed across part of the top and sidewall surfaces of the second fin.
可选的,在第一栅极结构两侧的第一鳍部内形成第一源漏区;在第二栅极结构两侧的第二鳍部内形成第二源漏区。Optionally, a first source-drain region is formed in the first fins on both sides of the first gate structure; a second source-drain region is formed in the second fins on both sides of the second gate structure.
可选的,所述第一源漏区的掺杂类型为N型,所述第二源漏区的掺杂类型为P型。Optionally, the doping type of the first source and drain region is N type, and the doping type of the second source and drain region is P type.
本发明还提供了一种鳍式场效应晶体管,包括:The present invention also provides a fin field effect transistor, comprising:
半导体衬底,所述半导体衬底上形成有凸起的第一鳍部和第二鳍部,所述第一鳍部中形成有P型阱区,第二鳍部中形成有N型阱区,第一鳍部和第二鳍部之间具有第一沟槽,所述第一沟槽暴露出第一鳍部和第二鳍部的侧壁,第一鳍部的远离第一沟槽的一侧具有第二沟槽,第二鳍部远离第二沟槽的一侧具有第三沟槽;位于在第一沟槽和第二沟槽暴露的第一鳍部的侧壁表面的第一掺杂区,所述第一掺杂区用于防止P型阱区中的杂质离子向浅沟槽隔离结构中扩散;位于在第一沟槽和第三沟槽暴露的第二鳍部的侧壁表面的第二掺杂区,所述第二掺杂区用于防止在N型阱区中形成的源漏区中的杂质离子沿着第二鳍部的侧壁向沟道区扩散以及向浅沟槽隔离结构中扩散;填充第一沟槽、第二沟槽和第三沟槽的浅沟槽隔离结构。A semiconductor substrate, a protruding first fin and a second fin are formed on the semiconductor substrate, a P-type well region is formed in the first fin, and an N-type well region is formed in the second fin , there is a first groove between the first fin and the second fin, the first groove exposes the sidewalls of the first fin and the second fin, the first fin is far away from the first groove One side has a second groove, and the side of the second fin away from the second groove has a third groove; the first groove on the side wall surface of the first fin exposed in the first groove and the second groove A doping region, the first doping region is used to prevent impurity ions in the P-type well region from diffusing into the shallow trench isolation structure; located on the side of the second fin exposed in the first trench and the third trench A second doped region on the wall surface, the second doped region is used to prevent impurity ions in the source and drain regions formed in the N-type well region from diffusing to the channel region along the sidewall of the second fin and to the channel region. Diffusion in the shallow trench isolation structure; the shallow trench isolation structure filling the first trench, the second trench and the third trench.
可选的,所述第一掺杂区为碳掺杂区,所述第二掺杂区为氟掺杂区。Optionally, the first doped region is a carbon doped region, and the second doped region is a fluorine doped region.
可选的,所述碳掺杂区的深度为2nm~12nm,碳掺杂区中碳离子的浓度为5e18~5e19atom/cm3。Optionally, the carbon-doped region has a depth of 2nm-12nm, and the concentration of carbon ions in the carbon-doped region is 5e18-5e19atom/cm 3 .
可选的,所述氟掺杂区的深度为2nm~12nm,氟掺杂区中氟离子的浓度为5e18~1e20atom/cm3。Optionally, the depth of the fluorine-doped region is 2nm-12nm, and the concentration of fluorine ions in the fluorine-doped region is 5e18-1e20atom/cm 3 .
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明的鳍式场效应晶体管形成方法,在半导体衬底上形成具有P型阱区的第一鳍部和具有N型阱区的第二鳍部后,在第一沟槽和第二沟槽暴露的第一鳍部的侧壁表面形成第一掺杂区;在第一沟槽和第三沟槽暴露的第二鳍部的侧壁表面形成第二掺杂区;在形成第一掺杂区和第二掺杂区后,在第一沟槽、第二沟槽和第三沟槽中填充隔离材料,形成浅沟槽隔离结构。所述第一掺杂区能防止第一鳍部的P型阱区中杂质离子(特别是硼离子或氟化硼离子)向第一鳍部和第二鳍部之间形成的浅沟槽隔离结构中扩散,保证浅沟槽隔离结构隔离性能,从而防止第一鳍部和第二鳍部之间漏电流的产生;所述第二掺杂区能防止P型的源漏区中的杂质离子(比如硼离子)沿着第二鳍部的侧壁向沟道区扩散,从而防止短沟道效应的产生,以及防止后续在第二鳍部中形成的P型的源漏区中的杂质离子(比如硼离子)向第二鳍部和第一鳍部之间形成的浅沟槽隔离结构中扩散,保证浅沟槽隔离结构隔离性能,从而防止第一鳍部和第二鳍部之间漏电流的产生。并且本发明的方法,实现了N型和P型的鳍式场效应晶体管的集成制作。In the method for forming a Fin Field Effect Transistor of the present invention, after forming the first fin with the P-type well region and the second fin with the N-type well region on the semiconductor substrate, the first trench and the second trench The exposed sidewall surface of the first fin forms a first doped region; the exposed sidewall surface of the second fin in the first trench and the third trench forms a second doped region; After the region and the second doped region, an isolation material is filled in the first trench, the second trench and the third trench to form a shallow trench isolation structure. The first doped region can prevent impurity ions (especially boron ions or boron fluoride ions) in the P-type well region of the first fin from separating from the shallow trench formed between the first fin and the second fin. Diffusion in the structure ensures the isolation performance of the shallow trench isolation structure, thereby preventing the generation of leakage current between the first fin and the second fin; the second doped region can prevent impurity ions in the P-type source and drain regions (such as boron ions) diffuse to the channel region along the sidewall of the second fin, thereby preventing the generation of the short channel effect, and preventing impurity ions in the subsequent P-type source and drain regions formed in the second fin (such as boron ions) diffuse into the shallow trench isolation structure formed between the second fin and the first fin to ensure the isolation performance of the shallow trench isolation structure, thereby preventing leakage between the first fin and the second fin current generation. And the method of the present invention realizes the integrated fabrication of N-type and P-type fin field effect transistors.
进一步,所述第一掺杂区为碳掺杂区,碳掺杂区不仅能防止第一鳍部的P型阱区中杂质离子(特别是硼离子或氟化硼离子)向第一鳍部和第二鳍部之间形成的浅沟槽隔离结构中扩散,保证浅沟槽隔离结构隔离性能,从而防止第一鳍部和第二鳍部之间漏电流的产生,而且碳掺杂区对(N型的鳍式场效应晶体管)第一鳍部的电学性能的影响较小。Further, the first doped region is a carbon doped region, and the carbon doped region can not only prevent impurity ions (especially boron ions or boron fluoride ions) in the P-type well region of the first fin from flowing into the first fin. Diffusion in the shallow trench isolation structure formed between the second fin and the second fin ensures the isolation performance of the shallow trench isolation structure, thereby preventing the generation of leakage current between the first fin and the second fin, and the carbon doped region is opposite to (N-type FinFET) The electrical performance of the first fin is less affected.
进一步,所述第二掺杂区为氟掺杂区,氟掺杂区不仅能防止P型的源漏区中的杂质离子(比如硼离子)沿着第二鳍部的侧壁向沟道区扩散,从而防止短沟道效应的产生,以及防止后续在第二鳍部中形成的P型的源漏区中的杂质离子(比如硼离子)向第二鳍部和第一鳍部之间形成的浅沟槽隔离结构中扩散,保证浅沟槽隔离结构隔离性能,从而防止第一鳍部和第二鳍部之间漏电流的产生,而且氟掺杂区对(P型的鳍式场效应晶体管)第二鳍部的电学性能的影响较小。Further, the second doped region is a fluorine-doped region, and the fluorine-doped region can not only prevent impurity ions (such as boron ions) in the P-type source and drain regions from moving to the channel region along the sidewall of the second fin. Diffusion, thereby preventing the generation of the short channel effect, and preventing impurity ions (such as boron ions) in the P-type source and drain regions subsequently formed in the second fin from forming between the second fin and the first fin Diffusion in the shallow trench isolation structure ensures the isolation performance of the shallow trench isolation structure, thereby preventing the leakage current between the first fin and the second fin, and the fluorine-doped region is opposite to (P-type fin field effect Transistor) has less influence on the electrical performance of the second fin.
本发明的鳍式场效应晶体管,包括第一掺杂区和第二掺杂区,所述第一掺杂区能防止第一鳍部的P型阱区中杂质离子(特别是硼离子或氟化硼离子)向第一鳍部和第二鳍部之间形成的浅沟槽隔离结构中扩散,保证浅沟槽隔离结构隔离性能,从而防止第一鳍部和第二鳍部之间漏电流的产生;所述第二掺杂区能防止P型的源漏区中的杂质离子(比如硼离子)沿着第二鳍部的侧壁向沟道区扩散,从而防止短沟道效应的产生,以及防止后续在第二鳍部中形成的P型的源漏区中的杂质离子(比如硼离子)向第二鳍部和第一鳍部之间形成的浅沟槽隔离结构中扩散,保证浅沟槽隔离结构隔离性能,从而防止第一鳍部和第二鳍部之间漏电流的产生。The Fin Field Effect Transistor of the present invention comprises a first doped region and a second doped region, the first doped region can prevent impurity ions (especially boron ions or fluorine) in the P-type well region of the first fin Boron oxide ions) diffuse into the shallow trench isolation structure formed between the first fin and the second fin to ensure the isolation performance of the shallow trench isolation structure, thereby preventing leakage current between the first fin and the second fin The generation of; The second doped region can prevent impurity ions (such as boron ions) in the P-type source and drain regions from diffusing to the channel region along the sidewall of the second fin, thereby preventing the generation of the short channel effect , and prevent impurity ions (such as boron ions) in the P-type source and drain regions subsequently formed in the second fin from diffusing into the shallow trench isolation structure formed between the second fin and the first fin, ensuring The shallow trench isolation structure isolates performance, thereby preventing the generation of leakage current between the first fin and the second fin.
附图说明Description of drawings
图1~图6为本发明一实施例鳍式场效应晶体管的形成方法的结构示意图;1 to 6 are structural schematic diagrams of a method for forming a fin field effect transistor according to an embodiment of the present invention;
图7~图9为本发明另一实施例鳍式场效应晶体管的过程的结构示意图;7 to 9 are structural schematic diagrams of the process of a fin field effect transistor according to another embodiment of the present invention;
图10~12为本发明又一实施例中鳍式场效应晶体管的形成过程的剖面结构示意图。10-12 are schematic cross-sectional structure diagrams of the formation process of the fin field effect transistor in another embodiment of the present invention.
具体实施方式detailed description
如背景技术所言,现有技术形成的鳍式场效应晶体管的性能仍有待提高,比如现有技术的形成的鳍式场效应晶体管仍存在漏电流的问题。As mentioned in the background art, the performance of the fin field effect transistor formed in the prior art still needs to be improved, for example, the fin field effect transistor formed in the prior art still has the problem of leakage current.
研究发现,现有技术在制作鳍式场效应晶体管时,鳍部中掺杂杂质离子形成阱区或者鳍部中掺杂杂质离子形成源漏区,相邻鳍部之间通过浅掺杂隔离结构隔离,由于鳍部中掺杂的杂质离子会向浅沟槽隔离结构中扩散,使得浅沟槽隔离结构的隔离性能下降,从而在相邻鳍部之间容易产生漏电流。Research has found that in the prior art, when fin field effect transistors are manufactured, impurity ions are doped in the fins to form well regions or impurity ions are doped in fins to form source and drain regions, and the adjacent fins are separated by lightly doped isolation structures. Isolation, because the impurity ions doped in the fins will diffuse into the shallow trench isolation structure, so that the isolation performance of the shallow trench isolation structure is reduced, and leakage current is easily generated between adjacent fins.
进一步研究发现,硼离子和氟化硼离子相比于其他的杂质离子更容易向相邻鳍部之间的浅沟槽结构之间扩散,因而N型的鳍式场效应晶体管的阱区以及P型的鳍式场效应晶体管的源漏区中掺杂的硼离子和氟化硼离子对浅沟槽隔离结构的隔离性能下降产生的漏电流的贡献较大。Further studies have found that boron ions and boron fluoride ions are more likely to diffuse into the shallow trench structure between adjacent fins than other impurity ions, so the well region of the N-type fin field effect transistor and the P The boron ions and boron fluoride ions doped in the source and drain regions of the fin field effect transistor of the type contribute greatly to the leakage current caused by the degradation of the isolation performance of the shallow trench isolation structure.
为此,本发明提供了一种鳍式场效应晶体管及其形成方法,本发明的形成方法,在半导体衬底上形成具有P型阱区的第一鳍部和具有N型阱区的第二鳍部后,在第一沟槽和第二沟槽暴露的第一鳍部的侧壁表面形成第一掺杂区;在第一沟槽和第三沟槽暴露的第二鳍部的侧壁表面形成第二掺杂区;在形成第一掺杂区和第二掺杂区后,在第一沟槽、第二沟槽和第三沟槽中填充隔离材料,形成浅沟槽隔离结构。所述第一掺杂区能防止第一鳍部的P型阱区中杂质离子(特别是硼离子或氟化硼离子)向第一鳍部和第二鳍部之间形成的浅沟槽隔离结构中扩散,保证浅沟槽隔离结构隔离性能,从而防止第一鳍部和第二鳍部之间漏电流的产生;所述第二掺杂区能防止P型的源漏区中的杂质离子(比如硼离子)沿着第二鳍部的侧壁向沟道区扩散,从而防止短沟道效应的产生,以及防止后续在第二鳍部中形成的P型的源漏区中的杂质离子(比如硼离子)向第二鳍部和第一鳍部之间形成的浅沟槽隔离结构中扩散,保证浅沟槽隔离结构隔离性能,从而防止第一鳍部和第二鳍部之间漏电流的产生。To this end, the present invention provides a fin field effect transistor and its forming method. In the forming method of the present invention, a first fin having a P-type well region and a second fin having an N-type well region are formed on a semiconductor substrate. After finning, the first doped region is formed on the sidewall surface of the first fin exposed in the first trench and the second trench; the sidewall of the second fin exposed in the first trench and the third trench A second doped region is formed on the surface; after the first doped region and the second doped region are formed, isolation materials are filled in the first trench, the second trench and the third trench to form a shallow trench isolation structure. The first doped region can prevent impurity ions (especially boron ions or boron fluoride ions) in the P-type well region of the first fin from separating from the shallow trench formed between the first fin and the second fin. Diffusion in the structure ensures the isolation performance of the shallow trench isolation structure, thereby preventing the generation of leakage current between the first fin and the second fin; the second doped region can prevent impurity ions in the P-type source and drain regions (such as boron ions) diffuse to the channel region along the sidewall of the second fin, thereby preventing the generation of the short channel effect, and preventing impurity ions in the subsequent P-type source and drain regions formed in the second fin (such as boron ions) diffuse into the shallow trench isolation structure formed between the second fin and the first fin to ensure the isolation performance of the shallow trench isolation structure, thereby preventing leakage between the first fin and the second fin current generation.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。在详述本发明实施例时,为便于说明,示意图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明的保护范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. When describing the embodiments of the present invention in detail, for convenience of explanation, the schematic diagrams will not be partially enlarged according to the general scale, and the schematic diagrams are only examples, which shall not limit the protection scope of the present invention. In addition, the three-dimensional space dimensions of length, width and depth should be included in actual production.
图1~图6为本发明一实施例鳍式场效应晶体管的形成方法的结构示意图。1 to 6 are structural schematic diagrams of a method for forming a fin field effect transistor according to an embodiment of the present invention.
请参考图1和图2,提供半导体衬底200,所述半导体衬底200上形成有凸起的第一鳍部202和第二鳍部203,所述第一鳍部202中形成有P型阱区,第二鳍部203中形成有N型阱区,第一鳍部202和第二鳍部203之间具有第一沟槽211,所述第一沟槽211暴露出第一鳍部202和第二鳍部203的侧壁,第一鳍部202的远离第一沟槽211的一侧具有第二沟槽212,第二鳍部203远离第一沟槽211的一侧具有第三沟槽213。1 and 2, a semiconductor substrate 200 is provided, on which a raised first fin 202 and a second fin 203 are formed, and a P-type fin 202 is formed in the first fin 202. Well region, an N-type well region is formed in the second fin portion 203, a first trench 211 is formed between the first fin portion 202 and the second fin portion 203, and the first trench 211 exposes the first fin portion 202 and the sidewall of the second fin portion 203, the side of the first fin portion 202 away from the first groove 211 has a second groove 212, and the side of the second fin portion 203 away from the first groove 211 has a third groove Slot 213.
所述半导体衬底200可以是硅或者绝缘体上硅(SOI),所述半导体衬底200也可以是锗、锗硅、砷化镓或者绝缘体上锗,本实施中所述半导体衬底200的材料为硅。The semiconductor substrate 200 may be silicon or silicon-on-insulator (SOI), and the semiconductor substrate 200 may also be germanium, silicon-germanium, gallium arsenide, or germanium-on-insulator. The material of the semiconductor substrate 200 in this implementation for silicon.
本实施例中,第一鳍部202和第二鳍部203的形成过程为:在半导体衬底200上形成图形化的硬掩膜层201,所述图形化的硬掩膜层201中形成有若干暴露出半导体衬底表面的若干开口;沿开口刻蚀所述半导体衬底200,形成第一鳍部202和第二鳍部203。本实施例中,以一个第一鳍部202和一个相邻的第二鳍部203作为示例进行说明,在其他实施例中,所述半导体衬底200上形成有若干(≥2个)第一鳍部202和若干(≥2个)第二鳍部203,至少有一个第一鳍部202与第二鳍部203相邻。In this embodiment, the formation process of the first fin portion 202 and the second fin portion 203 is: forming a patterned hard mask layer 201 on the semiconductor substrate 200, and the patterned hard mask layer 201 is formed with Several openings exposing the surface of the semiconductor substrate; the semiconductor substrate 200 is etched along the openings to form first fins 202 and second fins 203 . In this embodiment, one first fin 202 and one adjacent second fin 203 are taken as an example for illustration. In other embodiments, several (≥2) first fins 200 are formed on the semiconductor substrate 200. The fin 202 and several (≥2) second fins 203 , at least one first fin 202 is adjacent to the second fin 203 .
所述掩膜层201的材料为氧化硅、氮化硅或或其他合适的掩膜材料,所述掩膜层201可以为单层或多层(≥2层)堆叠结构。The material of the mask layer 201 is silicon oxide, silicon nitride or other suitable mask materials, and the mask layer 201 may be a single-layer or multi-layer (≥2 layers) stacked structure.
所述第一鳍部202中掺杂P型的杂质离子形成P型阱区,所述第二鳍部203中掺杂N型的杂质离子形成N型阱区。在一实施例中,可以在第一鳍部202和第二鳍部203形成之后,分别对第一鳍部202和第二鳍部203进行离子注入工艺,在第一鳍部202中形成P型阱区,在第二鳍部203中形成N型阱区。在其他实施例中,可以在形成第一鳍部202和第二鳍部203之前,在半导体衬底中对应后续形成第一鳍部的位置掺杂P型的杂质离子,对应后续形成第二鳍部的位置掺杂N型的杂质离子;进行掺杂后,刻蚀半导体衬底,在相应的位置形成第一鳍部202和第二鳍部203。The first fin portion 202 is doped with P-type impurity ions to form a P-type well region, and the second fin portion 203 is doped with N-type impurity ions to form an N-type well region. In an embodiment, after the formation of the first fin 202 and the second fin 203 , ion implantation processes are performed on the first fin 202 and the second fin 203 respectively, and a P-type fin is formed in the first fin 202 . Well region, an N-type well region is formed in the second fin portion 203 . In other embodiments, before the first fin 202 and the second fin 203 are formed, P-type impurity ions can be doped in the semiconductor substrate corresponding to the position of the first fin to be subsequently formed, and corresponding to the position of the second fin to be subsequently formed. N-type impurity ions are doped at the position of the portion; after doping, the semiconductor substrate is etched to form the first fin portion 202 and the second fin portion 203 at corresponding positions.
所述P型杂质离子为硼离子、氟化硼离子、镓离子或铟离子中的一种或几种;所述N型杂质离子为磷离子、砷离子或锑离子中的一种或几种。The P-type impurity ions are one or more of boron ions, boron fluoride ions, gallium ions or indium ions; the N-type impurity ions are one or more of phosphorus ions, arsenic ions or antimony ions .
本实施例中,所述第一鳍部202的P型阱区中掺杂的杂质离子为硼离子或氟化硼离子,第二鳍部203的N型阱区中掺杂的杂质离子为磷离子。In this embodiment, the impurity ions doped in the P-type well region of the first fin 202 are boron ions or boron fluoride ions, and the impurity ions doped in the N-type well region of the second fin 203 are phosphorus ion.
在其他实施例中,所述第一鳍部202和第二鳍部203可以通过外延工艺形成,在外延工艺时通过自掺杂工艺对第一鳍部和第二鳍部进行掺杂。In other embodiments, the first fin 202 and the second fin 203 may be formed by an epitaxial process, and the first fin and the second fin are doped by a self-doping process during the epitaxial process.
参考图3,在第一沟槽211和第二沟槽212暴露的第一鳍部202的侧壁表面形成第一掺杂区205,所述第一掺杂区205用于防止P型阱区中的杂质离子向后续形成的浅沟槽隔离结构中扩散。Referring to FIG. 3, a first doped region 205 is formed on the sidewall surface of the first fin 202 exposed by the first trench 211 and the second trench 212, and the first doped region 205 is used to prevent the P-type well region from The impurity ions in the diffusion diffuse into the subsequently formed shallow trench isolation structure.
本实施例中,所述第一掺杂区205为碳掺杂区(205)。In this embodiment, the first doped region 205 is a carbon doped region (205).
形成的碳掺杂区205位于第一鳍部的侧壁表面附近,碳掺杂区205掺杂有碳离子,所述碳掺杂区用于防止第一鳍部202的P型阱区中杂质离子(特别是硼离子或氟化硼离子)向后续第一鳍部202和第二鳍部203之间形成的浅沟槽隔离结构中扩散,保证浅沟槽隔离结构隔离性能,防止第一鳍部202和第二鳍部203之间漏电流的产生,并且碳掺杂区205对(N型的鳍式场效应晶体管)第一鳍部202的电学性能的影响较小。The formed carbon-doped region 205 is located near the sidewall surface of the first fin, and the carbon-doped region 205 is doped with carbon ions, and the carbon-doped region is used to prevent impurities in the P-type well region of the first fin 202 Ions (especially boron ions or boron fluoride ions) diffuse into the subsequent shallow trench isolation structure formed between the first fin 202 and the second fin 203 to ensure the isolation performance of the shallow trench isolation structure and prevent the first fin generation of leakage current between the first fin portion 202 and the second fin portion 203, and the carbon doped region 205 has little influence on the electrical performance of the first fin portion 202 (N-type fin field effect transistor).
在一实施例中,所述碳掺杂区205的深度为2nm~12nm,且碳掺杂区205中碳离子的浓度为5e18~5e19atom/cm3,在尽量减小对第一鳍部201的电学性能的影响的同时,有效的防止第一鳍部202的P型阱区中杂质离子(特别是硼离子或氟化硼离子)向后续第一鳍部202和第二鳍部203之间形成的浅沟槽隔离结构中扩散。In one embodiment, the carbon-doped region 205 has a depth of 2nm-12nm, and the concentration of carbon ions in the carbon-doped region 205 is 5e18-5e19atom/cm 3 , so as to minimize the impact on the first fin 201 While affecting the electrical performance, effectively prevent impurity ions (especially boron ions or boron fluoride ions) in the P-type well region of the first fin 202 from forming between the subsequent first fin 202 and second fin 203 Diffusion in the shallow trench isolation structure.
所述碳掺杂区205的形成过程为:采用第一离子注入工艺21,在第一沟槽211和第二沟槽212暴露的第一鳍部202的侧壁的表面材料中掺杂碳离子,形成碳掺杂区205。The formation process of the carbon doped region 205 is: using the first ion implantation process 21, doping carbon ions in the surface material of the sidewall of the first fin 202 exposed by the first trench 211 and the second trench 212 , forming a carbon doped region 205 .
在一实施例中,所述第一离子注入工艺21的注入角度为5~25度,注入的能量为2~8KeV,注入的剂量为5e13~5e14atom/cm2,以使得形成的碳掺杂区205靠近第一鳍部的表面,并且形成的碳掺杂区205中的碳离子能较均匀的分布以及使得碳离子的浓度能达到要求,以使得形成的碳掺杂区205防止第一鳍部202的P型阱区中杂质离子(特别是硼离子或氟化硼离子)向后续第一鳍部202和第二鳍部203之间形成的浅沟槽隔离结构中扩散的效果更佳。In one embodiment, the implantation angle of the first ion implantation process 21 is 5-25 degrees, the implantation energy is 2-8KeV, and the implantation dose is 5e13-5e14atom/cm 2 , so that the formed carbon-doped region 205 is close to the surface of the first fin, and the carbon ions in the formed carbon doped region 205 can be more uniformly distributed and the concentration of carbon ions can meet the requirements, so that the formed carbon doped region 205 prevents the first fin from The effect of impurity ions (especially boron ions or boron fluoride ions) in the P-type well region of 202 diffusing into the subsequent shallow trench isolation structure formed between the first fin 202 and the second fin 203 is better.
需要说明的是,在进行第一离子注入工艺21之前,在第二鳍部203表面以及其他不需要注入杂质离子的半导体衬底表面形成掩膜层。It should be noted that before the first ion implantation process 21 is performed, a mask layer is formed on the surface of the second fin 203 and other surfaces of the semiconductor substrate that do not need to be implanted with impurity ions.
参考图4,在第一沟槽211和第三沟槽213暴露的第二鳍部203的侧壁表面形成第二掺杂区206,所述第二掺杂区206用于防止后续在N型阱区中形成的源漏区(第二源漏区)中的杂质离子沿着第二鳍部的侧壁向沟道区扩散以及向后续形成的浅沟槽隔离结构中扩散。Referring to FIG. 4, a second doped region 206 is formed on the sidewall surface of the second fin 203 exposed by the first trench 211 and the third trench 213, and the second doped region 206 is used to prevent subsequent N-type The impurity ions in the source-drain region (second source-drain region) formed in the well region diffuse to the channel region along the sidewall of the second fin and diffuse into the subsequently formed shallow trench isolation structure.
本实施例中,所述第二掺杂区206为氟掺杂区(206)。In this embodiment, the second doped region 206 is a fluorine doped region (206).
所述氟掺杂区206中掺杂有氟离子,所述氟掺杂区206位于第二鳍部203的侧壁表面附近,氟掺杂区206的作用是防止P型的源漏区中的杂质离子(比如硼离子)沿着第二鳍部的侧壁向沟道区扩散,防止短沟道效应的产生,以及防止后续在第二鳍部203中形成的P型的源漏区中的杂质离子(比如硼离子)向第二鳍部和第一鳍部之间形成的浅沟槽隔离结构中扩散,保证浅沟槽隔离结构隔离性能,防止第一鳍部202和第二鳍部203之间漏电流的产生,并且氟掺杂区206对(P型的鳍式场效应晶体管)第二鳍部203的电学性能的影响较小。The fluorine-doped region 206 is doped with fluorine ions, and the fluorine-doped region 206 is located near the sidewall surface of the second fin portion 203. The function of the fluorine-doped region 206 is to prevent P-type source and drain regions Impurity ions (such as boron ions) diffuse to the channel region along the sidewall of the second fin to prevent the short channel effect from occurring, and prevent the P-type source and drain regions subsequently formed in the second fin 203 Impurity ions (such as boron ions) diffuse into the shallow trench isolation structure formed between the second fin and the first fin to ensure the isolation performance of the shallow trench isolation structure and prevent the first fin 202 and the second fin 203 from generation of leakage current, and the fluorine-doped region 206 has little influence on the electrical properties of the second fin portion 203 (P-type fin field effect transistor).
在一实施例中,所述氟掺杂区206的深度为2nm~12nm,且氟掺杂区206中氟离子的浓度为5e18~1e20atom/cm3,在尽量减小对(P型的鳍式场效应晶体管)第二鳍部203的电学性能的影响较小的同时,有效的防止P型的源漏区中的杂质离子(比如硼离子)沿着第二鳍部的侧壁向沟道区扩散,防止短沟道效应的产生,以及有效的防止后续在第二鳍部203中形成的P型的源漏区中的杂质离子(比如硼离子)向第二鳍部和第一鳍部之间形成的浅沟槽隔离结构中扩散。In one embodiment, the depth of the fluorine-doped region 206 is 2nm-12nm, and the concentration of fluorine ions in the fluorine-doped region 206 is 5e18-1e20atom/cm 3 . Field Effect Transistor) While the impact on the electrical properties of the second fin portion 203 is small, it can effectively prevent the impurity ions (such as boron ions) in the P-type source and drain regions from moving to the channel region along the sidewall of the second fin portion. Diffusion, prevent the short channel effect, and effectively prevent impurity ions (such as boron ions) in the P-type source and drain regions formed in the second fin 203 from moving between the second fin and the first fin Diffusion in the shallow trench isolation structure formed between them.
所述氟掺杂区206的形成过程为:采用第二离子注入工艺22,在第一沟槽211和第三沟槽213暴露的第二鳍部203的侧壁的表面材料中掺杂氟离子,形成氟掺杂区206。The formation process of the fluorine-doped region 206 is: using the second ion implantation process 22, doping fluorine ions in the surface material of the sidewall of the second fin 203 exposed by the first trench 211 and the third trench 213 , forming a fluorine-doped region 206 .
在一实施例中,所述第二离子注入工艺22的注入角度为5~25度,注入的能量为4~12KeV,注入的剂量为1e14~1e15atom/cm2,以使得形成的氟掺杂区206靠近第二鳍部的表面,并且形成的氟掺杂区206中的氟离子能较均匀的分布以及使得氟离子的浓度能达到要求,以使得形成的氟掺杂区206防止P型的源漏区中的杂质离子(比如硼离子)沿着第二鳍部的侧壁向沟道区扩散,防止短沟道效应的产生,以及有效的防止后续在第二鳍部203中形成的P型的源漏区中的杂质离子(比如硼离子)向第二鳍部和第一鳍部之间形成的浅沟槽隔离结构中扩散的效果更佳。In one embodiment, the implantation angle of the second ion implantation process 22 is 5-25 degrees, the implantation energy is 4-12 KeV, and the implantation dose is 1e14-1e15 atom/cm 2 , so that the formed fluorine-doped region 206 is close to the surface of the second fin, and the fluorine ions in the formed fluorine-doped region 206 can be more uniformly distributed and the concentration of fluorine ions can meet the requirements, so that the formed fluorine-doped region 206 prevents the P-type source The impurity ions (such as boron ions) in the drain region diffuse to the channel region along the sidewall of the second fin, preventing the generation of the short channel effect, and effectively preventing the subsequent P-type formation in the second fin 203. The effect of impurity ions (such as boron ions) in the source and drain regions of the diffusion into the shallow trench isolation structure formed between the second fin and the first fin is better.
需要说明的是,在进行第二离子注入工艺22之前,在第一鳍部202表面以及其他不需要注入杂质离子的半导体衬底表面形成掩膜层。It should be noted that before the second ion implantation process 22 is performed, a mask layer is formed on the surface of the first fin 202 and other surfaces of the semiconductor substrate that do not need to be implanted with impurity ions.
本实施例中,所述氟掺杂区206的形成步骤在碳掺杂区205的形成步骤之后进行,在其他实施例中,所述氟掺杂区206的形成步骤也可以在碳掺杂区205的形成步骤之前进行。In this embodiment, the step of forming the fluorine-doped region 206 is performed after the step of forming the carbon-doped region 205. In other embodiments, the step of forming the fluorine-doped region 206 can also be performed in the carbon-doped region 205 is performed before the forming step.
参考图5,在第一沟槽211(参考图4)、第二沟槽212(参考图4)和第三沟槽213(参考图4)中填充隔离材料,形成浅沟槽隔离结构207。Referring to FIG. 5 , an isolation material is filled in the first trench 211 (see FIG. 4 ), the second trench 212 (see FIG. 4 ) and the third trench 213 (see FIG. 4 ), forming a shallow trench isolation structure 207 .
所述浅沟槽隔离结构207的形成过程为:形成覆盖所述第一鳍部202、第二鳍部203、硬掩膜层201(参考图4)表面以及填充满在第一沟槽211(参考图4)、第二沟槽212(参考图4)和第三沟槽213(参考图4)的隔离材料层;平坦化所述隔离材料层,以第第一鳍部202和第二鳍部203的顶部表面为停止层,在第一沟槽211(参考图4)、第二沟槽212(参考图4)和第三沟槽213(参考图4)中形成浅沟槽隔离结构207。The formation process of the shallow trench isolation structure 207 is: forming a surface covering the first fin portion 202, the second fin portion 203, and the hard mask layer 201 (refer to FIG. 4 ) and filling the surface of the first trench 211 ( 4), the isolation material layer of the second trench 212 (refer to FIG. 4) and the third trench 213 (refer to FIG. 4); planarize the isolation material layer to form the first fin 202 and the second fin The top surface of portion 203 is a stop layer, and shallow trench isolation structures 207 are formed in first trench 211 (refer to FIG. 4 ), second trench 212 (refer to FIG. 4 ), and third trench 213 (refer to FIG. 4 ). .
所述浅沟槽隔离结构207的材料为氧化硅、氮化硅、氮氧化硅。本实施例中,所述浅沟槽隔离结构207的材料为氧化硅。The material of the shallow trench isolation structure 207 is silicon oxide, silicon nitride, silicon oxynitride. In this embodiment, the material of the shallow trench isolation structure 207 is silicon oxide.
所述浅沟槽隔离结构207可以为单层或多层(≥2层)堆叠结构。在一实施例中,所述浅沟槽隔离结构为双层堆叠结构,包括位于第一沟槽211(第二沟槽212、第三沟槽213)的侧壁和底部表面的衬垫层和位于衬垫层表面填充第一沟槽211(第二沟槽212、第三沟槽213)的填充层。所述衬垫层和填充层的材料可以相同也可以相同。The shallow trench isolation structure 207 can be a single-layer or multi-layer (≥2 layers) stacked structure. In one embodiment, the shallow trench isolation structure is a double-layer stack structure, including a liner layer and The filling layer on the surface of the liner layer fills the first trench 211 (the second trench 212 and the third trench 213 ). The materials of the pad layer and the filling layer can be the same or the same.
参考图6,回刻蚀去除部分厚度的浅沟槽结构207,暴露出第一鳍部202和第二鳍部203的部分侧墙。Referring to FIG. 6 , etch back to remove part of the thickness of the shallow trench structure 207 , exposing part of the sidewalls of the first fin 202 and the second fin 203 .
回刻蚀去除部分厚度的浅沟槽结构207采用湿法刻蚀工艺,回刻蚀后,剩余的浅沟槽隔离结构207的表面低于第一鳍部202和第二鳍部203的顶部表面。Etching back to remove part of the thickness of the shallow trench structure 207 adopts a wet etching process. After etching back, the surface of the remaining shallow trench isolation structure 207 is lower than the top surfaces of the first fin 202 and the second fin 203 .
进行回刻蚀步骤后,还包括:形成横跨部分第一鳍部202的顶部和侧壁表面的第一栅极结构(图中未示出);形成横跨部分第二鳍部203的顶部和侧壁表面的第二栅极结构(图中未示出);在第一栅极结构两侧的第一鳍部202内形成第一源漏区(图中未示出);在第二栅极结构两侧的第二鳍部203内形成第二源漏区(图中未示出)。After performing the etch-back step, it also includes: forming a first gate structure (not shown in the figure) across the top and sidewall surfaces of the first fin portion 202; forming a top portion across the second fin portion 203 and a second gate structure (not shown in the figure) on the sidewall surface; a first source and drain region (not shown in the figure) is formed in the first fin portion 202 on both sides of the first gate structure; Second source and drain regions (not shown in the figure) are formed in the second fins 203 on both sides of the gate structure.
第一栅极结构包括第一栅介质层和位于第一栅介质层上的第一栅电极,第二栅极结构包括第二栅介质层和位于第二栅介质层上的第二栅电极。The first gate structure includes a first gate dielectric layer and a first gate electrode on the first gate dielectric layer, and the second gate structure includes a second gate dielectric layer and a second gate electrode on the second gate dielectric layer.
在一实施例中,所述第一栅介质层和第二栅介质层的材料为氧化硅,相应的所述第一栅电极层和第二栅电极层的材料为多晶硅。在另一实施例中,所述第一栅介质层和第二栅介质层的材料为高K介电常数材料,所述高K栅介质层的材料可以为HfO2、TiO2、HfZrO、HfSiNO、Ta2O5、ZrO2、ZrSiO2、Al2O3、SrTiO3或BaSrTiO,相应的所述第一栅电极层和第二栅电极层的材料为金属,所述金属可以为W、Al、Cu、Ti、Ag、Au、Pt、Ni中的一种或几种。In an embodiment, the material of the first gate dielectric layer and the second gate dielectric layer is silicon oxide, and the material of the first gate electrode layer and the second gate electrode layer is polysilicon. In another embodiment, the material of the first gate dielectric layer and the second gate dielectric layer is a high-K dielectric constant material, and the material of the high-K gate dielectric layer can be HfO 2 , TiO 2 , HfZrO, HfSiNO , Ta 2 O 5 , ZrO 2 , ZrSiO 2 , Al 2 O 3 , SrTiO 3 or BaSrTiO, the material of the corresponding first gate electrode layer and the second gate electrode layer is metal, and the metal can be W, Al , Cu, Ti, Ag, Au, Pt, Ni or one or more.
所述第一源漏区的掺杂类型为N型,所述第二源漏区的掺杂类型为P型。通过离子注入工艺形成所述第一源漏区和第二源漏区。第二源漏区中掺杂的P型杂质离子为硼离子、氟化硼离子、镓离子或铟离子中的一种或几种;所述第一源漏区中掺杂的N型杂质离子为磷离子、砷离子或锑离子中的一种或几种。The doping type of the first source and drain region is N type, and the doping type of the second source and drain region is P type. The first source and drain regions and the second source and drain regions are formed by an ion implantation process. The P-type impurity ions doped in the second source-drain region are one or more of boron ions, boron fluoride ions, gallium ions, or indium ions; the N-type impurity ions doped in the first source-drain region It is one or more of phosphorus ions, arsenic ions or antimony ions.
本发明实施例还提供了一种鳍式场效应晶体管,请参考图5,包括:The embodiment of the present invention also provides a fin field effect transistor, please refer to FIG. 5 , including:
半导体衬底200,所述半导体衬底200上形成有凸起的第一鳍部202和第二鳍部203,所述第一鳍部202中形成有P型阱区,第二鳍部201中形成有N型阱区,第一鳍部202和第二鳍部203之间具有第一沟槽,所述第一沟槽暴露出第一鳍部202和第二鳍部203的侧壁,第一鳍部202的远离第一沟槽的一侧具有第二沟槽,第二鳍部203远离第二沟槽的一侧具有第三沟槽;A semiconductor substrate 200, on which a raised first fin 202 and a second fin 203 are formed, a P-type well region is formed in the first fin 202, and a p-type well region is formed in the second fin 201 An N-type well region is formed, and there is a first trench between the first fin 202 and the second fin 203, and the first trench exposes the sidewalls of the first fin 202 and the second fin 203, the second A side of a fin 202 away from the first groove has a second groove, and a side of the second fin 203 away from the second groove has a third groove;
位于在第一沟槽和第二沟槽暴露的第一鳍部202的侧壁表面的第一掺杂区205,所述第一掺杂区205用于防止P型阱区中的杂质离子向浅沟槽隔离结构中扩散;The first doped region 205 located on the sidewall surface of the first fin 202 exposed in the first trench and the second trench, the first doped region 205 is used to prevent impurity ions in the P-type well region from Diffusion in shallow trench isolation structures;
位于在第一沟槽和第三沟槽暴露的第二鳍部203的侧壁表面的第二掺杂区206,所述第二掺杂区206用于防止在N型阱区中形成的源漏区中的杂质离子沿着第二鳍部的侧壁向沟道区扩散以及向浅沟槽隔离结构中扩散;The second doped region 206 located on the sidewall surface of the second fin 203 exposed in the first trench and the third trench, the second doped region 206 is used to prevent the source formed in the N-type well region The impurity ions in the drain region diffuse to the channel region along the sidewall of the second fin and diffuse into the shallow trench isolation structure;
填充第一沟槽、第二沟槽和第三沟槽的浅沟槽隔离结构207。The shallow trench isolation structure 207 filling the first trench, the second trench and the third trench.
所述第一掺杂区205为碳掺杂区(205),第二掺杂区206为氟掺杂区(206)。The first doped region 205 is a carbon doped region (205), and the second doped region 206 is a fluorine doped region (206).
在一实施例中所述碳掺杂区205的深度为2nm~12nm,碳掺杂区中碳离子的浓度为5e18~5e19atom/cm3;所述氟掺杂区206的深度为2nm~12nm,氟掺杂区中氟离子的浓度为5e18~1e20atom/cm3。In one embodiment, the depth of the carbon-doped region 205 is 2nm-12nm, the concentration of carbon ions in the carbon-doped region is 5e18-5e19atom/cm 3 ; the depth of the fluorine-doped region 206 is 2nm-12nm, The concentration of fluorine ions in the fluorine-doped region is 5e18˜1e20atom/cm 3 .
需要说明的是,本实施例中关于鳍式场效应晶体管其他限定和描述请参考前述实施例中鳍式场效应晶体管形成过程部分的相关限定和描述。It should be noted that, for other definitions and descriptions of the FinFET in this embodiment, please refer to the relevant definitions and descriptions in the forming process of the FinFET in the foregoing embodiments.
图7~图9为本发明另一实施例鳍式场效应晶体管的过程的结构示意图。7 to 9 are structural schematic diagrams of the process of the fin field effect transistor according to another embodiment of the present invention.
本实施例中与前述实施例中的区别在于第一掺杂区(碳掺杂区)和第二掺杂区(氟掺杂区)的形成过程不同,本实施例中在形成第一掺杂区(碳掺杂区)和第二掺杂区(氟掺杂区)之前进行的工艺以及形成第一掺杂区(碳掺杂区)和第二掺杂区(氟掺杂区)之后进行的工艺的具体限定和描述请参考前述实施例中的相关部分的具体限定和描述,本实施例中不再赘述。图7为在前述的图2的基础上进行。The difference between this embodiment and the previous embodiments is that the formation process of the first doped region (carbon doped region) and the second doped region (fluorine doped region) are different. region (carbon doped region) and the second doped region (fluorine doped region) before the process and the formation of the first doped region (carbon doped region) and the second doped region (fluorine doped region) after For the specific definition and description of the process, please refer to the specific definition and description of relevant parts in the foregoing embodiments, and details will not be repeated in this embodiment. FIG. 7 is carried out on the basis of the aforementioned FIG. 2 .
参考图7,在第一鳍部202的侧壁表面形成第一掺杂区(碳掺杂区)301,所述第一掺杂区(碳掺杂区)301的形成过程为:在所述在第一沟槽211和第二沟槽212暴露的第一鳍部的侧壁表面上形成含有碳离子的第一半导体外延层301,所述第一半导体外延层301作为碳掺杂区或第一掺杂区。Referring to FIG. 7, a first doped region (carbon doped region) 301 is formed on the sidewall surface of the first fin portion 202. The formation process of the first doped region (carbon doped region) 301 is as follows: A first semiconductor epitaxial layer 301 containing carbon ions is formed on the sidewall surface of the first fin exposed by the first trench 211 and the second trench 212, and the first semiconductor epitaxial layer 301 serves as a carbon doped region or a second a doped region.
所述第一半导体外延层301的形成工艺为(自掺杂)选择性外延工艺,第一半导体外延层301的材料为硅或碳化硅。由于第一鳍部202和第二鳍部203结构特殊,离子注入工艺形成第一掺杂区(碳掺杂区)时工艺较难控制,采用(自掺杂)选择性外延工艺可以较容易的形成的第一半导体外延层301,并且该方法形成的第一半导体外延层301可以保持较好的厚度均匀性,以及杂质离子浓度的分布均匀性,从而使得第一半导体外延层301(第一掺杂区或碳掺杂区)防止第一鳍部202的P型阱区中杂质离子(特别是硼离子或氟化硼离子)向后续第一鳍部202和第二鳍部203之间形成的浅沟槽隔离结构中扩散的效果更佳。The formation process of the first semiconductor epitaxial layer 301 is a (self-doping) selective epitaxial process, and the material of the first semiconductor epitaxial layer 301 is silicon or silicon carbide. Due to the special structure of the first fin portion 202 and the second fin portion 203, it is difficult to control the process when the ion implantation process forms the first doped region (carbon doped region), and it is easier to adopt (self-doping) selective epitaxy The first semiconductor epitaxial layer 301 is formed, and the first semiconductor epitaxial layer 301 formed by this method can maintain better thickness uniformity and distribution uniformity of impurity ion concentration, so that the first semiconductor epitaxial layer 301 (first doped impurity region or carbon doped region) to prevent impurity ions (especially boron ions or boron fluoride ions) in the P-type well region of the first fin 202 from forming between the subsequent first fin 202 and second fin 203 Diffusion works better in shallow trench isolation structures.
在形成第一半导体外延层301之前,将第一鳍部202侧壁之外的其他区域(第二鳍部203和部分半导体衬底200)覆盖掩膜层,所述掩膜层仅暴露出第一鳍部202的侧壁,然后在第一鳍部202的侧壁采用选择性外延工艺形成第一半导体外延层301,选择性外延工艺时在第一半导体外延层中自掺杂碳离子。Before forming the first semiconductor epitaxial layer 301, other regions (the second fin 203 and part of the semiconductor substrate 200) other than the sidewall of the first fin 202 are covered with a mask layer, and the mask layer only exposes the first fin 202. On the sidewall of the first fin 202, the first semiconductor epitaxial layer 301 is formed on the sidewall of the first fin 202 by a selective epitaxial process. During the selective epitaxial process, carbon ions are self-doped in the first semiconductor epitaxial layer.
本实施例中,所述第一半导体外延层301的材料为硅或碳化硅,所述第一半导体外延层301可以作为第一鳍部的一部分。In this embodiment, the material of the first semiconductor epitaxial layer 301 is silicon or silicon carbide, and the first semiconductor epitaxial layer 301 may serve as a part of the first fin.
在一具体的实施例中,第一半导体外延层301的材料为硅时,(自掺杂)选择性外延工艺为:温度是650-800摄氏度,压力是6-10torr,硅源气体为SiH4或SiCl2H4,硅源气体的流量是40-150sccm,选择性气体是HCl,选择性气体的流量是50-200sccm,杂质源气体为CH4,CH4的流量为50-200sccm,沉积腔室低频射频功率为1瓦至100瓦,沉积腔室高频射频功率为500瓦至2000瓦,以使得形成的第一半导体外延层301可以保持较好的厚度均匀性,以及杂质离子浓度的分布均匀性。In a specific embodiment, when the material of the first semiconductor epitaxial layer 301 is silicon, the (self-doping) selective epitaxy process is as follows: the temperature is 650-800 degrees Celsius, the pressure is 6-10torr, and the silicon source gas is SiH 4 Or SiCl 2 H 4 , the flow rate of silicon source gas is 40-150 sccm, the selective gas is HCl, the flow rate of selective gas is 50-200 sccm, the impurity source gas is CH 4 , the flow rate of CH 4 is 50-200 sccm, the deposition chamber The low-frequency radio frequency power of the chamber is 1 watt to 100 watts, and the high-frequency radio frequency power of the deposition chamber is 500 watts to 2000 watts, so that the formed first semiconductor epitaxial layer 301 can maintain good thickness uniformity and distribution of impurity ion concentration Uniformity.
参考图8,在第二鳍部203的侧壁表面形成第二掺杂区(氟掺杂区)302,所述第二掺杂区(氟掺杂区)302的形成过程为:在所述在第一沟槽211和第三沟槽213暴露的第二鳍部202的侧壁表面上形成含有氟离子的第二半导体外延层302,所述第二半导体外延层302作为氟掺杂区或第二掺杂区。Referring to FIG. 8, a second doped region (fluorine doped region) 302 is formed on the sidewall surface of the second fin portion 203, and the formation process of the second doped region (fluorine doped region) 302 is as follows: A second semiconductor epitaxial layer 302 containing fluorine ions is formed on the sidewall surface of the second fin 202 exposed by the first trench 211 and the third trench 213, and the second semiconductor epitaxial layer 302 serves as a fluorine-doped region or the second doped region.
所述第二半导体外延层302的形成工艺为(自掺杂)选择性外延工艺,第二半导体外延层302的材料为硅或锗化硅。由于第一鳍部202和第二鳍部203结构特殊,离子注入工艺形成第二掺杂区(氟掺杂区)时工艺较难控制,采用(自掺杂)选择性外延工艺可以较容易的形成的第二半导体外延层302,并且该方法形成的第二半导体外延层302可以保持较好的厚度均匀性,以及杂质离子浓度的分布均匀性,从而使得第二半导体外延层302(第二掺杂区或氟掺杂区)防止P型的源漏区中的杂质离子(比如硼离子)沿着第二鳍部的侧壁向沟道区扩散,防止短沟道效应的产生,以及有效的防止后续在第二鳍部203中形成的P型的源漏区中的杂质离子(比如硼离子)向第二鳍部和第一鳍部之间形成的浅沟槽隔离结构中扩散的效果更佳。The formation process of the second semiconductor epitaxial layer 302 is a (self-doping) selective epitaxial process, and the material of the second semiconductor epitaxial layer 302 is silicon or silicon germanium. Due to the special structure of the first fin portion 202 and the second fin portion 203, it is difficult to control the process when the ion implantation process forms the second doped region (fluorine doped region), and the (self-doping) selective epitaxy process can be easily The second semiconductor epitaxial layer 302 is formed, and the second semiconductor epitaxial layer 302 formed by this method can maintain better thickness uniformity and distribution uniformity of impurity ion concentration, so that the second semiconductor epitaxial layer 302 (second doped impurity region or fluorine-doped region) to prevent impurity ions (such as boron ions) in the P-type source and drain region from diffusing to the channel region along the sidewall of the second fin, preventing the generation of short channel effect, and effective The effect of preventing impurity ions (such as boron ions) in the P-type source and drain regions subsequently formed in the second fin portion 203 from diffusing into the shallow trench isolation structure formed between the second fin portion and the first fin portion is even greater. good.
在形成第二半导体外延层302之前,将第二鳍部203侧壁之外的其他区域(第一鳍部202、第一半导体外延层301和部分半导体衬底200)覆盖掩膜层,所述掩膜层仅暴露出第二鳍部203的侧壁,然后在第二鳍部203的侧壁采用选择性外延工艺形成第二半导体外延层302,选择性外延工艺时第二半导体外延层302中自掺杂氟离子。Before forming the second semiconductor epitaxial layer 302, other regions (the first fin portion 202, the first semiconductor epitaxial layer 301 and part of the semiconductor substrate 200) other than the sidewall of the second fin portion 203 are covered with the mask layer, the The mask layer only exposes the sidewalls of the second fins 203, and then the second semiconductor epitaxial layer 302 is formed on the sidewalls of the second fins 203 by a selective epitaxial process. During the selective epitaxial process, the second semiconductor epitaxial layer 302 Self-doping fluoride ions.
本实施例中,所述第二半导体外延层302的材料为硅或锗化硅,所述第二半导体外延层302,可以作为第二鳍部的一部分。In this embodiment, the material of the second semiconductor epitaxial layer 302 is silicon or silicon germanium, and the second semiconductor epitaxial layer 302 may serve as a part of the second fin.
在以具体的实施例中,第二半导体外延层302的材料为硅时,(自掺杂)选择性外延工艺为:温度是650-800摄氏度,压力是6-10torr,硅源气体为SiH4或SiCl2H4,硅源气体的流量是40-150sccm,选择性气体是HCl,选择性气体的流量是50-200sccm,杂质源气体为HF,HF的流量为50-150sccm,沉积腔室低频射频功率为1瓦至100瓦,沉积腔室高频射频功率为500瓦至2000瓦,以使得形成的第二半导体外延层302可以保持较好的厚度均匀性,以及杂质离子浓度的分布均匀性。In a specific embodiment, when the material of the second semiconductor epitaxial layer 302 is silicon, the (self-doping) selective epitaxy process is as follows: the temperature is 650-800 degrees Celsius, the pressure is 6-10torr, and the silicon source gas is SiH 4 Or SiCl 2 H 4 , the flow rate of silicon source gas is 40-150 sccm, the selective gas is HCl, the flow rate of selective gas is 50-200 sccm, the impurity source gas is HF, the flow rate of HF is 50-150 sccm, the deposition chamber is low frequency The radio frequency power is 1 watt to 100 watts, and the high frequency radio frequency power of the deposition chamber is 500 watts to 2000 watts, so that the formed second semiconductor epitaxial layer 302 can maintain good thickness uniformity and distribution uniformity of impurity ion concentration .
参考图9,形成覆盖所述第一半导体外延层(第一掺杂区或碳掺杂区)301、第二半导体外延层(第二掺杂区或氟掺杂区)302以及填充第一沟道、第二沟道和第三沟槽的浅沟槽隔离结构207。Referring to FIG. 9 , forming a layer covering the first semiconductor epitaxial layer (first doped region or carbon doped region) 301, a second semiconductor epitaxial layer (second doped region or fluorine doped region) 302 and filling the first trench The shallow trench isolation structure 207 of the trench, the second trench and the third trench.
图10~12为本发明又一实施例中鳍式场效应晶体管的形成过程的剖面结构示意图。10-12 are schematic cross-sectional structure diagrams of the formation process of the fin field effect transistor in another embodiment of the present invention.
本实施例中与前述实施例中的区别在于第一掺杂区(碳掺杂区)和第二掺杂区(氟掺杂区)的形成过程不同,本实施例中在形成第一掺杂区(碳掺杂区)和第二掺杂区(氟掺杂区)之前进行的工艺和第一掺杂区(碳掺杂区)和第二掺杂区(氟掺杂区)之后进行的工艺的具体限定和描述请参考前述实施例中的相关部分的具体限定和描述,本实施例中不再赘述。图10为在前述的图2的基础上进行。The difference between this embodiment and the previous embodiments is that the formation process of the first doped region (carbon doped region) and the second doped region (fluorine doped region) are different. region (carbon doped region) and the second doped region (fluorine doped region) before the process and the first doped region (carbon doped region) and the second doped region (fluorine doped region) after the For the specific definition and description of the process, please refer to the specific definition and description of relevant parts in the foregoing embodiments, and details are not repeated in this embodiment. Figure 10 is carried out on the basis of the aforementioned Figure 2 .
参考图10和图11,在第一鳍部202的侧壁表面形成第一掺杂区(碳掺杂区)403,所述第一掺杂区(碳掺杂区)403的形成过程为:在所述在第一沟槽211和第二沟槽212暴露的第一鳍部202的侧壁表面上形成含有碳离子的第一中间层401,通过激活工艺使得第一中间层401中的碳离子扩散到第一鳍部202的侧壁表面,在第一鳍部202的侧壁表面形成第一掺杂区(碳掺杂区)403;在第二鳍部203的侧壁表面形成第二掺杂区(氟掺杂区)404,所述第二掺杂区(氟掺杂区)404的形成过程为:在所述在第一沟槽211和第三沟槽213暴露的第二鳍部203的侧壁表面上形成含有氟离子的第二中间层402,通过激活工艺使得第二中间层402中的氟离子扩散到第二鳍部203的侧壁表面,在第二鳍部203的侧壁表面形成第二掺杂区(氟掺杂区)404。Referring to FIG. 10 and FIG. 11 , a first doped region (carbon doped region) 403 is formed on the sidewall surface of the first fin portion 202, and the formation process of the first doped region (carbon doped region) 403 is as follows: A first intermediate layer 401 containing carbon ions is formed on the sidewall surfaces of the first fin 202 exposed in the first trench 211 and the second trench 212, and the carbon in the first intermediate layer 401 is activated through an activation process. The ions are diffused to the sidewall surface of the first fin portion 202, forming a first doped region (carbon doped region) 403 on the sidewall surface of the first fin portion 202; Doped region (fluorine doped region) 404, the formation process of the second doped region (fluorine doped region) 404 is: in the second fin exposed in the first trench 211 and the third trench 213 The second intermediate layer 402 containing fluorine ions is formed on the side wall surface of the second fin portion 203, and the fluorine ions in the second intermediate layer 402 are diffused to the side wall surface of the second fin portion 203 through an activation process. A second doped region (fluorine doped region) 404 is formed on the sidewall surface.
所述第一中间层401的材料为掺杂碳离子的氧化硅或氮化硅,第二中间层402的材料为掺杂氟离子的氧化硅或氮化硅。所述第一中间层401和第二中间层402的形成工艺为自掺杂沉积工艺,在形成第一中间层401之前,在第一鳍部202的侧壁外的其他区域覆盖掩膜层,所述掩膜层仅暴露出第一鳍部202的侧壁表面;然后在第一鳍部202的侧壁表面形成含有碳离子的第一中间层401;形成第一中间层401后去除掩膜层;同样的,在形成第二中间层402之前,将第二鳍部203侧壁外的其他区域覆盖掩膜层,所述掩膜层仅暴露出第二鳍部203的侧壁表面;然后在第二鳍部203的侧壁表面形成含有碳离子的第二中间层402;形成第二中间层402去除掩膜层。The material of the first intermediate layer 401 is silicon oxide or silicon nitride doped with carbon ions, and the material of the second intermediate layer 402 is silicon oxide or silicon nitride doped with fluorine ions. The formation process of the first intermediate layer 401 and the second intermediate layer 402 is a self-doping deposition process, and before the formation of the first intermediate layer 401, the mask layer is covered on other areas outside the sidewalls of the first fin portion 202, The mask layer only exposes the sidewall surface of the first fin portion 202; then a first intermediate layer 401 containing carbon ions is formed on the sidewall surface of the first fin portion 202; the mask is removed after the first intermediate layer 401 is formed layer; similarly, before forming the second intermediate layer 402, other areas outside the side walls of the second fin 203 are covered with a mask layer, and the mask layer only exposes the side wall surface of the second fin 203; then A second intermediate layer 402 containing carbon ions is formed on the sidewall surface of the second fin portion 203 ; the mask layer is removed after forming the second intermediate layer 402 .
使得第一中间层401中的碳离子扩散到第一鳍部202的侧壁表面的激活工艺和使得第二中间层402中的氟离子扩散到第二鳍部203的侧壁表面的激活工艺可以同时进行,在一实施例中,所述激活工艺为退火工艺。The activation process for diffusing carbon ions in the first intermediate layer 401 to the sidewall surfaces of the first fins 202 and the activation process for diffusing fluorine ions in the second intermediate layer 402 to the sidewall surfaces of the second fins 203 may be At the same time, in one embodiment, the activation process is an annealing process.
进行激活工艺后,可以去除所述第一中间层401和第二中间层402,以可以不去除所述第一中间层401和第二中间层402,将第一中间层401和第二中间层402作为后续形成的浅沟槽隔离结构的一部分。After performing the activation process, the first intermediate layer 401 and the second intermediate layer 402 may be removed, so that the first intermediate layer 401 and the second intermediate layer 402 may not be removed, and the first intermediate layer 401 and the second intermediate layer 402 as a part of the subsequently formed shallow trench isolation structure.
参考图12,进行激活工艺后,形成覆盖所述第一中间层401和第二中间层402的表面且填充满第一沟道、第二沟道、第三沟槽的浅沟槽隔离结构207。Referring to FIG. 12 , after the activation process is performed, a shallow trench isolation structure 207 covering the surfaces of the first intermediate layer 401 and the second intermediate layer 402 and filling the first trench, the second trench, and the third trench is formed. .
本实施例中,不去除第一中间层401和第二中间层402,第一中间层401和第二中间层402作为浅沟槽隔离结构207的一部分。In this embodiment, the first intermediate layer 401 and the second intermediate layer 402 are not removed, and the first intermediate layer 401 and the second intermediate layer 402 are part of the shallow trench isolation structure 207 .
在其他实施例中,去除第一中间层401和第二中间层402后,形成的浅沟槽隔离结构覆盖第一掺杂区(碳掺杂区)403和第二掺杂区(氟掺杂区)404的表面且填充满第一沟道、第二沟道和第三沟槽。In other embodiments, after removing the first intermediate layer 401 and the second intermediate layer 402, the formed shallow trench isolation structure covers the first doped region (carbon doped region) 403 and the second doped region (fluorine doped region) region) 404 and fills the first trench, the second trench and the third trench.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (22)
- A kind of 1. forming method of fin formula field effect transistor, it is characterised in that including:Semiconductor substrate is provided, the first fin and the second fin formed with projection in the Semiconductor substrate, first fin Formed with P type trap zone in portion, formed with N-type well region in the second fin, there is first groove between the first fin and the second fin, The first groove exposes the side wall of the first fin and the second fin, and the side of the remote first groove of the first fin has the Two grooves, side of second fin away from first groove have the 3rd groove;The first doped region, first doped region are formed in the sidewall surfaces for the first fin that first groove and second groove expose For preventing the foreign ion in P type trap zone from being spread into the fleet plough groove isolation structure being subsequently formed;The second doped region, second doped region are formed in the sidewall surfaces for the second fin that first groove and the 3rd groove expose Spread for side wall of the foreign ion in the source-drain area that prevents from subsequently being formed in N-type well region along the second fin to channel region And spread into the fleet plough groove isolation structure being subsequently formed;After the first doped region and the second doped region is formed, the filling isolation material in first groove, second groove and the 3rd groove Material, form fleet plough groove isolation structure.
- 2. the forming method of fin formula field effect transistor as claimed in claim 1, it is characterised in that first doped region is Carbon doping area, second doped region are Fluorin doped area.
- 3. the forming method of fin formula field effect transistor as claimed in claim 2, it is characterised in that the depth in the carbon doping area Spend for 2nm~12nm, the concentration of carbon ion is 5e18~5e19atom/cm in carbon doping area3。
- 4. the forming method of fin formula field effect transistor as claimed in claim 3, it is characterised in that the shape in the carbon doping area It is into process:Using the first ion implantation technology, on the surface of the side wall for the first fin that first groove and second groove expose Carbon ion is adulterated in material, forms carbon doping area.
- 5. the forming method of fin formula field effect transistor as claimed in claim 4, it is characterised in that first ion implanting The implant angle of technique is 5~25 degree, and the energy of injection is 2~8KeV, and the dosage of injection is 5e13~5e14atom/cm2。
- 6. the forming method of fin formula field effect transistor as claimed in claim 2, it is characterised in that the depth in the Fluorin doped area Spend for 2nm~12nm, the concentration of fluorine ion is 5e18~1e20atom/cm in Fluorin doped area3。
- 7. the forming method of fin formula field effect transistor as claimed in claim 6, it is characterised in that the shape in the Fluorin doped area It is into process:Using the second ion implantation technology, on the surface of the side wall for the second fin that first groove and the 3rd groove expose Fluorine ion is adulterated in material, forms Fluorin doped area.
- 8. the forming method of fin formula field effect transistor as claimed in claim 7, it is characterised in that second ion implanting The implant angle of technique is 5~25 degree, and the energy of injection is 4~12KeV, and the dosage of injection is 1e14~1e15atom/cm2。
- 9. the forming method of fin formula field effect transistor as claimed in claim 2, it is characterised in that the shape in the carbon doping area It is into process:Formed in the sidewall surfaces of first fin exposed in first groove and second groove and contain carbon ion First semiconductor epitaxial layers, first semiconductor epitaxial layers are as carbon doping area.
- 10. the forming method of fin formula field effect transistor as claimed in claim 9, it is characterised in that first semiconductor The material of epitaxial layer is silicon or carborundum, a part of first semiconductor epitaxial layers as the first fin, the shallow trench Isolation structure covers the surface of the first semiconductor epitaxial layers.
- 11. the forming method of fin formula field effect transistor as claimed in claim 2, it is characterised in that the Fluorin doped area Forming process is:Formed in the sidewall surfaces of second fin exposed in first groove and the 3rd groove and contain fluorine ion The second semiconductor epitaxial layers, second semiconductor epitaxial layers are as Fluorin doped area.
- 12. the forming method of fin formula field effect transistor as claimed in claim 11, it is characterised in that second semiconductor A part of the epitaxial layer as the second fin, the materials of second semiconductor epitaxial layers are silicon or SiGe, the shallow trench Isolation structure covers the surface of the second semiconductor epitaxial layers.
- 13. the forming method of fin formula field effect transistor as claimed in claim 2, it is characterised in that the carbon doping area Forming process is:Formed in the sidewall surfaces of first fin exposed in first groove and second groove and contain carbon ion The first intermediate layer, the sidewall surfaces of the first fin are diffused into by the carbon ion in the intermediate layer of activation technology first, The sidewall surfaces of first fin form carbon doping area.
- 14. the forming method of fin formula field effect transistor as claimed in claim 2, it is characterised in that the Fluorin doped area Forming process is:Formed in the sidewall surfaces of second fin exposed in first groove and the 3rd groove and contain fluorine ion The second intermediate layer, the sidewall surfaces of the second fin are diffused into by the fluorine ion in the intermediate layer of activation technology second, The sidewall surfaces of second fin form Fluorin doped area.
- 15. the forming method of fin formula field effect transistor as claimed in claim 1, it is characterised in that also include:It is etched back to Except the shallow ditch groove structure of segment thickness, the part side wall of the first fin and the second fin is exposed.
- 16. the forming method of fin formula field effect transistor as claimed in claim 15, it is characterised in that be developed across part The top of one fin and the first grid structure of sidewall surfaces;Be developed across the fin of part second top and sidewall surfaces Two grid structures.
- 17. the forming method of fin formula field effect transistor as claimed in claim 16, it is characterised in that also include:First The first source-drain area is formed in first fin of grid structure both sides;Second is formed in the second fin of second grid structure both sides Source-drain area.
- 18. the forming method of fin formula field effect transistor as claimed in claim 17, it is characterised in that first source-drain area Doping type be N-type, the doping type of second source-drain area is p-type.
- A kind of 19. fin formula field effect transistor, it is characterised in that including:Semiconductor substrate, the first fin and the second fin formed with projection in the Semiconductor substrate, in first fin Formed with P type trap zone, formed with N-type well region in the second fin, there is first groove between the first fin and the second fin, it is described First groove exposes the side wall of the first fin and the second fin, and the side of the remote first groove of the first fin has the second ditch Groove, side of second fin away from second groove have the 3rd groove;Positioned at the first doped region in first groove and the sidewall surfaces of the first fin of second groove exposure, first doping Area is used to prevent the foreign ion in P type trap zone from spreading into fleet plough groove isolation structure;Positioned at the second doped region in first groove and the sidewall surfaces of the second fin of the 3rd groove exposure, second doping Side wall of the foreign ion that area is used in the source-drain area that prevents from being formed in N-type well region along the second fin to channel region spread with And spread into fleet plough groove isolation structure;Fill the fleet plough groove isolation structure of first groove, second groove and the 3rd groove.
- 20. fin formula field effect transistor as claimed in claim 19, it is characterised in that first doped region is carbon doping Area, second doped region are Fluorin doped area.
- 21. fin formula field effect transistor as claimed in claim 20, it is characterised in that the depth in the carbon doping area is 2nm ~12nm, the concentration of carbon ion is 5e18~5e19atom/cm in carbon doping area3。
- 22. fin formula field effect transistor as claimed in claim 20, it is characterised in that the depth in the Fluorin doped area is 2nm ~12nm, the concentration of fluorine ion is 5e18~1e20atom/cm in Fluorin doped area3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610664323.XA CN107731890A (en) | 2016-08-12 | 2016-08-12 | Fin formula field effect transistor and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610664323.XA CN107731890A (en) | 2016-08-12 | 2016-08-12 | Fin formula field effect transistor and forming method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107731890A true CN107731890A (en) | 2018-02-23 |
Family
ID=61200983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610664323.XA Pending CN107731890A (en) | 2016-08-12 | 2016-08-12 | Fin formula field effect transistor and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107731890A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110323136A (en) * | 2018-03-29 | 2019-10-11 | 中芯国际集成电路制造(上海)有限公司 | A kind of FinFET manufacturing process |
CN110943130A (en) * | 2018-09-20 | 2020-03-31 | 长鑫存储技术有限公司 | Transistor, semiconductor memory and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1542930A (en) * | 2003-04-29 | 2004-11-03 | ̨������·����ɷ�����˾ | Semiconductor element with fin structure and manufacturing method thereof |
CN103515281A (en) * | 2012-06-20 | 2014-01-15 | 中芯国际集成电路制造(上海)有限公司 | Method for manufacturing shallow trench isolation structure |
US20150243739A1 (en) * | 2014-02-21 | 2015-08-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Doping for FinFET |
CN105336660A (en) * | 2014-07-30 | 2016-02-17 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and formation method therefor |
-
2016
- 2016-08-12 CN CN201610664323.XA patent/CN107731890A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1542930A (en) * | 2003-04-29 | 2004-11-03 | ̨������·����ɷ�����˾ | Semiconductor element with fin structure and manufacturing method thereof |
CN103515281A (en) * | 2012-06-20 | 2014-01-15 | 中芯国际集成电路制造(上海)有限公司 | Method for manufacturing shallow trench isolation structure |
US20150243739A1 (en) * | 2014-02-21 | 2015-08-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Doping for FinFET |
CN105336660A (en) * | 2014-07-30 | 2016-02-17 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and formation method therefor |
Non-Patent Citations (3)
Title |
---|
《半导体器件制造技术丛书》编写组: "《扩散技术》", 29 February 1972 * |
李乃平主编: "《微电子器件工艺》", 31 August 1995 * |
章吉良,杨春生等: "《微机电系统及其相关技术》", 31 December 1999 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110323136A (en) * | 2018-03-29 | 2019-10-11 | 中芯国际集成电路制造(上海)有限公司 | A kind of FinFET manufacturing process |
CN110323136B (en) * | 2018-03-29 | 2023-06-13 | 中芯国际集成电路制造(上海)有限公司 | FinFET manufacturing process |
CN110943130A (en) * | 2018-09-20 | 2020-03-31 | 长鑫存储技术有限公司 | Transistor, semiconductor memory and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108573869B (en) | Fin-type field effect transistor and method of forming the same | |
CN108962754B (en) | Semiconductor device and method for manufacturing the same | |
CN104701164A (en) | Semiconductor device and method for manufacturing same | |
CN107785261A (en) | Semiconductor structure and its manufacture method | |
CN104253046A (en) | Fin field effect transistor and forming method thereof | |
CN107785313B (en) | Semiconductor structure and method of forming the same | |
CN106486350B (en) | Formation method of semiconductor structure | |
CN110047908B (en) | Semiconductor device and manufacturing method thereof | |
CN106558614A (en) | Semiconductor structure and forming method thereof | |
CN110047754A (en) | Semiconductor devices and its manufacturing method | |
CN104752211A (en) | Fin type field-effect transistor and forming method thereof | |
CN106856170B (en) | The forming method of fin formula field effect transistor | |
CN108231594B (en) | A kind of manufacturing method of FinFET device | |
CN108074973A (en) | Semiconductor structure and forming method thereof | |
CN104752216B (en) | The forming method of transistor | |
CN108630548A (en) | Fin field effect pipe and forming method thereof | |
CN108630542B (en) | Semiconductor structure and forming method thereof | |
CN102693915B (en) | Manufacturing method for MOS transistor | |
CN112582265B (en) | Semiconductor structures and methods of forming them | |
CN106558493B (en) | Method for forming fin field effect transistor | |
CN107731890A (en) | Fin formula field effect transistor and forming method thereof | |
CN108695253A (en) | Semiconductor structure and forming method thereof | |
CN103715087B (en) | Fin formula field effect transistor and manufacture method thereof | |
CN114068705B (en) | Semiconductor structure and forming method thereof | |
CN106783742B (en) | The forming method of fin formula field effect transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180223 |