[go: up one dir, main page]

CN107730498A - Novel uterine neck cell core partitioning algorithm - Google Patents

Novel uterine neck cell core partitioning algorithm Download PDF

Info

Publication number
CN107730498A
CN107730498A CN201711042339.8A CN201711042339A CN107730498A CN 107730498 A CN107730498 A CN 107730498A CN 201711042339 A CN201711042339 A CN 201711042339A CN 107730498 A CN107730498 A CN 107730498A
Authority
CN
China
Prior art keywords
mrow
msub
segmentation
area
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711042339.8A
Other languages
Chinese (zh)
Inventor
韩颖
陈胜勇
赵萌
栾昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201711042339.8A priority Critical patent/CN107730498A/en
Publication of CN107730498A publication Critical patent/CN107730498A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/155Segmentation; Edge detection involving morphological operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Geometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A kind of new cervical cell core partitioning algorithm, comprises the following steps:1. using selective search segmentation by a width input picture primary segmentation into multiple ROI;2. calculating the friendship between adjacent R OI and than IOU, final election region is removed;3. utilizing mathematical morphology limit erosion algorithm, final Connected component is obtained, by the judgement to final Connected component quantity, screening obtains including the ROI of nucleus;4. applying CV model algorithms, the ROI obtained after screening is split, obtains the nucleus of fine segmentation.Present invention optimizes the segmentation effect of nucleus cervical cell core, simplify cutting procedure, reduction segmentation complexity, accurate segmentation result can be provided for follow-up cervical cell Quantitative Nuclear Morphometry.

Description

新型宫颈细胞核分割算法New cervical cell nucleus segmentation algorithm

技术领域technical field

本发明属于医学图像分割领域,特别涉及一种新型宫颈细胞核分割算法。The invention belongs to the field of medical image segmentation, in particular to a novel cervical cell nucleus segmentation algorithm.

背景技术Background technique

宫颈癌是最常见的妇科恶性肿瘤。原位癌高发年龄为30~35岁,浸润癌为45~55岁,近年来其发病有年轻化的趋势。近几十年宫颈细胞学筛查的普遍应用,使宫颈癌和癌前病变得以早期发现和治疗,宫颈癌的发病率和死亡率已有明显下降,如何准确地完成宫颈癌筛查已然成为了关注的焦点。Cervical cancer is the most common gynecological malignancy. The high-incidence age of carcinoma in situ is 30-35 years old, and that of invasive carcinoma is 45-55 years old. In recent years, the onset tends to be younger. In recent decades, the widespread application of cervical cytology screening has enabled early detection and treatment of cervical cancer and precancerous lesions, and the incidence and mortality of cervical cancer have been significantly reduced. How to accurately complete cervical cancer screening has become an important issue. focus of attention.

在众多宫颈癌筛查方法中,宫颈细胞涂片检查被认为是最普遍、最常见也是最有效的用于早期筛查宫颈癌的细胞学检验手段。细胞核形态定量分析又是宫颈涂片检查的重要依据。细胞核分割作为细胞核形态定量分析的基础步骤,分割的准确度直接影响分析结果,因此精准分割细胞核既是基本任务,又是核心环节。Among the many cervical cancer screening methods, cervical smear examination is considered to be the most common, common and effective cytological test for early screening of cervical cancer. Quantitative analysis of cell nucleus morphology is an important basis for cervical smear examination. Nuclei segmentation is a basic step in the quantitative analysis of nucleus morphology, and the accuracy of segmentation directly affects the analysis results. Therefore, accurate segmentation of cell nuclei is both a basic task and a core link.

由于宫颈细胞涂片制片和染色方式的差异性、背景的复杂性、细胞形态的多样性和不规则性、细胞重叠等使得宫颈细胞图像分割难度较大。因为癌细胞的细胞核包含了大部分特征,直接分割细胞核在充分保留有效特征的前提下,降低了分割难度,简化分割过程。Due to the differences in preparation and staining methods of cervical cell smears, the complexity of the background, the diversity and irregularity of cell shapes, and the overlapping of cells, it is difficult to segment cervical cell images. Because the nucleus of cancer cells contains most of the features, the direct segmentation of the nucleus reduces the difficulty of segmentation and simplifies the segmentation process on the premise of fully retaining effective features.

综上所述,提出一种新型的宫颈细胞核分割的算法,利用selective searchsegmentation得到ROI;之后根据重叠ROI交并比以及使用极限腐蚀算法处理ROI得到的最终连通成分,筛选得到包含细胞核的ROI;最后利用CV模型算法精细分割出宫颈细胞核。In summary, a new algorithm for cervical cell nucleus segmentation is proposed, using selective search segmentation to obtain ROI; then, according to the overlapping ROI intersection ratio and the final connected components obtained by using the limit corrosion algorithm to process ROI, the ROI containing the nucleus is screened; finally The CV model algorithm was used to finely segment the cervical cell nucleus.

发明内容Contents of the invention

本发明的目的在于克服上述现有技术中存在的不足,而提供一种新型宫颈细胞核分割算法,该分割算法优化了细胞核宫颈细胞核的分割效果、简化分割过程、降低分割复杂度,可为后续宫颈细胞核形态定量分析提供精确的分割结果。The purpose of the present invention is to overcome the deficiencies in the above-mentioned prior art, and provide a novel cervical cell nucleus segmentation algorithm, which optimizes the segmentation effect of cell nucleus cervical cell nucleus, simplifies the segmentation process, and reduces the complexity of segmentation, which can be used for subsequent cervical cell nuclei. Quantitative analysis of cell nucleus morphology provides accurate segmentation results.

为了实现上述目的,本发明的方案是:In order to achieve the above object, the solution of the present invention is:

一种新型的宫颈细胞核分割算法,其特征在于:包括如下步骤:A novel cervical cell nucleus segmentation algorithm is characterized in that: comprising the following steps:

①利用selective search segmentation将一幅输入图像初步分割成多个ROI;① Use selective search segmentation to initially segment an input image into multiple ROIs;

②计算相邻ROI之间的交并比IOU,去除复选区域;② Calculate the intersection and union ratio IOU between adjacent ROIs, and remove the selected area;

③利用数学形态学极限腐蚀算法,得到最终连通成分,通过对最终连通成分数量的判断,筛选得到包含细胞核的ROI;③Using the mathematical morphology limit corrosion algorithm to obtain the final connected components, and by judging the number of the final connected components, screen the ROI containing the nucleus;

④应用CV模型算法,对筛选后得到的ROI进行分割,得到精细分割的细胞核。④Use the CV model algorithm to segment the ROI obtained after screening to obtain finely segmented nuclei.

上述步骤①的具体方法是:The specific method of the above step ① is:

①基于图论Felzenszwalb算法将原始图像分割为多个小区域r;① Segment the original image into multiple small regions r based on the graph theory Felzenszwalb algorithm;

②计算各个区域间的相似度:颜色相似度Scolor(ri,rj)、纹理相似度Stexture(ri,rj)、大小相似度Ssize(ri,rj)以及吻合度Sfill(ri,rj),进而计算区域间总相似度S(ri,rj)=a1Scolor(ri,rj)+a2Stexture(ri,rj)+a3Scolor(ri,rj)+a4Sfill(ri,rj),其中ri和rj分别是第i个和第j个小区域,② Calculate the similarity between each area: color similarity S color (r i , r j ), texture similarity S texture (r i , r j ), size similarity S size (r i , r j ) and matching degree S fill (r i ,r j ), and then calculate the total similarity between regions S(r i ,r j )=a 1 S color (r i ,r j )+a 2 S texture (r i ,r j )+ a 3 S color (r i ,r j )+a 4 S fill (r i ,r j ), where r i and r j are the i-th and j-th small regions respectively,

各个相似度由以下公式计算得出:Each similarity is calculated by the following formula:

其中分别为第i个和第j个小区域的75维颜色向量中的第k维,in with are the k-th dimension in the 75-dimensional color vectors of the i-th and j-th small regions, respectively,

其中分别为第i个和第j个小区域的240维纹理向量中的第k维,in with are the k-th dimension in the 240-dimensional texture vector of the i-th and j-th small regions,

其中size(ri)、size(rj)和size(im)分别为第i个、第j个小区域和初始图像的大小,where size(r i ), size(r j ) and size(im) are the sizes of the i-th and j-th small regions and the initial image respectively,

其中size(BBij)指包含第i个、第j个小区域的最小外包区域,Where size(BB ij ) refers to the smallest outsourcing area including the i-th and j-th small areas,

③根据总相似度进行区域融合,得到初选ROI。③ Perform regional fusion according to the total similarity to obtain the primary ROI.

上述步骤②的具体计算方法是:The specific calculation method of the above step ② is:

上述步骤④的具体计算方法是依据下列公式:The specific calculation method of the above step ④ is based on the following formula:

E(C)=μL(C)+υ*Area(inside(C))+λ1Ein(C)+λ2Eout(C)E(C)=μL(C)+υ*Area(inside(C))+λ 1 E in (C)+λ 2 E out (C)

=μL(C)+υ*Area(inside(C))+λ1inside(C)|I(x,y)-cO|2dxdy+λ2outside(C)|I(x,y)-cb|2dxdy=μL(C)+υ*Area(inside(C))+λ 1inside(C) |I(x,y)-c O | 2 dxdy+λ 2outside(C) |I(x,y )-c b | 2 dxdy

其中L(C)表示曲线C的长度;μ表示长度系数,取值决定于被检测目标的尺寸大小;Area(inside(C))表示曲线C所围的内部区域的面积;υ表示面积参数;Ein(C)表示闭合曲线C的内部能量;λ1表示内部能量系数;Eout(C)表示闭合曲线C的外部能量;λ2表示内部能量系数;I(x,y)表示图像内任一像素点的灰度;cO表示内部区域的平均灰度;cb表示外部区域的平均灰度用。Among them, L(C) represents the length of the curve C; μ represents the length coefficient, and the value depends on the size of the detected target; Area(inside(C)) represents the area of the inner area surrounded by the curve C; υ represents the area parameter; E in (C) represents the internal energy of the closed curve C; λ 1 represents the internal energy coefficient; E out (C) represents the external energy of the closed curve C; λ 2 represents the internal energy coefficient; The gray level of a pixel; c O means the average gray level of the inner area; c b means the average gray level of the outer area.

本发明具有如下的优点和积极效果:The present invention has following advantage and positive effect:

1、本发明通过selective search segmentation将背景复杂的原始图片,初步分割成可能包含细胞核的ROI,将复杂的多目标分割任务简化为单目标分割任务,极大地降低了分割复杂度。1. The present invention preliminarily segments the original image with a complex background into ROIs that may contain nuclei through selective search segmentation, and simplifies the complex multi-objective segmentation task into a single-objective segmentation task, which greatly reduces the complexity of segmentation.

2、本发明通过计算相邻ROI之间的交并比,去除复选区域;识别极限腐蚀得到的最终连通区域,筛选出真正包含细胞核的ROI,一定程度上减少了分割任务,提高了分割效率。2. The present invention removes the double-selected region by calculating the intersection ratio between adjacent ROIs; identifies the final connected region obtained by limit corrosion, and screens out the ROI that actually contains the nucleus, which reduces the segmentation task to a certain extent and improves the segmentation efficiency .

3、本发明利用CV模型对细胞核进行精细分割,分割效果优于传统细胞核分割方法,分割过程简便,从而为后续细胞核形态定量分析提供了精确的可用数据。3. The present invention uses the CV model to finely segment the nucleus, and the segmentation effect is better than that of the traditional cell nucleus segmentation method, and the segmentation process is simple, thereby providing accurate and available data for the subsequent quantitative analysis of the nucleus morphology.

附图说明:Description of drawings:

图1是在数据库中选取宫颈细胞的图像图;Fig. 1 is the image diagram of selecting cervical cells in the database;

图2是初步分割ROI的示意图;Fig. 2 is a schematic diagram of preliminary segmentation ROI;

图3是初选ROI的图像;Figure 3 is an image of the primary ROI;

图4是一次筛选ROI图像;Figure 4 is a screening ROI image;

图5是细胞核及其最终连通成分;Figure 5 is the nucleus and its final connected components;

图6是非细胞核及其最终连通成分;Figure 6 is the non-nucleus and its final connected components;

图7是二次筛选ROI图像;Fig. 7 is secondary screening ROI image;

图8是部分ROI及其精确分割结果。Figure 8 shows some ROIs and their precise segmentation results.

具体实施方式:detailed description:

一种新型的宫颈细胞核分割算法,利用selective search segmentation将一幅输入图像初步分割成多个可能包含细胞核的ROI,即将背景复杂的多目标分割问题简化为背景相对简单的单目标分割问题,降低了分割的复杂度,之后计算重叠ROI交并比,筛除复选区域;再通过判断极限腐蚀得到的最终连通成分数量,筛选得到包含细胞核的ROI,最后利用传统CV模型,将细胞核精细分割。具体步骤如下:A new cervical cell nucleus segmentation algorithm uses selective search segmentation to initially segment an input image into multiple ROIs that may contain nuclei, which simplifies the multi-target segmentation problem with a complex background into a single-target segmentation problem with a relatively simple background, reducing the The complexity of the segmentation, and then calculate the intersection ratio of overlapping ROIs, and screen out the double-selected areas; then, by judging the number of final connected components obtained by limit corrosion, screen the ROIs containing the nucleus, and finally use the traditional CV model to finely segment the nucleus. Specific steps are as follows:

1、输入原始图像。在数据库中任意选取宫颈细胞涂片图像,尺寸为2592*1944,图片格式为BMP,色彩模式为RGB,如图1所示。1. Input the original image. Randomly select cervical cell smear images in the database, the size is 2592*1944, the image format is BMP, and the color mode is RGB, as shown in Figure 1.

2、初步分割ROI。利用selective search segmentation将原始图像分割为多个初选ROI。Selective search segmentation的任务就是分割出可能包含细胞核的区域,即将大幅的、背景较复杂的图像分割成为小幅的、背景较简单的ROI,很大程度降低分割难度,如图2所示:2. Preliminary segmentation of ROI. Use selective search segmentation to segment the original image into multiple primary ROIs. The task of Selective search segmentation is to segment the area that may contain the nucleus, that is, to segment a large image with a complex background into a small ROI with a simple background, which greatly reduces the difficulty of segmentation, as shown in Figure 2:

①基于图论Felzenszwalb算法将原始图像分割为多个小区域r。① Segment the original image into multiple small regions r based on the graph theory Felzenszwalb algorithm.

②计算各个区域间的相似度:颜色相似度Scolor(ri,rj)、纹理相似度Stexture(ri,rj)、大小相似度Ssize(ri,rj)以及吻合度Sfill(ri,rj),进而计算区域间总相似度S(ri,rj)=a1Scolor(ri,rj)+a2Stexture(ri,rj)+a3Scolor(ri,rj)+a4Sfill(ri,rj),其中ri和rj分别是第i个和第j个小区域。② Calculate the similarity between each area: color similarity S color (r i , r j ), texture similarity S texture (r i , r j ), size similarity S size (r i , r j ) and matching degree S fill (r i ,r j ), and then calculate the total similarity between regions S(r i ,r j )=a 1 S color (r i ,r j )+a 2 S texture (r i ,r j )+ a 3 S color (r i ,r j )+a 4 S fill (r i ,r j ), where r i and r j are the i-th and j-th small regions, respectively.

各个相似度由以下公式计算得出:Each similarity is calculated by the following formula:

其中分别为第i个和第j个小区域的75维颜色向量中的第k维。in with are the k-th dimension in the 75-dimensional color vectors of the i-th and j-th small regions, respectively.

其中分别为第i个和第j个小区域的240维纹理向量中的第k维。in with are the k-th dimension in the 240-dimensional texture vectors of the i-th and j-th small regions, respectively.

其中size(ri)、size(rj)和size(im)分别为第i个、第j个小区域和初始图像的大小。Among them, size(r i ), size(r j ) and size(im) are the sizes of the i-th and j-th small regions and the initial image, respectively.

其中size(BBij)指包含第i个、第j个小区域的最小外包区域。Among them, size(BB ij ) refers to the smallest outsourcing area including the i-th and j-th small areas.

③根据总相似度进行区域融合,得到初选ROI。③ Perform regional fusion according to the total similarity to obtain the primary ROI.

3、筛选ROI:3. Screen ROI:

①如图3、4所示:根据ROI的大小以及相邻区域的交并比,去除复选区域,具体计算方法是:①As shown in Figures 3 and 4: According to the size of the ROI and the intersection and union ratio of adjacent areas, remove the selected area. The specific calculation method is:

②如图5、6、7所示:利用数学形态学极限腐蚀算法得到的最终连通成分数量来判别ROI,筛选出包含细胞核的ROI,减少待分割的ROI数量,提高分割效率。②As shown in Figures 5, 6, and 7: use the number of final connected components obtained by the mathematical morphology limit corrosion algorithm to identify ROIs, screen out ROIs containing nuclei, reduce the number of ROIs to be segmented, and improve segmentation efficiency.

4、如图8所示:应用CV模型算法,对筛选后得到的ROI进行分割,得到精细的细胞核分割结果,具体方法是:4. As shown in Figure 8: Apply the CV model algorithm to segment the ROI obtained after screening to obtain fine cell nucleus segmentation results. The specific method is:

E(C)=μL(C)+υ*Area(inside(C))+λ1Ein(C)+λ2Eout(C)E(C)=μL(C)+υ*Area(inside(C))+λ 1 E in (C)+λ 2 E out (C)

=μL(C)+υ*Area(inside(C))+λ1inside(C)|I(x,y)-cO|2dxdy+λ2outside(C)|I(x,y)-cb|2dxdy=μL(C)+υ*Area(inside(C))+λ 1inside(C) |I(x,y)-c O | 2 dxdy+λ 2outside(C) |I(x,y )-c b | 2 dxdy

其中L(C)表示曲线C的长度;μ表示长度系数,取值决定于被检测目标的尺寸大小;Area(inside(C))表示曲线C所围的内部区域的面积;υ表示面积参数。Ein(C)表示闭合曲线C的内部能量;λ1表示内部能量系数;Eout(C)表示闭合曲线C的外部能量;λ2表示内部能量系数;I(x,y)表示图像内任一像素点的灰度;cO表示内部区域的平均灰度;cb表示外部区域的平均灰度用。Among them, L(C) represents the length of curve C; μ represents the length coefficient, and its value depends on the size of the detected object; Area(inside(C)) represents the area of the inner area surrounded by curve C; υ represents the area parameter. E in (C) represents the internal energy of the closed curve C; λ 1 represents the internal energy coefficient; E out (C) represents the external energy of the closed curve C; λ 2 represents the internal energy coefficient; The gray level of a pixel; c O means the average gray level of the inner area; c b means the average gray level of the outer area.

需要说明的是,以上所述仅为本发明优选实施例,仅仅是解释本发明,并非因此限制本发明专利范围。对属于本发明技术构思而仅仅显而易见的改动,同样在本发明保护范围之内。It should be noted that the above descriptions are only preferred embodiments of the present invention, and are only for explaining the present invention, and are not intended to limit the patent scope of the present invention. Modifications that are only obvious and belong to the technical concept of the present invention are also within the protection scope of the present invention.

Claims (4)

1.一种新型的宫颈细胞核分割算法,其特征在于:包括如下步骤:1. a novel cervical cell nucleus segmentation algorithm, is characterized in that: comprise the steps: ①利用selective search segmentation将一幅输入图像初步分割成多个ROI;① Use selective search segmentation to initially segment an input image into multiple ROIs; ②计算相邻ROI之间的交并比IOU,去除复选区域;② Calculate the intersection and union ratio IOU between adjacent ROIs, and remove the selected area; ③利用数学形态学极限腐蚀算法,得到最终连通成分,通过对最终连通成分数量的判断,筛选得到包含细胞核的ROI;③Using the mathematical morphology limit corrosion algorithm to obtain the final connected components, and by judging the number of the final connected components, screen the ROI containing the nucleus; ④应用CV模型算法,对筛选后得到的ROI进行分割,得到精细分割的细胞核。④Use the CV model algorithm to segment the ROI obtained after screening to obtain finely segmented nuclei. 2.根据权利要求1所述的一种新型的宫颈细胞核分割算法,其特征在于:上述步骤①的具体方法是:2. a kind of novel cervical cell nucleus segmentation algorithm according to claim 1 is characterized in that: the concrete method of above-mentioned step 1. is: ①基于图论Felzenszwalb算法将原始图像分割为多个小区域r;① Segment the original image into multiple small regions r based on the graph theory Felzenszwalb algorithm; ②计算各个区域间的相似度:颜色相似度Scolor(ri,rj)、纹理相似度Stexture(ri,rj)、大小相似度Ssize(ri,rj)以及吻合度Sfill(ri,rj),进而计算区域间总相似度S(ri,rj)=a1Scolor(ri,rj)+a2Stexture(ri,rj)+a3Scolor(ri,rj)+a4Sfill(ri,rj),其中ri和rj分别是第i个和第j个小区域,② Calculate the similarity between each area: color similarity S color (r i , r j ), texture similarity S texture (r i , r j ), size similarity S size (r i , r j ) and matching degree S fill (r i ,r j ), and then calculate the total similarity between regions S(r i ,r j )=a 1 S color (r i ,r j )+a 2 S texture (r i ,r j )+ a 3 S color (r i ,r j )+a 4 S fill (r i ,r j ), where r i and r j are the i-th and j-th small regions respectively, 各个相似度由以下公式计算得出:Each similarity is calculated by the following formula: <mrow> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>l</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>r</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msubsup> <mi>c</mi> <mi>i</mi> <mi>k</mi> </msubsup> <mo>,</mo> <msubsup> <mi>c</mi> <mi>j</mi> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>S</mi><mrow><mi>c</mi><mi>o</mi><mi>l</mi><mi>o</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><msub><mi>r</mi><mi>i</mi></msub><mo>,</mo><msub><mi>r</mi><mi>j</mi></msub><mo>)</mo></mrow><mo>=</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><msubsup><mi>c</mi><mi>i</mi><mi>k</mi></msubsup><mo>,</mo><msubsup><mi>c</mi><mi>j</mi><mi>k</mi></msubsup><mo>)</mo></mrow></mrow> 其中分别为第i个和第j个小区域的75维颜色向量中的第k维,in with are the k-th dimension in the 75-dimensional color vectors of the i-th and j-th small regions, respectively, <mrow> <msub> <mi>S</mi> <mrow> <mi>t</mi> <mi>e</mi> <mi>x</mi> <mi>t</mi> <mi>u</mi> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>r</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msubsup> <mi>t</mi> <mi>i</mi> <mi>k</mi> </msubsup> <mo>,</mo> <msubsup> <mi>t</mi> <mi>j</mi> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>S</mi><mrow><mi>t</mi><mi>e</mi><mi>x</mi><mi>t</mi><mi>u</mi><mi>r</mi><mi>e</mi></mrow></msub><mrow><mo>(</mo><msub><mi>r</mi><mi>i</mi></msub><mo>,</mo><msub><mi>r</mi><mi>j</mi></msub><mo>)</mo></mrow><mo>=</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><msubsup><mi>t</mi><mi>i</mi><mi>k</mi></msubsup><mo>,</mo><msubsup><mi>t</mi><mi>j</mi><mi>k</mi></msubsup><mo>)</mo></mrow></mrow> 其中分别为第i个和第j个小区域的240维纹理向量中的第k维,in with are the k-th dimension in the 240-dimensional texture vector of the i-th and j-th small regions, <mrow> <msub> <mi>S</mi> <mrow> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>r</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> <mrow> <mo>(</mo> <mi>i</mi> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow><msub><mi>S</mi><mrow><mi>s</mi><mi>i</mi><mi>z</mi><mi>e</mi></mrow></msub><mrow><mo>(</mo><msub><mi>r</mi><mi>i</mi></msub><mo>,</mo><msub><mi>r</mi><mi>j</mi></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mrow><mi>s</mi><mi>i</mi><mi>z</mi><mi>e</mi><mrow><mo>(</mo><msub><mi>r</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>+</mo><mi>s</mi><mi>i</mi><mi>z</mi><mi>e</mi><mrow><mo>(</mo><msub><mi>r</mi><mi>j</mi></msub><mo>)</mo></mrow></mrow><mrow><mi>s</mi><mi>i</mi><mi>z</mi><mi>e</mi><mrow><mo>(</mo><mi>i</mi><mi>m</mi><mo>)</mo>mo></mrow></mrow></mfrac></mrow> 其中size(ri)、size(rj)和size(im)分别为第i个、第j个小区域和初始图像的大小,where size(r i ), size(r j ) and size(im) are the sizes of the i-th and j-th small regions and the initial image respectively, <mrow> <msub> <mi>S</mi> <mrow> <mi>f</mi> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>r</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> <mrow> <mo>(</mo> <msub> <mi>BB</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> <mrow> <mo>(</mo> <mi>i</mi> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow><msub><mi>S</mi><mrow><mi>f</mi><mi>i</mi><mi>l</mi><mi>l</mi></mrow></msub><mrow><mo>(</mo><msub><mi>r</mi><mi>i</mi></msub><mo>,</mo><msub><mi>r</mi><mi>j</mi></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mrow><mi>s</mi><mi>i</mi><mi>z</mi><mi>e</mi><mrow><mo>(</mo><msub><mi>BB</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>-</mo><mi>s</mi><mi>i</mi><mi>z</mi><mi>e</mi><mrow><mo>(</mo><msub><mi>r</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>-</mo><mi>s</mi><mi>i</mi><mi>z</mi><mi>e</mi><mrow><mo>(</mo><msub><mi>r</mi><mi>j</mi></msub><mo>)</mo></mrow></mrow><mrow><mi>s</mi><mi>i</mi><mi>z</mi><mi>e</mi><mrow><mo>(</mo><mi>i</mi><mi>m</mi><mo>)</mo></mrow></mrow></mfrac></mrow> 其中size(BBij)指包含第i个、第j个小区域的最小外包区域,Where size(BB ij ) refers to the smallest outsourcing area including the i-th and j-th small areas, ③根据总相似度进行区域融合,得到初选ROI。③ Perform regional fusion according to the total similarity to obtain the primary ROI. 3.根据权利要求1所述的一种新型的宫颈细胞核分割算法,其特征在于:上述步骤②的具体计算方法是:3. a kind of novel cervical cell nucleus segmentation algorithm according to claim 1, is characterized in that: the concrete computing method of above-mentioned step 2. is: <mrow> <mi>I</mi> <mi>O</mi> <mi>U</mi> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>&amp;cap;</mo> <msub> <mi>r</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>&amp;cup;</mo> <msub> <mi>r</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>&amp;cap;</mo> <msub> <mi>r</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>&amp;cap;</mo> <msub> <mi>r</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>.</mo> </mrow> <mrow><mi>I</mi><mi>O</mi><mi>U</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mi>r</mi><mi>e</mi><mi>a</mi><mrow><mo>(</mo><msub><mi>r</mi><mi>i</mi></msub><mo>&amp;cap;</mo><msub><mi>r</mi><mi>j</mi></msub><mo>)</mo></mrow></mrow><mrow><mi>a</mi><mi>r</mi><mi>e</mi><mi>a</mi><mrow><mo>(</mo><msub><mi>r</mi><mi>i</mi></msub><mo>&amp;cup;</mo><msub><mi>r</mi><mi>j</mi></msub><mo>)</mo></mrow></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>a</mi><mi>r</mi><mi>e</mi><mi>a</mi><mrow><mo>(</mo><msub><mi>r</mi><mi>i</mi></msub><mo>&amp;cap;</mo><msub><mi>r</mi><mi>j</mi></msub><mo>)</mo></mrow></mrow><mrow><mi>a</mi><mi>r</mi><mi>e</mi><mi>a</mi><mrow><mo>(</mo><msub><mi>r</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>+</mo><mi>a</mi><mi>r</mi><mi>e</mi><mi>a</mi><mrow><mo>(</mo><msub><mi>r</mi><mi>j</mi></msub><mo>)</mo></mrow><mo>-</mo><mi>a</mi><mi>r</mi><mi>e</mi><mi>a</mi><mrow><mo>(</mo><msub><mi>r</mi><mi>i</mi></msub><mo>&amp;cap;</mo><msub><mi>r</mi><mi>j</mi></msub><mo>)</mo></mrow></mrow></mfrac><mo>.</mo></mrow> 4.根据权利要求1所述的一种新型的宫颈细胞核分割算法,其特征在于:上述步骤④的具体计算方法是依据下列公式:4. a kind of novel cervical cell nucleus segmentation algorithm according to claim 1, is characterized in that: the concrete computing method of above-mentioned step 4. is based on following formula: E(C)=μL(C)+υ*Area(inside(C))+λ1Ein(C)+λ2Eout(C)E(C)=μL(C)+υ*Area(inside(C))+λ 1 E in (C)+λ 2 E out (C) =μL(C)+υ*Area(inside(C))+λ1inside(C)|I(x,y)-cO|2dxdy+λ2outside(C)|I(x,y)-cb|2dxdy=μL(C)+υ*Area(inside(C))+λ 1inside(C) |I(x,y)-c O | 2 dxdy+λ 2outside(C) |I(x,y )-c b | 2 dxdy 其中L(C)表示曲线C的长度;μ表示长度系数,取值决定于被检测目标的尺寸大小;Area(inside(C))表示曲线C所围的内部区域的面积;υ表示面积参数;Ein(C)表示闭合曲线C的内部能量;λ1表示内部能量系数;Eout(C)表示闭合曲线C的外部能量;λ2表示内部能量系数;I(x,y)表示图像内任一像素点的灰度;cO表示内部区域的平均灰度;cb表示外部区域的平均灰度用。Among them, L(C) represents the length of the curve C; μ represents the length coefficient, and the value depends on the size of the detected target; Area(inside(C)) represents the area of the inner area surrounded by the curve C; υ represents the area parameter; E in (C) represents the internal energy of the closed curve C; λ 1 represents the internal energy coefficient; E out (C) represents the external energy of the closed curve C; λ 2 represents the internal energy coefficient; The gray level of a pixel; c O means the average gray level of the inner area; c b means the average gray level of the outer area.
CN201711042339.8A 2017-10-30 2017-10-30 Novel uterine neck cell core partitioning algorithm Pending CN107730498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711042339.8A CN107730498A (en) 2017-10-30 2017-10-30 Novel uterine neck cell core partitioning algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711042339.8A CN107730498A (en) 2017-10-30 2017-10-30 Novel uterine neck cell core partitioning algorithm

Publications (1)

Publication Number Publication Date
CN107730498A true CN107730498A (en) 2018-02-23

Family

ID=61203405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711042339.8A Pending CN107730498A (en) 2017-10-30 2017-10-30 Novel uterine neck cell core partitioning algorithm

Country Status (1)

Country Link
CN (1) CN107730498A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110400626A (en) * 2019-07-08 2019-11-01 上海联影智能医疗科技有限公司 Image detecting method, device, computer equipment and storage medium
CN111429461A (en) * 2019-01-09 2020-07-17 武汉兰丁医学高科技有限公司 Novel segmentation method for overlapped exfoliated epithelial cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992435A (en) * 2015-06-24 2015-10-21 广西师范大学 Cervix uteri single cell image segmentation algorithm
US20160155011A1 (en) * 2014-12-02 2016-06-02 Xerox Corporation System and method for product identification
CN105894490A (en) * 2015-11-05 2016-08-24 广西师范大学 Fuzzy integration multiple classifier integration-based uterine neck cell image identification method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160155011A1 (en) * 2014-12-02 2016-06-02 Xerox Corporation System and method for product identification
CN104992435A (en) * 2015-06-24 2015-10-21 广西师范大学 Cervix uteri single cell image segmentation algorithm
CN105894490A (en) * 2015-11-05 2016-08-24 广西师范大学 Fuzzy integration multiple classifier integration-based uterine neck cell image identification method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UIJLINGS J R等: ""Selective Search for Object Recognition"", 《INTERNATIONAL JOURNAL OF COMPUTER VISION(2013)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111429461A (en) * 2019-01-09 2020-07-17 武汉兰丁医学高科技有限公司 Novel segmentation method for overlapped exfoliated epithelial cells
CN111429461B (en) * 2019-01-09 2023-09-01 武汉兰丁智能医学股份有限公司 Novel segmentation method for overlapped and exfoliated epithelial cells
CN110400626A (en) * 2019-07-08 2019-11-01 上海联影智能医疗科技有限公司 Image detecting method, device, computer equipment and storage medium

Similar Documents

Publication Publication Date Title
CN103473739B (en) A kind of Leukocyte Image Accurate Segmentation method and system based on support vector machine
CN110544251A (en) Dam crack detection method based on multi-transfer learning model fusion
WO2018107939A1 (en) Edge completeness-based optimal identification method for image segmentation
CN111047554A (en) Composite insulator overheating defect detection method based on instance segmentation
CN108364288A (en) Dividing method and device for breast cancer pathological image
CN109389585B (en) A brain tissue extraction method based on fully convolutional neural network
CN103578110B (en) Multiband high-resolution remote sensing image dividing method based on gray level co-occurrence matrixes
CN107274386A (en) A kind of cervical cell liquid-based smear artificial intelligence aids in diagosis system
CN109815888B (en) Novel Pasteur staining method-based abnormal cervical cell automatic identification method
CN109389129A (en) A kind of image processing method, electronic equipment and storage medium
CN110378295B (en) A Coal Gangue Recognition Method Based on Heterogeneous Fusion of Multispectral Image Information and Spectral Information
Yan et al. A hybrid convolutional and recurrent deep neural network for breast cancer pathological image classification
CN105701483A (en) Urban boundary extraction method fusing multispectral remote sensing data and night light remote sensing data
CN106934418A (en) A kind of insulator infrared diagnostics method based on convolution Recursive Networks
CN108416379A (en) Method and apparatus for handling cervical cell image
CN105631903A (en) Remote sensing image water extraction method and device based on RGBW characteristic space diagram cutting algorithm
CN111339890A (en) Method for extracting newly-added construction land information based on high-resolution remote sensing image
Zhu et al. Change detection based on the combination of improved SegNet neural network and morphology
CN107292328A (en) The remote sensing image shadow Detection extracting method and system of multiple dimensioned multiple features fusion
CN106997591A (en) A kind of super voxel dividing method of RGB D image mutative scales
CN111476794A (en) UNET-based cervical pathological tissue segmentation method
CN106228130A (en) Remote sensing image cloud detection method of optic based on fuzzy autoencoder network
CN115810191A (en) Pathological cell classification method based on multi-attention fusion and high-precision segmentation network
CN108898096A (en) A kind of quick accurate extracting method of the information towards high score image
CN108932474A (en) A kind of remote sensing image cloud based on full convolutional neural networks compound characteristics sentences method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180223

RJ01 Rejection of invention patent application after publication