CN107716902A - A bimetallic casting method for plunger pump rotor - Google Patents
A bimetallic casting method for plunger pump rotor Download PDFInfo
- Publication number
- CN107716902A CN107716902A CN201711008255.2A CN201711008255A CN107716902A CN 107716902 A CN107716902 A CN 107716902A CN 201711008255 A CN201711008255 A CN 201711008255A CN 107716902 A CN107716902 A CN 107716902A
- Authority
- CN
- China
- Prior art keywords
- casting
- pump rotor
- plunger pump
- lead
- steel matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005266 casting Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 25
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 48
- 239000010959 steel Substances 0.000 claims abstract description 48
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000011159 matrix material Substances 0.000 claims abstract description 24
- 229910000906 Bronze Inorganic materials 0.000 claims abstract description 22
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 16
- 238000007747 plating Methods 0.000 claims abstract description 14
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 10
- 239000000956 alloy Substances 0.000 claims abstract description 10
- 229910017888 Cu—P Inorganic materials 0.000 claims abstract description 8
- 230000008569 process Effects 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 238000003754 machining Methods 0.000 claims abstract description 5
- 238000003723 Smelting Methods 0.000 claims abstract description 4
- 238000000137 annealing Methods 0.000 claims abstract description 4
- 239000000758 substrate Substances 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 claims description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 239000012153 distilled water Substances 0.000 claims description 9
- 230000007935 neutral effect Effects 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 229910021538 borax Inorganic materials 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 239000002893 slag Substances 0.000 claims description 6
- 239000004328 sodium tetraborate Substances 0.000 claims description 6
- 235000010339 sodium tetraborate Nutrition 0.000 claims description 6
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 claims description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 3
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 3
- 238000005553 drilling Methods 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- -1 lanthanum-cerium-copper rare earth Chemical class 0.000 claims description 3
- 229940046892 lead acetate Drugs 0.000 claims description 3
- 238000003801 milling Methods 0.000 claims description 3
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 3
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 239000001632 sodium acetate Substances 0.000 claims description 3
- 235000017281 sodium acetate Nutrition 0.000 claims description 3
- 239000001509 sodium citrate Substances 0.000 claims description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 3
- 229910001379 sodium hypophosphite Inorganic materials 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 235000011149 sulphuric acid Nutrition 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims 1
- 238000004663 powder metallurgy Methods 0.000 abstract description 2
- 238000011112 process operation Methods 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910000897 Babbitt (metal) Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/16—Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- Rotary Pumps (AREA)
- Details Of Reciprocating Pumps (AREA)
Abstract
Description
技术领域technical field
本发明属于双金属铸造技术领域,具体涉及一种柱塞泵转子用双金属的铸造方法。The invention belongs to the technical field of bimetal casting, and in particular relates to a bimetal casting method for a plunger pump rotor.
背景技术Background technique
柱塞泵是生产中运用极为广泛的一种传动机械,是液压系统的一个重要装置。它依靠柱塞在缸体中往复运动,使密封工作容腔的容积发生变化来实现吸油、压油。柱塞泵具有额定压力高、结构紧凑、效率高和流量调节方便等优点,被广泛应用于高压、大流量和流量需要调节的场合,诸如液压机、工程机械和运输机械中。柱塞与转子在工作中构成摩擦副,其品质决定柱塞泵的性能与寿命。生产要求柱塞泵趋向于高速、高温、高载荷、变载荷工况运行,这就要求泵体关键部件——转子,具有各方面优良的属性:耐磨性、导热性、抗冲击疲劳性能、以及强度硬度等。Piston pump is a kind of transmission machinery widely used in production and an important device of hydraulic system. It relies on the reciprocating movement of the plunger in the cylinder to change the volume of the sealed working chamber to realize oil absorption and oil pressure. The plunger pump has the advantages of high rated pressure, compact structure, high efficiency and convenient flow adjustment. It is widely used in high pressure, large flow and flow adjustment occasions, such as hydraulic presses, engineering machinery and transportation machinery. The plunger and the rotor form a friction pair during work, and its quality determines the performance and life of the plunger pump. Production requires that the plunger pump tends to operate at high speed, high temperature, high load, and variable load conditions, which requires the rotor, the key component of the pump body, to have excellent properties in various aspects: wear resistance, thermal conductivity, impact fatigue resistance, and strength and hardness.
目前国内外使用的耐磨合金主要为两大类:一类为软机体内弥散分布硬质颗粒合金,如:巴比特合金系的铅基、锡基合金,该材料熔点低,质软,只能用于低载荷;另一类为硬质基体内分布软质颗粒合金,如:铅青铜合金。铜具有良好的延展性、耐热性、导热性,能满足部件在高温、高速工况下的使用;铅与铜的固溶度极小,在合金中以单质颗粒弥散分布,改变了铜机体的连续性,提高了铜本身的耐磨性;铅颗粒本身熔点低、质软,在润滑条件良好的情况下可以起到嵌藏油污、顺应柱塞作用;在机械启动或缺少润滑剂等干摩擦条件下,可以单质或氧化物的形式对摩擦副起到润滑保护的作用,减少“咬轴”、“抱轴”、“烧轴”等事故发生。但铅的加入与分布状况在提高铜机体耐磨性的同时,不可避免的会使其强、硬度下降,直接影响到泵体载荷、抗冲击疲劳性能,造成进而降低转子及泵的使用寿命。At present, the wear-resistant alloys used at home and abroad are mainly divided into two categories: one is the alloy with hard particles dispersed in the soft body, such as: lead-based and tin-based alloys of the Babbitt alloy system. The material has a low melting point and is soft. It can be used for low loads; the other type is the distribution of soft particle alloys in the hard matrix, such as: lead bronze alloy. Copper has good ductility, heat resistance, and thermal conductivity, which can meet the use of components under high temperature and high speed conditions; the solid solubility of lead and copper is extremely small, and the dispersed distribution of single particles in the alloy changes the copper body. The continuity of the copper itself improves the wear resistance of the copper itself; the lead particles themselves have a low melting point and are soft in quality, and can play the role of embedding oil stains and conforming to the plunger under good lubrication conditions; Under friction conditions, it can lubricate and protect friction pairs in the form of simple substances or oxides, reducing accidents such as "shaft biting", "shaft holding" and "shaft burning". However, the addition and distribution of lead will inevitably reduce the strength and hardness of the copper body while improving the wear resistance of the copper body, which will directly affect the load and impact fatigue resistance of the pump body, resulting in a reduction in the service life of the rotor and the pump.
常用来提高铅青铜转子机械性能的方法是,双金属结合的办法。即用铅青铜来做为转子内层耐磨工作面,用强硬度高的材料—高强度钢作为外层加固机体。双金属复合铸造材料,由于采用铸造方法合成,工艺简单,成本低廉,具有很大的应用前景,但是浇注过程中两种金属接触时间短,降温速度快,严重影响着二者的结合,这也成为制约双金属复合铸造材料生产和应用的瓶颈。因此,如何使双金属铸件具有良好的结合和性能,有待进一步的研究。The method commonly used to improve the mechanical properties of lead bronze rotors is the method of bimetallic bonding. That is, lead bronze is used as the wear-resistant working surface of the inner layer of the rotor, and high-strength steel is used as the outer layer to reinforce the machine body. Bimetallic composite casting materials, due to the synthesis of casting method, simple process and low cost, have great application prospects, but the contact time of the two metals during the casting process is short and the cooling speed is fast, which seriously affects the combination of the two. It has become a bottleneck restricting the production and application of bimetallic composite casting materials. Therefore, how to make bimetallic castings have good combination and performance remains to be further studied.
发明内容Contents of the invention
根据现有技术中存在的问题,本发明提供了一种柱塞泵转子用双金属的铸造方法,意在提高合金的界面结合能力和性能。According to the problems existing in the prior art, the present invention provides a bimetallic casting method for a plunger pump rotor, aiming at improving the interface bonding ability and performance of the alloy.
本发明采用以下技术方案:The present invention adopts following technical scheme:
一种柱塞泵转子用双金属的铸造方法,包括以下步骤:A bimetal casting method for a plunger pump rotor, comprising the following steps:
步骤一:对钢基体进行车铣刨磨、钻孔、镗孔,所述的钢基体为圆柱体,钢基体的中心设有一个中心孔,围绕中心孔周围设有9个圆形孔,底部设有金属型下盖;Step 1: Turning, milling, planing, grinding, drilling, and boring the steel substrate. The steel substrate is a cylinder. A central hole is provided in the center of the steel substrate, and 9 circular holes are arranged around the central hole. With a metal type lower cover;
步骤二:将钢基体用质量浓度15%的NaOH水溶液清洗油污,用蒸馏水冲洗至中性,再用质量浓度10%的HCl水溶液除锈,之后再用蒸馏水冲洗至中性,烘干放在干燥的环境中待用;Step 2: Clean the steel substrate with 15% NaOH aqueous solution, rinse with distilled water until neutral, then use 10% HCl aqueous solution to derust, then rinse with distilled water until neutral, dry and place in a dry place to be used in the environment;
步骤三:对钢基体进行热处理退火工艺:缓慢加热到900℃-1050℃,加热15h-20h后冷却至室温;Step 3: Carry out heat treatment and annealing process on the steel substrate: slowly heat to 900°C-1050°C, heat for 15h-20h and then cool to room temperature;
步骤四:室温下将钢基体浸入质量浓度5%的H2SO4溶液,保持时间1min,清水冲洗至中性后立即对钢基体内表面进行Ni-Cu-P多元镀镍处理,镀镍温度为75℃,镀镍厚度为7μm-10μm;Step 4 : Immerse the steel substrate in H2SO4 solution with a mass concentration of 5% at room temperature for 1 min, rinse with clean water until neutral, and immediately perform Ni-Cu-P multi-component nickel plating on the inner surface of the steel substrate, the nickel plating temperature The temperature is 75℃, and the thickness of nickel plating is 7μm-10μm;
步骤五:将钢基体置于1100-1200℃的熔融硼砂中预热2.5h,当钢基体预热温度达到1150℃时保温待浇铸;Step 5: Preheat the steel matrix in molten borax at 1100-1200°C for 2.5 hours, and keep it warm for casting when the preheating temperature of the steel matrix reaches 1150°C;
步骤六:将石墨坩埚预热到600℃,加入纯铜,调温到800-900℃,使炉温阶梯式升温后再调整炉温至铜全部融化,静置3-6min后,用石墨棒充分搅拌,再依次加入Zn、Pb、Sn,待前一种金属完全熔解后再加入后一种金属,中间间隔5-7min,并不断搅拌,再加入镧铈铜稀土合金,搅拌均匀,当熔炼温度达到1150-1250℃时,得铅锡青铜合金,测温到1200℃-1250℃时待浇铸,浇铸前扒渣并搅拌10-30s;Step 6: Preheat the graphite crucible to 600°C, add pure copper, adjust the temperature to 800-900°C, raise the furnace temperature stepwise, and then adjust the furnace temperature until the copper is completely melted. After standing for 3-6 minutes, use a graphite rod Stir fully, then add Zn, Pb, Sn in turn, and then add the latter metal after the former metal is completely melted, with an interval of 5-7 minutes in between, and keep stirring, then add lanthanum-cerium-copper rare earth alloy, stir evenly, when smelting When the temperature reaches 1150-1250°C, a lead-tin bronze alloy is obtained. When the temperature reaches 1200°C-1250°C, it is ready to be cast, and the slag is removed and stirred for 10-30s before casting;
步骤七:钢基体浇铸铅锡青铜合金,整个浇铸过程都是在熔融硼砂的保护下进行,由钢基体的中心孔进行浇铸,在压力作用下使铅锡青铜合金充满9个圆形孔,所述的9个圆形孔就是铸件所需要的冒口,浇铸完成后空冷2min,待铅锡青铜合金凝固后,向铸件表面喷水3-5min冷却至室温;Step 7: Casting the lead-tin bronze alloy on the steel matrix. The whole casting process is carried out under the protection of molten borax. Casting is carried out from the center hole of the steel matrix, and the lead-tin bronze alloy is filled with 9 circular holes under pressure. The 9 circular holes mentioned above are the risers required by the casting. After the casting is completed, air cool for 2 minutes. After the lead-tin-bronze alloy solidifies, spray water on the surface of the casting for 3-5 minutes to cool down to room temperature;
步骤八:机械加工制成柱塞泵转子,所述的柱塞泵转子是由9个内径为28mm、外径为34mm的铅锡青铜合金套环镶嵌于外径为190mm、内径为60mm高为158mm的钢基体中所组成的双金属构件。Step 8: machining the plunger pump rotor, the plunger pump rotor is inlaid with nine lead-tin-bronze alloy rings with an inner diameter of 28mm and an outer diameter of 34mm in an outer diameter of 190mm, an inner diameter of 60mm and a height of 158mm steel matrix composed of bimetal components.
优选的,所述的钢基体包括以下重量百分比的化学成分:C0.450%、Si0.250%、Mn0.620%、P0.021%、S0.023%、Cr0.140%、Mo0.020%、Ni0.018%、Cu0.230%、Ti0.003%、V0.007%、W0.010%、余量为Fe。Preferably, the steel matrix includes the following chemical components in weight percentage: C0.450%, Si0.250%, Mn0.620%, P0.021%, S0.023%, Cr0.140%, Mo0.020% , Ni0.018%, Cu0.230%, Ti0.003%, V0.007%, W0.010%, and the balance is Fe.
优选的,所述的铅锡青铜合金包括以下重量百分比的化学成分:Pb20%、Sn5%、Zn2%、P0.5%、RE0.2%、Ni1.5%、余量为Cu。Preferably, the lead-tin bronze alloy includes the following chemical components in weight percentage: Pb 20%, Sn 5%, Zn 2%, P 0.5%, RE 0.2%, Ni 1.5%, and the balance is Cu.
优选的,所述的Ni-Cu-P多元镀镍采用以下配方:硫酸镍40g/L、次磷酸钠25g/L、硫酸铜0.85g/L、乙酸钠40g/L、柠檬酸钠45g/L、硫脲1g/L、乙酸铅1g/L、余量为蒸馏水。Preferably, the Ni-Cu-P multi-component nickel plating adopts the following formula: nickel sulfate 40g/L, sodium hypophosphite 25g/L, copper sulfate 0.85g/L, sodium acetate 40g/L, sodium citrate 45g/L , thiourea 1g/L, lead acetate 1g/L, and the balance is distilled water.
优选的,所述的柱塞泵转子上下两个端面上分别留出10mm的浇铸加工余量。Preferably, a casting allowance of 10 mm is left on the upper and lower end faces of the plunger pump rotor.
本发明的有益效果在于:The beneficial effects of the present invention are:
1)对钢基体预热防氧化;结合面完整,少有氧化。1) Preheat the steel substrate to prevent oxidation; the joint surface is complete and rarely oxidized.
2)多元Ni-Cu-P化学镀件耐蚀性和耐磨性好,加入Cu元素形成多元镀层,不仅固溶强化镍固溶体,还在加热时析出Cu0.81Ni0.19强化相等,提高了材料的硬度。钢基镀镍后,钢铜双金属通过扩散复合原子结合过渡层厚可达到14μm以上,大大改善了铜钢复合界面的复合能力。2) The multi-element Ni-Cu-P electroless plating has good corrosion resistance and wear resistance. Adding Cu element to form a multi-element coating not only solid-solution strengthens the nickel solid solution, but also precipitates Cu 0.81 Ni 0.19 during heating, which improves the corrosion resistance of the material. hardness. After nickel-plating on the steel base, the thickness of the transition layer of the steel-copper bimetal can reach more than 14 μm through the diffusion of recombination atoms, which greatly improves the recombination ability of the copper-steel composite interface.
3)采用本发明的铸造方法,得到了结合强度高于134MPa、原子扩散层不小于100μm的双金属结合铸件,确保两种金属界面结合强度。3) By adopting the casting method of the present invention, a bimetal bonded casting with a bonding strength higher than 134 MPa and an atomic diffusion layer not less than 100 μm is obtained, ensuring the bonding strength of the two metal interfaces.
4)本发明由于转子周围9个圆形孔,可以有效的防止缩孔和裂纹的产生,更有利于铸件的凝固。柱塞泵转子的浇注过程中是由中心孔浇注在压力作用下使得铜合金熔液溢满周围的9个孔因而有利于熔液中气体和熔渣的上浮,从而进一步防止了气孔和渣眼的形成。4) The present invention can effectively prevent the generation of shrinkage cavities and cracks due to the 9 circular holes around the rotor, and is more conducive to the solidification of castings. During the pouring process of the plunger pump rotor, the central hole is poured under pressure to make the copper alloy melt overflow the surrounding 9 holes, which is conducive to the floating of gas and slag in the melt, thereby further preventing air holes and slag holes Formation.
5)采用本发明浇注出来的柱塞泵缸体铸件缺陷很少,没有气孔和夹渣等缺陷,设计铸造工艺参数合理。5) The plunger pump cylinder casted by the present invention has few defects, no defects such as pores and slag inclusions, and the design casting process parameters are reasonable.
6)采用本发明的铸造的方式得到的双金属结合面,不但性能达标而且设备投入少、工艺操作简便、降低工件成本,适合广泛推广应用,前景广阔。与粉末冶金相比,性能更为优良,且省去了热处理工序,节约时间与成本。6) The bimetal bonding surface obtained by the casting method of the present invention not only has the performance up to standard, but also requires less investment in equipment, simple and convenient process operation, and reduces the cost of workpieces. It is suitable for widespread application and has broad prospects. Compared with powder metallurgy, the performance is better, and the heat treatment process is omitted, saving time and cost.
具体实施方式detailed description
以下结合实施例,对本发明中的技术方案进行清楚、完整地描述。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the present invention are clearly and completely described below in conjunction with the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
一种柱塞泵转子用双金属的铸造方法,包括以下步骤:A bimetal casting method for a plunger pump rotor, comprising the following steps:
步骤一:对钢基体进行车铣刨磨、钻孔、镗孔,所述的钢基体为圆柱体,钢基体的中心设有一个中心孔,围绕中心孔周围设有9个圆形孔,底部设有金属型下盖;Step 1: Turning, milling, planing, grinding, drilling, and boring the steel substrate. The steel substrate is a cylinder. A central hole is provided in the center of the steel substrate, and 9 circular holes are arranged around the central hole. With a metal type lower cover;
步骤二:将钢基体用质量浓度15%的NaOH水溶液清洗油污,用蒸馏水冲洗至中性,再用质量浓度10%的HCl水溶液除锈,之后再用蒸馏水冲洗至中性,烘干放在干燥的环境中待用;Step 2: Clean the steel substrate with 15% NaOH aqueous solution, rinse with distilled water until neutral, then use 10% HCl aqueous solution to derust, then rinse with distilled water until neutral, dry and place in a dry place to be used in the environment;
步骤三:对钢基体进行热处理退火工艺:缓慢加热到900℃-1050℃,加热15h-20h后冷却至室温;Step 3: Carry out heat treatment and annealing process on the steel substrate: slowly heat to 900°C-1050°C, heat for 15h-20h and then cool to room temperature;
步骤四:室温下将钢基体浸入质量浓度5%的H2SO4溶液,保持时间1min,清水冲洗至中性后立即对钢基体内表面进行Ni-Cu-P多元镀镍处理,镀镍温度为75℃,镀镍厚度为7μm-10μm;Step 4 : Immerse the steel substrate in H2SO4 solution with a mass concentration of 5% at room temperature for 1 min, rinse with clean water until neutral, and immediately perform Ni-Cu-P multi-component nickel plating on the inner surface of the steel substrate, the nickel plating temperature The temperature is 75℃, and the thickness of nickel plating is 7μm-10μm;
步骤五:将钢基体置于1100-1200℃的熔融硼砂中预热2.5h,当钢基体预热温度达到1150℃时保温待浇铸;Step 5: Preheat the steel matrix in molten borax at 1100-1200°C for 2.5 hours, and keep it warm for casting when the preheating temperature of the steel matrix reaches 1150°C;
步骤六:将石墨坩埚预热到600℃,加入纯铜,调温到800-900℃,使炉温阶梯式升温后再调整炉温至铜全部融化,静置3-6min后,用石墨棒充分搅拌,再依次加入Zn、Pb、Sn,待前一种金属完全熔解后再加入后一种金属,中间间隔5-7min,并不断搅拌,再加入镧铈铜稀土合金,搅拌均匀,当熔炼温度达到1150-1250℃时,得铅锡青铜合金,测温到1200℃-1250℃时待浇铸,浇铸前扒渣并搅拌10-30s;Step 6: Preheat the graphite crucible to 600°C, add pure copper, adjust the temperature to 800-900°C, raise the furnace temperature stepwise, and then adjust the furnace temperature until the copper is completely melted. After standing for 3-6 minutes, use a graphite rod Stir fully, then add Zn, Pb, Sn in turn, and then add the latter metal after the former metal is completely melted, with an interval of 5-7 minutes in between, and keep stirring, then add lanthanum-cerium-copper rare earth alloy, stir evenly, when smelting When the temperature reaches 1150-1250°C, a lead-tin bronze alloy is obtained. When the temperature reaches 1200°C-1250°C, it is ready to be cast, and the slag is removed and stirred for 10-30s before casting;
步骤七:钢基体浇铸铅锡青铜合金,整个浇铸过程都是在熔融硼砂的保护下进行,由钢基体的中心孔进行浇铸,在压力作用下使铅锡青铜合金充满9个圆形孔,所述的9个圆形孔就是铸件所需要的冒口,浇铸完成后空冷2min,待铅锡青铜合金凝固后,向铸件表面喷水3-5min冷却至室温;Step 7: Casting the lead-tin bronze alloy on the steel matrix. The whole casting process is carried out under the protection of molten borax. Casting is carried out from the center hole of the steel matrix, and the lead-tin bronze alloy is filled with 9 circular holes under pressure. The 9 circular holes mentioned above are the risers required by the casting. After the casting is completed, air cool for 2 minutes. After the lead-tin-bronze alloy solidifies, spray water on the surface of the casting for 3-5 minutes to cool down to room temperature;
步骤八:机械加工制成柱塞泵转子,所述的柱塞泵转子是由9个内径为28mm、外径为34mm的铅锡青铜合金套环镶嵌于外径为190mm、内径为60mm高为158mm的钢基体中所组成的双金属构件。Step 8: machining the plunger pump rotor, the plunger pump rotor is inlaid with nine lead-tin-bronze alloy rings with an inner diameter of 28mm and an outer diameter of 34mm in an outer diameter of 190mm, an inner diameter of 60mm and a height of 158mm steel matrix composed of bimetal components.
所述的钢基体包括以下重量百分比的化学成分:C0.450%、Si0.250%、Mn0.620%、P0.021%、S0.023%、Cr0.140%、Mo0.020%、Ni0.018%、Cu0.230%、Ti0.003%、V0.007%、W0.010%、余量为Fe。The steel matrix includes the following chemical components in weight percentage: C0.450%, Si0.250%, Mn0.620%, P0.021%, S0.023%, Cr0.140%, Mo0.020%, Ni0. 018%, Cu0.230%, Ti0.003%, V0.007%, W0.010%, and the balance is Fe.
所述的铅锡青铜合金包括以下重量百分比的化学成分:Pb20%、Sn5%、Zn2%、P0.5%、RE0.2%、Ni1.5%、余量为Cu。The lead-tin-bronze alloy includes the following chemical components in weight percentage: 20% Pb, 5% Sn, 2% Zn, 0.5% P, 0.2% RE, 1.5% Ni, and the balance is Cu.
所述的Ni-Cu-P多元镀镍采用以下配方:硫酸镍40g/L、次磷酸钠25g/L、硫酸铜0.85g/L、乙酸钠40g/L、柠檬酸钠45g/L、硫脲1g/L、乙酸铅1g/L、余量为蒸馏水。The Ni-Cu-P multi-component nickel plating adopts the following formula: nickel sulfate 40g/L, sodium hypophosphite 25g/L, copper sulfate 0.85g/L, sodium acetate 40g/L, sodium citrate 45g/L, thiourea 1g/L, lead acetate 1g/L, and distilled water as the balance.
所述的柱塞泵转子上下两个端面上分别留出10mm的浇铸加工余量。A casting allowance of 10 mm is reserved on the upper and lower end faces of the plunger pump rotor.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711008255.2A CN107716902A (en) | 2017-10-25 | 2017-10-25 | A bimetallic casting method for plunger pump rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711008255.2A CN107716902A (en) | 2017-10-25 | 2017-10-25 | A bimetallic casting method for plunger pump rotor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107716902A true CN107716902A (en) | 2018-02-23 |
Family
ID=61213527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711008255.2A Pending CN107716902A (en) | 2017-10-25 | 2017-10-25 | A bimetallic casting method for plunger pump rotor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107716902A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109249006A (en) * | 2018-10-25 | 2019-01-22 | 邢立杰 | Straight carbon steel Neutral Electrolyte Descaling pole plate lead-sheathing technique |
CN112725656A (en) * | 2021-01-19 | 2021-04-30 | 中国科学院兰州化学物理研究所 | Plunger hole lining material for bimetallic hydraulic pump motor and application thereof |
CN113070463A (en) * | 2021-04-01 | 2021-07-06 | 中北大学 | Extrusion casting molding method for cylinder body of bimetal plunger pump |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1108904A2 (en) * | 1999-11-30 | 2001-06-20 | Tony U. Otani | Plastics processing cylinder having a composite inner sleeve |
RU2267378C1 (en) * | 2004-04-08 | 2006-01-10 | Юрий Апполинарьевич Караник | Bimetallic castings making method |
UA78355C2 (en) * | 2005-03-01 | 2007-03-15 | Zaporizhia Mechanical Factory | Method for production of insert liner with antifriction layer on the basis of calcium babbit |
CN102304641A (en) * | 2011-08-15 | 2012-01-04 | 镇江汇通金属成型有限公司 | Degassing and deoxidation process for cast aluminum bronze |
JP2013198928A (en) * | 2012-03-26 | 2013-10-03 | Nagoya Institute Of Technology | Method of producing composite material formed by composite of matrix metal and solid-phase fine particles, and metal bonded grinding wheel produced by the same |
CN104105807A (en) * | 2012-02-08 | 2014-10-15 | 新日铁住金株式会社 | High-strength cold-rolled steel sheet and process for manufacturing same |
CN106089913A (en) * | 2016-06-15 | 2016-11-09 | 宁波市鄞州海胜机械有限公司 | A kind of hex screw and preparation method thereof |
CN107096905A (en) * | 2017-04-28 | 2017-08-29 | 安徽恒利增材制造科技有限公司 | Casting method for a steel-copper composite cylinder body |
-
2017
- 2017-10-25 CN CN201711008255.2A patent/CN107716902A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1108904A2 (en) * | 1999-11-30 | 2001-06-20 | Tony U. Otani | Plastics processing cylinder having a composite inner sleeve |
RU2267378C1 (en) * | 2004-04-08 | 2006-01-10 | Юрий Апполинарьевич Караник | Bimetallic castings making method |
UA78355C2 (en) * | 2005-03-01 | 2007-03-15 | Zaporizhia Mechanical Factory | Method for production of insert liner with antifriction layer on the basis of calcium babbit |
CN102304641A (en) * | 2011-08-15 | 2012-01-04 | 镇江汇通金属成型有限公司 | Degassing and deoxidation process for cast aluminum bronze |
CN104105807A (en) * | 2012-02-08 | 2014-10-15 | 新日铁住金株式会社 | High-strength cold-rolled steel sheet and process for manufacturing same |
JP2013198928A (en) * | 2012-03-26 | 2013-10-03 | Nagoya Institute Of Technology | Method of producing composite material formed by composite of matrix metal and solid-phase fine particles, and metal bonded grinding wheel produced by the same |
CN106089913A (en) * | 2016-06-15 | 2016-11-09 | 宁波市鄞州海胜机械有限公司 | A kind of hex screw and preparation method thereof |
CN107096905A (en) * | 2017-04-28 | 2017-08-29 | 安徽恒利增材制造科技有限公司 | Casting method for a steel-copper composite cylinder body |
Non-Patent Citations (3)
Title |
---|
上海市造船学会铸工专业学组: "《全国修造船铸造工艺专题资料汇编》", 31 October 1961 * |
何朋臣: "《全国电力工人公用类培训教材 电力工程常用材料 (第二版)》", 31 October 2004 * |
张书华: "《高性能电缆材料及其应用技术》", 30 November 2015, 上海交通大学出版社 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109249006A (en) * | 2018-10-25 | 2019-01-22 | 邢立杰 | Straight carbon steel Neutral Electrolyte Descaling pole plate lead-sheathing technique |
CN112725656A (en) * | 2021-01-19 | 2021-04-30 | 中国科学院兰州化学物理研究所 | Plunger hole lining material for bimetallic hydraulic pump motor and application thereof |
CN113070463A (en) * | 2021-04-01 | 2021-07-06 | 中北大学 | Extrusion casting molding method for cylinder body of bimetal plunger pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107790679A (en) | Copper-steel bimetal composite casting method for plunger pump rotor | |
CN100553811C (en) | Semisolid Kelmet/bimetal copper-steel composite technique for rolling | |
CN100417827C (en) | Production process of bimetal solid bearing cage | |
CN103386476B (en) | A kind of bimetal composite vertical grinder roll and manufacture craft | |
CN107321963A (en) | A kind of casting method of copper-steel bimetal | |
CN107716902A (en) | A bimetallic casting method for plunger pump rotor | |
CN114535933B (en) | A method for manufacturing a high-stress self-tightening force copper-steel composite wear-resistant bushing | |
CN107043882B (en) | A kind of preparation method of diamond composite | |
JP2013249533A (en) | Zinc-free spray powder, copper-containing thermal spray layer, and method for producing the copper-containing thermal spray layer | |
CN113478121A (en) | Ceramic particle reinforced Cu-based flux-cored wire and low-carbon steel surface modification method | |
CN107855496A (en) | A copper-steel bimetal compound casting method | |
CN114749637A (en) | Casting method of copper-steel bimetal composite material for plunger pump cylinder | |
CN111266576A (en) | A kind of TC4-based self-lubricating material and preparation method thereof | |
CN110964940B (en) | High-entropy alloy silver-impregnated composite material and preparation method and application thereof | |
CN115255710B (en) | High-entropy alloy soft solder containing Sn and Cu and preparation method thereof | |
CN107755665A (en) | A casting method of copper-steel bimetal | |
CN111471889B (en) | Tin-based babbitt metal and preparation method and application thereof | |
CN100549196C (en) | A kind of method of making tinhase bearing metals | |
CN1167823C (en) | High-temperature wear-resistant and corrosion-resistant Cr-Ni-Si metal silicide alloy material | |
CN117488134A (en) | Antimony bronze-steel bimetal composite material and preparation method thereof | |
CN103194635A (en) | Diffusion bonding method without external pressure for Ti (C, N)-based metal ceramic and steel | |
Wang et al. | Development of copper alloy-steel bimetallic bearing materials and manufacturing technology | |
CN1039747A (en) | A Method of Increasing the Thickness of Cast Infiltrated Alloy Layer | |
CN102251144B (en) | High-strength high-wear-resistance valve plate and preparation method thereof | |
CN107377945A (en) | A Bimetallic Casting Technology for Piston Pump Rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180223 |
|
RJ01 | Rejection of invention patent application after publication |