CN107711828A - Silver/cation copolymer modified Nano diamond compound particle and preparation method thereof - Google Patents
Silver/cation copolymer modified Nano diamond compound particle and preparation method thereof Download PDFInfo
- Publication number
- CN107711828A CN107711828A CN201710832560.7A CN201710832560A CN107711828A CN 107711828 A CN107711828 A CN 107711828A CN 201710832560 A CN201710832560 A CN 201710832560A CN 107711828 A CN107711828 A CN 107711828A
- Authority
- CN
- China
- Prior art keywords
- nano
- copolymer
- diamond
- silver
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002113 nanodiamond Substances 0.000 title claims abstract description 73
- 229920001577 copolymer Polymers 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000004332 silver Substances 0.000 title claims abstract description 12
- 229910052709 silver Inorganic materials 0.000 title claims abstract description 12
- 239000002245 particle Substances 0.000 title description 14
- 150000001875 compounds Chemical class 0.000 title description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 claims abstract description 20
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims abstract description 20
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000003242 anti bacterial agent Substances 0.000 claims abstract description 19
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000011246 composite particle Substances 0.000 claims abstract description 12
- 238000011068 loading method Methods 0.000 claims abstract description 5
- 238000007334 copolymerization reaction Methods 0.000 claims abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 33
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 28
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 18
- 239000001509 sodium citrate Substances 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 18
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 claims description 14
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 14
- 239000007864 aqueous solution Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- MNDIARAMWBIKFW-UHFFFAOYSA-N 1-bromohexane Chemical compound CCCCCCBr MNDIARAMWBIKFW-UHFFFAOYSA-N 0.000 claims description 6
- GLISZRPOUBOZDL-UHFFFAOYSA-N 3-bromopropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCBr GLISZRPOUBOZDL-UHFFFAOYSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229920003118 cationic copolymer Polymers 0.000 claims description 5
- 101710134784 Agnoprotein Proteins 0.000 claims description 4
- 239000012153 distilled water Substances 0.000 claims description 4
- 239000003999 initiator Substances 0.000 claims description 4
- 230000004048 modification Effects 0.000 claims description 3
- 238000012986 modification Methods 0.000 claims description 3
- 239000003638 chemical reducing agent Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 230000029936 alkylation Effects 0.000 claims 2
- 238000005804 alkylation reaction Methods 0.000 claims 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 230000000844 anti-bacterial effect Effects 0.000 abstract description 24
- 239000002131 composite material Substances 0.000 abstract description 11
- 241000588724 Escherichia coli Species 0.000 abstract description 9
- 208000015181 infectious disease Diseases 0.000 abstract description 7
- 241000191967 Staphylococcus aureus Species 0.000 abstract description 4
- 230000002401 inhibitory effect Effects 0.000 abstract description 4
- 230000005764 inhibitory process Effects 0.000 abstract description 4
- 239000000654 additive Substances 0.000 abstract description 3
- 230000000996 additive effect Effects 0.000 abstract description 3
- 210000000988 bone and bone Anatomy 0.000 abstract description 3
- 230000000399 orthopedic effect Effects 0.000 abstract description 3
- 230000001954 sterilising effect Effects 0.000 abstract description 3
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 3
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 230000002147 killing effect Effects 0.000 abstract 1
- 239000000178 monomer Substances 0.000 description 12
- 238000009835 boiling Methods 0.000 description 11
- 239000002994 raw material Substances 0.000 description 9
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000002329 infrared spectrum Methods 0.000 description 4
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229920006317 cationic polymer Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical group [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 206010067268 Post procedural infection Diseases 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WTVNABTWDZCYCN-UHFFFAOYSA-N hexane;hydrobromide Chemical compound Br.CCCCCC WTVNABTWDZCYCN-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229940127249 oral antibiotic Drugs 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- -1 small molecule quaternary ammonium salts Chemical group 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/08—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/34—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
- A01N43/40—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/16—Heavy metals; Compounds thereof
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Zoology (AREA)
- Plant Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Toxicology (AREA)
- Materials For Medical Uses (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
本发明公开了一种银/阳离子共聚物改性纳米金刚石复合粒子及其制备方法,该复合粒子通过将共聚物对烷基化的纳米金刚石进行改性,再将纳米银负载在其表面得到,其中,共聚物采用4‑乙烯基吡啶与甲基丙烯酸羟乙酯共聚后的产物。所得抗菌剂对革兰氏阴性细菌大肠杆菌以及革兰氏阳性细菌金黄色葡萄球菌都有较好的抑制杀灭作用,相应最小抑菌浓度分别为50μg/mL和25μg/mL,且抑菌圈明显,对大肠杆菌90min灭菌率达100%;本发明制备的抗菌剂可作添加剂加入到一些医用复合材料中,用于整形外科、骨接合和/或内假体等领域,特别是用于有高感染危险的情况中,在增强其机械性能的同时赋予其优异的抗菌性能,延长医疗器械使用寿命,降低病人感染风险。
The invention discloses a silver/cation copolymer modified nano-diamond composite particle and a preparation method thereof. The composite particle is obtained by modifying the copolymer to alkylated nano-diamond, and then loading nano-silver on its surface. Wherein, the copolymer adopts the product after copolymerization of 4-vinylpyridine and hydroxyethyl methacrylate. The obtained antibacterial agent has good inhibitory and killing effects on Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus, and the corresponding minimum inhibitory concentrations are 50 μg/mL and 25 μg/mL respectively, and the inhibition zone Obviously, the 90min sterilization rate of Escherichia coli reaches 100%; the antibacterial agent prepared by the present invention can be used as an additive to join in some medical composite materials, and is used in the fields such as orthopedics, bone joint and/or internal prosthesis, especially for In situations where there is a high risk of infection, while enhancing its mechanical properties, it is endowed with excellent antibacterial properties, prolonging the service life of medical devices and reducing the risk of infection for patients.
Description
技术领域technical field
本发明属于抗菌剂合成领域,涉及一种医用复合材料,具体涉及一种银/阳离子共聚物改性纳米金刚石复合粒子及其制备方法。The invention belongs to the field of antibacterial agent synthesis and relates to a medical composite material, in particular to a silver/cation copolymer modified nano-diamond composite particle and a preparation method thereof.
背景技术Background technique
如何有效的预防以及治疗手术后感染一直以来都备受关注,治疗细菌感染传统方法是通过注射或口服抗生素。但是,随着耐药菌出现,传统抗生素疗法治愈率逐年降低。近年来,纳米抗菌剂作为一种治疗耐药菌感染的新途径受到科研工作者广泛研究。 Jang 等人(非专利文献)制备了小分子季铵盐修饰的二氧化硅纳米粒子,使得季铵盐的抗菌效率大幅提高,并且其抗菌性能随着二氧化硅粒径的减小而逐渐增大。How to effectively prevent and treat post-operative infection has always attracted attention. The traditional method of treating bacterial infection is through injection or oral antibiotics. However, with the emergence of drug-resistant bacteria, the cure rate of traditional antibiotic therapy is decreasing year by year. In recent years, nano-antibacterial agents have been extensively studied by researchers as a new way to treat drug-resistant bacterial infections. Jang et al. (non-patent literature) prepared silica nanoparticles modified with small molecule quaternary ammonium salts, which greatly improved the antibacterial efficiency of quaternary ammonium salts, and their antibacterial properties gradually increased with the decrease of the particle size of silica. big.
纳米金刚石(ND)作为一种新型的碳基材料,在过去几十年中被广泛应用于抛光、超硬涂层、成像及药物传递等领域。由于其良好的稳定性,优异的生物相容性以及极小的粒径可作抗菌剂的良好载体。CN105253882A号专利文献用聚四乙烯基吡啶盐的阳离子均聚物对 ND 进行简易的功能化改性,不仅解决了 ND 严重的团聚问题, 同时赋予 ND 优异抗菌性能, 为ND 在抗菌领域应用开辟了一条新的道路。CN104987052A号专利文献将纳米金刚石以及抗菌剂混合加入到陶瓷中,得到机械强度增强,且具有抗菌性能的陶瓷。CN105802046A号专利文献利用纳米金刚石等原料的添加,增强了橡胶板的耐磨性能,并加入N-(三氯甲基硫)邻苯二甲酰亚胺、1,2-苯并异噻唑啉-3-酮,使橡胶具有抗菌防霉功能。银纳米粒子作为一类重要的无机纳米抗菌剂,抗菌谱广、杀菌效率高,对哺乳动物细胞毒性低并不易引起微生物耐药性。 CN1241662A号专利文献在织物的纤维之间或纤维之上附着粒径为1~100纳米超微粒银(Ag),超微粒银的表面层是氧化银,核心为金属银,通过释放Ag+达到灭菌功效。CN102497892A号专利文献发明的Ag-TiO2涂层用于众多的现有医疗用工具和植入物中。As a new type of carbon-based material, nanodiamond (ND) has been widely used in polishing, superhard coating, imaging and drug delivery in the past few decades. Because of its good stability, excellent biocompatibility and extremely small particle size, it can be used as a good carrier for antibacterial agents. CN105253882A patent document uses polytetravinylpyridinium salt cationic homopolymer to carry out simple functional modification on ND, which not only solves the serious agglomeration problem of ND, but also endows ND with excellent antibacterial properties, opening up a new era for the application of ND in the field of antibacterial a new path. CN104987052A patent document mixes nano-diamonds and antibacterial agents into ceramics to obtain ceramics with enhanced mechanical strength and antibacterial properties. CN105802046A patent document uses the addition of nano-diamond and other raw materials to enhance the wear resistance of the rubber plate, and adds N-(trichloromethylsulfur)phthalimide, 1,2-benzisothiazoline- 3-ketone, so that the rubber has the function of antibacterial and antifungal. As an important class of inorganic nano-antibacterial agents, silver nanoparticles have broad antibacterial spectrum, high bactericidal efficiency, low toxicity to mammalian cells and are not easy to cause microbial drug resistance. CN1241662A patent document attaches ultrafine silver (Ag) with a particle size of 1 to 100 nanometers between the fibers of the fabric or on the fibers. The surface layer of the ultrafine silver is silver oxide, and the core is metallic silver. Sterilization is achieved by releasing Ag + effect. The Ag- TiO2 coating invented by CN102497892A patent document is used in numerous existing medical tools and implants.
现有研究通过纳米金刚石与抗菌剂的简单物理混合作为纳米抗菌材料,其中,且未经处理直接混合加入的纳米金刚石由于粒径过大、粒径分布范围太广而限制了其增强增韧的能力。另一方面,Ag多直接沉积在织物、敷料等多孔材料上,这样得到的Ag纳米颗粒难免存在易于脱落的难题,并且纳米银抗菌剂对革兰氏阳性细菌的抗菌能力相对不足。Existing research uses the simple physical mixing of nano-diamonds and antibacterial agents as nano-antibacterial materials. Among them, the nano-diamonds mixed directly without treatment have limited their ability to strengthen and toughen due to their large particle size and wide particle size distribution. ability. On the other hand, Ag is mostly directly deposited on porous materials such as fabrics and dressings, so the Ag nanoparticles obtained in this way inevitably have the problem of being easy to fall off, and the antibacterial ability of nano-silver antibacterial agents against Gram-positive bacteria is relatively insufficient.
发明内容Contents of the invention
本发明的目的为提供一种高效复合抗菌剂及其制备方法,用于生物医疗行业,增强医疗器械使用寿命并赋予其抗菌特性。The object of the present invention is to provide a high-efficiency composite antibacterial agent and its preparation method, which can be used in the biomedical industry to enhance the service life of medical devices and endow them with antibacterial properties.
实现本发明目的的技术解决方案是:The technical solution that realizes the object of the present invention is:
本发明所述的银/阳离子共聚物改性纳米金刚石复合粒子,通过将共聚物对烷基化的纳米金刚石进行改性,再将纳米银负载在其表面得到。The silver/cationic copolymer modified nano-diamond composite particle of the present invention is obtained by modifying the copolymer to alkylated nano-diamond, and then loading nano-silver on its surface.
进一步的,共聚物采用4-乙烯基吡啶与甲基丙烯酸羟乙酯共聚后的产物。Further, the copolymer is a product obtained by copolymerization of 4-vinylpyridine and hydroxyethyl methacrylate.
进一步的,烷基化的纳米金刚石通过将纳米金刚石与溴丙基三甲氧基硅烷在醇水溶液中反应后得到。Further, the alkylated nano-diamond is obtained by reacting the nano-diamond with bromopropyltrimethoxysilane in an aqueous alcohol solution.
进一步的,所述的改性是将共聚物与烷基化的纳米金刚石在乙醇中反应,并采用过量溴己烷使共聚物充分季铵化后得到。Further, the modification is obtained by reacting the copolymer with alkylated nano-diamonds in ethanol, and using excess hexyl bromide to fully quaternize the copolymer.
进一步的,纳米银的负载量控制在50~60%。Further, the loading amount of nano-silver is controlled at 50-60%.
上述复合粒子的制备的方法,包括以下步骤:The preparation method of above-mentioned composite particle, comprises the following steps:
步骤1,共聚物(PVP-co-HEMA)的制备:偶氮二异丁腈(AIBN)作为热引发剂,将4-乙烯基吡啶与甲基丙烯酸羟乙酯混合加热搅拌,纯化、真空干燥;Step 1, preparation of copolymer (PVP-co-HEMA): azobisisobutyronitrile (AIBN) as a thermal initiator, mixing 4-vinylpyridine and hydroxyethyl methacrylate, heating and stirring, purification and vacuum drying ;
步骤2,纳米金刚石与溴丙基三甲氧基硅烷在醇水溶液中反应,产物(BrND)离心,洗涤,干燥;Step 2, nanodiamonds react with bromopropyltrimethoxysilane in an aqueous alcohol solution, and the product (BrND) is centrifuged, washed, and dried;
步骤3,步骤2所得产物与步骤1所述共聚物在乙醇中反应,并加入过量溴己烷使共聚物充分季铵化,产物(QND)离心、洗涤、干燥;Step 3, react the product obtained in step 2 with the copolymer described in step 1 in ethanol, and add excess bromohexane to fully quaternize the copolymer, and the product (QND) is centrifuged, washed, and dried;
步骤4,将步骤3所得产物分散在蒸馏水中,与AgNO3水溶液混合并煮沸,添加还原剂柠檬酸钠,共同煮沸,离心、洗涤、真空干燥。Step 4, disperse the product obtained in step 3 in distilled water, mix with AgNO 3 aqueous solution and boil, add reducing agent sodium citrate, boil together, centrifuge, wash and vacuum dry.
在一个优选的实施方案中,步骤1中,4-乙烯基吡啶与甲基丙烯酸羟乙酯的摩尔比为100:(1~100),反应温度为60℃,反应时间24h。In a preferred embodiment, in step 1, the molar ratio of 4-vinylpyridine to hydroxyethyl methacrylate is 100:(1~100), the reaction temperature is 60° C., and the reaction time is 24 hours.
在一个优选的实施方案中,步骤2中,醇水溶液中的乙醇、水体积比9:1,在少量水的条件下,硅烷偶联剂即可发生水解;纳米金刚石与醇水溶液的质量比(1~5 :100),纳米金刚石在醇水溶液中质量分数过大或过小都不利于其与硅烷偶联剂的充分反应。In a preferred embodiment, in step 2, ethanol in the alcohol aqueous solution, water volume ratio 9: 1, under the condition of a small amount of water, silane coupling agent can be hydrolyzed; The mass ratio of nano-diamond and alcohol aqueous solution ( 1~5 : 100), too large or too small mass fraction of nanodiamond in alcohol aqueous solution is not conducive to its full reaction with silane coupling agent.
在一个优选的实施方案中,步骤3中,步骤2所得产物BrND与步骤1所述共聚物PVP-co-HEMA按质量比100:(50~300),反应温度50~80 oC,时间10~24h。In a preferred embodiment, in step 3, the product BrND obtained in step 2 and the copolymer PVP-co-HEMA described in step 1 are in a mass ratio of 100:(50~300), the reaction temperature is 50~80 o C, and the time is 10 ~24h.
在一个优选的实施方案中,步骤4中,步骤2中的纳米金刚石、硝酸银、柠檬酸钠的质量比为1:(1-1.5):(1-2)。In a preferred embodiment, in step 4, the mass ratio of nano-diamond, silver nitrate and sodium citrate in step 2 is 1:(1-1.5):(1-2).
本发明提供的纳米金刚石用于复合材料,生物医疗领域,特别是用于有高感染危险的情况中。The nano-diamond provided by the invention is used in composite materials, biomedical fields, especially in situations with high risk of infection.
本发明与现有技术相比,其显著优点为:Compared with the prior art, the present invention has the remarkable advantages of:
1.本发明将阳离子共聚物的高分子抗菌剂结合在ND载体上,不仅可以有效的避免高分子的流失以及对环境的污染,而且可以重复利用。1. The present invention combines the polymer antibacterial agent of the cationic copolymer on the ND carrier, which can not only effectively avoid the loss of the polymer and the pollution to the environment, but also can be reused.
2.阳离子共聚物修饰的纳米金刚石尺寸小、比表面积大的特点可以提供更多的与细菌接触靶点,能大大提高高分子抗菌剂的抗菌能力,增加抗菌效率。2. The small size and large specific surface area of cationic copolymer-modified nano-diamonds can provide more contact targets with bacteria, which can greatly improve the antibacterial ability of polymer antibacterial agents and increase the antibacterial efficiency.
3.高分子作为活性中心,原位生成银纳米粒子,并通过与银纳米粒子的配位作用,使制备的银纳米粒径较为稳定。3. The polymer acts as the active center to generate silver nanoparticles in situ, and through the coordination with the silver nanoparticles, the diameter of the prepared silver nanoparticles is relatively stable.
4.本发明获得的抗菌剂为接触型与释放型复合抗菌剂,抗菌效果快速优异,对大肠杆菌90min灭菌率达100%。4. The antibacterial agent obtained by the present invention is a contact-type and release-type composite antibacterial agent, and has a fast and excellent antibacterial effect, and the 90-min sterilization rate for Escherichia coli reaches 100%.
5.纳米金刚石质地坚硬,耐磨性好,加入到树脂等材料中将可能大大提高材料的机械性能。5. Nano-diamond has a hard texture and good wear resistance. Adding it to resin and other materials may greatly improve the mechanical properties of the material.
6. 本发明制备的抗菌剂可作添加剂加入到一些医用复合材料中,用于整形外科、骨接合和/或内假体等领域,特别是用于有高感染危险的情况中,在增强其机械性能的同时赋予其优异的抗菌性能,延长医疗器械使用寿命,降低病人感染风险。6. The antibacterial agent prepared by the present invention can be added as an additive to some medical composite materials for fields such as orthopedics, bone joints and/or endoprostheses, especially for situations with a high risk of infection. The mechanical properties endow it with excellent antibacterial properties, which prolongs the service life of medical devices and reduces the risk of infection for patients.
附图说明Description of drawings
图1为本发明实施例1中(a)原料ND、(b)QND、(c)QND@Ag红外谱图。Figure 1 is the infrared spectra of (a) raw material ND, (b) QND, (c) QND@Ag in Example 1 of the present invention.
图2为本发明实施例1中原料(a)ND、(b)QND、(c)QND@Ag 的XRD图。Fig. 2 is the XRD patterns of raw materials (a) ND, (b) QND, (c) QND@Ag in Example 1 of the present invention.
图3为本发明实施例1中(a)原料 ND,(b)QND,(c,d)QND @Ag放大透射电镜图。Fig. 3 is an enlarged transmission electron microscope image of (a) raw material ND, (b) QND, (c, d) QND @Ag in Example 1 of the present invention.
图4为本发明实施例1中原料 ND,BrND,QND,QND@Ag的水合粒径分布图。Fig. 4 is the hydrated particle size distribution diagram of raw materials ND, BrND, QND, QND@Ag in Example 1 of the present invention.
图5为本发明实施例1中抑菌圈实验结果图(a)E. coli,(b)S. aureus:(1)空白对照,(2)原料 ND,(3)QND,(4)QND @Ag。Figure 5 is the results of the inhibition zone experiment in Example 1 of the present invention (a) E. coli , (b) S. aureus : (1) blank control, (2) raw material ND, (3) QND, (4) QND @Ag.
图6为本发明实施例1的抗菌动力学曲线。Figure 6 is the antibacterial kinetics curve of Example 1 of the present invention.
具体实施方式detailed description
银/阳离子共聚物改性纳米金刚石复合粒子的制备方法,包括以下步骤:The preparation method of silver/cationic copolymer modified nano-diamond composite particle comprises the following steps:
a.PVP-co-HEMA制备:偶氮二异丁腈AIBN作为热引发剂,将4-乙烯基吡啶与甲基丙烯酸羟乙酯混合加热搅拌,所得混合物在己烷中沉淀三次,真空干燥。a. Preparation of PVP-co-HEMA: Azobisisobutyronitrile (AIBN) was used as a thermal initiator, 4-vinylpyridine and hydroxyethyl methacrylate were mixed, heated and stirred, and the resulting mixture was precipitated in hexane three times and dried in vacuo.
b.ND与溴丙基三甲氧基硅烷在醇水溶液中反应,产物(BrND)离心,洗涤,干燥。b. ND was reacted with bromopropyltrimethoxysilane in aqueous alcohol solution, and the product (BrND) was centrifuged, washed and dried.
c.BrND与PVP-co-HEMA在乙醇中反应,并加入过量溴己烷使PVP-co-HEMA充分季铵化,产物(QND)离心、洗涤、干燥,加入过量溴己烷,季铵化程度得到提高,ND的分散性和阳离子聚合物的抗菌性能都得到提升。c.BrND reacts with PVP-co-HEMA in ethanol, and add excess hexyl bromide to fully quaternize PVP-co-HEMA, the product (QND) is centrifuged, washed, dried, and quaternized by adding excess hexyl bromide The degree is improved, the dispersibility of ND and the antibacterial performance of cationic polymer are improved.
d.将上述制得的QND分散在蒸馏水中,与AgNO3水溶液混合并煮沸,添加柠檬酸钠,共同煮沸,离心、洗涤、真空干燥,有机高分子通过与银纳米粒子的配位作用, 使制备的银纳米粒径较为均一稳定,得到银纳米颗粒粒径在20-50nm。d. Disperse the QND prepared above in distilled water, mix with AgNO 3 aqueous solution and boil, add sodium citrate, boil together, centrifuge, wash, and vacuum dry, and the organic macromolecule is coordinated with silver nanoparticles to make The diameter of the prepared silver nanoparticles is relatively uniform and stable, and the particle diameter of the obtained silver nanoparticles is 20-50nm.
实施例1Example 1
步骤a: 偶氮二异丁腈AIBN作为热引发剂,通过自由基聚合合成共聚物。 4-乙烯基吡啶单体与甲基丙烯酸羟乙酯的摩尔比70 / 30。 将混合物在60℃的油浴中搅拌并加热24小时。 最后,将反应混合物在己烷中沉淀三次,并在真空烘箱中干燥,得到淡黄色产物。Step a: Azobisisobutyronitrile AIBN is used as a thermal initiator to synthesize a copolymer by free radical polymerization. The molar ratio of 4-vinylpyridine monomer to hydroxyethyl methacrylate is 70/30. The mixture was stirred and heated in an oil bath at 60°C for 24 hours. Finally, the reaction mixture was precipitated three times in hexane and dried in a vacuum oven to obtain a pale yellow product.
步骤b: 称取原料ND100mg加入到20mL醇水溶液(V乙醇:V水=9:1),再向其中按ND质量的10%(10mg)加入硅烷偶联剂(溴丙基三甲氧基硅烷),50℃下磁力搅拌24h,产物离心,用去离子水洗涤三次,放入真空干燥箱60℃干燥。Step b: Weigh 100mg of raw material ND and add it to 20mL alcohol aqueous solution (V ethanol : V water = 9:1), and then add silane coupling agent (bromopropyltrimethoxysilane) to it according to 10% of ND mass (10mg) , magnetically stirred at 50°C for 24h, the product was centrifuged, washed three times with deionized water, and dried in a vacuum oven at 60°C.
步骤c: 将50mgBrND溶于20ml乙醇溶液中,加入50mg共聚物PVP-co-HEMA,70 ℃下反应24h,再加入过量的溴己烷(0.12g)使其充分季铵化,产物离心,用乙醇洗涤3次,50℃真空干燥12h得到季铵化改性的纳米金刚石(QND)。Step c: Dissolve 50mg BrND in 20ml ethanol solution, add 50mg copolymer PVP-co-HEMA, react at 70°C for 24h, then add excess bromide hexane (0.12g) to make it fully quaternized, centrifuge the product, and use Washed three times with ethanol, dried in vacuum at 50℃ for 12h to obtain quaternized modified nanodiamond (QND).
步骤d: 取50mg上述制得的QND分散在20 mL蒸馏水中,与100 mL AgNO3(60mg)水溶液混合并煮沸,添加 68 mg 柠檬酸钠(质量比,纳米金刚石:硝酸银:柠檬酸钠=1:1.2:1.4),保持溶液沸腾1 h。离心分离,去离子水洗三次后于60℃真空干燥24h,得到QND@Ag。Step d: Disperse 50 mg of the QND prepared above in 20 mL of distilled water, mix with 100 mL of AgNO 3 (60 mg) aqueous solution and boil, add 68 mg of sodium citrate (mass ratio, nanodiamond: silver nitrate: sodium citrate = 1:1.2:1.4), keep the solution boiling for 1 h. After centrifugation, washing with deionized water three times, vacuum drying at 60 °C for 24 h, the QND@Ag was obtained.
得到的QND@Ag通过红外、XRD、TEM、DLS进行表征并与原料ND、QND等对比。The obtained QND@Ag was characterized by infrared, XRD, TEM, and DLS, and compared with the raw materials ND, QND, etc.
从图1中可以看到,相比于ND原粉,QND与QND @Ag的红外谱图峰数增多,其中2880-2970 cm-1为-CH3、-CH2的伸缩振动峰,1601 cm-1和1569 cm-1是C=N 的伸缩振动峰,1515和1466 cm-1是C=C的伸缩振动峰,1714 cm-1为C=O伸缩振动峰,1045cm-1对应于C-O-C的对称伸缩振动峰。此外,由于1640 cm-1处出现了C=N+的峰,说明纳米金刚石表面成功引入阳离子聚合物。此外,QND @Ag与QND红外谱图对比看出:由于Ag NPs与ND表面聚合物的羟基、吡啶基团形成配位键,其红外谱图在3400 cm-1,1601 cm-1和1569 cm-1处峰都明显减弱,从而证明了纳米Ag与ND表面接枝的聚合物间存在相互作用,且该作用可使ND表面负载的Ag NPs保持稳定。It can be seen from Figure 1 that compared with ND original powder, the number of peaks in the infrared spectra of QND and QND@Ag has increased, of which 2880-2970 cm -1 is the stretching vibration peak of -CH 3 and -CH 2 , and 1601 cm -1 and 1569 cm -1 are the stretching vibration peaks of C=N, 1515 and 1466 cm -1 are the stretching vibration peaks of C=C, 1714 cm -1 is the stretching vibration peak of C=O, and 1045 cm -1 corresponds to the stretching vibration peak of COC Symmetrical stretching vibration peaks. In addition, since the peak of C=N + appeared at 1640 cm -1 , it indicated that the cationic polymer was successfully introduced into the nanodiamond surface. In addition, the comparison of QND @Ag and QND infrared spectra shows that: due to the formation of coordination bonds between Ag NPs and the hydroxyl and pyridine groups of the ND surface polymer, its infrared spectra are at 3400 cm -1 , 1601 cm -1 and 1569 cm The peaks at -1 are all significantly weakened, which proves that there is an interaction between the nano-Ag and the polymer grafted on the ND surface, and this interaction can stabilize the Ag NPs supported on the ND surface.
图2中43o、75o是纳米金刚石的特征衍射峰,分别对应纳米金刚石的(1 1 1)和(2 20)立方晶型晶面。接枝聚合物后对纳米金刚石的晶形没有明显影响,但由于有机物的包裹,纳米金刚石衍射峰的强度减弱,从另一个方面证明纳米金刚石被成功修饰。由于银有强烈的结晶倾向,其峰覆盖了纳米金刚石的衍射峰,在QND@Ag的XRD衍射谱图中,分别于38o、44o、64o、77o位置出现Ag的(1 1 1)、(2 0 0)、(2 2 0)、(3 1 1)四个晶面特征衍射峰,从而证明在ND表面成功负载银纳米。In Figure 2, 43 o and 75 o are the characteristic diffraction peaks of nano-diamond, corresponding to the (1 1 1) and (2 20) cubic crystal planes of nano-diamond, respectively. The crystal form of nano-diamond has no obvious effect after grafting polymer, but the intensity of diffraction peak of nano-diamond is weakened due to the wrapping of organic matter, which proves that nano-diamond has been successfully modified from another aspect. Due to the strong tendency of silver to crystallize, its peak covers the diffraction peak of nano-diamond. In the XRD diffraction pattern of QND @ Ag , silver (1 1 1 ), (2 0 0), (2 2 0), and (3 1 1) four crystal plane characteristic diffraction peaks, thus proving that silver nanoparticles were successfully loaded on the ND surface.
从图3中可以看到,原料ND的团聚粒径达微米级,阳离子共聚物对其表面进行功能化修饰后,粒径减小至10~100nm,解团聚效果十分明显。这是由于功能化的ND表面带有大量的正电荷,粒子间的排斥力大幅增加,起到解团聚作用,且该斥力阻碍了纳米粒子再团聚。图(c)、(d)表明QND成功负载了Ag纳米颗粒,这与XRD的结果一致,所负载Ag纳米颗粒粒径较为均一,大约在10~100 nm,且载银后的复合纳米粒子仍保持较好的粒子分散性能。图4水合粒径分布图与TEM观察结果一致,改性后纳米金刚石具有稳定的分散性。It can be seen from Figure 3 that the agglomerated particle size of the raw material ND reaches the micron level, and after the cationic copolymer is functionalized on its surface, the particle size is reduced to 10-100nm, and the deagglomeration effect is very obvious. This is because the functionalized ND surface has a large number of positive charges, the repulsive force between particles is greatly increased, which plays a role in deagglomeration, and this repulsive force hinders the re-agglomeration of nanoparticles. Figures (c) and (d) show that QND has successfully loaded Ag nanoparticles, which is consistent with the results of XRD. The particle size of the loaded Ag nanoparticles is relatively uniform, about 10-100 nm, and the composite nanoparticles after silver loading are still Maintain good particle dispersion performance. The hydrated particle size distribution diagram in Figure 4 is consistent with the TEM observation results, and the modified nano-diamond has a stable dispersion.
在抗菌性能方面,该复合抗菌剂对大肠杆菌和金黄色葡萄球菌都有明显的抑菌圈,如图5。抗菌动力学测试表明QND@Ag对大肠杆菌90min杀菌率达100%,如图6。另外,测试了该复合抗菌剂对菌落浓度为106CFU/mL的大肠杆菌和金黄色葡萄球菌抗菌活性,得到最小抑菌浓度(MIC)分别为50μg/mL和25μg/mL,具有良好的抗菌性能。In terms of antibacterial properties, the composite antibacterial agent has obvious inhibition zones against both Escherichia coli and Staphylococcus aureus, as shown in Figure 5. The antibacterial kinetics test shows that QND@Ag can kill 100% of Escherichia coli within 90 minutes, as shown in Figure 6. In addition, the antibacterial activity of the compound antibacterial agent against Escherichia coli and Staphylococcus aureus with a colony concentration of 10 6 CFU/mL was tested, and the minimum inhibitory concentration (MIC) was 50 μg/mL and 25 μg/mL respectively, showing good antibacterial activity. performance.
实施例2~4按照实施例1实验方法,给出了不同单体摩尔比4-乙烯基吡啶与甲基丙烯酸羟乙酯,不同硝酸银浓度,不同柠檬酸钠量情况下,获得的不同复合抗菌材料。Embodiments 2~4 According to the experimental method of embodiment 1, different monomer molar ratios of 4-vinylpyridine and hydroxyethyl methacrylate, different silver nitrate concentrations, and different sodium citrate amounts are given to obtain different composites. antibacterial material.
本发明制备的抗菌剂可作添加剂加入到一些医用复合材料中,用于整形外科、骨接合和/或内假体等领域,特别是用于有高感染危险的情况中,在增强其机械性能的同时赋予其优异的抗菌性能,延长医疗器械使用寿命,降低病人感染风险。The antibacterial agent prepared by the present invention can be added as an additive to some medical composite materials, and is used in the fields of orthopedics, bone joint and/or internal prosthesis, especially for situations with high risk of infection, in order to enhance its mechanical properties At the same time, it endows it with excellent antibacterial properties, prolongs the service life of medical devices, and reduces the risk of infection for patients.
实施例2Example 2
步骤a: 4-乙烯基吡啶单体与甲基丙烯酸羟乙酯的摩尔比95 / 5。Step a: The molar ratio of 4-vinylpyridine monomer to hydroxyethyl methacrylate is 95/5.
步骤d: 质量比,纳米金刚石:硝酸银:柠檬酸钠=1:1.2:1.4,保持溶液沸腾1 h。Step d: Mass ratio, nano-diamond: silver nitrate: sodium citrate = 1: 1.2: 1.4, keep the solution boiling for 1 h.
实施例3Example 3
步骤a: 4-乙烯基吡啶单体与甲基丙烯酸羟乙酯的摩尔比90 / 10。Step a: The molar ratio of 4-vinylpyridine monomer to hydroxyethyl methacrylate is 90/10.
步骤d: 质量比,纳米金刚石:硝酸银:柠檬酸钠=1:1.2:1.4,保持溶液沸腾1 h。Step d: Mass ratio, nano-diamond: silver nitrate: sodium citrate = 1: 1.2: 1.4, keep the solution boiling for 1 h.
实施例4Example 4
步骤a: 4-乙烯基吡啶单体与甲基丙烯酸羟乙酯的摩尔比50 / 50。Step a: The molar ratio of 4-vinylpyridine monomer to hydroxyethyl methacrylate is 50/50.
步骤d: 质量比,纳米金刚石:硝酸银:柠檬酸钠=1:1.2:1.4,保持溶液沸腾1 h。Step d: Mass ratio, nano-diamond: silver nitrate: sodium citrate = 1: 1.2: 1.4, keep the solution boiling for 1 h.
实施例5Example 5
步骤a: 4-乙烯基吡啶单体与甲基丙烯酸羟乙酯的摩尔比70 / 30。Step a: The molar ratio of 4-vinylpyridine monomer to hydroxyethyl methacrylate is 70/30.
步骤d: 质量比,纳米金刚石:硝酸银:柠檬酸钠=1:1:1,保持溶液沸腾1 h。Step d: mass ratio, nano-diamond: silver nitrate: sodium citrate=1:1:1, keep the solution boiling for 1 h.
实施例6Example 6
步骤a: 4-乙烯基吡啶单体与甲基丙烯酸羟乙酯的摩尔比70 / 30。Step a: The molar ratio of 4-vinylpyridine monomer to hydroxyethyl methacrylate is 70/30.
步骤d: 质量比,纳米金刚石:硝酸银:柠檬酸钠=1:1:2,保持溶液沸腾1 h。Step d: Mass ratio, nano-diamond: silver nitrate: sodium citrate=1:1:2, keep the solution boiling for 1 h.
实施例7Example 7
步骤a: 4-乙烯基吡啶单体与甲基丙烯酸羟乙酯的摩尔比70 / 30。Step a: The molar ratio of 4-vinylpyridine monomer to hydroxyethyl methacrylate is 70/30.
步骤d: 质量比,纳米金刚石:硝酸银:柠檬酸钠=1:1.5:1,保持溶液沸腾1 h。Step d: Mass ratio, nano-diamond: silver nitrate: sodium citrate = 1: 1.5: 1, keep the solution boiling for 1 h.
实施例8Example 8
步骤a: 4-乙烯基吡啶单体与甲基丙烯酸羟乙酯的摩尔比70 /30。Step a: The molar ratio of 4-vinylpyridine monomer to hydroxyethyl methacrylate is 70/30.
步骤d: 质量比,纳米金刚石:硝酸银:柠檬酸钠=1:1.5:2,保持溶液沸腾1 h。Step d: Mass ratio, nano-diamond: silver nitrate: sodium citrate = 1: 1.5: 2, keep the solution boiling for 1 h.
实施例9Example 9
步骤a: 4-乙烯基吡啶单体与甲基丙烯酸羟乙酯的摩尔比70 / 30。Step a: The molar ratio of 4-vinylpyridine monomer to hydroxyethyl methacrylate is 70/30.
步骤d: 质量比,纳米金刚石:硝酸银:柠檬酸钠=1:1.2:1.4,保持溶液沸腾0.5 h。Step d: Mass ratio, nano-diamond: silver nitrate: sodium citrate = 1: 1.2: 1.4, keep the solution boiling for 0.5 h.
实施例10Example 10
步骤a: 4-乙烯基吡啶单体与甲基丙烯酸羟乙酯的摩尔比70 / 30。Step a: The molar ratio of 4-vinylpyridine monomer to hydroxyethyl methacrylate is 70/30.
步骤d: 质量比,纳米金刚石:硝酸银:柠檬酸钠=1:1.2:1.4,保持溶液沸腾1.5 h。Step d: mass ratio, nano-diamond: silver nitrate: sodium citrate = 1: 1.2: 1.4, keep the solution boiling for 1.5 h.
实施例11Example 11
步骤a: 4-乙烯基吡啶单体与甲基丙烯酸羟乙酯的摩尔比70 / 30。Step a: The molar ratio of 4-vinylpyridine monomer to hydroxyethyl methacrylate is 70/30.
步骤d: 质量比,纳米金刚石:硝酸银:柠檬酸钠=1:1.2:1.4,保持溶液沸腾2 h。Step d: Mass ratio, nano-diamond: silver nitrate: sodium citrate = 1: 1.2: 1.4, keep the solution boiling for 2 h.
经测试,表1列出实施例1~4给出的复合抗菌材料分别对大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)的最小抑菌浓度(MIC)以及抑菌圈大小。After testing, Table 1 lists the minimum inhibitory concentration (MIC) and the size of the inhibition zone of the composite antibacterial materials given in Examples 1 to 4 respectively for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) .
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710832560.7A CN107711828A (en) | 2017-09-15 | 2017-09-15 | Silver/cation copolymer modified Nano diamond compound particle and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710832560.7A CN107711828A (en) | 2017-09-15 | 2017-09-15 | Silver/cation copolymer modified Nano diamond compound particle and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107711828A true CN107711828A (en) | 2018-02-23 |
Family
ID=61206295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710832560.7A Pending CN107711828A (en) | 2017-09-15 | 2017-09-15 | Silver/cation copolymer modified Nano diamond compound particle and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107711828A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111328831A (en) * | 2020-03-06 | 2020-06-26 | 康特善利(上海)生物科技有限公司 | Antibacterial and antivirus material and application thereof |
CN112062978A (en) * | 2020-08-25 | 2020-12-11 | 广州大学 | Antibacterial microspheres and preparation method thereof |
WO2022151075A1 (en) * | 2021-01-13 | 2022-07-21 | Diamondtrap Ltd Oy | Active filter layers, filter constructs and methods for improving a filter's capacity of capturing particles and neutralizing pathogenic particles |
CN116580869A (en) * | 2023-04-28 | 2023-08-11 | 哈尔滨工业大学 | A preparation method of sintered silver paste containing diamond particles and a method of welding by using it |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1380363A (en) * | 2002-05-17 | 2002-11-20 | 中山大学 | Nano diamond particle surface treatment method |
JP2004300128A (en) * | 2003-03-31 | 2004-10-28 | Hiroo Ninagawa | Antibacterial carbonaceous substance |
CN105253882A (en) * | 2015-10-09 | 2016-01-20 | 南京理工大学 | Ultra-dispersed anti-bacterial nanometer diamond material and preparation method thereof |
-
2017
- 2017-09-15 CN CN201710832560.7A patent/CN107711828A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1380363A (en) * | 2002-05-17 | 2002-11-20 | 中山大学 | Nano diamond particle surface treatment method |
JP2004300128A (en) * | 2003-03-31 | 2004-10-28 | Hiroo Ninagawa | Antibacterial carbonaceous substance |
CN105253882A (en) * | 2015-10-09 | 2016-01-20 | 南京理工大学 | Ultra-dispersed anti-bacterial nanometer diamond material and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
TAO XU ET AL: "《Synthesis and characterization of diamond-silver composite with anti-bacterial property》", 《MATERIALS LETTERS》 * |
VARUN SAMBHY ET AL: "《Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail》", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111328831A (en) * | 2020-03-06 | 2020-06-26 | 康特善利(上海)生物科技有限公司 | Antibacterial and antivirus material and application thereof |
CN112841222A (en) * | 2020-03-06 | 2021-05-28 | 康特善利(上海)生物科技有限公司 | Antibacterial and antivirus material and application thereof |
CN112062978A (en) * | 2020-08-25 | 2020-12-11 | 广州大学 | Antibacterial microspheres and preparation method thereof |
WO2022151075A1 (en) * | 2021-01-13 | 2022-07-21 | Diamondtrap Ltd Oy | Active filter layers, filter constructs and methods for improving a filter's capacity of capturing particles and neutralizing pathogenic particles |
CN116580869A (en) * | 2023-04-28 | 2023-08-11 | 哈尔滨工业大学 | A preparation method of sintered silver paste containing diamond particles and a method of welding by using it |
CN116580869B (en) * | 2023-04-28 | 2024-06-04 | 哈尔滨工业大学 | Preparation method of sintered silver paste containing diamond particles and welding method using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fu et al. | Polydopamine antibacterial materials | |
Sureshkumar et al. | Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles | |
Marta et al. | Designing chitosan–silver nanoparticles–graphene oxide nanohybrids with enhanced antibacterial activity against Staphylococcus aureus | |
CN106880593B (en) | A kind of nanometer antibacterial agent loaded with nanometer silver and curcumin at the same time and its preparation method and application | |
Tian et al. | Antibacterial applications and safety issues of silica‐based materials: A review | |
Grumezescu et al. | In vitro activity of the new water-dispersible Fe3O4@ usnic acid nanostructure against planktonic and sessile bacterial cells | |
Martynková et al. | Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays | |
CN107711828A (en) | Silver/cation copolymer modified Nano diamond compound particle and preparation method thereof | |
CN105776179B (en) | A kind of water soluble quaternary ammonium salinization Nano carbon balls and preparation method and application | |
Sharma et al. | In-vitro antibacterial and anti-biofilm efficiencies of chitosan-encapsulated zinc ferrite nanoparticles | |
Jiang et al. | Long-term, synergistic and high-efficient antibacterial polyacrylonitrile nanofibrous membrane prepared by “one-pot” electrospinning process | |
Cao et al. | Facile synthesis of cationic polymer functionalized nanodiamond with high dispersity and antibacterial activity | |
Wang et al. | Preparation and characterization of chitosan‐coated hydroxyapatite nanoparticles as a promising non‐viral vector for gene delivery | |
Aliabadi et al. | HTCC‐Modified Nanoclay for Tissue Engineering Applications: A Synergistic Cell Growth and Antibacterial Efficiency | |
Holubnycha et al. | Antibacterial activity of the new copper nanoparticles and Cu NPs/chitosan solution | |
Lv et al. | Functionalized boron nanosheets with near-infrared-triggered photothermal and nitric oxide release activities for efficient antibacterial treatment and wound healing promotion | |
KR20140014700A (en) | Synthesis method of urchin-like copper oxide nanostructures decorated graphene nanosheet | |
TWI640565B (en) | Polymer latex particle composition containing nano silver particles | |
Peter et al. | CuO/Ag hybrid nanomaterial coated hydrophilic natural rubber film with minimal bacterial adhesion and contact killing efficiency | |
Bose et al. | Sustainable routed MXene-based aminolyzed PU/PCL film for increased oxidative stress and a pH-sensitive drug delivery system for anticancer therapy | |
Zarnegar et al. | Design, synthesis and antimicrobial evaluation of silver decorated magnetic polymeric nanocomposites | |
CN109476991B (en) | Carbonized polyamine particles and their uses | |
Shakir et al. | Investigation of thermal, antibacterial, antioxidant and antibiofilm properties of PVC/ABS/ZnO nanocomposites for biomedical applications | |
Jose et al. | Spectroscopic and thermal investigation of silver nanoparticle dispersed biopolymer matrix bovine serum albumin: A promising antimicrobial agent against the Pathogenic Bacterial Strains | |
Aliabadi et al. | Magnetic xanthan gum-silk fibroin hydrogel: A nanocomposite for biological and hyperthermia applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180223 |