[go: up one dir, main page]

CN107707831A - Image processing method and device, electronic device, and computer-readable storage medium - Google Patents

Image processing method and device, electronic device, and computer-readable storage medium Download PDF

Info

Publication number
CN107707831A
CN107707831A CN201710811471.4A CN201710811471A CN107707831A CN 107707831 A CN107707831 A CN 107707831A CN 201710811471 A CN201710811471 A CN 201710811471A CN 107707831 A CN107707831 A CN 107707831A
Authority
CN
China
Prior art keywords
image
target background
resolution
depth
person area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710811471.4A
Other languages
Chinese (zh)
Inventor
张学勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority to CN201710811471.4A priority Critical patent/CN107707831A/en
Publication of CN107707831A publication Critical patent/CN107707831A/en
Priority to EP18852861.6A priority patent/EP3680853A4/en
Priority to PCT/CN2018/105121 priority patent/WO2019047985A1/en
Priority to US16/815,179 priority patent/US11503228B2/en
Priority to US16/815,177 priority patent/US11516412B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/272Means for inserting a foreground image in a background image, i.e. inlay, outlay
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

The invention discloses an image processing method, an image processing device, an electronic device and a computer readable storage medium. The method comprises the following steps: acquiring a scene image of a current user; acquiring a depth image of a current user; processing the scene image and the depth image, and extracting a person region of a current user in the scene image to obtain a first person region image; judging whether the resolution of the first person region image is matched with the resolution of the first target background image; if not, compressing the first person region image and/or the first target background image to obtain a second person region image and a second target background image with matched resolutions; and fusing the second person region image and the second target background image to obtain a combined image. Therefore, in the merged image after the merging, the merging position of the person region and the background region is more natural, and the effect of the merged image is better.

Description

图像处理方法和装置、电子装置和计算机可读存储介质Image processing method and device, electronic device, and computer-readable storage medium

技术领域technical field

本发明涉及图像处理技术领域,特别涉及一种图像处理方法和装置、电子装置和计算机可读存储介质。The present invention relates to the technical field of image processing, in particular to an image processing method and device, an electronic device, and a computer-readable storage medium.

背景技术Background technique

随着科技的发展和人们生活方式的逐渐改变,合影方式不仅仅局限在人们所在的真实的场景中。人们可以将人物与自己喜欢的背景图像进行融合,从而得到人物与预设背景的合影图像。With the development of technology and the gradual changes in people's lifestyles, the way of group photos is not limited to the real scene where people are. People can fuse the characters with their favorite background images, so as to obtain a group photo image of the characters and the preset background.

现有的将人物与预设背景融合的技术,通常使用特征点提取人物轮廓,然后与预设的背景图像进行融合。但是,使用特征点提取的人物轮廓精确度不高,尤其无法准确标定出人物的边界,影响图像融合的效果,且融合后的图像不自然。Existing techniques for merging a person with a preset background usually use feature points to extract the outline of the person, and then fuse it with a preset background image. However, the accuracy of the character outline extracted using feature points is not high, especially the boundary of the character cannot be accurately marked, which affects the effect of image fusion, and the fused image is unnatural.

发明内容Contents of the invention

本发明的实施例提供了一种图像处理方法、图像处理装置、电子装置和计算机可读存储介质。Embodiments of the present invention provide an image processing method, an image processing device, an electronic device, and a computer-readable storage medium.

本发明实施方式的图像处理方法用于电子装置,所述图像处理方法包括:The image processing method in the embodiment of the present invention is used in an electronic device, and the image processing method includes:

获取当前用户的场景图像;Get the scene image of the current user;

获取所述当前用户的深度图像;Obtain the depth image of the current user;

处理所述场景图像和所述深度图像,提取所述当前用户在所述场景图像中的人物区域而获得第一人物区域图像;processing the scene image and the depth image, extracting the character area of the current user in the scene image to obtain a first character area image;

判断所述第一人物区域图像的分辨率与第一目标背景图像的分辨率是否匹配;judging whether the resolution of the first person area image matches the resolution of the first target background image;

若否,则对所述第一人物区域图像和/或所述第一目标背景图像进行压缩处理,以获取分辨率匹配的第二人物区域图像和第二目标背景图像;If not, compressing the first person area image and/or the first target background image to obtain a second person area image and a second target background image with matching resolutions;

将所述第二人物区域图像和第二目标背景图像融合,以得到合并图像。The second person area image and the second target background image are fused to obtain a merged image.

本发明实施方式的图像处理装置,用于电子装置。所述图像处理装置包括可见光摄像头、深度图像采集组件和处理器。所述可见光摄像头用于获取当前用户的场景图像。所述深度图像采集组件用于获取所述当前用户的深度图像。所述处理器用于处理所述场景图像和所述深度图像,提取所述当前用户在所述场景图像中的人物区域而获得第一人物区域图像,判断所述第一人物区域图像的分辨率与第一目标背景图像的分辨率是否匹配;若否,则对所述第一人物区域图像和/或所述第一目标背景图像进行压缩处理,以获取分辨率匹配的第二人物区域图像和第二目标背景图像;将所述第二人物区域图像和第二目标背景图像融合,以得到合并图像。An image processing device according to an embodiment of the present invention is used in an electronic device. The image processing device includes a visible light camera, a depth image acquisition component and a processor. The visible light camera is used to acquire the scene image of the current user. The depth image acquisition component is used to acquire the depth image of the current user. The processor is configured to process the scene image and the depth image, extract the character area of the current user in the scene image to obtain a first character area image, and determine the resolution of the first character area image and Whether the resolution of the first target background image matches; if not, performing compression processing on the first character area image and/or the first target background image to obtain a second character area image and a second character area image with matching resolutions Two target background images: merging the second person area image and the second target background image to obtain a merged image.

本发明实施方式的电子装置包括一个或多个处理器、存储器和一个或多个程序。其中所述一个或多个程序被存储在所述存储器中,并且被配置成由所述一个或多个处理器执行,所述程序包括用于执行上述的图像处理方法的指令。An electronic device according to an embodiment of the present invention includes one or more processors, memory and one or more programs. Wherein the one or more programs are stored in the memory and are configured to be executed by the one or more processors, the programs include instructions for executing the above image processing method.

本发明实施方式的计算机可读存储介质包括与能够摄像的电子装置结合使用的计算机程序,所述计算机程序可被处理器执行以完成上述的图像处理方法。The computer-readable storage medium according to the embodiment of the present invention includes a computer program used in combination with an electronic device capable of taking pictures, and the computer program can be executed by a processor to implement the above-mentioned image processing method.

本发明实施方式的图像处理方法、图像处理装置、电子装置和计算机可读存储介质,通过获取当前用户的深度图像以将场景图像中的第一人物区域提取出来。由于深度图像的获取不易受光照、场景中色彩分布等因素的影响,因此,通过深度图像提取到的第一人物区域更加准确,尤其可以准确标定出人物区域的边界。进一步地,分别对第一目标背景图像和/或第一人物区域图像的分辨率进行处理,得到分辨率匹配的第二目标背景图像和第二人物区域图像,再进行融合,使得融合后的合并图像中,人物区域与背景区域的融合处更自然,合并图像的效果更佳。The image processing method, image processing device, electronic device and computer-readable storage medium in the embodiments of the present invention extract the first person area in the scene image by acquiring the depth image of the current user. Since the acquisition of the depth image is not easily affected by factors such as illumination and color distribution in the scene, the first person region extracted through the depth image is more accurate, especially the boundary of the person region can be accurately calibrated. Further, the resolutions of the first target background image and/or the first character region image are respectively processed to obtain the second target background image and the second character region image with matched resolutions, and then fused, so that the fused merged In the image, the fusion of the character area and the background area is more natural, and the effect of merging images is better.

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.

附图说明Description of drawings

本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and easy to understand from the following description of the embodiments in conjunction with the accompanying drawings, wherein:

图1是本发明某些实施方式的图像处理方法的流程示意图。Fig. 1 is a schematic flowchart of an image processing method in some embodiments of the present invention.

图2是本发明某些实施方式的图像处理装置的模块示意图。Fig. 2 is a block diagram of an image processing device in some embodiments of the present invention.

图3是本发明某些实施方式的电子装置的结构示意图。Fig. 3 is a schematic structural diagram of an electronic device according to some embodiments of the present invention.

图4是本发明某些实施方式的图像处理方法的流程示意图。Fig. 4 is a schematic flowchart of an image processing method in some embodiments of the present invention.

图5是本发明某些实施方式的图像处理方法的流程示意图。Fig. 5 is a schematic flowchart of an image processing method in some embodiments of the present invention.

图6(a)至图6(e)是根据本发明一个实施例的结构光测量的场景示意图。Fig. 6(a) to Fig. 6(e) are schematic diagrams of scenes of structured light measurement according to an embodiment of the present invention.

图7(a)和图7(b)根据本发明一个实施例的结构光测量的场景示意图。Fig. 7(a) and Fig. 7(b) are schematic diagrams of a scene of structured light measurement according to an embodiment of the present invention.

图8是本发明某些实施方式的图像处理方法的流程示意图。Fig. 8 is a schematic flowchart of an image processing method in some embodiments of the present invention.

图9是本发明某些实施方式的图像处理方法的流程示意图。Fig. 9 is a schematic flowchart of an image processing method in some embodiments of the present invention.

图10是本发明某些实施方式的图像处理方法的流程示意图。Fig. 10 is a schematic flowchart of an image processing method in some embodiments of the present invention.

图11是本发明某些实施方式的图像处理方法的示例图。Fig. 11 is an example diagram of an image processing method in some embodiments of the present invention.

图12是本发明某些实施方式的图像处理装置的模块示意图。Fig. 12 is a block diagram of an image processing device in some embodiments of the present invention.

图13是本发明某些实施方式的电子装置的模块示意图。Fig. 13 is a block diagram of an electronic device according to some embodiments of the present invention.

具体实施方式Detailed ways

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary and are intended to explain the present invention and should not be construed as limiting the present invention.

请一并参阅图1至2,本发明实施方式的图像处理方法用于电子装置1000。图像处理方法包括:Please refer to FIGS. 1 to 2 together. The image processing method according to the embodiment of the present invention is used in an electronic device 1000 . Image processing methods include:

01:获取当前用户的场景图像;01: Obtain the scene image of the current user;

02:获取当前用户的深度图像;02: Obtain the depth image of the current user;

03:处理场景图像和深度图像,提取当前用户在场景图像中的人物区域而获得第一人物区域图像;03: Process the scene image and depth image, extract the character area of the current user in the scene image to obtain the first character area image;

04:判断第一人物区域图像的分辨率与第一目标背景图像的分辨率是否匹配;04: Determine whether the resolution of the first person area image matches the resolution of the first target background image;

05:若否,则对第一人物区域图像和/或第一目标背景图像进行压缩处理,以获取分辨率匹配的第二人物区域图像和第二目标背景图像;05: If not, perform compression processing on the first person area image and/or the first target background image to obtain a second person area image and a second target background image with matching resolutions;

06:将第二人物区域图像和第二目标背景图像融合,以得到合并图像。06: Merging the second person area image and the second target background image to obtain a merged image.

请参阅图3,本发明实施方式的图像处理方法可以由本发明实施方式的图像处理装置100实现。本发明实施方式的图像处理装置100用于电子装置1000。图像处理装置100包括可见光摄像头11、深度图像采集组件12和处理器20。步骤01可以由可见光摄像头11实现,步骤02可以由深度图像采集组件12实现,步骤03-06可以由处理器20实现。Referring to FIG. 3 , the image processing method of the embodiment of the present invention can be implemented by the image processing apparatus 100 of the embodiment of the present invention. The image processing device 100 according to the embodiment of the present invention is used in an electronic device 1000 . The image processing device 100 includes a visible light camera 11 , a depth image acquisition component 12 and a processor 20 . Step 01 can be implemented by the visible light camera 11 , step 02 can be implemented by the depth image acquisition component 12 , and steps 03-06 can be implemented by the processor 20 .

也即是说,可见光摄像头11可用于获取当前用户的场景图像;深度图像采集组件12可用于获取当前用户的深度图像;处理器20可用于处理场景图像和深度图像,提取当前用户在场景图像中的人物区域而获得第一人物区域图像,判断第一人物区域图像的分辨率与第一目标背景图像的分辨率是否匹配,若否,则对第一人物区域图像和/或第一目标背景图像进行压缩处理,以获取分辨率匹配的第二人物区域图像和第二目标背景图像,以及将第二人物区域图像和第二目标背景图像融合,以得到合并图像。That is to say, the visible light camera 11 can be used to acquire the scene image of the current user; the depth image acquisition component 12 can be used to acquire the depth image of the current user; the processor 20 can be used to process the scene image and the depth image, and extract the scene image of the current user character area to obtain the first character area image, determine whether the resolution of the first character area image matches the resolution of the first target background image, and if not, the first character area image and/or the first target background image Compression is performed to obtain the second person area image and the second target background image with matching resolutions, and the second person area image and the second target background image are fused to obtain a merged image.

其中,场景图像可以是灰度图像或彩色图像,深度图像表征包含当前用户的场景中各个人或物体的深度信息。场景图像的场景范围与深度图像的场景范围一致,且场景图像中的各个像素均能在深度图像中找到对应该像素的深度信息。Wherein, the scene image may be a grayscale image or a color image, and the depth image represents the depth information of each person or object in the current user's scene. The scene range of the scene image is consistent with the scene range of the depth image, and each pixel in the scene image can find depth information corresponding to the pixel in the depth image.

本发明实施方式的图像处理装置100可以应用于本发明实施方式的电子装置1000。也即是说,本发明实施方式的电子装置1000包括本发明实施方式的图像处理装置100。The image processing device 100 according to the embodiment of the present invention can be applied to the electronic device 1000 according to the embodiment of the present invention. That is to say, the electronic device 1000 according to the embodiment of the present invention includes the image processing device 100 according to the embodiment of the present invention.

在某些实施方式中,电子装置1000包括手机、平板电脑、笔记本电脑、智能手环、智能手表、智能头盔、智能眼镜等。In some embodiments, the electronic device 1000 includes a mobile phone, a tablet computer, a laptop computer, a smart bracelet, a smart watch, a smart helmet, smart glasses, and the like.

可以理解的是,现有的将人物与虚拟背景融合的技术,将提取的人物区域图像与预设的背景图像融合后,得到的合并图像中,易出现人物区域与背景区域融合处生硬、不自然,合并图像的视觉效果差的情况。而经研究发现,上述情况通常是由于人物区域图像与背景区域图像的分辨率不同造成的。It is understandable that in the existing technologies for merging characters and virtual backgrounds, after fusing the extracted character region image with the preset background image, in the resulting merged image, the fusion of the character region and the background region tends to be stiff and uneven. Naturally, the visual effect of the merged image is poor. However, it is found through research that the above situation is usually caused by the difference in resolution between the image of the person area and the image of the background area.

因此,本发明实施例中,根据获取的当前用户的场景图像和深度图像,提取当前用户在场景图像中的人物区域而获得第一人物区域图像后,为了提高合并图像的视觉效果,在将第一人物区域图像与第一目标背景图像进行融合之前,可以判断两个图像的分辨率是否匹配。Therefore, in the embodiment of the present invention, after obtaining the first person region image by extracting the character region of the current user in the scene image according to the acquired scene image and depth image of the current user, in order to improve the visual effect of the merged image, the second Before a person area image is fused with the first target background image, it may be determined whether the resolutions of the two images match.

若第一人物区域图像与第一目标背景图像的分辨率匹配,则可以将第一人物区域图像与第一目标背景图像融合,以得到合并图像。If the resolutions of the first person area image and the first target background image match, the first person area image and the first target background image may be fused to obtain a merged image.

若第一人物区域图像与第一目标背景图像的分辨率不匹配,则可以对第一人物区域图像和/或第一目标背景图像进行压缩处理,以获取分辨率匹配的第二人物区域图像和第二目标背景图像,然后将第二人物区域图像和第二目标背景图像进行融合,以得到合并图像。If the resolution of the first character area image does not match the resolution of the first target background image, the first character area image and/or the first target background image may be compressed to obtain a second character area image and a resolution matching The second target background image, and then fuse the second person area image and the second target background image to obtain a merged image.

其中,第一目标背景图像,可以是处理器20选取的,也可以是当前用户根据需要自行选定的,且第一目标背景图像可以是动态的图像,也可以是静态的图像,此处不作限制。Wherein, the first target background image can be selected by the processor 20, or can be selected by the current user according to needs, and the first target background image can be a dynamic image or a static image, which will not be described here. limit.

具体的,可以预先根据需要,设置一个分辨率差值范围,当第一人物区域图像与第一目标背景图像的分辨率的差值在预设的范围内时,则可以确定第一人物区域图像与第一目标背景图像的分辨率匹配。Specifically, a resolution difference range can be set in advance according to needs, and when the resolution difference between the first person area image and the first target background image is within the preset range, the first person area image can be determined Matches the resolution of the first target background image.

需要说明的是,处理器20仅对第一人物区域图像进行压缩处理,可以得到第二人物区域图像,此时,第二目标背景图像即为未经压缩处理的第一目标背景图像;处理器20仅对第一目标背景图像进行压缩处理,可以得到第二目标背景图像,此时,第二人物区域图像即为未经压缩处理的第一人物区域图像;处理器20同时对第一目标背景图像和第一人物区域图像进行压缩处理,可以分别得到第二目标背景图像和第二人物区域图像。It should be noted that the processor 20 only performs compression processing on the first person area image to obtain the second person area image, at this time, the second target background image is the first target background image without compression processing; 20. Only compress the first target background image to obtain the second target background image. At this time, the second character area image is the uncompressed first character area image; the processor 20 simultaneously compresses the first target background image The image and the first person area image are compressed to obtain the second target background image and the second person area image respectively.

另外,融合后的合并图像可在电子装置1000的显示屏上进行显示,也可通过与电子装置1000连接的打印机进行打印。In addition, the merged image after fusion can be displayed on the display screen of the electronic device 1000 , and can also be printed by a printer connected to the electronic device 1000 .

在某些应用场景中,例如,当前用户与他人进行视频过程中希望隐藏当前的背景,此时,即可使用本发明实施方式的图像处理方法,将当前用户对应的人物区域图像及与其分辨率匹配的目标背景图像进行融合,再向对方显示融合后的合并图像。由于当前用户正与对方视频通话,因此,可见光摄像头11需实时拍摄当前用户的场景图像,深度图像采集组件12也需要实时采集当前用户对应的深度图像,并由处理器20及时对实时采集的场景图像和深度图像进行处理以使得对方能够看到流畅的由多帧合并图像组合而成的视频画面。In some application scenarios, for example, if the current user wants to hide the current background during the video process with others, at this time, the image processing method of the embodiment of the present invention can be used to convert the character area image corresponding to the current user and its resolution The matching target background image is fused, and then the fused merged image is displayed to the other party. Since the current user is having a video call with the other party, the visible light camera 11 needs to capture the scene image of the current user in real time, and the depth image collection component 12 also needs to collect the depth image corresponding to the current user in real time, and the processor 20 timely analyzes the scene collected in real time. The image and the depth image are processed so that the other party can see a smooth video picture composed of multiple frame merged images.

现有的分割人物与背景的方法主要根据相邻像素在像素值方面的相似性和不连续性进行人物与背景的分割,但这种分割方法易受外界光照等环境因素的影响。本发明实施方式的图像处理方法、图像处理装置100和电子装置1000通过获取当前用户的深度图像以将场景图像中的第一人物区域提取出来。由于深度图像的获取不易受光照、场景中色彩分布等因素的影响,因此,通过深度图像提取到的第一人物区域更加准确,尤其可以准确标定出人物区域的边界。进一步地,分别对第一目标背景图像和/或第一人物区域图像的分辨率进行处理,得到分辨率匹配的第二目标背景图像和第二人物区域图像,再进行融合,使得融合后的合并图像中,人物区域与背景区域的融合处更自然,合并图像的效果更佳。The existing methods for segmenting people and background are mainly based on the similarity and discontinuity of adjacent pixels in pixel values, but this segmentation method is easily affected by environmental factors such as external lighting. The image processing method, the image processing device 100 and the electronic device 1000 according to the embodiments of the present invention extract the first person area in the scene image by acquiring the depth image of the current user. Since the acquisition of the depth image is not easily affected by factors such as illumination and color distribution in the scene, the first person region extracted through the depth image is more accurate, especially the boundary of the person region can be accurately calibrated. Further, the resolutions of the first target background image and/or the first character region image are respectively processed to obtain the second target background image and the second character region image with matched resolutions, and then fused, so that the fused merged In the image, the fusion of the character area and the background area is more natural, and the effect of merging images is better.

请参阅图4,在某些实施方式中,步骤02获取当前用户的深度图像的步骤包括:Please refer to FIG. 4, in some embodiments, the step of obtaining the depth image of the current user in step 02 includes:

021:向当前用户投射结构光;021: Project structured light to the current user;

022:拍摄经当前用户调制的结构光图像;和022: Take a structured light image modulated by the current user; and

023:解调结构光图像的各个像素对应的相位信息以得到深度图像。023: Demodulate the phase information corresponding to each pixel of the structured light image to obtain a depth image.

请再参阅图3,在某些实施方式中,深度图像采集组件12包括结构光投射器121和结构光摄像头122。步骤021可以由结构光投射器121实现,步骤022和步骤023可以由结构光摄像头122实现。Please refer to FIG. 3 again. In some embodiments, the depth image acquisition component 12 includes a structured light projector 121 and a structured light camera 122 . Step 021 can be implemented by the structured light projector 121 , and steps 022 and 023 can be implemented by the structured light camera 122 .

也即是说,结构光投射器121可用于向当前用户透射结构光;结构光摄像头122可用于拍摄经当前用户调制的结构光图像,以及解调结构光图像的各个像素对应的相位信息以得到深度图像。That is to say, the structured light projector 121 can be used to transmit structured light to the current user; the structured light camera 122 can be used to capture the structured light image modulated by the current user, and demodulate the phase information corresponding to each pixel of the structured light image to obtain depth image.

具体地,结构光投射器121将一定模式的结构光投射到当前用户的面部及躯体上后,在当前用户的面部及躯体的表面会形成由当前用户调制后的结构光图像。结构光摄像头122拍摄经调制后的结构光图像,再对结构光图像进行解调以得到深度图像。其中,结构光的模式可以是激光条纹、格雷码、正弦条纹、非均匀散斑等。Specifically, after the structured light projector 121 projects a certain pattern of structured light onto the current user's face and body, a structured light image modulated by the current user will be formed on the surface of the current user's face and body. The structured light camera 122 captures the modulated structured light image, and then demodulates the structured light image to obtain a depth image. Among them, the pattern of structured light can be laser stripes, gray codes, sinusoidal stripes, non-uniform speckle, etc.

请参阅图5,在某些实施方式中,步骤023解调结构光图像的各个像素对应的相位信息以得到深度图像的步骤包括:Please refer to FIG. 5. In some implementations, the step 023 of demodulating the phase information corresponding to each pixel of the structured light image to obtain the depth image includes:

0231:解调结构光图像中各个像素对应的相位信息;0231: Demodulate the phase information corresponding to each pixel in the structured light image;

0231:将相位信息转化为深度信息;和0231: Convert phase information to depth information; and

0233:根据深度信息生成深度图像。0233: Generate a depth image based on depth information.

请再参阅图2,在某些实施方式中,步骤0231、步骤0232和步骤0233均可以由结构光摄像头122实现。Please refer to FIG. 2 again. In some implementation manners, Step 0231 , Step 0232 and Step 0233 can all be implemented by the structured light camera 122 .

也即是说,结构光摄像头122可进一步用于解调结构光图像中各个像素对应的相位信息,将相位信息转化为深度信息,以及根据深度信息生成深度图像。That is to say, the structured light camera 122 can be further used to demodulate the phase information corresponding to each pixel in the structured light image, convert the phase information into depth information, and generate a depth image according to the depth information.

具体地,与未经调制的结构光相比,调制后的结构光的相位信息发生了变化,在结构光图像中呈现出的结构光是产生了畸变之后的结构光,其中,变化的相位信息即可表征物体的深度信息。因此,结构光摄像头122首先解调出结构光图像中各个像素对应的相位信息,再根据相位信息计算出深度信息,从而得到最终的深度图像。Specifically, compared with unmodulated structured light, the phase information of the modulated structured light has changed, and the structured light presented in the structured light image is the structured light after distortion, wherein the changed phase information It can represent the depth information of the object. Therefore, the structured light camera 122 first demodulates the phase information corresponding to each pixel in the structured light image, and then calculates the depth information according to the phase information, thereby obtaining the final depth image.

为了使本领域的技术人员更加清楚的了解根据结构来采集当前用户的面部及躯体的深度图像的过程,下面以一种应用广泛的光栅投影技术(条纹投影技术)为例来阐述其具体原理。其中,光栅投影技术属于广义上的面结构光。In order to make those skilled in the art more clearly understand the process of collecting the depth image of the current user's face and body according to the structure, the following uses a widely used grating projection technology (stripe projection technology) as an example to illustrate its specific principles. Among them, grating projection technology belongs to surface structured light in a broad sense.

如图6(a)所示,在使用面结构光投影的时候,首先通过计算机编程产生正弦条纹,并将正弦条纹通过结构光投射器121投射至被测物,再利用结构光摄像头122拍摄条纹受物体调制后的弯曲程度,随后解调该弯曲条纹得到相位,再将相位转化为深度信息即可获取深度图像。为避免产生误差或误差耦合的问题,使用结构光进行深度信息采集前需对深度图像采集组件12进行参数标定,标定包括几何参数(例如,结构光摄像头122与结构光投射器121之间的相对位置参数等)的标定、结构光摄像头122的内部参数以及结构光投射器121的内部参数的标定等。As shown in Figure 6(a), when using surface structured light projection, firstly generate sinusoidal fringes through computer programming, project the sinusoidal fringes to the measured object through the structured light projector 121, and then use the structured light camera 122 to capture the fringes The degree of curvature modulated by the object is then demodulated to obtain the phase of the curved fringe, and then the phase is converted into depth information to obtain a depth image. In order to avoid the problem of error or error coupling, it is necessary to calibrate the parameters of the depth image acquisition component 12 before using structured light for depth information acquisition. The calibration includes geometric parameters (for example, the relative relationship between the structured light camera 122 and the structured light projector 121). position parameters, etc.), the internal parameters of the structured light camera 122 and the internal parameters of the structured light projector 121, etc.

具体而言,第一步,计算机编程产生正弦条纹。由于后续需要利用畸变的条纹获取相位,比如采用四步移相法获取相位,因此这里产生四幅相位差为的条纹,然后结构光投射器121将该四幅条纹分时投射到被测物(图6(a)所示的面具)上,结构光摄像头122采集到如图6(b)左边的图,同时要读取如图6(b)右边所示的参考面的条纹。Specifically, in the first step, the computer is programmed to generate sinusoidal fringes. Since the distorted fringes need to be used to obtain the phase later, for example, the four-step phase shift method is used to obtain the phase, so the four phase differences generated here are stripes, then the structured light projector 121 projects the four stripes onto the measured object (the mask shown in FIG. To read the fringes of the reference surface shown on the right side of Fig. 6(b).

第二步,进行相位恢复。结构光摄像头122根据采集到的四幅受调制的条纹图(即结构光图像)计算出被调制相位,此时得到的相位图是截断相位图。因为四步移相算法得到的结果是由反正切函数计算所得,因此结构光调制后的相位被限制在[-π,π]之间,也就是说,每当调制后的相位超过[-π,π],其又会重新开始。最终得到的相位主值如图6(c)所示。The second step is to perform phase recovery. The structured light camera 122 calculates the modulated phase according to the collected four modulated fringe patterns (ie structured light images), and the obtained phase pattern at this time is a truncated phase pattern. Because the result obtained by the four-step phase-shift algorithm is calculated by the arctangent function, the modulated phase of the structured light is limited to [-π, π], that is, whenever the modulated phase exceeds [-π ,π], which will start all over again. The resulting main value of the phase is shown in Fig. 6(c).

其中,在进行相位恢复过程中,需要进行消跳变处理,即将截断相位恢复为连续相位。如图6(d)所示,左边为受调制的连续相位图,右边是参考连续相位图。Wherein, during the phase recovery process, transition elimination processing is required, that is, the truncated phase is restored to a continuous phase. As shown in Figure 6(d), the modulated continuous phase map is on the left, and the reference continuous phase map is on the right.

第三步,将受调制的连续相位和参考连续相位相减得到相位差(即相位信息),该相位差表征了被测物相对参考面的深度信息,再将相位差代入相位与深度的转化公式(公式中涉及到的参数经过标定),即可得到如图6(e)所示的待测物体的三维模型。The third step is to subtract the modulated continuous phase from the reference continuous phase to obtain the phase difference (that is, phase information), which represents the depth information of the measured object relative to the reference plane, and then substitute the phase difference into the conversion of phase and depth formula (the parameters involved in the formula have been calibrated), the three-dimensional model of the object to be measured can be obtained as shown in Figure 6(e).

应当理解的是,在实际应用中,根据具体应用场景的不同,本发明实施例中所采用的结构光除了上述光栅之外,还可以是其他任意图案。It should be understood that, in practical applications, according to different specific application scenarios, the structured light used in the embodiments of the present invention may be other arbitrary patterns besides the above-mentioned grating.

作为一种可能的实现方式,本发明还可使用散斑结构光进行当前用户的深度信息的采集。As a possible implementation manner, the present invention may also use speckle structured light to collect depth information of the current user.

具体地,散斑结构光获取深度信息的方法是使用一基本为平板的衍射元件,该衍射元件具有特定相位分布的浮雕衍射结构,横截面为具有两个或多个凹凸的台阶浮雕结构。衍射元件中基片的厚度大致为1微米,各个台阶的高度不均匀,高度的取值范围可为0.7微米~0.9微米。图7(a)所示结构为本实施例的准直分束元件的局部衍射结构。图7(b)为沿截面A-A的剖面侧视图,横坐标和纵坐标的单位均为微米。散斑结构光生成的散斑图案具有高度的随机性,并且会随着距离的不同而变换图案。因此,在使用散斑结构光获取深度信息前,首先需要标定出空间中的散斑图案,例如,在距离结构光摄像头122的0~4米的范围内,每隔1厘米取一个参考平面,则标定完毕后就保存了400幅散斑图像,标定的间距越小,获取的深度信息的精度越高。随后,结构光投射器121将散斑结构光投射到被测物(即当前用户)上,被测物表面的高度差使得投射到被测物上的散斑结构光的散斑图案发生变化。结构光摄像头122拍摄投射到被测物上的散斑图案(即结构光图像)后,再将散斑图案与前期标定后保存的400幅散斑图像逐一进行互相关运算,进而得到400幅相关度图像。空间中被测物体所在的位置会在相关度图像上显示出峰值,把上述峰值叠加在一起并经过插值运算后即可得到被测物的深度信息。Specifically, the method for obtaining depth information by speckle structured light is to use a substantially flat diffraction element, which has a relief diffraction structure with a specific phase distribution, and a stepped relief structure with two or more concavo-convex cross sections. The thickness of the substrate in the diffraction element is approximately 1 micron, and the height of each step is not uniform, and the height can range from 0.7 micron to 0.9 micron. The structure shown in Fig. 7(a) is the partial diffraction structure of the collimating beam splitting element of this embodiment. Fig. 7(b) is a cross-sectional side view along section A-A, and the units of the abscissa and ordinate are both micrometers. The speckle pattern generated by speckle structured light is highly random, and the pattern will change with the distance. Therefore, before using speckle structured light to obtain depth information, it is first necessary to calibrate the speckle pattern in space, for example, within the range of 0 to 4 meters from the structured light camera 122, take a reference plane every 1 cm, After the calibration is completed, 400 speckle images are saved. The smaller the calibration interval, the higher the accuracy of the obtained depth information. Subsequently, the structured light projector 121 projects the speckle structured light onto the object under test (that is, the current user), and the height difference of the surface of the object under test changes the speckle pattern of the speckle structured light projected on the object under test. After the structured light camera 122 shoots the speckle pattern projected on the object to be measured (that is, the structured light image), the cross-correlation operation is performed on the speckle pattern and the 400 speckle images saved after previous calibration, and then 400 correlation images are obtained. degree image. The position of the measured object in the space will show a peak on the correlation image, and the depth information of the measured object can be obtained by superimposing the above peaks and interpolating.

由于普通的衍射元件对光束进行衍射后得到多数衍射光,但每束衍射光光强差别大,对人眼伤害的风险也大。即便是对衍射光进行二次衍射,得到的光束的均匀性也较低。因此,利用普通衍射元件衍射的光束对被测物进行投射的效果较差。本实施例中采用准直分束元件,该元件不仅具有对非准直光束进行准直的作用,还具有分光的作用,即经反射镜反射的非准直光经过准直分束元件后往不同的角度出射多束准直光束,且出射的多束准直光束的截面面积近似相等,能量通量近似相等,进而使得利用该光束衍射后的散点光进行投射的效果更好。同时,激光出射光分散至每一束光,进一步降低了伤害人眼的风险,且散斑结构光相对于其他排布均匀的结构光来说,达到同样的采集效果时,散斑结构光消耗的电量更低。Since the ordinary diffraction element diffracts the light beam to obtain most of the diffracted light, but the intensity of each diffracted light varies greatly, and the risk of damage to human eyes is also large. Even if the diffracted light is diffracted twice, the uniformity of the obtained beam is low. Therefore, the projection effect of the light beam diffracted by the common diffraction element on the measured object is relatively poor. In this embodiment, a collimating beam-splitting element is used, which not only has the function of collimating the uncollimated beam, but also has the function of splitting light, that is, the uncollimated light reflected by the mirror passes through the collimating beam-splitting element and then Multiple collimated beams are emitted from different angles, and the cross-sectional areas of the emitted multiple collimated beams are approximately equal, and the energy flux is approximately equal, so that the projection effect of the scattered light after the diffraction of the beam is better. At the same time, the emitted laser light is dispersed to each beam, which further reduces the risk of damage to human eyes. Compared with other evenly arranged structured light, when the speckle structured light achieves the same collection effect, the speckle structured light consumes less lower power.

请参阅图8,在某些实施方式中,步骤03处理场景图像和深度图像,提取当前用户在场景图像中的人物区域而获得第一人物区域图像的步骤包括:Please refer to FIG. 8. In some implementations, step 03 processes the scene image and the depth image, and the step of extracting the character area of the current user in the scene image to obtain the first character area image includes:

031:识别场景图像中的人脸区域;031: Identify the face area in the scene image;

032:从深度图像中获取与人脸区域对应的深度信息;032: Obtain the depth information corresponding to the face area from the depth image;

033:根据人脸区域的深度信息确定人物区域的深度范围;和033: Determine the depth range of the character area according to the depth information of the face area; and

034:根据人物区域的深度范围确定与人脸区域连接且落入深度范围内的人物区域以获得第一人物区域图像。034: Determine, according to the depth range of the person region, a person region that is connected to the face region and falls within the depth range to obtain a first person region image.

请再参阅图2,在某些实施方式中,步骤031、步骤032、步骤033和步骤034均可以由处理器20实现。Please refer to FIG. 2 again, in some implementation manners, step 031 , step 032 , step 033 and step 034 can all be implemented by the processor 20 .

也即是说,处理器20可进一步用于识别场景图像中的人脸区域,从深度图像中获取与人脸区域对应的深度信息,根据人脸区域的深度信息确定人物区域的深度范围,以及根据人物区域的深度范围确定与人脸区域连接且落入深度范围内的人物区域以获得第一人物区域图像。That is to say, the processor 20 can be further used to identify the face area in the scene image, obtain the depth information corresponding to the face area from the depth image, determine the depth range of the person area according to the depth information of the face area, and A character area connected to the face area and falling within the depth range is determined according to the depth range of the character area to obtain a first character area image.

具体地,首先可采用已训练好的深度学习模型识别出场景图像中的人脸区域,随后根据场景图像与深度图像的对应关系可确定出人脸区域的深度信息。由于人脸区域包括鼻子、眼睛、耳朵、嘴唇等特征,因此,人脸区域中的各个特征在深度图像中所对应的深度数据是不同的,例如,在人脸正对深度图像采集组件12时,深度图像采集组件12拍摄得的深度图像中,鼻子对应的深度数据可能较小,而耳朵对应的深度数据可能较大。因此,上述的人脸区域的深度信息可能为一个数值或是一个数值范围。其中,当人脸区域的深度信息为一个数值时,该数值可通过对人脸区域的深度数据取平均值得到;或者,可以通过对人脸区域的深度数据取中值得到。Specifically, firstly, the trained deep learning model can be used to identify the face area in the scene image, and then the depth information of the face area can be determined according to the corresponding relationship between the scene image and the depth image. Since the face area includes features such as nose, eyes, ears, lips, etc., the depth data corresponding to each feature in the face area in the depth image is different, for example, when the face is facing the depth image acquisition component 12 In the depth image captured by the depth image acquisition component 12, the depth data corresponding to the nose may be relatively small, while the depth data corresponding to the ear may be relatively large. Therefore, the above-mentioned depth information of the face area may be a value or a range of values. Wherein, when the depth information of the face area is a value, the value may be obtained by taking an average value of the depth data of the face area; or, may be obtained by taking a median value of the depth data of the face area.

由于人物区域包含人脸区域,也即是说,人物区域与人脸区域同处于某一个深度范围内,因此,处理器20确定出人脸区域的深度信息后,可以根据人脸区域的深度信息设定人物区域的深度范围,再根据人物区域的深度范围提取落入该深度范围内且与人脸区域相连接的人物区域以获得第一人物区域图像。Since the character area includes the face area, that is to say, the character area and the face area are in a certain depth range, therefore, after the processor 20 determines the depth information of the face area, it can A depth range of the person area is set, and a person area falling within the depth range and connected to the face area is extracted according to the depth range of the person area to obtain a first person area image.

如此,即可根据深度信息从场景图像中提取出第一人物区域图像。由于深度信息的获取不受环境中光照、色温等因素的影像响,因此,提取出的第一人物区域图像更加准确。In this way, the first person region image can be extracted from the scene image according to the depth information. Since the acquisition of depth information is not affected by factors such as illumination and color temperature in the environment, the extracted image of the first person area is more accurate.

请参阅图9,在某些实施方式中,图像处理方法还包括以下步骤:Referring to Fig. 9, in some embodiments, the image processing method also includes the following steps:

07:处理场景图像以得到场景图像的全场边缘图像;和07: processing the scene image to obtain a full-field edge image of the scene image; and

08:根据全场边缘图像修正第一人物区域图像。08: Correct the image of the first person area according to the edge image of the whole field.

请再参阅图2,在某些实施方式中,步骤07和步骤08均可以由处理器20实现。Please refer to FIG. 2 again. In some implementation manners, both step 07 and step 08 may be implemented by the processor 20 .

也即是说,处理器20还可用于处理场景图像以得到场景图像的全场边缘图像,以及根据全场边缘图像修正第一人物区域图像。That is to say, the processor 20 is further configured to process the scene image to obtain a full-field edge image of the scene image, and correct the first person area image according to the full-field edge image.

处理器20首先对场景图像进行边缘提取以得到全场边缘图像,其中,全场边缘图像中的边缘线条包括当前用户以及当前用户所处场景中背景物体的边缘线条。具体地,可通过Canny算子对场景图像进行边缘提取。Canny算子进行边缘提取的算法的核心主要包括以下几步:首先,用2D高斯滤波模板对场景图像进行卷积以消除噪声;随后,利用微分算子得到各个像素的灰度的梯度值,并根据梯度值计算各个像素的灰度的梯度方向,通过梯度方向可以找到对应像素沿梯度方向的邻接像素;随后,遍历每一个像素,若某个像素的灰度值与其梯度方向上前后两个相邻像素的灰度值相比不是最大的,那么认为这个像素不是边缘点。如此,即可确定场景图像中处于边缘位置的像素点,从而获得边缘提取后的全场边缘图像。The processor 20 first performs edge extraction on the scene image to obtain a full-field edge image, wherein the edge lines in the full-field edge image include edge lines of the current user and background objects in the scene where the current user is located. Specifically, edge extraction can be performed on the scene image through the Canny operator. The core of the algorithm for edge extraction by Canny operator mainly includes the following steps: first, the scene image is convolved with a 2D Gaussian filter template to eliminate noise; then, the gradient value of the gray level of each pixel is obtained by using the differential operator, and Calculate the gradient direction of the gray level of each pixel according to the gradient value, through the gradient direction, you can find the adjacent pixels of the corresponding pixel along the gradient direction; then, traverse each pixel, if the gray value of a pixel is the same as the two before and after the gradient direction If the gray value of the adjacent pixel is not the largest, then this pixel is considered not to be an edge point. In this way, the pixel points at the edge position in the scene image can be determined, so as to obtain the edge image of the whole field after edge extraction.

处理器20获取全场边缘图像后,再根据全场边缘图像对第一人物区域图像进行修正。可以理解,第一人物区域图像是将场景图像中与人脸区域连接并落入设定的深度范围的所有像素进行归并后得到的,在某些场景下,可能存在一些与第一人脸区域连接且落入深度范围内的物体。因此,为使得提取的第一人物区域图像更为准确,可使用全场边缘图对第一人物区域图像进行修正。After the processor 20 acquires the edge image of the whole field, it corrects the image of the first person region according to the edge image of the whole field. It can be understood that the image of the first person area is obtained by merging all the pixels connected to the face area in the scene image and falling into the set depth range. In some scenes, there may be some Objects that are connected and fall within the depth range. Therefore, in order to make the extracted first person region image more accurate, the full-field edge map may be used to correct the first person region image.

进一步地,处理器20还可对修正后的第一人物区域图像进行二次修正,例如,可对修正后的第一人物区域图像进行膨胀处理,扩大第一人物区域图像以保留第一人物区域图像的边缘细节。Further, the processor 20 may also perform secondary correction on the corrected first person region image, for example, may perform expansion processing on the corrected first person region image, and expand the first person region image to retain the first person region The edge detail of the image.

请参阅图10,在某些实施方式中,步骤05对第一人物区域图像和/或第一目标背景图像进行压缩处理的步骤包括:Please refer to FIG. 10 , in some embodiments, step 05 compresses the first person area image and/or the first target background image includes:

051:若第一人物区域图像的分辨率大于第一目标背景图像的分辨率,则对第一人物区域图像进行压缩处理,得到第二人物区域图像,其中第二人物区域图像的分辨率与第一目标背景图像的分辨率匹配;051: If the resolution of the first person area image is greater than the resolution of the first target background image, compress the first person area image to obtain a second person area image, wherein the resolution of the second person area image is the same as the first target background image Resolution matching of a target background image;

052:若第一人物区域图像的分辨率小于第一目标背景图像的分辨率,则对第一目标背景图像进行压缩处理,得到第二目标背景图像,其中第二目标背景图像的分辨率与第一人物区域图像的分辨率匹配。052: If the resolution of the first person area image is smaller than the resolution of the first target background image, compress the first target background image to obtain a second target background image, wherein the resolution of the second target background image is the same as that of the first target background image A resolution matching of the person area image.

也即是说,当第一人物区域图像与第一目标背景图像的分辨率不匹配时,可以对分辨率较高的图像进行压缩处理,以便降低高分辨率的图像的分辨率,从而使处理后的人物区域图像与目标背景图像的分辨率相同。That is to say, when the resolution of the first person area image does not match the resolution of the first target background image, the image with higher resolution can be compressed so as to reduce the resolution of the image with high resolution, so that the processing The resulting person area image has the same resolution as the target background image.

具体地,若第一人物区域图像与第一目标背景图像中,第一人物区域图像的分辨率较高,则可以对第一人物区域图像进行压缩处理,将降低第一人物区域图像的分辨率,从而得到与第一目标背景图像的分辨率匹配的第二人物区域图像;若第一人物区域图像与第一目标背景图像中,第一目标背景图像的分辨率较高,则可以对第一目标背景图像进行压缩处理,以降低第一目标背景图像的分辨率,从而得到与第一人物区域图像的分辨率匹配的第二目标背景图像。Specifically, if the resolution of the first person region image is relatively high among the first person region image and the first target background image, the first person region image can be compressed to reduce the resolution of the first person region image. , so as to obtain the second character region image matching the resolution of the first target background image; if the resolution of the first target background image is higher among the first character region image and the first target background image, then the first The target background image is compressed to reduce the resolution of the first target background image, so as to obtain a second target background image matching the resolution of the first person area image.

具体而言,可以通过多种方式,对第一人物区域图像和/或第一目标背景图像进行压缩处理。Specifically, compression processing may be performed on the first person area image and/or the first target background image in various ways.

比如,可以采用下采样的方式,从第一目标背景图像和/或第一人物区域图像中,每行每列每隔s个点采一个点,生成第二人物区域图像和/或第二目标背景图。For example, down-sampling can be used to generate a second character area image and/or a second target by sampling every s points in each row and column from the first target background image and/or the first character area image. background image.

举例来说,假设预先设置人物区域图像和目标背景图像的分辨率差值小于50时,确定人物区域图像与目标背景图像匹配。若第一人物区域图像的分辨率为800*600像素每英寸(Pixels Per Inch,简称PPI),第一目标背景区域的分辨率为400*300PPI,则可以对第一人物区域图像进行s倍下采样,即每行每列每隔s个点进行采样,得到分辨率N=(800/s)*(600/s)的第二人物区域图像。其中,N为大于400*300-50且小于400*300+50的值,从而使得生成的第二人物区域图像与第一目标背景图像的分辨率匹配。For example, assuming that the resolution difference between the person area image and the target background image is preset to be less than 50, it is determined that the person area image matches the target background image. If the resolution of the first person area image is 800*600 pixels per inch (Pixels Per Inch, PPI for short), and the resolution of the first target background area is 400*300PPI, then the image of the first person area can be downsized by s times. Sampling, that is, sampling every s points in each row and column, to obtain a second person area image with a resolution of N=(800/s)*(600/s). Wherein, N is a value greater than 400*300-50 and less than 400*300+50, so that the generated second person area image matches the resolution of the first target background image.

或者,还可以将第一目标背景图像和/或第一人物区域图像中,相邻的s*s个像素作为一个像素,这个像素的值为所述s*s个像素的均值,从而生成第二目标背景图像和/或第二人物区域图像。Alternatively, in the first target background image and/or the first person area image, adjacent s*s pixels can be regarded as a pixel, and the value of this pixel is the mean value of the s*s pixels, thereby generating the first A second target background image and/or a second person area image.

需要说明的是,为避免处理后的图像出现变形,在对第一人物区域图像或第一目标背景图像进行压缩处理时,可以在x方向和y方向进行等比例的压缩,从而使图像在x方向和y方向实现等比例的缩小。比如,第一目标背景图像的分辨率为800×600PPI时,若通过压缩将第一目标背景图像的x方向的像素数量缩小为原来的1/2,则为了避免得到的第二目标背景图像出现变形,可以通过等比例的压缩,将第一目标背景图像的y方向的像素数量同样缩小为原来的1/2,即得到的第二目标背景图像的分辨率可以为400×300PPI。It should be noted that, in order to avoid deformation of the processed image, when compressing the first person area image or the first target background image, the same ratio can be compressed in the x direction and the y direction, so that the image can be compressed in the x direction. direction and y direction to achieve proportional reduction. For example, when the resolution of the first target background image is 800×600PPI, if the number of pixels in the x direction of the first target background image is reduced to 1/2 by compression, in order to avoid the appearance of the second target background image Deformation can also reduce the number of pixels in the y direction of the first target background image to 1/2 of the original through proportional compression, that is, the resolution of the obtained second target background image can be 400×300PPI.

如此,通过对第一人物区域图像和/或第一目标背景图像进行压缩处理,以获取分辨率匹配的第二人物区域图像和第二目标背景图像,再将分辨率匹配的第二人物区域图像和第二目标背景图像进行融合,使得融合后的合并图像中,人物区域与背景区域融合处更自然,优化了合并图像的视觉效果。In this way, by performing compression processing on the first character region image and/or the first target background image to obtain a second character region image and a second target background image with matching resolution, and then compressing the second character region image with matching resolution By merging with the second target background image, the fusion of the character area and the background area in the fused merged image is more natural, and the visual effect of the merged image is optimized.

作为一种可能的实现方式,第一人物区域图像的分辨率与第一目标背景图像的分辨率不匹配时,还可以对第一人物区域图像和/或第一目标背景图像进行插值处理,以获取分辨率匹配的第二人物区域图像和第二目标背景图像。As a possible implementation manner, when the resolution of the first person area image does not match the resolution of the first target background image, an interpolation process may be performed on the first person area image and/or the first target background image to obtain Obtain a second person area image and a second target background image with matching resolutions.

具体的,若第一人物区域图像的分辨率大于第一目标背景图像的分辨率,则对第一目标背景图像进行插值处理,得到第二目标背景图像,其中第二目标背景图像的分辨率与第一人物区域图像的分辨率匹配;Specifically, if the resolution of the first person area image is greater than the resolution of the first target background image, the first target background image is interpolated to obtain the second target background image, wherein the resolution of the second target background image is the same as matching the resolution of the image of the first person area;

若第一人物区域图像的分辨率小于第一目标背景图像的分辨率,则对第一人物区域图像进行插值处理,得到第二人物区域图像,其中第二人物区域图像的分辨率与第一目标背景图像的分辨率匹配。If the resolution of the first character area image is smaller than the resolution of the first target background image, interpolation processing is performed on the first character area image to obtain a second character area image, wherein the resolution of the second character area image is the same as that of the first target background image. The resolution of the background image matches.

也即是说,当第一人物区域图像与第一目标背景图像的分辨率不匹配时,可以对两个图像中分辨率较低的图像进行插值处理,创造像素点,并利用已知像素点的灰度值来产生未知像素点的灰度值,以便提高低分辨率图像的分辨率,从而使处理后的人物区域图像与目标背景图像的分辨率相同。That is to say, when the resolution of the first person area image does not match the resolution of the first target background image, the image with the lower resolution of the two images can be interpolated to create pixels and use known pixels The gray value of the unknown pixel is generated to increase the resolution of the low-resolution image, so that the processed character area image has the same resolution as the target background image.

具体地,若第一人物区域图像与第一目标背景图像中,第一目标背景图像的分辨率较低,则可以对第一目标背景图像进行插值处理,以提高第一目标背景图像的分辨率,从而得到与第一人物区域图像的分辨率匹配的第二目标背景图像。若第一人物区域图像与第一目标背景图像中,第一人物区域图像的分辨率较低,则可以对第一人物区域图像进行插值处理,以提高第一人物区域图像的分辨率,从而得到与第一目标背景图像的分辨率匹配的第二人物区域图像。Specifically, if the resolution of the first target background image is relatively low among the first person area image and the first target background image, interpolation processing may be performed on the first target background image to increase the resolution of the first target background image , so as to obtain the second target background image matching the resolution of the first person region image. If the resolution of the first person region image is relatively low among the first person region image and the first target background image, the first person region image can be interpolated to increase the resolution of the first person region image, thereby obtaining A second person area image that matches the resolution of the first target background image.

在某些实施方式中,若第一人物区域图像与第一目标背景图像的分辨率不同,但都比较低时,为了提高合并图像的清晰度,也可以同时对第一人物区域图像与第一目标背景图像进行不同比例的插值处理,分别得到第二人物区域图像与第二目标背景图像。其中,第二人物区域图像与第二目标背景图像的分辨率匹配。In some implementations, if the resolutions of the first person area image and the first target background image are different but relatively low, in order to improve the clarity of the merged image, the first person area image and the first target background image may also be processed simultaneously. The target background image is interpolated with different proportions to obtain the second person area image and the second target background image respectively. Wherein, the resolution of the second person area image matches the second target background image.

具体而言,可以通过最近像素插值算法、双线性插值算法、双三次插值算法、分形算法等多种插值处理方式,对第一目标背景图像和/或第一人物区域图像进行插值处理。Specifically, interpolation processing may be performed on the first target background image and/or the first person region image by nearest pixel interpolation algorithm, bilinear interpolation algorithm, bicubic interpolation algorithm, fractal algorithm and other interpolation processing methods.

下面以第一目标背景图像的分辨率小于第一人物区域图像的分辨率时,通过双线性插值算法,对第一目标背景图像进行插值处理为例,对获取与第一人物区域图像的分辨率匹配的第二目标背景图像的过程进行说明。In the following, when the resolution of the first object background image is smaller than the resolution of the first person area image, the bilinear interpolation algorithm is used to perform interpolation processing on the first object background image as an example, and the resolution of the acquisition and the first person area image The process of rate matching the second target background image is described.

具体地,第二目标背景图像中,新创造的未知像素的值,可以由第一目标背景图像中,位于未知像素附近的2*2区域的4个临近像素的值,通过加权平均算法得出。Specifically, in the second target background image, the value of the newly created unknown pixel can be obtained from the values of 4 adjacent pixels in the 2*2 area near the unknown pixel in the first target background image through a weighted average algorithm .

请参见图11,假设未知像素P=(x,y)附近2*2区域的4个已知像素的值分别用函数f(Q12)、f(Q22)、f(Q11)、f(Q21)表示,其中,Q12=(x1,y2)、Q22=(x2,y2)、Q11=(x1,y1)、Q21=(x2,y1)分别为未知像素P=(x,y)附近2*2区域的4个像素点,要得到未知函数f在点P=(x,y)的值。Please refer to Figure 11, assuming that the values of the four known pixels in the 2*2 area near the unknown pixel P=(x,y) are respectively calculated by the functions f(Q 12 ), f(Q 22 ), f(Q 11 ), f (Q 21 ) means, wherein, Q 12 =(x 1 ,y 2 ), Q 22 =(x 2 ,y 2 ), Q 11 =(x 1 ,y 1 ), Q 21 =(x 2 ,y 1 ) are respectively 4 pixels in the 2*2 area near the unknown pixel P=(x,y), and the value of the unknown function f at the point P=(x,y) should be obtained.

首先,可以通过以下方式,在x方向进行线性插值,得到R1和R2。First, R1 and R2 can be obtained by performing linear interpolation in the x direction in the following manner.

其中,R1=(x,y1); Wherein, R 1 =(x,y 1 );

其中,R2=(x,y2)。 Wherein, R 2 =(x, y 2 ).

然后通过以下方式,在y方向进行线性插值,得到P。Then, perform linear interpolation in the y direction in the following manner to obtain P.

通过上述方法,即可根据第一目标背景图像中,已知像素的值得到第二目标背景图像中,创造的未知像素的值,从而实现通过插值处理,根据第一目标背景图像生成与第一人物区域图像的分辨率匹配的第二目标背景图像。Through the above method, the value of the unknown pixel created in the second target background image can be obtained according to the value of the known pixel in the first target background image, so as to realize the interpolation process based on the generation of the first target background image and the first target background image. The resolution of the person area image matches the second target background image.

需要说明的是,为避免处理后的图像出现变形,在对第一人物区域图像和/或第一目标背景图像进行插值处理时,可以在x方向和y方向进行等比例的插值,从而使图像在x方向和y方向实现等比例的放大。比如,第一目标背景图像的分辨率为400×300PPI时,若通过插值将第一目标背景图像的x方向的像素数量扩大为原来的二倍,则为了避免得到的第二目标背景图像出现变形,可以通过等比例的插值,将第一目标背景图像的y方向的像素数量同样扩大为原来的二倍,即得到的第二目标背景图像的分辨率可以为800×600PPI。It should be noted that, in order to avoid deformation of the processed image, when performing interpolation processing on the first person area image and/or the first target background image, equal-scale interpolation can be performed in the x direction and the y direction, so that the image Achieving proportional magnification in the x direction and y direction. For example, when the resolution of the first target background image is 400×300PPI, if the number of pixels in the x direction of the first target background image is doubled by interpolation, in order to avoid deformation of the second target background image , the number of pixels in the y-direction of the first target background image can also be doubled by equal proportion interpolation, that is, the resolution of the obtained second target background image can be 800×600PPI.

如此,通过对第一人物区域图像和/或第一目标背景图像进行插值处理,以获取分辨率匹配的第二人物区域图像和第二目标背景图像,再将分辨率匹配的第二人物区域图像和第二目标背景图像进行融合,使得融合后的合并图像中,人物区域与背景区域融合处更自然,优化了合并图像的视觉效果。In this way, by performing interpolation processing on the first character area image and/or the first target background image to obtain the second character area image and the second target background image with matching resolution, and then the second character area image with matching resolution By merging with the second target background image, the fusion of the character area and the background area in the fused merged image is more natural, and the visual effect of the merged image is optimized.

另外,还可以同时对第一人物区域图像和第一目标背景图像中,高分辨率的图像进行压缩处理,低分辨率的图像进行插值处理,以得到分辨率匹配的第二人物区域图像和第二目标背景图像。In addition, in the first person area image and the first target background image, the high-resolution image can also be compressed, and the low-resolution image can be interpolated to obtain the second person area image and the second target background image with matching resolutions. Two target background images.

需要说明的是,在本发明实施例中,还可以对第二人物区域图像的边界进行羽化等处理后,再与第二目标背景图像进行融合,从而使人物区域图像的边缘在第二目标背景图像中过渡更平滑、自然,合并图像的视觉效果更好。It should be noted that, in the embodiment of the present invention, the boundary of the second person area image can also be feathered and then merged with the second target background image, so that the edge of the person area image is in the second target background image. The transitions in the image are smoother and more natural, and the visual effect of the merged image is better.

在某些实施方式中,第一目标背景图像是由处理器20选取的图像时,为了避免处理器20的处理量过高,可以从多个背景图像中,选取与第一人物区域图像的分辨率相差较小的图像,以降低处理器20的处理压力。即,在步骤04之前,图像处理方法还可以包括以下步骤:In some implementations, when the first target background image is an image selected by the processor 20, in order to avoid the excessive processing load of the processor 20, the resolution of the first person area image can be selected from a plurality of background images. Images with a smaller rate difference, so as to reduce the processing pressure of the processor 20. That is, before step 04, the image processing method may also include the following steps:

09:根据第一人物区域图像的分辨率,从多个背景图像中获取第一目标背景图像,其中第一目标背景图像的分辨率与第一人物区域图像的分辨率的差值小于阈值。09: Acquire a first target background image from multiple background images according to the resolution of the first person region image, wherein the difference between the resolution of the first target background image and the resolution of the first person region image is smaller than a threshold.

其中,阈值可以根据需要设置。比如,可以根据处理器20的处理能力或处理速度确定。若处理器20的处理速度较快,则阈值可以设置为一个较大的值;若处理器20的处理速度较慢,则阈值可以设置为一个较小的值,等等。Wherein, the threshold can be set as required. For example, it may be determined according to the processing capability or processing speed of the processor 20 . If the processing speed of the processor 20 is faster, the threshold can be set to a larger value; if the processing speed of the processor 20 is slower, the threshold can be set to a smaller value, and so on.

多个背景图像,可以是动态的图像,也可以是静态的图像,且可以是电子装置1000中存储的,也可以是通过网络资源获取的,此处不作限制。The plurality of background images may be dynamic images or static images, and may be stored in the electronic device 1000 or obtained through network resources, which is not limited here.

具体地,处理器20在获得第一人物区域图像后,可以确定第一人物区域图像的分辨率,然后获取多个背景图像,并确定背景图像的分辨率,再分别判断多个背景图像的分辨率与第一人物区域图像的分辨率的差值是否小于阈值,从而选取与第一人物区域图像的分辨率差值小于阈值的背景图像作为第一目标背景图像。Specifically, after the processor 20 obtains the first person area image, it may determine the resolution of the first person area image, then acquire a plurality of background images, determine the resolution of the background images, and then determine the resolution of the plurality of background images respectively. Whether the difference between the rate and the resolution of the first person area image is smaller than the threshold, so that the background image whose resolution difference with the first person area image is smaller than the threshold is selected as the first target background image.

若与第一人物区域图像的分辨率差值小于阈值的背景图像为多个图像,则可以从多个图像中,选取与第一人物区域图像的分辨率差值最小的图像,作为第一目标背景图像。If the background image whose resolution difference with the first character area image is smaller than the threshold is a plurality of images, the image with the smallest resolution difference with the first character area image can be selected from the plurality of images as the first target background image.

通过从多个背景图像中,选取与第一人物区域图像的分辨率的差值小于阈值的图像作为第一目标背景图像,可以降低处理器20的处理压力,提高图像处理的速度。By selecting an image whose resolution difference with the first person area image is smaller than a threshold from the plurality of background images as the first target background image, the processing pressure of the processor 20 can be reduced and the image processing speed can be increased.

请一并参阅图3和图12,本发明实施方式还提出一种电子装置1000。电子装置1000包括图像处理装置100。图像处理装置100可以利用硬件和/或软件实现。图像处理装置100包括成像设备10和处理器20。Please refer to FIG. 3 and FIG. 12 together. Embodiments of the present invention also provide an electronic device 1000 . The electronic device 1000 includes an image processing device 100 . The image processing device 100 can be realized by hardware and/or software. The image processing apparatus 100 includes an imaging device 10 and a processor 20 .

成像设备10包括可见光摄像头11和深度图像采集组件12。The imaging device 10 includes a visible light camera 11 and a depth image acquisition component 12 .

具体地,可见光摄像头11包括图像传感器111和透镜112,可见光摄像头11可用于捕捉当前用户的彩色信息以获得场景图像,其中,图像传感器111包括彩色滤镜阵列(如Bayer滤镜阵列),透镜112的个数可为一个或多个。可见光摄像头11在获取场景图像过程中,图像传感器111中的每一个成像像素感应来自拍摄场景中的光强度和波长信息,生成一组原始图像数据;图像传感器111将该组原始图像数据发送至处理器20中,处理器20对原始图像数据进行去噪、插值等运算后即得到彩色的场景图像。处理器20可按多种格式对原始图像数据中的每个图像像素逐一处理,例如,每个图像像素可具有8、10、12或14比特的位深度,处理器20可按相同或不同的位深度对每一个图像像素进行处理。Specifically, the visible light camera 11 includes an image sensor 111 and a lens 112. The visible light camera 11 can be used to capture the color information of the current user to obtain a scene image, wherein the image sensor 111 includes a color filter array (such as a Bayer filter array), and the lens 112 The number of can be one or more. When the visible light camera 11 acquires the scene image, each imaging pixel in the image sensor 111 senses the light intensity and wavelength information from the shooting scene to generate a set of raw image data; the image sensor 111 sends the set of raw image data to the processing In the processor 20, the processor 20 performs operations such as denoising and interpolation on the original image data to obtain a color scene image. The processor 20 can process each image pixel in the raw image data one by one in a variety of formats, for example, each image pixel can have a bit depth of 8, 10, 12 or 14 bits, and the processor 20 can use the same or different Bit depth is processed for each image pixel.

深度图像采集组件12包括结构光投射器121和结构光摄像头122,深度图像采集组件12可用于捕捉当前用户的深度信息以得到深度图像。结构光投射器121用于将结构光投射至当前用户,其中,结构光图案可以是激光条纹、格雷码、正弦条纹或者随机排列的散斑图案等。结构光摄像头122包括图像传感器1221和透镜1222,透镜1222的个数可为一个或多个。图像传感器1221用于捕捉结构光投射器121投射至当前用户上的结构光图像。结构光图像可由深度采集组件12发送至处理器20进行解调、相位恢复、相位信息计算等处理以获取当前用户的深度信息。The depth image acquisition component 12 includes a structured light projector 121 and a structured light camera 122 , and the depth image acquisition component 12 can be used to capture depth information of a current user to obtain a depth image. The structured light projector 121 is used to project the structured light to the current user, wherein the structured light pattern may be laser stripes, gray codes, sinusoidal stripes or randomly arranged speckle patterns and the like. The structured light camera 122 includes an image sensor 1221 and a lens 1222, and the number of the lens 1222 may be one or more. The image sensor 1221 is used to capture the structured light image projected by the structured light projector 121 onto the current user. The structured light image can be sent by the depth acquisition component 12 to the processor 20 for processing such as demodulation, phase recovery, and phase information calculation to obtain the depth information of the current user.

在某些实施方式中,可见光摄像头11与结构光摄像头122的功能可由一个摄像头实现,也即是说,成像设备10仅包括一个摄像头和一个结构光投射器121,上述摄像头不仅可以拍摄场景图像,还可拍摄结构光图像。In some embodiments, the functions of the visible light camera 11 and the structured light camera 122 can be implemented by one camera, that is to say, the imaging device 10 only includes one camera and one structured light projector 121, and the above camera can not only capture scene images, Structured light images can also be taken.

除了采用结构光获取深度图像外,还可通过双目视觉方法、基于飞行时间差(Timeof Flight,TOF)等深度像获取方法来获取当前用户的深度图像。In addition to using structured light to obtain depth images, depth images of the current user can also be obtained through binocular vision methods and depth image acquisition methods based on Time of Flight (TOF).

处理器20进一步用于判断从场景图像和深度图像中提取的第一人物区域图像与第一目标背景图像的分辨率是否匹配,并在不匹配时对第一人物区域图像和/或第一目标背景图像进行压缩处理,从而将获取的分辨率匹配的第二人物区域图像和第二目标背景图像进行融合。在提取第一人物区域图像时,处理器20可以结合深度图像中的深度信息从场景图像中提取出二维的第一人物区域图像,也可以根据深度图像中的深度信息建立人物区域的三维图,再结合场景图像中的色彩信息对三维的人物区域进行颜色填补以得到三维的彩色的第一人物区域图像。进一步的,得到的第二人物区域图像可以是二维的,也可以是三维的彩色的。因此,融合处理第二人物区域图像和第二目标背景图像时可以是将二维的第二人物区域图像与第二目标背景图像进行融合以得到合并图像,也可以是将三维的彩色的第二人物区域图像与第二目标背景图像进行融合以得到合并图像。The processor 20 is further configured to judge whether the resolutions of the first character area image extracted from the scene image and the depth image match the resolution of the first object background image, and if they do not match, make a corresponding adjustment to the first character area image and/or the first object Compression processing is performed on the background image, so as to fuse the acquired second person region image with matching resolution and the second target background image. When extracting the image of the first person area, the processor 20 may combine the depth information in the depth image to extract a two-dimensional image of the first person area from the scene image, or establish a three-dimensional image of the person area according to the depth information in the depth image. , combined with the color information in the scene image to perform color filling on the three-dimensional character area to obtain a three-dimensional color image of the first character area. Further, the obtained second person area image may be two-dimensional or three-dimensional in color. Therefore, when fusing the second person area image and the second target background image, it may be to fuse the two-dimensional second person area image and the second target background image to obtain a merged image, or to combine the three-dimensional color second The person area image is fused with the second target background image to obtain a merged image.

此外,图像处理装置100还包括图像存储器30。图像存储器30可内嵌在电子装置1000中,也可以是独立于电子装置1000外的存储器,并可包括直接存储器存取(DirectMemory Access,DMA)特征。可见光摄像头11采集的原始图像数据或深度图像采集组件12采集的结构光图像相关数据均可传送至图像存储器30中进行存储或缓存。处理器20可从图像存储器30中读取原始图像数据以进行处理得到场景图像,也可从图像存储器30中读取结构光图像相关数据以进行处理得到深度图像。另外,场景图像和深度图像还可存储在图像存储器30中,以供处理器20随时调用处理,例如,处理器20调用场景图像和深度图像进行人物区域提取,并将提后的得到的第一人物区域图像和/或第一目标背景图像进行处理,得到分辨率匹配的第二人物区域图像和第二目标背景图像,再进行融合处理以得到合并图像。其中,第一目标背景图像、第二目标背景图像和合并图像也可存储在图像存储器30中。Furthermore, the image processing device 100 also includes an image memory 30 . The image memory 30 may be embedded in the electronic device 1000, or may be a memory independent of the electronic device 1000, and may include a direct memory access (DirectMemory Access, DMA) feature. The original image data collected by the visible light camera 11 or the data related to the structured light image collected by the depth image collection component 12 can be transmitted to the image memory 30 for storage or buffering. The processor 20 can read the original image data from the image memory 30 for processing to obtain a scene image, and can also read data related to the structured light image from the image memory 30 for processing to obtain a depth image. In addition, the scene image and the depth image can also be stored in the image memory 30 for processing by the processor 20 at any time. The person area image and/or the first object background image are processed to obtain a second person area image and a second object background image with matching resolutions, and then fusion processing is performed to obtain a merged image. Wherein, the first object background image, the second object background image and the merged image can also be stored in the image memory 30 .

图像处理装置100还可包括显示器50。显示器50可直接从处理器20中获取合并图像,还可从图像存储器30中获取合并图像。显示器50显示合并图像以供用户观看,或者由图形引擎或图形处理器(Graphics Processing Unit,GPU)进行进一步的处理。图像处理装置100还包括编码器/解码器60,编码器/解码器60可编解码场景图像、深度图像及合并图像等的图像数据,编码的图像数据可被保存在图像存储器30中,并可以在图像显示在显示器50上之前由解码器解压缩以进行显示。编码器/解码器60可由中央处理器(CentralProcessing Unit,CPU)、GPU或协处理器实现。换言之,编码器/解码器60可以是中央处理器(Central Processing Unit,CPU)、GPU、及协处理器中的任意一种或多种。The image processing device 100 may further include a display 50 . The display 50 can directly obtain the merged image from the processor 20 , and can also obtain the merged image from the image memory 30 . The display 50 displays the merged image for the user to watch, or is further processed by a graphics engine or a graphics processing unit (Graphics Processing Unit, GPU). The image processing device 100 also includes an encoder/decoder 60, the encoder/decoder 60 can encode and decode image data such as scene images, depth images, and merged images, and the encoded image data can be stored in the image memory 30, and can be The image is decompressed by the decoder for display before it is displayed on the display 50 . The encoder/decoder 60 may be implemented by a central processing unit (Central Processing Unit, CPU), a GPU or a coprocessor. In other words, the encoder/decoder 60 may be any one or more of a central processing unit (Central Processing Unit, CPU), a GPU, and a coprocessor.

图像处理装置100还包括控制逻辑器40。成像设备10在成像时,处理器20会根据成像设备获取的数据进行分析以确定成像设备10的一个或多个控制参数(例如,曝光时间等)的图像统计信息。处理器20将图像统计信息发送至控制逻辑器40,控制逻辑器40控制成像设备10以确定好的控制参数进行成像。控制逻辑器40可包括执行一个或多个例程(如固件)的处理器和/或微控制器。一个或多个例程可根据接收的图像统计信息确定成像设备10的控制参数。The image processing device 100 also includes a control logic 40 . When the imaging device 10 is imaging, the processor 20 analyzes the data acquired by the imaging device to determine image statistical information of one or more control parameters (eg, exposure time, etc.) of the imaging device 10 . The processor 20 sends the image statistical information to the control logic 40, and the control logic 40 controls the imaging device 10 to perform imaging with the determined control parameters. Control logic 40 may include a processor and/or a microcontroller executing one or more routines (eg, firmware). One or more routines may determine control parameters of imaging device 10 based on received image statistics.

请参阅图13,本发明实施方式的电子装置1000包括一个或多个处理器200、存储器300和一个或多个程序310。其中一个或多个程序310被存储在存储器300中,并且被配置成由一个或多个处理器200执行。程序310包括用于执行上述任意一项实施方式的图像处理方法的指令。Referring to FIG. 13 , an electronic device 1000 according to an embodiment of the present invention includes one or more processors 200 , a memory 300 and one or more programs 310 . One or more programs 310 are stored in the memory 300 and configured to be executed by the one or more processors 200 . The program 310 includes instructions for executing the image processing method of any one of the above-mentioned embodiments.

例如,程序310包括用于执行以下步骤所述的图像处理方法的指令:For example, the program 310 includes instructions for performing the image processing method described in the following steps:

01:获取当前用户的场景图像;01: Obtain the scene image of the current user;

02:获取当前用户的深度图像;02: Obtain the depth image of the current user;

03:处理场景图像和深度图像,提取当前用户在场景图像中的人物区域而获得第一人物区域图像;03: Process the scene image and depth image, extract the character area of the current user in the scene image to obtain the first character area image;

04:判断第一人物区域图像的分辨率与第一目标背景图像的分辨率是否匹配;04: Determine whether the resolution of the first person area image matches the resolution of the first target background image;

05:若否,则对第一人物区域图像和/或第一目标背景图像进行压缩处理,以获取分辨率匹配的第二人物区域图像和第二目标背景图像;05: If not, perform compression processing on the first person area image and/or the first target background image to obtain a second person area image and a second target background image with matching resolutions;

06:将第二人物区域图像和第二目标背景图像融合,以得到合并图像。06: Merging the second person area image and the second target background image to obtain a merged image.

再例如,程序310还包括用于执行以下步骤所述的图像处理方法的指令:For another example, the program 310 also includes instructions for executing the image processing method described in the following steps:

0231:解调结构光图像中各个像素对应的相位信息;0231: Demodulate the phase information corresponding to each pixel in the structured light image;

0231:将相位信息转化为深度信息;和0231: Convert phase information to depth information; and

0233:根据深度信息生成深度图像。0233: Generate a depth image based on depth information.

本发明实施方式的计算机可读存储介质包括与能够摄像的电子装置1000结合使用的计算机程序。计算机程序可被处理器200执行以完成上述任意一项实施方式的图像处理方法。A computer-readable storage medium according to an embodiment of the present invention includes a computer program used in conjunction with the electronic device 1000 capable of imaging. The computer program can be executed by the processor 200 to complete the image processing method in any one of the above implementation manners.

例如,计算机程序可被处理器200执行以完成以下步骤所述的图像处理方法:For example, the computer program can be executed by the processor 200 to complete the image processing method described in the following steps:

01:获取当前用户的场景图像;01: Obtain the scene image of the current user;

02:获取当前用户的深度图像;02: Obtain the depth image of the current user;

03:处理场景图像和深度图像,提取当前用户在场景图像中的人物区域而获得第一人物区域图像;03: Process the scene image and depth image, extract the character area of the current user in the scene image to obtain the first character area image;

04:判断第一人物区域图像的分辨率与第一目标背景图像的分辨率是否匹配;04: Determine whether the resolution of the first person area image matches the resolution of the first target background image;

05:若否,则对第一人物区域图像和/或第一目标背景图像进行压缩处理,以获取分辨率匹配的第二人物区域图像和第二目标背景图像;05: If not, perform compression processing on the first person area image and/or the first target background image to obtain a second person area image and a second target background image with matching resolutions;

06:将第二人物区域图像和第二目标背景图像融合,以得到合并图像。06: Merging the second person area image and the second target background image to obtain a merged image.

再例如,计算机程序还可被处理器200执行以完成以下步骤所述的图像处理方法:For another example, the computer program can also be executed by the processor 200 to complete the image processing method described in the following steps:

0231:解调结构光图像中各个像素对应的相位信息;0231: Demodulate the phase information corresponding to each pixel in the structured light image;

0231:将相位信息转化为深度信息;和0231: Convert phase information to depth information; and

0233:根据深度信息生成深度图像。0233: Generate a depth image based on depth information.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless specifically defined otherwise.

流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。Any process or method descriptions in flowcharts or otherwise described herein may be understood to represent modules, segments or portions of code comprising one or more executable instructions for implementing specific logical functions or steps of the process , and the scope of preferred embodiments of the invention includes alternative implementations in which functions may be performed out of the order shown or discussed, including substantially concurrently or in reverse order depending on the functions involved, which shall It is understood by those skilled in the art to which the embodiments of the present invention pertain.

在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。The logic and/or steps represented in the flowcharts or otherwise described herein, for example, can be considered as a sequenced listing of executable instructions for implementing logical functions, can be embodied in any computer-readable medium, For use with instruction execution systems, devices, or devices (such as computer-based systems, systems including processors, or other systems that can fetch instructions from instruction execution systems, devices, or devices and execute instructions), or in conjunction with these instruction execution systems, devices or equipment used. For the purposes of this specification, a "computer-readable medium" may be any device that can contain, store, communicate, propagate or transmit a program for use in or in conjunction with an instruction execution system, device or device. More specific examples (non-exhaustive list) of computer-readable media include the following: electrical connection with one or more wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM). In addition, the computer-readable medium may even be paper or other suitable medium on which the program can be printed, since the program can be read, for example, by optically scanning the paper or other medium, followed by editing, interpretation or other suitable processing if necessary. The program is processed electronically and stored in computer memory.

应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。It should be understood that various parts of the present invention can be realized by hardware, software, firmware or their combination. In the embodiments described above, various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system. For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques known in the art: Discrete logic circuits, ASICs with suitable combinational logic gates, Programmable Gate Arrays (PGAs), Field Programmable Gate Arrays (FPGAs), etc.

本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。Those of ordinary skill in the art can understand that all or part of the steps carried by the methods of the above embodiments can be completed by instructing related hardware through a program, and the program can be stored in a computer-readable storage medium. During execution, one or a combination of the steps of the method embodiments is included.

此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.

上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。The storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like. Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.

Claims (10)

1.一种图像处理方法,其特征在于,包括:1. An image processing method, characterized in that, comprising: 获取当前用户的场景图像;Get the scene image of the current user; 获取所述当前用户的深度图像;Obtain the depth image of the current user; 处理所述场景图像和所述深度图像,提取所述当前用户在所述场景图像中的人物区域而获得第一人物区域图像;processing the scene image and the depth image, extracting the character area of the current user in the scene image to obtain a first character area image; 判断所述第一人物区域图像的分辨率与第一目标背景图像的分辨率是否匹配;judging whether the resolution of the first person area image matches the resolution of the first target background image; 若否,则对所述第一人物区域图像和/或所述第一目标背景图像进行压缩处理,以获取分辨率匹配的第二人物区域图像和第二目标背景图像;If not, compressing the first person area image and/or the first target background image to obtain a second person area image and a second target background image with matching resolutions; 将所述第二人物区域图像和第二目标背景图像融合,以得到合并图像。The second person area image and the second target background image are fused to obtain a merged image. 2.如权利要求1所述的方法,其特征在于,所述获取所述当前用户的深度图像,包括:2. The method according to claim 1, wherein the acquiring the depth image of the current user comprises: 向所述当前用户投射结构光;projecting structured light to the current user; 拍摄经所述当前用户调制的结构光图像;和taking a structured light image modulated by the current user; and 解调所述结构光图像的各个像素对应的相位信息以得到所述深度图像。The phase information corresponding to each pixel of the structured light image is demodulated to obtain the depth image. 3.如权利要求2所述的方法,其特征在于,所述解调所述结构光图像的各个像素对应的相位信息以得到所述深度图像,包括:3. The method according to claim 2, wherein said demodulating phase information corresponding to each pixel of said structured light image to obtain said depth image comprises: 解调所述结构光图像中各个像素对应的相位信息;Demodulating phase information corresponding to each pixel in the structured light image; 将所述相位信息转化为深度信息;和converting said phase information into depth information; and 根据所述深度信息生成所述深度图像。The depth image is generated according to the depth information. 4.如权利要求1所述的方法,其特征在于,所述提取所述当前用户在所述场景图像中的人物区域而获得第一人物区域图像,包括:4. The method according to claim 1, wherein the extracting the character area of the current user in the scene image to obtain the first character area image comprises: 识别所述场景图像中的人脸区域;identifying a face area in the scene image; 从所述深度图像中获取与所述人脸区域对应的深度信息;Obtaining depth information corresponding to the face area from the depth image; 根据所述人脸区域的深度信息确定所述人物区域的深度范围;和determining the depth range of the person area according to the depth information of the face area; and 根据所述人物区域的深度范围确定与所述人脸区域连接且落入所述深度范围内的人物区域以获得所述第一人物区域图像。Determining a character area connected to the face area and falling within the depth range according to the depth range of the character area to obtain the first character area image. 5.根据权利要求4所述的图像处理方法,其特征在于,所述图像处理方法还包括:5. image processing method according to claim 4, is characterized in that, described image processing method also comprises: 处理所述场景图像以得到所述场景图像的全场边缘图像;和processing the scene image to obtain a full-field edge image of the scene image; and 根据所述全场边缘图像修正所述第一人物区域图像。Correcting the first person area image according to the full-field edge image. 6.如权利要求1-5任一所述的方法,其特征在于,所述判断所述第一人物区域图像的分辨率与第一目标背景图像的分辨率是否匹配之前,还包括:6. The method according to any one of claims 1-5, wherein before the judging whether the resolution of the first person area image matches the resolution of the first target background image, further comprising: 根据所述第一人物区域图像的分辨率,从多个背景图像中获取所述第一目标背景图像,其中所述第一目标背景图像的分辨率与所述第一人物区域图像的分辨率的差值小于阈值。Acquire the first target background image from a plurality of background images according to the resolution of the first person area image, wherein the resolution of the first target background image is different from the resolution of the first person area image The difference is less than the threshold. 7.如权利要求1-5任一所述的方法,其特征在于,所述对所述第一人物区域图像和/或所述第一目标背景图像进行压缩处理,包括:7. The method according to any one of claims 1-5, wherein the compressing the first person area image and/or the first target background image comprises: 若所述第一人物区域图像的分辨率大于所述第一目标背景图像的分辨率,则对所述第一人物区域图像进行压缩处理,得到第二人物区域图像,其中第二人物区域图像的分辨率与所述第一目标背景图像的分辨率匹配;If the resolution of the first person area image is greater than the resolution of the first target background image, compress the first person area image to obtain a second person area image, wherein the second person area image a resolution matching that of the first target background image; 若所述第一人物区域图像的分辨率小于所述第一目标背景图像的分辨率,则对所述第一目标背景图像进行压缩处理,得到第二目标背景图像,其中第二目标背景图像的分辨率与所述第一人物区域图像的分辨率匹配。If the resolution of the first person area image is smaller than the resolution of the first target background image, compress the first target background image to obtain a second target background image, wherein the second target background image The resolution matches the resolution of the first person area image. 8.一种图像处理装置,其特征在于,包括:8. An image processing device, comprising: 可见光摄像头,所述可见光摄像头用于获取当前用户的场景图像;Visible light camera, the visible light camera is used to obtain the scene image of the current user; 深度图像采集组件,所述深度图像采集组件用于获取所述当前用户的深度图像;和A depth image acquisition component, the depth image acquisition component is used to acquire the depth image of the current user; and 处理器,所述处理器用于:a processor for: 处理所述场景图像和所述深度图像,提取所述当前用户在所述场景图像中的人物区域而获得第一人物区域图像;processing the scene image and the depth image, extracting the character area of the current user in the scene image to obtain a first character area image; 判断所述第一人物区域图像的分辨率与第一目标背景图像的分辨率是否匹配;judging whether the resolution of the first person area image matches the resolution of the first target background image; 若否,则对所述第一人物区域图像和/或所述第一目标背景图像进行压缩处理,以获取分辨率匹配的第二人物区域图像和第二目标背景图像;If not, compressing the first person area image and/or the first target background image to obtain a second person area image and a second target background image with matching resolutions; 将所述第二人物区域图像和第二目标背景图像融合,以得到合并图像。The second person area image and the second target background image are fused to obtain a merged image. 9.一种电子装置,其特征在于,所述电子装置包括:9. An electronic device, characterized in that the electronic device comprises: 一个或多个处理器;one or more processors; 存储器;和memory; and 一个或多个程序,其中所述一个或多个程序被存储在所述存储器中,并且被配置成由所述一个或多个处理器执行,所述程序包括用于执行权利要求1-7中任意一项所述的图像处理方法的指令。One or more programs, wherein said one or more programs are stored in said memory and configured to be executed by said one or more processors, said programs comprising means for performing the An instruction of any one of the image processing methods. 10.一种计算机可读存储介质,其特征在于,包括与能够摄像的电子装置结合使用的计算机程序,所述计算机程序可被处理器执行以完成权利要求1-7中任意一项所述的图像处理方法。10. A computer-readable storage medium, characterized in that it comprises a computer program used in combination with an electronic device capable of taking pictures, and the computer program can be executed by a processor to complete the method described in any one of claims 1-7. image processing method.
CN201710811471.4A 2017-09-11 2017-09-11 Image processing method and device, electronic device, and computer-readable storage medium Pending CN107707831A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201710811471.4A CN107707831A (en) 2017-09-11 2017-09-11 Image processing method and device, electronic device, and computer-readable storage medium
EP18852861.6A EP3680853A4 (en) 2017-09-11 2018-09-11 IMAGE PROCESSING METHOD AND DEVICE, ELECTRONIC DEVICE AND COMPUTER READABLE STORAGE MEDIUM
PCT/CN2018/105121 WO2019047985A1 (en) 2017-09-11 2018-09-11 Image processing method and device, electronic device, and computer-readable storage medium
US16/815,179 US11503228B2 (en) 2017-09-11 2020-03-11 Image processing method, image processing apparatus and computer readable storage medium
US16/815,177 US11516412B2 (en) 2017-09-11 2020-03-11 Image processing method, image processing apparatus and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710811471.4A CN107707831A (en) 2017-09-11 2017-09-11 Image processing method and device, electronic device, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
CN107707831A true CN107707831A (en) 2018-02-16

Family

ID=61172423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710811471.4A Pending CN107707831A (en) 2017-09-11 2017-09-11 Image processing method and device, electronic device, and computer-readable storage medium

Country Status (1)

Country Link
CN (1) CN107707831A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550175A (en) * 2018-04-16 2018-09-18 上海思依暄机器人科技股份有限公司 A kind of picture synthetic method, system and storage medium
CN108683902A (en) * 2018-03-31 2018-10-19 深圳奥比中光科技有限公司 Target image obtains System and method for
WO2019047985A1 (en) * 2017-09-11 2019-03-14 Oppo广东移动通信有限公司 Image processing method and device, electronic device, and computer-readable storage medium
CN111091592A (en) * 2018-10-24 2020-05-01 Oppo广东移动通信有限公司 Image processing method, image processing apparatus, electronic device, and readable storage medium
CN111311606A (en) * 2020-01-20 2020-06-19 四川大学 Continuous phase diagram acquisition method, device, computer equipment and readable storage medium
CN111386549A (en) * 2019-04-04 2020-07-07 合刃科技(深圳)有限公司 Method and system for reconstructing mixed type hyperspectral image
CN112381222A (en) * 2020-11-12 2021-02-19 北京乐学帮网络技术有限公司 Sample generation method and device, computer equipment and storage medium
CN112446817A (en) * 2019-08-29 2021-03-05 北京小米移动软件有限公司 Picture fusion method and device
US11445163B2 (en) 2018-03-31 2022-09-13 Orbbec Inc. Target image acquisition system and method
CN115914503A (en) * 2022-10-10 2023-04-04 阿里巴巴(中国)有限公司 Image synthesis method, video conferencing method, device and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917938A (en) * 2014-03-14 2015-09-16 联想(北京)有限公司 Depth camera for mobile communication devices
CN105872448A (en) * 2016-05-31 2016-08-17 宇龙计算机通信科技(深圳)有限公司 Display method and device of video images in video calls
CN206322194U (en) * 2016-10-24 2017-07-11 杭州非白三维科技有限公司 A kind of anti-fraud face identification system based on 3-D scanning
CN106997603A (en) * 2017-05-19 2017-08-01 深圳奥比中光科技有限公司 Depth camera based on VCSEL array light source
CN107025635A (en) * 2017-03-09 2017-08-08 广东欧珀移动通信有限公司 Processing method, processing unit and the electronic installation of image saturation based on the depth of field

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917938A (en) * 2014-03-14 2015-09-16 联想(北京)有限公司 Depth camera for mobile communication devices
CN105872448A (en) * 2016-05-31 2016-08-17 宇龙计算机通信科技(深圳)有限公司 Display method and device of video images in video calls
CN206322194U (en) * 2016-10-24 2017-07-11 杭州非白三维科技有限公司 A kind of anti-fraud face identification system based on 3-D scanning
CN107025635A (en) * 2017-03-09 2017-08-08 广东欧珀移动通信有限公司 Processing method, processing unit and the electronic installation of image saturation based on the depth of field
CN106997603A (en) * 2017-05-19 2017-08-01 深圳奥比中光科技有限公司 Depth camera based on VCSEL array light source

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019047985A1 (en) * 2017-09-11 2019-03-14 Oppo广东移动通信有限公司 Image processing method and device, electronic device, and computer-readable storage medium
US11503228B2 (en) 2017-09-11 2022-11-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Image processing method, image processing apparatus and computer readable storage medium
US11516412B2 (en) 2017-09-11 2022-11-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Image processing method, image processing apparatus and electronic device
CN108683902A (en) * 2018-03-31 2018-10-19 深圳奥比中光科技有限公司 Target image obtains System and method for
US11445163B2 (en) 2018-03-31 2022-09-13 Orbbec Inc. Target image acquisition system and method
CN108550175A (en) * 2018-04-16 2018-09-18 上海思依暄机器人科技股份有限公司 A kind of picture synthetic method, system and storage medium
CN108550175B (en) * 2018-04-16 2022-05-24 上海思依暄机器人科技股份有限公司 Picture synthesis method, system and storage medium
CN111091592B (en) * 2018-10-24 2023-08-15 Oppo广东移动通信有限公司 Image processing method, image processing device, electronic device, and readable storage medium
CN111091592A (en) * 2018-10-24 2020-05-01 Oppo广东移动通信有限公司 Image processing method, image processing apparatus, electronic device, and readable storage medium
CN111386549A (en) * 2019-04-04 2020-07-07 合刃科技(深圳)有限公司 Method and system for reconstructing mixed type hyperspectral image
CN111386549B (en) * 2019-04-04 2023-10-13 合刃科技(深圳)有限公司 Method and system for reconstructing hybrid hyperspectral image
CN112446817A (en) * 2019-08-29 2021-03-05 北京小米移动软件有限公司 Picture fusion method and device
CN111311606A (en) * 2020-01-20 2020-06-19 四川大学 Continuous phase diagram acquisition method, device, computer equipment and readable storage medium
CN111311606B (en) * 2020-01-20 2023-05-05 四川大学 Continuous phase map acquisition method, apparatus, computer device, and readable storage medium
CN112381222A (en) * 2020-11-12 2021-02-19 北京乐学帮网络技术有限公司 Sample generation method and device, computer equipment and storage medium
CN115914503A (en) * 2022-10-10 2023-04-04 阿里巴巴(中国)有限公司 Image synthesis method, video conferencing method, device and storage medium

Similar Documents

Publication Publication Date Title
CN107610077A (en) Image processing method and device, electronic device, and computer-readable storage medium
CN107707831A (en) Image processing method and device, electronic device, and computer-readable storage medium
CN107742296A (en) Dynamic image generation method and electronic device
CN107509045A (en) Image processing method and device, electronic device, and computer-readable storage medium
CN107734267A (en) Image processing method and device
CN107734264A (en) Image processing method and device
CN107707835A (en) Image processing method and device, electronic device, and computer-readable storage medium
CN107807806A (en) Display parameter adjustment method, device and electronic device
CN107707838A (en) Image processing method and device
CN107705278B (en) Dynamic effect adding method and terminal equipment
CN107682740A (en) Method and electronic device for synthesizing audio in video
CN107705277A (en) Image processing method and device
CN107644440A (en) Image processing method and device, electronic device, and computer-readable storage medium
CN107527335A (en) Image processing method and device, electronic device, and computer-readable storage medium
CN107610078A (en) Image processing method and device
CN107622496A (en) Image processing method and device
CN107613239A (en) Video communication background display method and device
CN107734265A (en) Image processing method and device, electronic device, and computer-readable storage medium
CN107613228A (en) Adding method and terminal equipment of virtual clothes
CN107610076A (en) Image processing method and device, electronic installation and computer-readable recording medium
CN107680034A (en) Image processing method and device, electronic device, and computer-readable storage medium
CN107613223A (en) Image processing method and device, electronic device, and computer-readable storage medium
CN107705243A (en) Image processing method and device, electronic device, and computer-readable storage medium
CN107592491A (en) Video communication background display method and device
CN107682656A (en) Background image processing method, electronic device and computer readable storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 523860 No. 18, Wu Sha Beach Road, Changan Town, Dongguan, Guangdong

Applicant after: OPPO Guangdong Mobile Communications Co., Ltd.

Address before: 523860 No. 18, Wu Sha Beach Road, Changan Town, Dongguan, Guangdong

Applicant before: Guangdong OPPO Mobile Communications Co., Ltd.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216