[go: up one dir, main page]

CN107705286A - A kind of color image quality integrated evaluating method - Google Patents

A kind of color image quality integrated evaluating method Download PDF

Info

Publication number
CN107705286A
CN107705286A CN201710733673.1A CN201710733673A CN107705286A CN 107705286 A CN107705286 A CN 107705286A CN 201710733673 A CN201710733673 A CN 201710733673A CN 107705286 A CN107705286 A CN 107705286A
Authority
CN
China
Prior art keywords
mrow
msub
image
mtd
evaluated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710733673.1A
Other languages
Chinese (zh)
Inventor
闫钧华
汪竟成
张寅�
杨勇
许倩倩
谢天夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201710733673.1A priority Critical patent/CN107705286A/en
Publication of CN107705286A publication Critical patent/CN107705286A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种彩色图像质量综合评价方法,首先输入待评价的彩色图像和对应的参考图像;将参考图像和待评价图像分别进行色彩空间变换,得到参考图像和待评价图像的亮度通道图和色度通道图,提取参考图像和待评价图像的色度通道图,计算色度相似性特征;提取参考图像和待评价图像的亮度通道图,使用log‑Gabor小波获得相位一致性相似特征;获取参考图像和待评价图像的位置显著性特征;通过位置显著性特征加权的标准差池化相位一致性相似性特征和色度相似性特征,获得待评价图像的质量。本发明充分考虑了人眼视觉系统的不同特性,合理结合这三个方面,较好地评价彩色图像的质量。

The invention discloses a color image quality comprehensive evaluation method. Firstly, a color image to be evaluated and a corresponding reference image are input; the reference image and the image to be evaluated are respectively subjected to color space transformation, and brightness channel diagrams of the reference image and the image to be evaluated are obtained and the chromaticity channel map, extract the chromaticity channel map of the reference image and the image to be evaluated, and calculate the chromaticity similarity feature; extract the luminance channel map of the reference image and the image to be evaluated, and use log-Gabor wavelet to obtain the similarity feature of phase consistency; The positional saliency features of the reference image and the image to be evaluated are obtained; the quality of the image to be evaluated is obtained through the standard deviation pooled phase consistency similarity feature and chromaticity similarity feature weighted by the positional saliency feature. The invention fully considers the different characteristics of the human visual system, reasonably combines these three aspects, and better evaluates the quality of the color image.

Description

一种彩色图像质量综合评价方法A Comprehensive Evaluation Method of Color Image Quality

技术领域technical field

本发明属于图像质量评价领域,尤其涉及一种基于相位一致性相似性、色度相似性和位置显著性的彩色图像质量综合评价方法。The invention belongs to the field of image quality evaluation, in particular to a color image quality comprehensive evaluation method based on phase consistency similarity, chromaticity similarity and position saliency.

背景技术Background technique

目前在图像质量评价领域主要采用的全参考图像质量评价方法是均方误差、峰值信噪比方法等,这些方法只考虑了参考图像与待评价图像逐个像素之间差异,没有考虑到人眼视觉系统的特性。因此这些方法不能很好地反映图像的主观质量。At present, the full-reference image quality evaluation methods mainly used in the field of image quality evaluation are mean square error, peak signal-to-noise ratio method, etc. These methods only consider the pixel-by-pixel difference between the reference image and the image to be evaluated, and do not consider the human vision The characteristics of the system. Therefore these methods cannot reflect the subjective quality of the image well.

人眼视觉系统具有对边缘结构信息敏感的特性;且相对于边缘区域,对于图像中央区域的失真感知更敏感;在彩色图像的不同色彩空间的差异性同样需要考虑。而现有的一些考虑人眼视觉特性的评价方法如结构相似度等缺少对这三类特性的综合评估。The human visual system is sensitive to edge structure information; and it is more sensitive to the distortion perception of the central area of the image than the edge area; the difference in different color spaces of color images also needs to be considered. However, some existing evaluation methods that consider human visual characteristics, such as structural similarity, lack comprehensive evaluation of these three types of characteristics.

发明内容Contents of the invention

发明目的:为了解决现有技术存在的问题,从人眼视觉特性的角度出发,较好地反映图像的主观质量,本发明提供一种彩色图像质量综合评价方法。Purpose of the invention: In order to solve the problems existing in the prior art and better reflect the subjective quality of images from the perspective of human visual characteristics, the present invention provides a comprehensive evaluation method for color image quality.

技术方案:本发明提供的一种彩色图像质量综合评价方法,包括以下步骤:Technical solution: A method for comprehensive evaluation of color image quality provided by the present invention includes the following steps:

(1)输入待评价的彩色图像和参考图像;(1) Input the color image and reference image to be evaluated;

(2)将参考图像和待评价图像分别进行色彩空间变换,得到参考图像和待评价图像的亮度通道图和色度通道图,提取参考图像和待评价图像的色度通道图,计算色度相似性特征;(2) Perform color space transformation on the reference image and the image to be evaluated respectively, obtain the luminance channel map and the chrominance channel map of the reference image and the image to be evaluated, extract the chroma channel map of the reference image and the image to be evaluated, and calculate the chromaticity similarity sexual characteristics;

(3)提取参考图像和待评价图像的亮度通道图,使用log-Gabor小波获得相位一致性相似特征;(3) Extract the luminance channel maps of the reference image and the image to be evaluated, and use log-Gabor wavelet to obtain phase consistency similar features;

(4)根据参考图像、待评价图像的尺寸,利用位置显著性公式,获取参考图像和待评价图像的位置显著性特征;(4) According to the size of the reference image and the image to be evaluated, using the position saliency formula to obtain the positional saliency features of the reference image and the image to be evaluated;

(5)通过位置显著性特征加权的标准差池化相位一致性相似性特征和色度相似性特征,获得待评价图像的质量。(5) The quality of the image to be evaluated is obtained by standard deviation pooling phase consistency similarity feature and chromaticity similarity feature weighted by positional saliency feature.

优选的,设x表示参考图像或待评价图像中的像素点,设步骤(3)中的相位一致性相似性特征为Spc(x),设步骤(2)中的色度相似性特征为Sc(x),设位置显著性特征为Sd(x),所述步骤(5)具体包括:Preferably, let x represent the pixel points in the reference image or the image to be evaluated, let the phase consistency similarity feature in step (3) be S pc (x), let the chroma similarity feature in step (2) be S c (x), if the positional saliency feature is S d (x), the step (5) specifically includes:

(51)设总体相似性特征为SM(x),联合Spc(x)和Sc(x)计算SM(x):(51) Let the overall similarity feature be SM(x), and combine S pc (x) and S c (x) to calculate SM(x):

SM(x)=Spc(x)·Sc(x)SM(x)=S pc (x)·S c (x)

(52)利用位置显著性特征大小计算各点在后续池化质量特征中的权重:(52) Calculate the weight of each point in the subsequent pooling quality feature by using the positional saliency feature size:

(53)设总体相似性质量值为SMD,通过位置显著性特征加权标准差池化相位一致性相似性和色度相似性特征,计算SMD来评价待评价图像质量:(53) Set the overall similarity quality value as SMD, and calculate the SMD to evaluate the quality of the image to be evaluated by pooling the phase consistency similarity and chromaticity similarity features with the weighted standard deviation of the positional salience feature:

其中,MM和NN分别为待评价图像的宽和高。Among them, MM and NN are the width and height of the image to be evaluated, respectively.

通过联合相位一致性与色度的相似性使得方法适应于图像结构与色彩信息的综合评价,提高评价方法的适用范围;此外,再结合位置显著性特征,提高评价方法的主观一致性。By combining phase consistency and chromaticity similarity, the method is suitable for the comprehensive evaluation of image structure and color information, and the scope of application of the evaluation method is improved; in addition, combined with the position saliency feature, the subjective consistency of the evaluation method is improved.

优选的,所述步骤(2)计算色度相似性特征的具体方法包括:Preferably, the specific method for calculating the chromaticity similarity feature in the step (2) includes:

(21)将参考图像和待评价图像分别进行色彩空间变换:(21) The reference image and the image to be evaluated are respectively subjected to color space transformation:

其中R、G、B分别表示彩色图像的红色、绿色和蓝色通道;L表示亮度通道,M、N表示色度通道;Among them, R, G, and B respectively represent the red, green and blue channels of the color image; L represents the brightness channel, and M and N represent the chrominance channel;

(22)提取参考图像和待评价图像的M、N色度通道图,逐像素计算参考图像和待评价图像的色度相似性特征,计算公式为:(22) Extract the M and N chromaticity channel maps of the reference image and the image to be evaluated, and calculate the chromaticity similarity features of the reference image and the image to be evaluated pixel by pixel, and the calculation formula is:

Sc(x)=Scm(x)·Scn(x)S c (x) = S cm (x) · S cn (x)

其中C1为正常数,M1(x)和M2(x)分别表示参考图像M色度通道灰度值和待评价图像M色度通道灰度值,N1(x)和N2(x)分别表示参考图像M色度通道灰度值和待评价图像N色度通道灰度值,Scm(x)为M色度通道相似性特征,Scn(x)为N色度通道相似性特征。Wherein C 1 is a normal number, M 1 (x) and M 2 (x) respectively represent the gray value of the M chroma channel of the reference image and the gray value of the M chroma channel of the image to be evaluated, N 1 (x) and N 2 ( x) represent the gray value of the M chroma channel of the reference image and the gray value of the N chroma channel of the image to be evaluated, S cm (x) is the similarity feature of the M chroma channel, S cn (x) is the similarity feature of the N chroma channel sexual characteristics.

优选的,所述步骤(3)采用log-Gabor小波获得相位一致性相似特征的具体方法包括:Preferably, the specific method that described step (3) adopts log-Gabor wavelet to obtain phase consistency similar features includes:

(31)利用二维的log-Gabor滤波器,计算参考图像和待评价图像L亮度通道图点x处在方向为θj和尺度为n下的偶对称滤波响应和奇对称滤波响应二维log-Gabor滤波器表达式为:(31) Using a two-dimensional log-Gabor filter, calculate the even symmetric filter response of the reference image and the image to be evaluated L with a brightness channel map point x in the direction θj and scale n and odd symmetric filter response The two-dimensional log-Gabor filter expression is:

其中j表示第j个方向,J表示方向的数目,σθ用于确定滤波器角度的带宽;θ表示滤波器的方向角;ω代表滤波器的角频率;ω0表示二位log-Gabor滤波器的中心频率,k表示滤波器的形状参数,滤波器的形状由ω0与k决定。in j represents the jth direction, J represents the number of directions, σ θ is used to determine the bandwidth of the filter angle; θ represents the direction angle of the filter; ω represents the angular frequency of the filter; ω 0 represents the two-bit log-Gabor filter The center frequency of , k represents the shape parameter of the filter, and the shape of the filter is determined by ω 0 and k.

(32)计算在方向为θj和尺度为n下的和幅值与方向为θj的响应局部能量 (32) Calculating the sum magnitude under the direction θ j and scale n with the response local energy in direction θ j

(33)综合各方向各尺度的响应,计算各点的相位一致性:(33) Synthesize the responses of all directions and scales, and calculate the phase consistency of each point:

其中ε为正常数;Where ε is a normal number;

用相同的方法计算参考图像的亮度通道相位一致性特征PC1(x)和待评价图像的亮度通道相位一致性特征PC2(x);Using the same method to calculate the luminance channel phase consistency feature PC 1 (x) of the reference image and the luminance channel phase consistency feature PC 2 (x) of the image to be evaluated ;

(34)逐像素计算参考图像与待评价图像L亮度通道图相位一致性相似特征:(34) Calculate the phase-consistency similarity features of the reference image and the image to be evaluated L luminance channel diagram pixel by pixel:

其中,C2为正常数。Among them, C 2 is a normal constant.

优选的,所述步骤(4)各点的位置显著性特征为:Preferably, the positional significance characteristics of each point in the step (4) are:

其中,xc为特征图中心点;表示特征图x点与中心点的距离;σd 2为经验参数。Among them, x c is the center point of the feature map; Indicates the distance between the feature map x point and the center point; σ d 2 is an empirical parameter.

有益效果:本发明提供一种彩色图像质量综合评价方法,利用图像相位一致性的相似性评估人眼视觉系统对于结构信息的感知特性;利用图像的位置显著性评估人眼视觉系统对于空间位置的感知特性;利用图像的色度相似性评估彩色图像的色彩信息。方法充分考虑了人眼视觉系统的不同特性,合理结合这三个方面,较好地评价彩色图像的质量。Beneficial effects: the present invention provides a color image quality comprehensive evaluation method, which uses the similarity of image phase consistency to evaluate the perception characteristics of the human visual system for structural information; uses the position saliency of the image to evaluate the human visual system for spatial position Perceptual properties; evaluating color information of color images using their chromatic similarity. The method takes full account of the different characteristics of the human visual system, reasonably combines these three aspects, and better evaluates the quality of color images.

附图说明Description of drawings

图1为本发明彩色图像质量综合评价方法的方法流程图。Fig. 1 is a method flow chart of the comprehensive evaluation method for color image quality of the present invention.

具体实施方式detailed description

下面结合附图和具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

如图1所示,一种彩色图像质量综合评价方法,包括以下步骤:As shown in Figure 1, a color image quality comprehensive evaluation method includes the following steps:

(1)输入待评价的彩色图像和参考图像;设x表示参考图像或待评价图像中的像素点。其中,参考图像是待评价的彩色图像的未受到到失真影响的“完美图像”(这个“未失真”目前没有统一的量化标准),参考图像需要保证与待评价图像的尺寸及通道数一致。(1) Input the color image to be evaluated and the reference image; let x represent the pixel in the reference image or the image to be evaluated. Among them, the reference image is the "perfect image" of the color image to be evaluated that is not affected by distortion (there is no unified quantification standard for this "undistorted" at present), and the reference image needs to be consistent with the size and number of channels of the image to be evaluated .

(2)将参考图像和待评价图像分别进行色彩空间变换,得到参考图像和待评价图像的亮度通道图和色度通道图,提取参考图像和待评价图像的色度通道图,计算色度相似性特征;设色度相似性特征为Sc(x),获得Sc(x)的方法如下:(2) Perform color space transformation on the reference image and the image to be evaluated respectively, obtain the luminance channel map and the chrominance channel map of the reference image and the image to be evaluated, extract the chroma channel map of the reference image and the image to be evaluated, and calculate the chromaticity similarity feature; let the chroma similarity feature be S c (x), the method of obtaining S c (x) is as follows:

(21)将参考图像和待评价图像分别进行色彩空间变换:(21) The reference image and the image to be evaluated are respectively subjected to color space transformation:

其中R、G、B分别表示彩色图像的红色、绿色和蓝色通道;L表示亮度通道,M、N表示色度通道;Among them, R, G, and B respectively represent the red, green and blue channels of the color image; L represents the brightness channel, and M and N represent the chrominance channel;

(22)提取参考图像和待评价图像的M、N色度通道图,逐像素计算参考图像和待评价图像的色度相似性特征,计算公式为:(22) Extract the M and N chromaticity channel maps of the reference image and the image to be evaluated, and calculate the chromaticity similarity features of the reference image and the image to be evaluated pixel by pixel, and the calculation formula is:

Sc(x)=Scm(x)·Scn(x)S c (x) = S cm (x) · S cn (x)

其中C1为正常数,M1(x)和M2(x)分别表示参考图像M色度通道灰度值和待评价图像M色度通道灰度值,N1(x)和N2(x)分别表示参考图像M色度通道灰度值和待评价图像N色度通道灰度值,Scm(x)为M色度通道相似性特征,Scn(x)为N色度通道相似性特征。Wherein C 1 is a normal number, M 1 (x) and M 2 (x) respectively represent the gray value of the M chroma channel of the reference image and the gray value of the M chroma channel of the image to be evaluated, N 1 (x) and N 2 ( x) represent the gray value of the M chroma channel of the reference image and the gray value of the N chroma channel of the image to be evaluated, S cm (x) is the similarity feature of the M chroma channel, S cn (x) is the similarity feature of the N chroma channel sexual characteristics.

(3)提取参考图像和待评价图像的亮度通道图,使用log-Gabor小波获得相位一致性相似特征;设相位一致性相似性特征为Spc(x),获得Spc(x)的方法如下:(3) Extract the luminance channel images of the reference image and the image to be evaluated, and use the log-Gabor wavelet to obtain the phase consistency similarity feature; set the phase consistency similarity feature as S pc (x), and the method of obtaining S pc (x) is as follows :

(31)利用二维的log-Gabor滤波器,计算参考图像和待评价图像L亮度通道图点x处在方向为θj和尺度为n下的偶对称滤波响应和奇对称滤波响应二维log-Gabor滤波器表达式为:(31) Using a two-dimensional log-Gabor filter, calculate the even symmetric filter response of the reference image and the image to be evaluated L with a brightness channel map point x in the direction θj and scale n and odd symmetric filter response The two-dimensional log-Gabor filter expression is:

其中j表示第j个方向,J表示方向的数目,σθ用于确定滤波器角度的带宽;θ表示滤波器的方向角;ω代表滤波器的角频率;ω0表示二位log-Gabor滤波器的中心频率,k表示滤波器的形状参数,滤波器的形状由ω0与k决定。in j represents the jth direction, J represents the number of directions, σ θ is used to determine the bandwidth of the filter angle; θ represents the direction angle of the filter; ω represents the angular frequency of the filter; ω 0 represents the two-bit log-Gabor filter The center frequency of , k represents the shape parameter of the filter, and the shape of the filter is determined by ω 0 and k.

(32)计算在方向为θj和尺度为n下的和幅值与方向为θj的响应局部能量 (32) Calculating the sum magnitude under the direction θ j and scale n with the response local energy in direction θ j

(33)综合各方向各尺度的响应,计算各点的相位一致性:(33) Synthesize the responses of all directions and scales, and calculate the phase consistency of each point:

其中ε为正常数;Where ε is a normal number;

用相同的方法计算参考图像的亮度通道相位一致性特征PC1(x)和待评价图像的亮度通道相位一致性特征PC2(x);Using the same method to calculate the luminance channel phase consistency feature PC 1 (x) of the reference image and the luminance channel phase consistency feature PC 2 (x) of the image to be evaluated ;

(34)逐像素计算参考图像与待评价图像L亮度通道图相位一致性相似特征:(34) Calculate the phase-consistency similarity features of the reference image and the image to be evaluated L luminance channel diagram pixel by pixel:

其中,C2为正常数。Among them, C 2 is a normal constant.

(4)根据参考图像、待评价图像的尺寸,利用位置显著性公式,获取参考图像和待评价图像的位置显著性特征;设位置显著性特征为Sd(x),获得Sd(x)的方法如下:(4) According to the size of the reference image and the image to be evaluated, use the positional saliency formula to obtain the positional saliency features of the reference image and the image to be evaluated; set the positional saliency feature as S d (x), and obtain S d (x) The method is as follows:

其中,xc为特征图中心点;表示特征图x点与中心点的距离;σd 2为经验参数。Among them, x c is the center point of the feature map; Indicates the distance between the feature map x point and the center point; σ d 2 is an empirical parameter.

(5)通过位置显著性特征加权的标准差池化相位一致性相似性特征和色度相似性特征,获得待评价图像的质量,具体包括:(5) Obtain the quality of the image to be evaluated through the standard error pooling phase consistency similarity feature and chromaticity similarity feature weighted by the positional saliency feature, including:

(51)设总体相似性特征为SM(x),联合Spc(x)和Sc(x)计算SM(x):(51) Let the overall similarity feature be SM(x), and combine S pc (x) and S c (x) to calculate SM(x):

SM(x)=Spc(x)·Sc(x)SM(x)=S pc (x)·S c (x)

(52)利用位置显著性特征大小计算各点在后续池化质量特征中的权重:(52) Calculate the weight of each point in the subsequent pooling quality feature by using the positional saliency feature size:

(53)设总体相似性质量值为SMD,通过位置显著性特征加权标准差池化相位一致性相似性和色度相似性特征,计算SMD来评价待评价图像质量:(53) Set the overall similarity quality value as SMD, and calculate the SMD to evaluate the quality of the image to be evaluated by pooling the phase consistency similarity and chromaticity similarity features with the weighted standard deviation of the positional salience feature:

其中,MM和NN分别为待评价图像的宽和高。Among them, MM and NN are the width and height of the image to be evaluated, respectively.

对于步骤(51),由于人类视觉上高辨识度的图像特征位置,如图像的边缘点位置,与那些频域系数相位全等的点位置保持了一致性,因此描述信号频域变换的各系数之间相位角一致特性的相位一致性特征能有效表征人眼对于图像结构信息的接受过程,但相位一致性无法提取彩色图像中的色彩信息,因此将相位一致性相似性和色度相似性联合,使得提取的质量特征能更为全面地衡量图像的结构和色彩信息。For step (51), since the image feature positions with high recognition degree in human vision, such as the edge point positions of the image, are consistent with those point positions with congruent phases of the frequency domain coefficients, the coefficients describing the frequency domain transformation of the signal The phase consistency feature of the phase angle consistency between them can effectively characterize the acceptance process of the human eye for the image structure information, but the phase consistency cannot extract the color information in the color image, so the combination of phase consistency similarity and chromaticity similarity , so that the extracted quality features can measure the structure and color information of the image more comprehensively.

对于步骤(52),在得到参考图像和失真图像的相位一致性相似性与色度相似性联合特征图后,由于人眼视觉系统对于图像区域中央区域的感知程度大于周围边缘区域,因此引入位置显著性特征图对步骤(51)得到的质量特征进行加权,使中央区域的质量特征相比于周围区域具有更大的比重,从而更加符合人眼视觉系统的感知。For step (52), after obtaining the joint feature map of the phase consistency similarity and chromaticity similarity of the reference image and the distorted image, since the human visual system perceives the central area of the image area more than the surrounding edge area, the position The saliency feature map weights the quality features obtained in step (51), so that the quality features of the central region have a larger proportion than the surrounding regions, which is more in line with the perception of the human visual system.

对于步骤(53),通过池化加权后的质量特征,得到总体的评价值。通常的图像质量评价方法中采用的局部质量特征的池化方式是平均池化法,平均池化法在统计局部特征时,隐含了图像每个像素对于总体图像质量具有同样大小的重要性。由于同样程度的失真在不同图像区域导致的感知质量变化程度是存在差异的,如同样的模糊失真,在结构、纹理区域比平滑区域会引起更大的感知质量变化。标准差池化方法相比与平均池化方法更能反映图像失真程度的范围。For step (53), the overall evaluation value is obtained by pooling the weighted quality features. The pooling method of local quality features used in the usual image quality evaluation method is the average pooling method. When the average pooling method counts local features, it implies that each pixel of the image has the same importance to the overall image quality. Because the same degree of distortion causes different degrees of perceptual quality changes in different image regions, such as the same blurred distortion, it will cause greater perceptual quality changes in structural and textured regions than in smooth regions. The standard error pooling method can better reflect the range of image distortion than the average pooling method.

步骤(51)的方法通过联合相位一致性与色度的相似性使得方法适应于图像结构与色彩信息的综合评价,提高评价方法的适用范围;此外,再结合位置显著性特征,提高评价方法的主观一致性。The method in step (51) makes the method suitable for the comprehensive evaluation of image structure and color information by combining phase consistency and chromaticity similarity, and improves the scope of application of the evaluation method; in addition, combined with the position saliency feature, the evaluation method is improved. Subjective consistency.

Claims (5)

1. A color image quality comprehensive evaluation method is characterized by comprising the following steps:
(1) inputting a color image to be evaluated and a reference image;
(2) respectively carrying out color space transformation on the reference image and the image to be evaluated to obtain a luminance channel image and a chrominance channel image of the reference image and the image to be evaluated, extracting the chrominance channel images of the reference image and the image to be evaluated, and calculating chrominance similarity characteristics;
(3) extracting brightness channel graphs of a reference image and an image to be evaluated, and obtaining phase consistency similar characteristics by using log-Gabor wavelets;
(4) according to the sizes of the reference image and the image to be evaluated, acquiring position significance characteristics of the reference image and the image to be evaluated by using a position significance formula;
(5) and obtaining the quality of the image to be evaluated through standard deviation pooling phase consistency similarity characteristics and chromaticity similarity characteristics weighted by the position saliency characteristics.
2. The color image quality comprehensive evaluation method according to claim 1, wherein x is set to represent a pixel point in a reference image or an image to be evaluated, and the phase consistency similarity characteristic in the step (3) is set to be Spc(x) The chroma similarity characteristic in the step (2) is set as Sc(x) Let the location saliency be Sd(x) The step (5) specifically comprises:
(51) let overall similarity feature SM (x), in combination with Spc(x) And Sc(x) Calculate sm (x):
SM(x)=Spc(x)·Sc(x)
(52) and calculating the weight of each point in the subsequent pooling quality characteristics by using the position significance characteristic size:
<mrow> <msub> <mi>S</mi> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>S</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mo>&amp;Sigma;</mo> <mi>x</mi> </munder> <msub> <mi>S</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
(53) and (3) setting the total similar property quantity value as an SMD, calculating the SMD to evaluate the quality of the image to be evaluated by pooling phase consistency and chromaticity similarity characteristics through the position significance characteristic weighting standard difference:
<mrow> <mover> <mrow> <mi>S</mi> <mi>M</mi> </mrow> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <munder> <mo>&amp;Sigma;</mo> <mi>x</mi> </munder> <mi>S</mi> <mi>M</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>M</mi> <mi>M</mi> <mo>&amp;CenterDot;</mo> <mi>N</mi> <mi>N</mi> </mrow> </mfrac> </mrow>
<mrow> <mi>S</mi> <mi>M</mi> <mi>D</mi> <mo>=</mo> <msqrt> <mrow> <msub> <mi>S</mi> <mrow> <mi>r</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>(</mo> <mi>S</mi> <mi>M</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>-</mo> <mover> <mrow> <mi>S</mi> <mi>M</mi> </mrow> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow>
wherein, MM and NN are respectively the width and height of the image to be evaluated.
3. The comprehensive color image quality evaluation method according to claim 2, wherein the specific method for calculating the chroma similarity characteristic in the step (2) comprises the following steps:
(21) and respectively carrying out color space transformation on the reference image and the image to be evaluated:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <mi>M</mi> </mtd> </mtr> <mtr> <mtd> <mi>N</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0.06</mn> </mtd> <mtd> <mn>0.63</mn> </mtd> <mtd> <mn>0.27</mn> </mtd> </mtr> <mtr> <mtd> <mn>0.30</mn> </mtd> <mtd> <mn>0.04</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>0.35</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0.34</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>0.60</mn> </mrow> </mtd> <mtd> <mn>0.17</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>R</mi> </mtd> </mtr> <mtr> <mtd> <mi>G</mi> </mtd> </mtr> <mtr> <mtd> <mi>B</mi> </mtd> </mtr> </mtable> </mfenced> </mrow>
wherein R, G, B represent the red, green, and blue channels of a color image, respectively; l denotes a luminance channel, M, N denotes a chrominance channel;
(22) extracting M, N chrominance channel images of the reference image and the image to be evaluated, and calculating the chrominance similarity characteristics of the reference image and the image to be evaluated pixel by pixel, wherein the calculation formula is as follows:
<mrow> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>M</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> </mrow> <mrow> <msubsup> <mi>M</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>M</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow>
<mrow> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> </mrow> <mrow> <msubsup> <mi>N</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>N</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow>
Sc(x)=Scm(x)·Scn(x)
wherein C is1Is a normal number, M1(x) And M2(x) Respectively representing the gray value of the M chrominance channel of the reference image and the gray value of the M chrominance channel of the image to be evaluated, N1(x) And N2(x) Respectively representing the gray value of the M chroma channel of the reference image and the gray value of the N chroma channel of the image to be evaluated, Scm(x) For M chroma channel similarity features, Scn(x) Is an N chroma channel similarity feature.
4. The comprehensive evaluation method for the quality of the color images according to the claim 2 or 3, wherein the specific method for obtaining the similar characteristics of phase consistency by using log-Gabor wavelets in the step (3) comprises the following steps:
(31) calculating the position of a reference image and an image to be evaluated L brightness channel image point x in the direction of theta by using a two-dimensional log-Gabor filterjEven symmetric filter response at sum scale nAnd odd symmetric filter responseThe two-dimensional log-Gabor filter expression is:
<mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>lg</mi> <mo>(</mo> <mfrac> <mi>&amp;omega;</mi> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> </mfrac> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mi>lg</mi> <mo>(</mo> <mfrac> <mi>k</mi> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> </mfrac> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msubsup> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
whereinJ denotes the jth direction, J denotes the number of directions, σθA bandwidth for determining a filter angle; θ represents the filter direction angle; ω represents the angular frequency of the filter; omega0Representing the center frequency of a two-bit log-Gabor filter, k representing the shape parameter of the filter, the shape of the filter being defined by ω0And k.
(32) Calculate θ in the directionjSum amplitude with sum scale nAnd direction of thetajIn response to local energy
<mrow> <msub> <mi>A</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <msub> <mi>e</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> </mrow> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <msub> <mi>o</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> </mrow> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </msqrt> </mrow>
<mrow> <msub> <mi>E</mi> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <munder> <mo>&amp;Sigma;</mo> <mi>n</mi> </munder> <msub> <mi>e</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <munder> <mo>&amp;Sigma;</mo> <mi>n</mi> </munder> <msub> <mi>o</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> </mrow> </msub> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow>
(33) And (3) synthesizing the responses of all dimensions in all directions, and calculating the phase consistency of all points:
<mrow> <mi>P</mi> <mi>C</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <munder> <mo>&amp;Sigma;</mo> <mi>j</mi> </munder> <msub> <mi>E</mi> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mo>&amp;Sigma;</mo> <mi>j</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>n</mi> </munder> <msub> <mi>A</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;epsiv;</mi> </mrow> </mfrac> </mrow>
wherein ε is a normal number;
calculating the phase consistency characteristic PC of the brightness channel of the reference image by the same method1(x) And the phase consistency characteristic PC of the brightness channel of the image to be evaluated2(x);
(34) Calculating similar characteristics of phase consistency of the reference image and the L brightness channel image of the image to be evaluated pixel by pixel:
<mrow> <msub> <mi>S</mi> <mrow> <mi>p</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>PC</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msub> <mi>PC</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> </mrow> <mrow> <msubsup> <mi>PC</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>PC</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> </mrow> </mfrac> </mrow>
wherein, C2Is a normal number.
5. The comprehensive evaluation method of color image quality according to claim 2 or 3, characterized in that the position saliency of each point in the step (4) is characterized by:
<mrow> <msub> <mi>S</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>c</mi> </msub> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> <mrow> <msup> <msub> <mi>&amp;sigma;</mi> <mi>d</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
wherein x iscIs the feature map center point;representing the distance between the x point and the central point of the feature map; sigmad 2Are empirical parameters.
CN201710733673.1A 2017-08-23 2017-08-23 A kind of color image quality integrated evaluating method Pending CN107705286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710733673.1A CN107705286A (en) 2017-08-23 2017-08-23 A kind of color image quality integrated evaluating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710733673.1A CN107705286A (en) 2017-08-23 2017-08-23 A kind of color image quality integrated evaluating method

Publications (1)

Publication Number Publication Date
CN107705286A true CN107705286A (en) 2018-02-16

Family

ID=61171105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710733673.1A Pending CN107705286A (en) 2017-08-23 2017-08-23 A kind of color image quality integrated evaluating method

Country Status (1)

Country Link
CN (1) CN107705286A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109086740A (en) * 2018-08-25 2018-12-25 李叶 Stagewise ferry safety check mechanism
CN109191431A (en) * 2018-07-27 2019-01-11 天津大学 High dynamic color image quality evaluation method based on characteristic similarity
CN110084298A (en) * 2019-04-23 2019-08-02 北京百度网讯科技有限公司 Method and device for detection image similarity
CN110276744A (en) * 2019-05-15 2019-09-24 北京航空航天大学 Image mosaic quality evaluation method and device
CN110310269A (en) * 2019-06-27 2019-10-08 华侨大学 Evaluation method of light field image quality based on multi-scale Gabor feature similarity of polar plane
CN110599551A (en) * 2018-06-12 2019-12-20 佳能株式会社 Image processing apparatus, image processing method, and storage medium
CN110807759A (en) * 2019-09-16 2020-02-18 幻想动力(上海)文化传播有限公司 Method and device for evaluating photo quality, electronic equipment and readable storage medium
CN111127437A (en) * 2019-12-25 2020-05-08 浙江传媒学院 Full-reference image quality evaluation method based on color space decomposition
CN112348771A (en) * 2020-09-25 2021-02-09 深圳市运泰利自动化设备有限公司 Imaging consistency evaluation method based on wavelet transformation
CN112381761A (en) * 2020-10-12 2021-02-19 华南理工大学 Robust low-illumination enhanced image quality evaluation method
CN113724179A (en) * 2020-05-15 2021-11-30 天津大学 Method and device for calculating space brightness evaluation index

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105354835A (en) * 2015-10-16 2016-02-24 浙江工业大学 Method for evaluating medical image quality in combination with phase consistency, gradient magnitude and structural prominence
CN106504230A (en) * 2016-10-11 2017-03-15 华侨大学 Complete based on phase equalization refers to color/graphics image quality measure method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105354835A (en) * 2015-10-16 2016-02-24 浙江工业大学 Method for evaluating medical image quality in combination with phase consistency, gradient magnitude and structural prominence
CN106504230A (en) * 2016-10-11 2017-03-15 华侨大学 Complete based on phase equalization refers to color/graphics image quality measure method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZHOU WANG ET AL.: "Information Content Weighting for Perceptual Image Quality Assessment", 《IEEE TRANSACTIONS ON IMAGE PROCESSING》 *
闫钧华 等: "基于显著性图像边缘的全参考图像质量评价", 《仪器仪表学报》 *
陈仲珊: "基于视觉注意机制的图像显示质量研究", 《中国博士学位论文全文数据库》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110599551A (en) * 2018-06-12 2019-12-20 佳能株式会社 Image processing apparatus, image processing method, and storage medium
CN110599551B (en) * 2018-06-12 2024-03-01 佳能株式会社 Image processing apparatus, image processing method, and storage medium
CN109191431A (en) * 2018-07-27 2019-01-11 天津大学 High dynamic color image quality evaluation method based on characteristic similarity
CN109086740A (en) * 2018-08-25 2018-12-25 李叶 Stagewise ferry safety check mechanism
CN110084298A (en) * 2019-04-23 2019-08-02 北京百度网讯科技有限公司 Method and device for detection image similarity
CN110276744A (en) * 2019-05-15 2019-09-24 北京航空航天大学 Image mosaic quality evaluation method and device
CN110276744B (en) * 2019-05-15 2021-10-26 北京航空航天大学 Image splicing quality evaluation method and device
CN110310269A (en) * 2019-06-27 2019-10-08 华侨大学 Evaluation method of light field image quality based on multi-scale Gabor feature similarity of polar plane
CN110310269B (en) * 2019-06-27 2022-11-01 华侨大学 Light field image quality evaluation method based on polar plane multi-scale Gabor characteristic similarity
CN110807759A (en) * 2019-09-16 2020-02-18 幻想动力(上海)文化传播有限公司 Method and device for evaluating photo quality, electronic equipment and readable storage medium
CN110807759B (en) * 2019-09-16 2022-09-06 上海甜里智能科技有限公司 Method and device for evaluating photo quality, electronic equipment and readable storage medium
CN111127437A (en) * 2019-12-25 2020-05-08 浙江传媒学院 Full-reference image quality evaluation method based on color space decomposition
CN113724179A (en) * 2020-05-15 2021-11-30 天津大学 Method and device for calculating space brightness evaluation index
CN113724179B (en) * 2020-05-15 2023-09-15 天津大学 Calculation method and device for space brightness evaluation index
CN112348771A (en) * 2020-09-25 2021-02-09 深圳市运泰利自动化设备有限公司 Imaging consistency evaluation method based on wavelet transformation
CN112348771B (en) * 2020-09-25 2022-04-15 深圳市运泰利自动化设备有限公司 Imaging consistency evaluation method based on wavelet transformation
CN112381761B (en) * 2020-10-12 2022-09-30 华南理工大学 A robust low-light enhanced image quality evaluation method
CN112381761A (en) * 2020-10-12 2021-02-19 华南理工大学 Robust low-illumination enhanced image quality evaluation method

Similar Documents

Publication Publication Date Title
CN107705286A (en) A kind of color image quality integrated evaluating method
CN105744256B (en) Based on the significant objective evaluation method for quality of stereo images of collection of illustrative plates vision
CN105049851B (en) General non-reference picture quality appraisement method based on Color perception
CN108830823B (en) Full-reference image quality evaluation method based on spatial domain combined frequency domain analysis
CN103595980B (en) Based on the color filter array image demosaicing method of outline non-local mean value
CN104994375A (en) Three-dimensional image quality objective evaluation method based on three-dimensional visual saliency
CN103338380B (en) Adaptive image quality objective evaluation method
CN105354835A (en) Method for evaluating medical image quality in combination with phase consistency, gradient magnitude and structural prominence
CN111489346B (en) Full-reference image quality evaluation method and system
CN102036098B (en) Full-reference type image quality evaluation method based on visual information amount difference
CN109345502B (en) Stereo image quality evaluation method based on disparity map stereo structure information extraction
CN106504230B (en) A full-reference color screen image quality assessment method based on phase consistency
CN107610093A (en) Full-reference image quality evaluating method based on similarity feature fusion
CN109492527B (en) A kind of remote sensing images sub-pixed mapping localization method based on panchromatic sharpening technique
CN103354617B (en) Boundary strength compressing image quality objective evaluation method based on DCT domain
CN102073989B (en) Speckle suppression method for polarized SAR (Synthetic Aperture Radar) data based on non-local mean value fused with PCA (Polar Cap Absorption)
CN109242834A (en) It is a kind of based on convolutional neural networks without reference stereo image quality evaluation method
CN105976351A (en) Central offset based three-dimensional image quality evaluation method
CN105205820A (en) Improved characteristic similarity image quality evaluating method
CN104574363B (en) A kind of full reference image quality appraisement method for considering gradient direction difference
CN108447059A (en) It is a kind of to refer to light field image quality evaluating method entirely
CN107169946A (en) Image interfusion method based on non-negative sparse matrix Yu hypersphere color transformation
CN105303542A (en) Gradient weighted-based adaptive SFIM image fusion algorithm
CN102497576B (en) Full-reference image quality assessment method based on mutual information of Gabor features (MIGF)
CN103841411B (en) A kind of stereo image quality evaluation method based on binocular information processing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216

RJ01 Rejection of invention patent application after publication