[go: up one dir, main page]

CN107705248A - Image processing method, device, electronic device, and computer-readable storage medium - Google Patents

Image processing method, device, electronic device, and computer-readable storage medium Download PDF

Info

Publication number
CN107705248A
CN107705248A CN201711053857.XA CN201711053857A CN107705248A CN 107705248 A CN107705248 A CN 107705248A CN 201711053857 A CN201711053857 A CN 201711053857A CN 107705248 A CN107705248 A CN 107705248A
Authority
CN
China
Prior art keywords
image
face image
face
angle
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711053857.XA
Other languages
Chinese (zh)
Inventor
王会朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority to CN201711053857.XA priority Critical patent/CN107705248A/en
Publication of CN107705248A publication Critical patent/CN107705248A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/04Context-preserving transformations, e.g. by using an importance map
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

The application relates to an image processing method, an image processing device, an electronic device and a computer readable storage medium. The method comprises the following steps: carrying out face recognition on an image to be processed, and recognizing a face image in the image to be processed; acquiring a first front face image corresponding to the face image; selecting a plurality of characteristic points from the first front face image according to a preset rule, and respectively obtaining horizontal distance values of the plurality of characteristic points and a face contour; determining a face shape corresponding to the face image according to the ratio of the horizontal distance values; and adjusting the five sense organs in the face image and the contour of the face image according to the face shape. According to the method, after the face image is identified in the image to be processed, the face shape of the face image can be analyzed and obtained, and then the size of five sense organs in the face image and the outline of the face image are correspondingly adjusted according to the face shape of the face image, so that the face shape adjustment of the face image is more intelligent and personalized.

Description

图像处理方法、装置、电子设备和计算机可读存储介质Image processing method, device, electronic device, and computer-readable storage medium

技术领域technical field

本申请涉及计算机技术领域,特别是涉及一种图像处理方法、装置、电子设备和计算机可读存储介质。The present application relates to the field of computer technology, in particular to an image processing method, device, electronic equipment and computer-readable storage medium.

背景技术Background technique

随着电子设备的迅速发展,越来越多的用户采用电子设备拍摄图像。电子设备可对拍摄获取的图像进行美化处理。进一步地,电子设备还可对拍摄获取的人像图像进行美颜处理,例如对人像进行美白、磨皮、祛斑、祛痘等。With the rapid development of electronic equipment, more and more users use electronic equipment to capture images. The electronic device can beautify the captured image. Furthermore, the electronic device can also perform beauty treatment on the captured portrait image, for example, whitening, skin smoothing, freckle removal, acne removal, etc. on the portrait.

发明内容Contents of the invention

本申请实施例提供一种图像处理方法、装置、电子设备和计算机可读存储介质,可以使对针对人脸图像的脸型调整人脸图像中五官和人脸图像的轮廓。Embodiments of the present application provide an image processing method, device, electronic device, and computer-readable storage medium, which can adjust facial features and contours of the face image for the face shape of the face image.

一种图像处理方法,包括:An image processing method, comprising:

对待处理图像进行人脸识别,识别所述待处理图像中人脸图像;Perform face recognition on the image to be processed, and identify the face image in the image to be processed;

获取与所述人脸图像对应的第一正脸图像;Acquiring a first front face image corresponding to the face image;

根据预设规则从所述第一正脸图像上选取多个特征点,分别获取所述多个特征点与人脸轮廓的水平距离值;selecting a plurality of feature points from the first front face image according to preset rules, and obtaining horizontal distance values between the plurality of feature points and the contour of the face;

根据所述水平距离值之间的比值确定所述人脸图像对应的脸型;determining the face shape corresponding to the face image according to the ratio between the horizontal distance values;

根据所述脸型调整所述人脸图像中五官和所述人脸图像的轮廓。Adjusting the facial features in the face image and the outline of the face image according to the face shape.

一种图像处理装置,包括:An image processing device, comprising:

识别模块,用于对待处理图像进行人脸识别,识别所述待处理图像中人脸图像;The identification module is used to perform face recognition on the image to be processed, and identify the face image in the image to be processed;

获取模块,用于获取与所述人脸图像对应的第一正脸图像;An acquisition module, configured to acquire a first front face image corresponding to the face image;

脸型确定模块,用于根据预设规则从所述第一正脸图像上选取多个特征点,分别获取所述多个特征点与人脸轮廓的水平距离值;根据所述水平距离值之间的比值确定所述人脸图像对应的脸型;A face shape determination module, configured to select a plurality of feature points from the first frontal face image according to preset rules, and respectively obtain horizontal distance values between the plurality of feature points and the contour of the face; The ratio determines the face shape corresponding to the face image;

处理模块,用于根据所述脸型调整所述人脸图像中五官和所述人脸图像的轮廓。A processing module, configured to adjust the facial features in the face image and the contour of the face image according to the face shape.

一种电子设备,包括存储器及处理器,所述存储器中储存有计算机可读指令,所述指令被所述处理器执行时,使得所述处理器执行如上所述的方法。An electronic device includes a memory and a processor, wherein computer-readable instructions are stored in the memory, and when the instructions are executed by the processor, the processor is made to execute the method as described above.

一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行如上所述的方法。A computer-readable storage medium, on which a computer program is stored, and the computer program is executed by a processor to perform the method as described above.

本申请实施例中,在待处理图像中识别出人脸图像后,可分析获取人脸图像的脸型,再根据人脸图像的脸型对应调整人脸图像中五官大小和人脸图像的轮廓,对人脸图像的脸型调整更加智能化和个性化。In the embodiment of the present application, after the face image is identified in the image to be processed, the face shape of the face image can be analyzed and obtained, and then the size of the facial features in the face image and the contour of the face image can be adjusted according to the face shape of the face image. The face shape adjustment of the face image is more intelligent and personalized.

附图说明Description of drawings

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present application. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1为一个实施例中电子设备的内部结构示意图;Fig. 1 is a schematic diagram of the internal structure of an electronic device in an embodiment;

图2为一个实施例中图像处理方法的流程图;Fig. 2 is a flowchart of an image processing method in an embodiment;

图3为一个实施例中在第一正脸图像上获取特征点和特征点的水平距离值的示意图;Fig. 3 is a schematic diagram of acquiring feature points and horizontal distance values of feature points on the first front face image in one embodiment;

图4为另一个实施例中在第一正脸图像上获取特征点和特征点的水平距离值的示意图;FIG. 4 is a schematic diagram of obtaining feature points and horizontal distance values of feature points on the first front face image in another embodiment;

图5为一个实施例中将人脸图像旋转得到对应的第一正脸图像的示意图;Fig. 5 is a schematic diagram of rotating the face image to obtain the corresponding first front face image in one embodiment;

图6为另一个实施例中图像处理方法的流程图;Fig. 6 is the flowchart of image processing method in another embodiment;

图7为另一个实施例中图像处理方法的流程图;Fig. 7 is the flowchart of image processing method in another embodiment;

图8为另一个实施例中图像处理方法的流程图;Fig. 8 is a flowchart of an image processing method in another embodiment;

图9为一个实施例中图像处理装置的结构框图;Fig. 9 is a structural block diagram of an image processing device in an embodiment;

图10为另一个实施例中图像处理装置的结构框图;Fig. 10 is a structural block diagram of an image processing device in another embodiment;

图11为另一个实施例中图像处理装置的结构框图;Fig. 11 is a structural block diagram of an image processing device in another embodiment;

图12为一个实施例中图像处理电路的示意图。Fig. 12 is a schematic diagram of an image processing circuit in one embodiment.

具体实施方式Detailed ways

为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application clearer, the present application will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.

图1为一个实施例中电子设备的内部结构示意图。如图1所示,该电子设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该处理器用于提供计算和控制能力,支撑整个计算机设备的运行。存储器用于存储数据、程序等,存储器上存储至少一个计算机程序,该计算机程序可被处理器执行,以实现本申请实施例中提供的适用于电子设备的图像处理方法。存储器可包括磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等非易失性存储介质,或随机存储记忆体(Random-Access-Memory,RAM)等。例如,在一个实施例中,存储器包括非易失性存储介质及内存储器。非易失性存储介质存储有操作系统和计算机程序。该计算机程序可被处理器所执行,以用于实现以下各个实施例所提供的一种无线网络通信方法。内存储器为非易失性存储介质中的操作系统计算机程序提供高速缓存的运行环境。网络接口可以是以太网卡或无线网卡等,用于与外部的计算机设备进行通信。该计算机设备可以是手机、平板电脑或者个人数字助理或穿戴式设备等。Fig. 1 is a schematic diagram of the internal structure of an electronic device in one embodiment. As shown in FIG. 1, the electronic device includes a processor, a memory and a network interface connected through a system bus. Among them, the processor is used to provide calculation and control capabilities, and support the operation of the entire computer equipment. The memory is used to store data, programs, etc., and at least one computer program is stored on the memory, and the computer program can be executed by the processor to implement the image processing method suitable for electronic equipment provided in the embodiments of the present application. The memory may include a non-volatile storage medium such as a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random-access-memory (Random-Access-Memory, RAM). For example, in one embodiment, the memory includes non-volatile storage media and internal memory. Nonvolatile storage media store operating systems and computer programs. The computer program can be executed by a processor, so as to implement a wireless network communication method provided in each of the following embodiments. The internal memory provides a high-speed running environment for the operating system computer program in the non-volatile storage medium. The network interface can be an Ethernet card or a wireless network card, etc., and is used for communicating with external computer equipment. The computer device may be a mobile phone, a tablet computer, or a personal digital assistant or a wearable device.

图2为一个实施例中图像处理方法的流程图。如图2所示,一种图像处理方法,包括:Fig. 2 is a flowchart of an image processing method in one embodiment. As shown in Figure 2, an image processing method includes:

步骤202,对待处理图像进行人脸识别,识别待处理图像中人脸图像。Step 202, face recognition is performed on the image to be processed, and the face image in the image to be processed is recognized.

电子设备在获取到待处理图像后,可采用人脸识别算法对待处理图像进行人脸识别,识别上述待处理图像中包含的人脸图像。上述待处理图像可为电子设备拍摄的图像、电子设备已存储的图像、电子设备利用数据网络或无线局域网下载的图像等。After the electronic device acquires the image to be processed, it may use a face recognition algorithm to perform face recognition on the image to be processed, and identify the face image included in the image to be processed. The image to be processed may be an image taken by the electronic device, an image stored by the electronic device, an image downloaded by the electronic device through a data network or a wireless local area network, and the like.

步骤204,获取与人脸图像对应的第一正脸图像。Step 204, acquiring a first front face image corresponding to the face image.

电子设备在识别待处理图像中人脸图像后,可获取上述人脸图像对应的第一正脸图像。若待处理图像中人脸图像为正脸图像,则上述第一正脸图像是人脸图像;若待处理图像中人脸图像不为正脸图像,则可获取人脸图像在三维空间中偏移角度,将上述人脸图像按偏移角度还原得到的正脸图像即为第一正脸图像。上述正脸图像是指人脸区域左右对称的图像,上述正脸图像可为被摄者人脸正对摄像头所拍摄的二维图像。After the electronic device recognizes the face image in the image to be processed, it can acquire the first front face image corresponding to the face image. If the face image in the image to be processed is a front face image, then the above-mentioned first front face image is a face image; The front face image obtained by restoring the above-mentioned face image according to the shift angle is the first front face image. The above-mentioned front face image refers to a left-right symmetric image of the face area, and the above-mentioned front face image may be a two-dimensional image captured by the subject's face facing the camera.

步骤206,根据预设规则从第一正脸图像上选取多个特征点,分别获取多个特征点与人脸轮廓的水平距离值。Step 206, select a plurality of feature points from the first frontal face image according to preset rules, and obtain horizontal distance values between the plurality of feature points and the contour of the human face respectively.

电子设备在获取人脸图像对应的第一正脸图像后,可在第一正脸图像上选取多个特征点。电子设备按照预设规则从第一正脸图像上选取多个特征点,上述多个特征点位于人脸图像中人脸轮廓所形成的封闭区域内。其中,电子设备按照预设规则从第一正脸图像上选取多个特征点包括:电子设备可获取第一正脸图像的中轴线,再根据第一人脸区域中五官特征点与中轴线确定上述多个特征点;电子设备也可直接根据五官特征点确定上述多个特征点,例如,取人脸图像中眉心位置作为第一特征点。After the electronic device acquires the first front face image corresponding to the human face image, a plurality of feature points may be selected on the first front face image. The electronic device selects a plurality of feature points from the first frontal face image according to preset rules, and the plurality of feature points are located in a closed area formed by the contour of the face in the face image. Wherein, the electronic device selects a plurality of feature points from the first front face image according to preset rules, including: the electronic device can obtain the central axis of the first front face image, and then determine according to the facial features feature points and the central axis in the first face area. The above-mentioned multiple feature points; the electronic device may also directly determine the above-mentioned multiple feature points according to the feature points of facial features, for example, the position of the brow center in the face image is taken as the first feature point.

电子设备在获取到第一正脸图像上多个特征点后,可分别获取上述多个特征点与人脸轮廓的水平距离值。特征点与人脸轮廓的水平距离值是指以特征点为起点在水平方向上一个方向延伸的直线与人脸轮廓相交时,特征点与交点形成的线段的长度。在一个实施例中,特征点与人脸轮廓的水平距离值可为包含特征点的水平直线与人脸轮廓有2个交点时,上述2个交点形成的线段的长度。After acquiring the plurality of feature points on the first frontal face image, the electronic device may respectively acquire horizontal distance values between the plurality of feature points and the contour of the human face. The horizontal distance between the feature point and the face contour refers to the length of the line segment formed by the feature point and the intersection point when a straight line extending in one direction in the horizontal direction starting from the feature point intersects the face contour. In one embodiment, the horizontal distance value between the feature point and the contour of the face may be the length of the line segment formed by the two intersection points when the horizontal straight line including the feature point intersects with the contour of the face.

步骤208,根据水平距离值之间的比值确定人脸图像对应的脸型。Step 208, determine the face shape corresponding to the face image according to the ratio between the horizontal distance values.

电子设备在分别获取到多个特征点与人脸轮廓的水平距离值后,电子设备可获取上述多个特征点与人脸轮廓的水平距离值之间的比值。电子设备可根据上述比值确定人脸图像对应的脸型。After the electronic device obtains the horizontal distance values between the plurality of feature points and the contour of the face, the electronic device may obtain a ratio between the horizontal distance values between the plurality of feature points and the contour of the face. The electronic device can determine the face shape corresponding to the face image according to the above ratio.

脸型是指人脸面部的轮廓。人脸的上半部由上颌骨、颧骨、颞骨、额骨和顶骨构成,通常为圆弧形结构;人脸的下半部主要由下骸骨构成,下骸骨的形成不同,人脸的下半部形状不同。由于不同人的骨骼大小、骨骼形状各不相同,导致不同人脸的人脸长度、宽度各不相同,即不同的人具有不同的脸型。其中。人脸的脸型大致可分为圆脸、长方形脸、正方形脸、三角形脸和瓜子脸等。Face shape refers to the outline of the face. The upper part of the face is composed of the maxilla, zygomatic bone, temporal bone, frontal bone and parietal bone, usually in a circular arc shape; the lower part of the face is mainly composed of the lower bones, which are formed differently. The halves are shaped differently. Due to the different bone sizes and bone shapes of different people, the length and width of the faces of different people are different, that is, different people have different face shapes. in. The face shape of human face can be roughly divided into round face, rectangular face, square face, triangular face and oval face.

电子设备可通过大数据分析算法分析海量数据中不同脸型的人脸图像,根据分析的海量数据,电子设备可预存不同脸型中特征点的水平距离值的比值范围。移动终端在获取到第一正脸图像中多个特征点之间水平距离值的比值后,检测上述比值落入的比值范围,则上述比值范围对应的脸型即为第一正脸图像的脸型,即为待处理图像中人脸图像对应的脸型。Electronic devices can analyze face images of different face shapes in massive data through big data analysis algorithms. According to the analyzed massive data, electronic devices can pre-store the ratio range of horizontal distance values of feature points in different face shapes. After the mobile terminal obtains the ratio of the horizontal distance values between the multiple feature points in the first front face image, it detects the ratio range in which the above ratio falls, and the face shape corresponding to the above ratio range is the face shape of the first front face image, That is, the face shape corresponding to the face image in the image to be processed.

以在第一正脸图像中设置4个特征点为例,电子设备中预存圆脸脸型中4个特征点对应的水平距离值分别为a1、b1、c1和d1。将a1:b1:c1:d1的比值化简,上述化简方式可为以a1的值为1对应的调整b1、c1和d1的值。则圆脸脸型中b1的值范围为0.95-1,c1的值范围为0.68-0.75,d1的值的范围为0.45-0.52。电子设备若检测到第一人脸图像中4个特征点的水平距离的比值在上述圆脸脸型的比值范围内,则第一正脸图像为圆脸脸型。上述4个特征点以及4个特征点的水平距离值的比值范围仅为举例说明,在其他实施例中,电子设备可获取其他数量的特征点,如5个、6个;圆脸脸型中各个特征点的水平距离值比值也可为其他值。Taking setting four feature points in the first frontal face image as an example, the horizontal distance values corresponding to the four feature points in the round face prestored in the electronic device are respectively a1, b1, c1 and d1. To simplify the ratio of a1:b1:c1:d1, the above simplification method can be to adjust the values of b1, c1 and d1 corresponding to the value of a1 being 1. Then the value range of b1 in the round face shape is 0.95-1, the value range of c1 is 0.68-0.75, and the value range of d1 is 0.45-0.52. If the electronic device detects that the ratio of the horizontal distances of the four feature points in the first human face image is within the range of the ratio of the round face shape, the first frontal face image is a round face shape. The ratio ranges of the above-mentioned 4 feature points and the horizontal distance values of the 4 feature points are only for illustration. In other embodiments, the electronic device can obtain other numbers of feature points, such as 5 or 6; The ratio of the horizontal distance values of the feature points can also be other values.

步骤210,根据脸型调整人脸图像中五官和人脸图像的轮廓。Step 210, adjusting the facial features in the face image and the outline of the face image according to the face shape.

电子设备在获取人脸图像对应的脸型后,可根据人脸图像对应的脸型调整上述人脸图像中五官和和人脸图像的轮廓。其中,电子设备调整人脸图像中五官是指调整五官的大小;电子设备调整人脸图像的轮廓一般是指将人脸图像调小,即对人脸图像进行瘦脸。After acquiring the face shape corresponding to the face image, the electronic device may adjust the facial features in the face image and the outline of the face image according to the face shape corresponding to the face image. Wherein, adjusting the facial features in the face image by electronic equipment refers to adjusting the size of the facial features; adjusting the outline of the facial image by electronic equipment generally refers to reducing the size of the facial image, that is, thinning the face image.

电子设备中预存有不同脸型对应的调整策略。上述调整策略包括:调整人脸图像中五官大小,调整人脸图像的人脸轮廓。Adjustment strategies corresponding to different face shapes are pre-stored in the electronic device. The adjustment strategy above includes: adjusting the size of the facial features in the face image, and adjusting the contour of the face in the face image.

调整人脸图像中五官大小包括:电子设备中可预存每个脸型对应的标准五官分别占人脸面积的比值。电子设备可获取人脸图像中五官分别占人脸面积的比值,电子设备将人脸图像中五官分别占人脸面积的比值与对应脸型中标准五官分别占人脸面积的比值进行对比,若人脸图像中五官中某一器官占人脸面积的比值大于对应脸型中对应标准器官占人脸面积的比值,则将人脸图像中这一器官按照预设比例调大;若人脸图像中五官中某一器官占人脸面积的比值小于对应脸型中对应标准器官占人脸面积的比值,则将人脸图像中这一器官按照预设比例调小。例如,电子设备中预存瓜子脸脸型中单个标准眼睛占人脸面积的比值1/45,若人脸图像为瓜子脸且人脸图像中单个眼睛占人脸面积的比值为1/50,则将人脸图像中眼睛调大5%。Adjusting the size of the facial features in the face image includes: the ratio of the standard facial features corresponding to each face shape to the area of the face can be pre-stored in the electronic device. The electronic device can obtain the ratio of the facial features in the face image to the face area, and the electronic device compares the ratio of the facial features in the face image to the ratio of the standard facial features in the corresponding face shape. If the ratio of a certain organ in the facial features to the face area in the face image is greater than the ratio of the corresponding standard organ to the face area in the corresponding face shape, the organ in the face image will be enlarged according to the preset ratio; if the facial features in the face image If the ratio of a certain organ to the area of the face is smaller than the ratio of the corresponding standard organ to the area of the face in the corresponding face shape, the organ in the face image is reduced according to a preset ratio. For example, the ratio of a single standard eye to the face area of a melon-seed face pre-stored in the electronic device is 1/45, if the face image is a melon-seed face and the ratio of a single eye to the face area in the face image is 1/50, then the Eyes in face images are scaled up by 5%.

调整人脸图像的轮廓包括:电子设备中可预存每个脸型的调整策略,上述调整策略包括:人脸轮廓上每个点向人脸轮廓内部或外部位移的方向和角度。电子设备在获取到人脸图像对应的脸型后,可获取人脸图像的面积与对应的脸型面积的比值,再根据上述比值适应性的调整每个点向人脸轮廓内部或外部位移的方向和角度,根据调整后每个点向人脸轮廓内部或外部位移的方向和角度对人脸轮廓进行调整。Adjusting the contour of the face image includes: an adjustment strategy for each face shape can be pre-stored in the electronic device, and the adjustment strategy includes: the direction and angle of the displacement of each point on the face contour to the inside or outside of the face contour. After the electronic device obtains the face shape corresponding to the face image, it can obtain the ratio of the area of the face image to the area of the corresponding face shape, and then adaptively adjust the direction and Angle, adjust the face contour according to the direction and angle of the displacement of each point to the inside or outside of the face contour after adjustment.

上述调整人脸图像中五官大小和调整人脸图像的轮廓可采用液化工具。The liquefaction tool can be used for adjusting the size of the facial features in the face image and adjusting the outline of the face image.

本申请实施例中方法,在待处理图像中识别出人脸图像后,可分析获取人脸图像的脸型,再根据人脸图像的脸型对应调整人脸图像中五官大小和人脸图像的轮廓,对人脸图像的脸型调整更加智能化和个性化。In the method of the embodiment of the present application, after the face image is recognized in the image to be processed, the face shape of the face image can be analyzed and obtained, and then the size of the facial features in the face image and the contour of the face image can be adjusted according to the face shape of the face image. The face shape adjustment of the face image is more intelligent and personalized.

在一个实施例中,分别获取多个特征点与人脸轮廓的水平距离值包括:In one embodiment, respectively obtaining the horizontal distance values between a plurality of feature points and the contour of the human face comprises:

(1)确定第一正脸图像的中轴线,根据中轴线和第一正脸图像中五官特征点确定多个特征点的位置。(1) Determine the central axis of the first frontal face image, and determine the positions of a plurality of feature points according to the central axis and the facial features feature points in the first frontal face image.

(2)获取多个特征点与人脸轮廓的水平距离值。(2) Obtain the horizontal distance values between multiple feature points and the contour of the face.

电子设备在获取人脸图像对应的第一正脸图像后,可获取第一正脸图像的中轴线。上述中轴线为第一正脸图像中直线,第一正脸图像关于上述中轴线对称。在获取中轴线后,电子设备可获取第一正脸图像中五官特征点,以过五官特征点的水平直线与中轴线的交点为上述特征点。电子设备在获取到特征点后,即可分别获取特征点与人脸轮廓的水平距离值。上述特征点与人脸轮廓的水平距离值可为过特征点水平直线与人脸轮廓相交时,特征点与交点的线段长度。也可为过特征点的水平直线与人脸轮廓相交时,与人脸轮廓的2个交点之间线段长度。After the electronic device acquires the first front face image corresponding to the face image, it can acquire the central axis of the first front face image. The central axis is a straight line in the first front face image, and the first front face image is symmetrical about the central axis. After obtaining the central axis, the electronic device may obtain the feature points of the facial features in the first frontal face image, and the intersection of a horizontal line passing through the feature points of the facial features and the central axis is the feature point. After acquiring the feature points, the electronic device can respectively acquire the horizontal distance values between the feature points and the outline of the human face. The above-mentioned horizontal distance value between the feature point and the contour of the face may be the length of the line segment between the feature point and the intersection point when a horizontal straight line passing through the feature point intersects the contour of the face. It may also be the length of a line segment between two intersection points of a horizontal straight line passing through a feature point and the contour of the face when it intersects with the contour of the face.

如图3所示,第一正脸图像30关于中轴线L左右对称。电子设备根据第一正脸图像30中左眉头点A、左鼻翼点B、左嘴角点C和中轴线与人脸轮廓的交点D来确定特征点。其中,过点A的水平线与中轴线L的交点为E1,过点B的水平线与中轴线L的交点为E2,过点C的水平线与中轴线L的交点为E3,点E3与点D的中点为E4,则E1、E2、E3和E4为第一正脸图像中特征点。过点E1的水平直线与人脸轮廓相交形成的线段L1的长度即为E1的水平距离值,同理,L2的长度为E2的水平距离值,L3的长度为E3的水平距离值,L4的长度为E4的水平距离值。L1:L2:L3:L4的值即为E1、E2、E3、E4特征点的水平距离值的比值。以上实施例仅为举例说明,在其他实施例中,电子设备也可根据第一正脸图像中右侧人脸区域的五官特征点获取上述特征点。As shown in FIG. 3 , the first front face image 30 is left-right symmetrical about the central axis L. As shown in FIG. The electronic device determines the feature points according to the left brow point A, the left alar point B, the left mouth corner point C and the intersection point D of the central axis and the contour of the face in the first front face image 30 . Among them, the intersection point of the horizontal line passing through point A and the central axis L is E1, the intersection point of the horizontal line passing point B and the central axis L is E2, the intersection point of the horizontal line passing point C and the central axis L is E3, and the intersection point of point E3 and point D The midpoint is E4, then E1, E2, E3 and E4 are the feature points in the first front face image. The length of the line segment L1 formed by the intersection of the horizontal line passing through point E1 and the face contour is the horizontal distance value of E1. Similarly, the length of L2 is the horizontal distance value of E2, the length of L3 is the horizontal distance value of E3, and the length of L4 is the horizontal distance value of E1. A horizontal distance value of length E4. The value of L1:L2:L3:L4 is the ratio of the horizontal distance values of E1, E2, E3, and E4 feature points. The above embodiments are only for illustration. In other embodiments, the electronic device may also obtain the feature points according to the feature points of the facial features in the right face area in the first frontal face image.

在一个实施例中,获取特征点还包括:获取第一正脸图像的左脸区域中第一五官特征点,获取右脸区域中与上述第一五官特征对称的第二五官特征点,取第一五官特征点与第二五官特征点的中点为特征点。In one embodiment, acquiring the feature points further includes: acquiring the first facial features feature point in the left face area of the first frontal face image, and acquiring the second facial features feature point in the right face area that is symmetrical to the first facial features feature , take the midpoint of the first feature point and the second feature point as the feature point.

如图4所示,第一正脸图像40左右对称。左脸区域的第一五官特征点包括:左眉头点A、左鼻翼点C、左嘴角点E。在右脸区域中与上述第一五官特征点对称的第二五官特征点包括:右眉头点B、右鼻翼点D,右嘴角点F。电子设备取点A与点B的中点为G1、点C与点D的中点为G2、点E与点F的中点为G3。上述G1、G2、G3即为第一正脸图像40的特征点。过点G1的水平直线与人脸轮廓相交的两个交点形成的线段L1的长度为G1水平距离值。同理,L2的长度为G2的水平距离值,L3的长度为G3的水平距离值。As shown in FIG. 4 , the first front face image 40 is left-right symmetrical. The first facial features feature points in the left face area include: left brow point A, left nose point C, and left mouth corner point E. The second feature points symmetrical to the first feature point in the right face area include: right brow point B, right nose point D, and right mouth corner point F. The electronic device takes the midpoint between point A and point B as G1 , the midpoint between point C and point D as G2 , and the midpoint between point E and point F as G3 . The aforementioned G1, G2, and G3 are the feature points of the first front face image 40 . The length of the line segment L1 formed by the two intersection points where the horizontal straight line passing through the point G1 intersects the contour of the human face is the horizontal distance value of G1. Similarly, the length of L2 is the horizontal distance value of G2, and the length of L3 is the horizontal distance value of G3.

本申请实施例中方法,电子设备可获取人脸图像中特征点,并根据人脸图像中特征点确定特征点的水平距离值,有利于电子设备根据上述特征点和上述特征点的水平距离值确定人脸的脸型,使得电子设备确定脸型的方式简单快捷。In the method of the embodiment of the present application, the electronic device can acquire the feature points in the face image, and determine the horizontal distance value of the feature point according to the feature point in the face image, which is beneficial to the electronic device according to the feature point and the horizontal distance value of the feature point Determining the face shape of a human face makes it simple and quick for the electronic device to determine the face shape.

在一个实施例中,获取与人脸图像对应的第一正脸图像包括:In one embodiment, obtaining the first front face image corresponding to the face image includes:

(1)若人脸图像为侧脸图像,获取人脸图像相对于标准图像的偏移角度。(1) If the face image is a side face image, obtain the offset angle of the face image relative to the standard image.

(2)根据偏移角度获取人脸图像对应的第一正脸图像。(2) Obtain the first front face image corresponding to the face image according to the offset angle.

上述侧脸图像即为非正脸图像,由于人脸为三维立体结构,人脸可为三维空间中转动。当人脸在三维空间转动的角度不同时,人脸在图像中呈现的二维人脸图像也不尽相同。通过软件方法可检测出图像中人脸在三维空间中旋转角度,即人脸图像相对于标准图像的偏移角度,再通过算法将上述侧脸图像还原为对应的第一正脸图像。上述标准图像即为正脸图像,上述标准图像可为电子设备利用软件合成的正脸图像,上述标准头像预存与电子设备中。The above-mentioned side face image is a non-frontal face image. Since the human face has a three-dimensional structure, the human face can be rotated in three-dimensional space. When the face rotates at different angles in the three-dimensional space, the two-dimensional face images presented by the face in the image are also different. The rotation angle of the human face in the image in the three-dimensional space can be detected by the software method, that is, the offset angle of the human face image relative to the standard image, and then the above-mentioned side face image can be restored to the corresponding first front face image through an algorithm. The above-mentioned standard image is a frontal face image, and the above-mentioned standard image can be a frontal face image synthesized by an electronic device using software, and the above-mentioned standard head portrait is pre-stored in the electronic device.

电子设备获取人脸图像相对于标准图像的偏移角度包括:电子设备获取人脸图像中人脸特征识别点之间的距离和角度,再根据上述人脸特征点之间的距离和角度确定偏移角度。其中,电子设备可通过人工智能获取上述偏移角度。人脸区域的偏移角度可用三个角度表示,在三维空间中3条相互垂直的直线相交于1点即可得到一个三维坐标系,上述3条直线每2条直线可形成一个面,总共三个面。则人脸区域相对于标准人脸在这三个面的旋转角度为人脸区域的偏移角度。The electronic device obtains the offset angle of the face image relative to the standard image, including: the electronic device obtains the distance and angle between the face feature recognition points in the face image, and then determines the offset according to the distance and angle between the above-mentioned face feature points. shift angle. Wherein, the electronic device can obtain the above-mentioned offset angle through artificial intelligence. The offset angle of the face area can be represented by three angles. In three-dimensional space, three mutually perpendicular straight lines intersect at one point to obtain a three-dimensional coordinate system. Every two straight lines of the above three straight lines can form a plane, and a total of three face. Then the rotation angles of the face area relative to the standard face on these three planes are the offset angles of the face area.

在获取到人脸图像的偏移角度后,电子设备通过算法还原上述人脸图像对应的第一正脸图像。具体包括:将人脸图像按照偏移角度中三个角度依次还原,得到人脸图像对应的第一正脸图像。After acquiring the offset angle of the face image, the electronic device restores the first frontal face image corresponding to the above-mentioned face image through an algorithm. It specifically includes: sequentially restoring the face image according to the three angles in the offset angles to obtain the first front face image corresponding to the face image.

本申请实施例中方法,当图像中人脸图像为侧脸图像时,可将侧脸图像还原成正脸图像,有利于电子设备根据还原成的正脸图像确定侧脸图像的脸型。In the method of the embodiment of the present application, when the face image in the image is a side face image, the side face image can be restored to a front face image, which is beneficial for the electronic device to determine the face shape of the side face image according to the restored front face image.

在一个实施例中,偏移角度包括第一角度、第二角度和第三角度;第一角度表示人脸图像相对于标准图像在第一平面的旋转角度;第二角度表示人脸图像相对于标准图像在第二平面的旋转角度;第三角度表示人脸图像相对于标准图像在第三平面的旋转角度;第一平面、第二平面和第三平面之间每两个平面互相垂直。In one embodiment, the offset angle includes a first angle, a second angle and a third angle; the first angle represents the rotation angle of the face image on the first plane relative to the standard image; the second angle represents the rotation angle of the face image relative to the standard image; The rotation angle of the standard image on the second plane; the third angle represents the rotation angle of the face image relative to the standard image on the third plane; every two planes between the first plane, the second plane and the third plane are perpendicular to each other.

因人脸可在三维空间中转动,人脸在转动时在图像上所呈现的二维图像各不相同。电子设备在分析人脸相对于标准人脸的偏移角度时,可将偏移角度用三维空间中三个角度表示。上述标准人脸即为人脸正对摄像头所拍摄的二维人脸图像。如图5所示,在三维空间中将3条相互垂直的直线相交于一点可形成一个空间直角坐标系xyz坐标系,其中x轴与y轴相交形成第一平面,x轴与z轴相交形成第二平面,y轴与z轴相交形成第三平面。第一平面、第二平面和第三平面之间两两垂直。第一角度表示人脸区域相对于标准人脸绕z轴的旋转角度,第二角度表示人脸区域相对于标准人脸绕y轴的旋转角度,第三角度表示人脸区域相对于标准人脸绕x轴的旋转角度。图5中侧脸图像502相对于y轴向顺时针方向旋转α角即可得到第一正脸图像504,即侧脸图像502的偏移角度为第一角度0,第二角度α,第三角度0。Because the human face can rotate in three-dimensional space, the two-dimensional images presented on the image when the human face rotates are different. When the electronic device analyzes the offset angle of the human face relative to the standard human face, the offset angle can be represented by three angles in a three-dimensional space. The above-mentioned standard face is a two-dimensional face image captured by the camera facing the face. As shown in Figure 5, in three-dimensional space, three mutually perpendicular straight lines intersect at one point to form a space Cartesian coordinate system xyz coordinate system, where the intersection of the x-axis and the y-axis forms the first plane, and the intersection of the x-axis and the z-axis forms In the second plane, the intersection of the y-axis and the z-axis forms a third plane. The first plane, the second plane and the third plane are perpendicular to each other. The first angle represents the rotation angle of the face area relative to the standard face around the z axis, the second angle represents the rotation angle of the face area relative to the standard face around the y axis, and the third angle represents the face area relative to the standard face The rotation angle around the x-axis. In Fig. 5, the side face image 502 is rotated clockwise with respect to the y-axis by an angle α to obtain the first front face image 504, that is, the offset angle of the side face image 502 is the first angle 0, the second angle α, and the third angle angle 0.

电子设备在记录偏移角度对应的第一角度、第二角度和第三角度时,可在第一平面、第二平面和第三平面分别设定旋转正方向,用人脸区域相对于标准人脸在旋转正方向上的旋转角度表示上述第一角度、第二角度和第三角度。例如,以第二角度为例,顺时针方向为旋转正方向,人脸区域相对于标准人脸按顺时针旋转β时,第二角度为β;人脸区域相对于标准人脸按逆时针旋转γ时,第二角度为-γ。When the electronic device records the first angle, the second angle and the third angle corresponding to the offset angle, it can set the positive direction of rotation on the first plane, the second plane and the third plane respectively, and use the face area relative to the standard face The angle of rotation in the positive direction of rotation represents the above-mentioned first angle, second angle, and third angle. For example, taking the second angle as an example, the clockwise direction is the positive direction of rotation. When the face area rotates β clockwise relative to the standard face, the second angle is β; the face area rotates counterclockwise relative to the standard face When γ, the second angle is -γ.

本申请实施例中方法,将人脸区域相对于标准人脸的偏移角度拆解为三个相互垂直平面中的旋转角度,将复杂的三维变化拆解到三个平面的每个平面中,有利于电子设备对人脸的偏移角度进行分析。The method in the embodiment of the present application decomposes the offset angle of the human face area relative to the standard human face into rotation angles in three mutually perpendicular planes, and decomposes complex three-dimensional changes into each of the three planes, It is beneficial for the electronic device to analyze the offset angle of the human face.

在一个实施例中,在步骤210之后,上述方法还包括:In one embodiment, after step 210, the above method further includes:

步骤212,根据偏移角度旋转预存的标准美颜模板,标准美颜模板为标准图像对应的美颜模板。Step 212: Rotate the pre-stored standard beautification template according to the offset angle, where the standard beautification template is a beautification template corresponding to the standard image.

步骤214,将旋转后美颜模板与人脸图像进行融合。Step 214, fusing the rotated beautification template with the face image.

电子设备中预存有标准美颜模板,上述标准美颜模板即为标准人脸对应的美颜模板。上述美颜模板是指根据美颜参数生成的图层,在这个图层中不同位置可对应人脸中不同五官特征点,电子设备可在上述图层中添加不同的颜色,例如将瞳孔区域对应的位置显示黑色用于美瞳,将嘴唇区域对应的位置显示红色用于显示唇色,将颧骨区域对应的位置显示红色用于显示腮红。电子设备将美颜模板覆盖在人脸图像上即可对人脸图像进行美颜处理。通俗来说,美颜模板类似于一个透明面具,在面具上可涂不同色彩,面具可覆盖显示于人脸上。A standard beautifying template is pre-stored in the electronic device, and the above-mentioned standard beautifying template is a beautifying template corresponding to a standard human face. The above beauty template refers to the layer generated according to the beauty parameters. Different positions in this layer can correspond to different facial feature points in the face. Electronic devices can add different colors to the above layer, for example, the pupil area corresponds to The position corresponding to the black area is used for color contact lenses, the position corresponding to the lip area is displayed red to display lip color, and the position corresponding to the cheekbone area is displayed red to display blush. The electronic device covers the face image with the beautifying template to perform beautification processing on the face image. In layman's terms, the beauty template is similar to a transparent mask, on which different colors can be painted, and the mask can be covered and displayed on the human face.

电子设备在获取到人脸图像的偏移角度后,可根据上述偏移角度旋转上述标准美颜模板。人脸图像相对于标准人脸的偏移角度可用空间坐标系中第一角度、第二角度和第三角度表示。电子设备在将标准美颜模板按照偏移角度进行旋转时,可将标准美颜模板在空间坐标系中分别按照第一角度、第二角度、第三角度进行旋转,即可得到与偏移角度对应的美颜模板。After the electronic device acquires the offset angle of the face image, it can rotate the above-mentioned standard beautifying template according to the above-mentioned offset angle. The offset angle of the face image relative to the standard face can be represented by the first angle, the second angle and the third angle in the space coordinate system. When the electronic device rotates the standard beautification template according to the offset angle, the standard beautification template can be rotated according to the first angle, the second angle, and the third angle respectively in the space coordinate system, and the offset angle can be obtained The corresponding beauty template.

上述美颜模板中美颜参数可为电子设备预设的美颜参数,可为用户输入的美颜参数,可为电子设备根据人脸图像中图像信息生辰给的美颜参数。The beautification parameters in the above beautification template may be the beautification parameters preset by the electronic device, the beautification parameters input by the user, or the beautification parameters given by the electronic device according to the birth date of the image information in the face image.

电子设备在获取旋转后美颜模板后,可将旋转后美颜模板与待处理图像中人脸图像进行融合处理。其中,在融合处理时,电子设备可通过识别人脸图像中五官特征点,根据上述五官特征点确定美颜模板的位置。After the electronic device obtains the rotated beauty template, it can fuse the rotated beauty template with the face image in the image to be processed. Wherein, during fusion processing, the electronic device can determine the position of the beautification template according to the feature points of the facial features in the face image by identifying the feature points of the facial features.

本申请实施例中方法,对图像中侧脸图像,电子设备可通过旋转标准美颜模板,再将旋转后美颜模板与人脸图像融合的方式,对侧脸图像进行美颜处理。美颜处理的方式更加智能化。In the method of the embodiment of the present application, for the side face image in the image, the electronic device can perform beautification processing on the side face image by rotating the standard beautification template, and then fusing the rotated beautification template with the face image. The beauty treatment method is more intelligent.

在一个实施例中,在步骤210之后,上述方法还包括:In one embodiment, after step 210, the above method further includes:

步骤216,获取人脸图像中肤色、肤质和人脸图像对应的性别。Step 216, acquiring the skin color, skin quality and gender corresponding to the face image in the face image.

步骤218,根据肤色、肤质和性别确定人脸图像对应的美颜参数。Step 218, determine the beautification parameters corresponding to the face image according to the skin color, skin quality and gender.

步骤220,根据美颜参数对人脸图像进行美颜处理。Step 220, perform beautification processing on the face image according to the beautification parameters.

电子设备可识别人脸图像的肤色、肤质以及人脸图像中人脸对应的性别。其中,电子设备通过肤色区域的色彩值表示人脸图像的肤色,电子设备可通过人脸图像中皱纹、斑点和痘痘的多少确定肤质的等级。电子设备可通过机器学习模型识别人脸对应的性别。The electronic device can recognize the skin color and skin texture of the face image and the gender corresponding to the face in the face image. Wherein, the electronic device represents the skin color of the face image by the color value of the skin color area, and the electronic device can determine the grade of the skin quality by the number of wrinkles, spots and acne in the face image. Electronic devices can identify the gender corresponding to a face through a machine learning model.

对不同肤色、肤质和性别,电子设备可匹配不同的美颜参数。例如,对图像中女性人脸图像进行美颜处理时,电子设备会调整人脸图像的肤色、唇色、瞳孔颜色、腮红等;对图像中男性人脸图像进行美颜时,电子设备仅调整人脸图像中肤色和瞳孔颜色。电子设备中可预存肤色、肤质、性别与美颜参数的对应关系,在获取到人脸图像的肤色、肤质和性别后,电子设备可查找对应的美颜参数。电子设备也可通过机器学习模型查找与人脸图像的肤色、肤质和性别对应的美颜参数。For different skin colors, skin types and genders, electronic devices can match different beauty parameters. For example, when beautifying a female face image in an image, the electronic device will adjust the skin color, lip color, pupil color, blush, etc. of the face image; when beautifying a male face image in an image, the electronic device will only Adjust the skin color and pupil color in the face image. The corresponding relationship between skin color, skin quality, gender and beauty parameters can be pre-stored in the electronic device, and after obtaining the skin color, skin quality and gender of the face image, the electronic device can search for the corresponding beauty parameters. The electronic device may also use a machine learning model to find beauty parameters corresponding to the skin color, skin quality and gender of the face image.

在获取到人脸图像对应的美颜参数后,电子设备可根据上述美颜参数对人脸图像进行美颜处理。上述美颜处理可包括:美白、磨皮、祛斑、祛痘、去黑眼圈等。After acquiring the beautification parameters corresponding to the face image, the electronic device may perform beautification processing on the face image according to the above beautification parameters. The above beauty treatments may include: whitening, skin smoothing, freckle removal, acne removal, dark circle removal, etc.

本申请实施例中方法,可根据人脸图像中肤色、肤质和性别确定对应的美颜参数,即对不同人脸图像可获取不同的美颜参数,实现对不同人脸图像实现不同的美颜处理,对人脸图像的美颜处理更加智能化和个性化。The method in the embodiment of this application can determine the corresponding beautification parameters according to the skin color, skin quality and gender in the face image, that is, different beautification parameters can be obtained for different face images, and different beautification parameters can be realized for different face images. Beauty processing, the beauty processing of face images is more intelligent and personalized.

在一个实施例中,在步骤210之后,上述方法还包括:In one embodiment, after step 210, the above method further includes:

步骤222,识别人脸图像对应的联系人。Step 222, identifying the contact person corresponding to the face image.

步骤224,若电子设备中存储联系人对应的联系人信息,将调整后图像发送给联系人对应的电子设备。Step 224, if the contact information corresponding to the contact is stored in the electronic device, send the adjusted image to the electronic device corresponding to the contact.

电子设备可查找人脸区域对应的联系人。其中,电子设备查找人脸区域对应的联系人包括以下方法中任意一种:The electronic device can search for a contact corresponding to a face area. Wherein, the electronic device finds the contacts corresponding to the face area, including any one of the following methods:

(1)电子设备获取用户输入的对人脸图像的标记信息,上述标记信息可为人脸区域对应的人名,电子设备查找已存储联系人中是否存在人脸区域对应的人名,若已存储联系人中存在人脸区域对应的人名,则电子设备获取人脸区域对应的联系人。(1) The electronic device obtains the marking information of the face image input by the user. The above marking information can be the name of the person corresponding to the face area. The electronic device searches whether there is a name corresponding to the face area in the stored contacts. If there is a person name corresponding to the face area in , the electronic device obtains the contact person corresponding to the face area.

(2)电子设备也可获取已存储联系人对应的头像,电子设备将人脸区域与已存储联系人对应的头像进行相似度匹配,若匹配成功,则上述联系人为人脸区域对应的联系人。(2) The electronic device can also obtain the avatar corresponding to the stored contact, and the electronic device performs similarity matching between the face area and the avatar corresponding to the stored contact. If the matching is successful, the above-mentioned contact is the contact corresponding to the face area .

电子设备在获取到人脸区域对应的联系人后,可查找人脸区域对应的联系人是否有已存储的联系人信息。上述联系人信息可为手机号码、座机号码、社交账号等。当电子设备已存储上述联系人的联系人信息,则电子设备将融合处理后图像发送给上述联系人对应的电子设备。After the electronic device obtains the contact corresponding to the face area, it may check whether the contact corresponding to the face area has stored contact information. The above-mentioned contact information may be a mobile phone number, a landline number, a social account number, and the like. When the electronic device has stored the contact information of the above contact, the electronic device sends the fused image to the electronic device corresponding to the above contact.

通常情况下,在多人合影时,用户需要将合影照片手动分享给图像中其他人。本申请实施例中方法,电子设备可将美颜处理后图像自动分享给图像中人脸对应的用户,无需用户手动操作,简化了用户操作步骤,用户操作更加简洁。Usually, when multiple people take a group photo, the user needs to manually share the group photo with other people in the image. In the method of the embodiment of the present application, the electronic device can automatically share the beautified image to the user corresponding to the face in the image, without manual operation by the user, which simplifies the user operation steps and makes the user operation more concise.

图9为一个实施例中图像处理装置的结构框图。如图9所示,一种图像处理装置,包括:Fig. 9 is a structural block diagram of an image processing device in an embodiment. As shown in Figure 9, an image processing device includes:

识别模块902,用于对待处理图像进行人脸识别,识别待处理图像中人脸图像。The recognition module 902 is configured to perform face recognition on the image to be processed, and identify the face image in the image to be processed.

获取模块904,用于获取与人脸图像对应的第一正脸图像。An acquisition module 904, configured to acquire a first frontal face image corresponding to a human face image.

脸型确定模块906,用于根据预设规则从第一正脸图像上选取多个特征点,分别获取多个特征点与人脸轮廓的水平距离值。根据水平距离值之间的比值确定人脸图像对应的脸型。The face shape determining module 906 is configured to select a plurality of feature points from the first frontal face image according to preset rules, and respectively obtain horizontal distance values between the plurality of feature points and the contour of the human face. The face shape corresponding to the face image is determined according to the ratio between the horizontal distance values.

处理模块908,用于根据脸型调整人脸图像中五官和人脸图像的轮廓。The processing module 908 is configured to adjust the facial features in the face image and the outline of the face image according to the face shape.

在一个实施例中,脸型确定模块906分别获取多个特征点与人脸轮廓的水平距离值包括:确定第一正脸图像的中轴线,根据中轴线和第一正脸图像中五官特征点确定多个特征点的位置。获取多个特征点与人脸轮廓的水平距离值。In one embodiment, the face shape determining module 906 obtains the horizontal distance values between the plurality of feature points and the contour of the face, respectively, including: determining the central axis of the first frontal face image, and determining The location of multiple feature points. Obtain the horizontal distance values between multiple feature points and the face contour.

在一个实施例中,获取模块904获取与人脸图像对应的第一正脸图像包括:若人脸图像为侧脸图像,获取人脸图像相对于标准图像的偏移角度。根据偏移角度获取人脸图像对应的第一正脸图像。In one embodiment, the acquiring module 904 acquiring the first front face image corresponding to the face image includes: if the face image is a side face image, acquiring an offset angle of the face image relative to the standard image. The first front face image corresponding to the face image is acquired according to the offset angle.

在一个实施例中,偏移角度包括第一角度、第二角度和第三角度。第一角度表示人脸图像相对于标准图像在第一平面的旋转角度。第二角度表示人脸图像相对于标准图像在第二平面的旋转角度。第三角度表示人脸图像相对于标准图像在第三平面的旋转角度。第一平面、第二平面和第三平面之间每两个平面互相垂直。In one embodiment, the offset angle includes a first angle, a second angle and a third angle. The first angle represents a rotation angle of the face image relative to the standard image on the first plane. The second angle represents a rotation angle of the face image relative to the standard image on the second plane. The third angle represents the rotation angle of the face image relative to the standard image on the third plane. Every two planes among the first plane, the second plane and the third plane are perpendicular to each other.

图10为另一个实施例中图像处理装置的结构框图。如图10所示,一种图像处理装置,包括:识别模块1002、获取模块1004、脸型确定模块1006、处理模块1008、旋转模块1010、美颜模块1012。其中,识别模块1002、获取模块1004、脸型确定模块1006、处理模块1008与图9中对应的模块功能相同。Fig. 10 is a structural block diagram of an image processing device in another embodiment. As shown in FIG. 10 , an image processing device includes: an identification module 1002 , an acquisition module 1004 , a face shape determination module 1006 , a processing module 1008 , a rotation module 1010 , and a beautification module 1012 . Among them, the recognition module 1002, the acquisition module 1004, the face shape determination module 1006, and the processing module 1008 have the same functions as the corresponding modules in FIG. 9 .

旋转模块1010,用于根据偏移角度旋转预存的标准美颜模板,标准美颜模板为标准图像对应的美颜模板。The rotation module 1010 is configured to rotate a pre-stored standard beautification template according to an offset angle, where the standard beautification template is a beautification template corresponding to a standard image.

美颜模块1012,用于将旋转后美颜模板与人脸图像进行融合。The beautifying module 1012 is configured to fuse the rotated beautifying template with the face image.

在一个实施例中,获取模块1004还用于获取人脸图像中肤色、肤质和人脸图像对应的性别。美颜模块1012还用于根据肤色、肤质和性别确定人脸图像对应的美颜参数。根据美颜参数对人脸图像进行美颜处理。In one embodiment, the obtaining module 1004 is also used to obtain the skin color, skin quality and gender corresponding to the face image in the face image. The beautification module 1012 is also used to determine the beautification parameters corresponding to the face image according to the skin color, skin quality and gender. Perform beautification processing on the face image according to the beautification parameters.

图11为另一个实施例中图像处理装置的结构框图。如图11所示,一种图像处理装置,包括:识别模块1102、获取模块1104、脸型确定模块1106、处理模块1108、联系人识别模块1110、发送模块1112。其中,识别模块1102、获取模块1104、脸型确定模块1106、处理模块1108与图9中对应的模块功能相同。Fig. 11 is a structural block diagram of an image processing device in another embodiment. As shown in FIG. 11 , an image processing device includes: an identification module 1102 , an acquisition module 1104 , a face shape determination module 1106 , a processing module 1108 , a contact identification module 1110 , and a sending module 1112 . Among them, the recognition module 1102 , the acquisition module 1104 , the face shape determination module 1106 , and the processing module 1108 have the same functions as the corresponding modules in FIG. 9 .

联系人识别模块1110,用于识别人脸图像对应的联系人。The contact identification module 1110 is configured to identify the contact corresponding to the face image.

发送模块1112,用于若电子设备中存储联系人对应的联系人信息,将调整后图像发送给联系人对应的电子设备。The sending module 1112 is configured to send the adjusted image to the electronic device corresponding to the contact if the contact information corresponding to the contact is stored in the electronic device.

上述图像处理装置中各个模块的划分仅用于举例说明,在其他实施例中,可将图像处理装置按照需要划分为不同的模块,以完成上述图像处理装置的全部或部分功能。The division of each module in the above image processing device is for illustration only. In other embodiments, the image processing device may be divided into different modules as required to complete all or part of the functions of the above image processing device.

本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行以下步骤:The embodiment of the present application also provides a computer-readable storage medium. One or more non-transitory computer-readable storage media containing computer-executable instructions that, when executed by one or more processors, cause the processors to:

(1)对待处理图像进行人脸识别,识别待处理图像中人脸图像。(1) Perform face recognition on the image to be processed, and identify the face image in the image to be processed.

(2)获取与人脸图像对应的第一正脸图像。(2) Obtain the first front face image corresponding to the face image.

(3)根据预设规则从第一正脸图像上选取多个特征点,分别获取多个特征点与人脸轮廓的水平距离值。(3) Select a plurality of feature points from the first frontal face image according to preset rules, and obtain horizontal distance values between the plurality of feature points and the contour of the face respectively.

(4)根据水平距离值之间的比值确定人脸图像对应的脸型。(4) Determine the face shape corresponding to the face image according to the ratio between the horizontal distance values.

(5)根据脸型调整人脸图像中五官和人脸图像的轮廓。(5) Adjust the facial features in the face image and the outline of the face image according to the face shape.

在一个实施例中,分别获取多个特征点与人脸轮廓的水平距离值包括:确定第一正脸图像的中轴线,根据中轴线和第一正脸图像中五官特征点确定多个特征点的位置。获取多个特征点与人脸轮廓的水平距离值。In one embodiment, obtaining the horizontal distance values between the plurality of feature points and the contour of the face includes: determining the central axis of the first frontal face image, and determining a plurality of feature points according to the central axis and the facial features feature points in the first frontal face image s position. Obtain the horizontal distance values between multiple feature points and the face contour.

在一个实施例中,获取与人脸图像对应的第一正脸图像包括:若人脸图像为侧脸图像,获取人脸图像相对于标准图像的偏移角度。根据偏移角度获取人脸图像对应的第一正脸图像。In one embodiment, acquiring the first front face image corresponding to the face image includes: if the face image is a side face image, acquiring an offset angle of the face image relative to the standard image. The first front face image corresponding to the face image is acquired according to the offset angle.

在一个实施例中,偏移角度包括第一角度、第二角度和第三角度。第一角度表示人脸图像相对于标准图像在第一平面的旋转角度。第二角度表示人脸图像相对于标准图像在第二平面的旋转角度。第三角度表示人脸图像相对于标准图像在第三平面的旋转角度。第一平面、第二平面和第三平面之间每两个平面互相垂直。In one embodiment, the offset angle includes a first angle, a second angle and a third angle. The first angle represents a rotation angle of the face image relative to the standard image on the first plane. The second angle represents a rotation angle of the face image relative to the standard image on the second plane. The third angle represents the rotation angle of the face image relative to the standard image on the third plane. Every two planes among the first plane, the second plane and the third plane are perpendicular to each other.

在一个实施例中,还执行:根据偏移角度旋转预存的标准美颜模板,标准美颜模板为标准图像对应的美颜模板。将旋转后美颜模板与人脸图像进行融合。In an embodiment, it is further performed: rotating a pre-stored standard beautification template according to the offset angle, where the standard beautification template is a beautification template corresponding to the standard image. Fuse the rotated beauty template with the face image.

在一个实施例中,还执行:获取人脸图像中肤色、肤质和人脸图像对应的性别。根据肤色、肤质和性别确定人脸图像对应的美颜参数。根据美颜参数对人脸图像进行美颜处理。In one embodiment, it is also performed: acquiring the skin color, skin quality and gender corresponding to the face image in the face image. Determine the beautification parameters corresponding to the face image according to the skin color, skin quality and gender. Perform beautification processing on the face image according to the beautification parameters.

在一个实施例中,还执行:识别人脸图像对应的联系人。若电子设备中存储联系人对应的联系人信息,将调整后图像发送给联系人对应的电子设备。In an embodiment, it is further performed: identifying a contact person corresponding to the face image. If the contact information corresponding to the contact is stored in the electronic device, the adjusted image is sent to the electronic device corresponding to the contact.

本申请还提供一种包含指令的计算机程序产品,当上述计算机程序产品在计算机上运行时,使得计算机执行以下步骤:The present application also provides a computer program product containing instructions. When the above computer program product is run on a computer, the computer is made to perform the following steps:

(1)对待处理图像进行人脸识别,识别待处理图像中人脸图像。(1) Perform face recognition on the image to be processed, and identify the face image in the image to be processed.

(2)获取与人脸图像对应的第一正脸图像。(2) Obtain the first front face image corresponding to the face image.

(3)根据预设规则从第一正脸图像上选取多个特征点,分别获取多个特征点与人脸轮廓的水平距离值。(3) Select a plurality of feature points from the first frontal face image according to preset rules, and obtain horizontal distance values between the plurality of feature points and the contour of the face respectively.

(4)根据水平距离值之间的比值确定人脸图像对应的脸型。(4) Determine the face shape corresponding to the face image according to the ratio between the horizontal distance values.

(5)根据脸型调整人脸图像中五官和人脸图像的轮廓。(5) Adjust the facial features in the face image and the outline of the face image according to the face shape.

在一个实施例中,分别获取多个特征点与人脸轮廓的水平距离值包括:确定第一正脸图像的中轴线,根据中轴线和第一正脸图像中五官特征点确定多个特征点的位置。获取多个特征点与人脸轮廓的水平距离值。In one embodiment, obtaining the horizontal distance values between the plurality of feature points and the contour of the face includes: determining the central axis of the first frontal face image, and determining a plurality of feature points according to the central axis and the facial features feature points in the first frontal face image s position. Obtain the horizontal distance values between multiple feature points and the face contour.

在一个实施例中,获取与人脸图像对应的第一正脸图像包括:若人脸图像为侧脸图像,获取人脸图像相对于标准图像的偏移角度。根据偏移角度获取人脸图像对应的第一正脸图像。In one embodiment, acquiring the first front face image corresponding to the face image includes: if the face image is a side face image, acquiring an offset angle of the face image relative to the standard image. The first front face image corresponding to the face image is acquired according to the offset angle.

在一个实施例中,偏移角度包括第一角度、第二角度和第三角度。第一角度表示人脸图像相对于标准图像在第一平面的旋转角度。第二角度表示人脸图像相对于标准图像在第二平面的旋转角度。第三角度表示人脸图像相对于标准图像在第三平面的旋转角度。第一平面、第二平面和第三平面之间每两个平面互相垂直。In one embodiment, the offset angle includes a first angle, a second angle and a third angle. The first angle represents a rotation angle of the face image relative to the standard image on the first plane. The second angle represents a rotation angle of the face image relative to the standard image on the second plane. The third angle represents the rotation angle of the face image relative to the standard image on the third plane. Every two planes among the first plane, the second plane and the third plane are perpendicular to each other.

在一个实施例中,还执行:根据偏移角度旋转预存的标准美颜模板,标准美颜模板为标准图像对应的美颜模板。将旋转后美颜模板与人脸图像进行融合。In an embodiment, it is further performed: rotating a pre-stored standard beautification template according to the offset angle, where the standard beautification template is a beautification template corresponding to the standard image. Fuse the rotated beauty template with the face image.

在一个实施例中,还执行:获取人脸图像中肤色、肤质和人脸图像对应的性别。根据肤色、肤质和性别确定人脸图像对应的美颜参数。根据美颜参数对人脸图像进行美颜处理。In one embodiment, it is also performed: acquiring the skin color, skin quality and gender corresponding to the face image in the face image. Determine the beautification parameters corresponding to the face image according to the skin color, skin quality and gender. Perform beautification processing on the face image according to the beautification parameters.

在一个实施例中,还执行:识别人脸图像对应的联系人。若电子设备中存储联系人对应的联系人信息,将调整后图像发送给联系人对应的电子设备。In an embodiment, it is further performed: identifying a contact person corresponding to the face image. If the contact information corresponding to the contact is stored in the electronic device, the adjusted image is sent to the electronic device corresponding to the contact.

以电子设备为移动终端为例。本申请实施例还提供一种移动终端。上述移动终端中包括图像处理电路,图像处理电路可以利用硬件和/或软件组件实现,可包括定义ISP(Image Signal Processing,图像信号处理)管线的各种处理单元。图12为一个实施例中图像处理电路的示意图。如图12所示,为便于说明,仅示出与本申请实施例相关的图像处理技术的各个方面。Take the electronic device as a mobile terminal as an example. The embodiment of the present application also provides a mobile terminal. The above-mentioned mobile terminal includes an image processing circuit, which may be implemented by hardware and/or software components, and may include various processing units defining an ISP (Image Signal Processing, image signal processing) pipeline. Fig. 12 is a schematic diagram of an image processing circuit in one embodiment. As shown in FIG. 12 , for ease of description, only various aspects of the image processing technology related to the embodiment of the present application are shown.

如图12所示,图像处理电路包括ISP处理器1240和控制逻辑器1250。成像设备1210捕捉的图像数据首先由ISP处理器1240处理,ISP处理器1240对图像数据进行分析以捕捉可用于确定和/或成像设备1210的一个或多个控制参数的图像统计信息。成像设备1210可包括具有一个或多个透镜1212和图像传感器1214的照相机。图像传感器1214可包括色彩滤镜阵列(如Bayer滤镜),图像传感器1214可获取用图像传感器1214的每个成像像素捕捉的光强度和波长信息,并提供可由ISP处理器1240处理的一组原始图像数据。传感器1220(如陀螺仪)可基于传感器1220接口类型把采集的图像处理的参数(如防抖参数)提供给ISP处理器1240。传感器1220接口可以利用SMIA(Standard Mobile Imaging Architecture,标准移动成像架构)接口、其它串行或并行照相机接口或上述接口的组合。As shown in FIG. 12 , the image processing circuit includes an ISP processor 1240 and a control logic 1250 . Image data captured by imaging device 1210 is first processed by ISP processor 1240 , which analyzes the image data to capture image statistics that may be used to determine and/or control one or more parameters of imaging device 1210 . Imaging device 1210 may include a camera having one or more lenses 1212 and an image sensor 1214 . Image sensor 1214 may include a color filter array (such as a Bayer filter), and image sensor 1214 may obtain light intensity and wavelength information captured with each imaging pixel of image sensor 1214 and provide a set of raw images that may be processed by ISP processor 1240. image data. The sensor 1220 (such as a gyroscope) may provide the collected image processing parameters (such as anti-shake parameters) to the ISP processor 1240 based on the interface type of the sensor 1220 . The interface of the sensor 1220 may utilize a SMIA (Standard Mobile Imaging Architecture, Standard Mobile Imaging Architecture) interface, other serial or parallel camera interfaces, or a combination of the above interfaces.

此外,图像传感器1214也可将原始图像数据发送给传感器1220,传感器1220可基于传感器1220接口类型把原始图像数据提供给ISP处理器1240,或者传感器1220将原始图像数据存储到图像存储器1230中。In addition, image sensor 1214 may also send raw image data to sensor 1220, which may provide raw image data to ISP processor 1240 based on sensor 1220 interface type, or sensor 1220 may store raw image data in image memory 1230.

ISP处理器1240按多种格式逐个像素地处理原始图像数据。例如,每个图像像素可具有8、10、12或14比特的位深度,ISP处理器1240可对原始图像数据进行一个或多个图像处理操作、收集关于图像数据的统计信息。其中,图像处理操作可按相同或不同的位深度精度进行。The ISP processor 1240 processes raw image data pixel by pixel in various formats. For example, each image pixel may have a bit depth of 8, 10, 12, or 14 bits, and the ISP processor 1240 may perform one or more image processing operations on raw image data, collect statistical information about the image data. Among other things, image processing operations can be performed with the same or different bit depth precision.

ISP处理器1240还可从图像存储器1230接收图像数据。例如,传感器1220接口将原始图像数据发送给图像存储器1230,图像存储器1230中的原始图像数据再提供给ISP处理器1240以供处理。图像存储器1230可为存储器装置的一部分、存储设备、或电子设备内的独立的专用存储器,并可包括DMA(Direct Memory Access,直接直接存储器存取)特征。The ISP processor 1240 may also receive image data from the image memory 1230 . For example, the sensor 1220 interface sends raw image data to the image memory 1230, and the raw image data in the image memory 1230 is then provided to the ISP processor 1240 for processing. The image memory 1230 may be a part of a memory device, a storage device, or an independent dedicated memory in an electronic device, and may include a DMA (Direct Memory Access, direct memory access) feature.

当接收到来自图像传感器1214接口或来自传感器1220接口或来自图像存储器1230的原始图像数据时,ISP处理器1240可进行一个或多个图像处理操作,如时域滤波。处理后的图像数据可发送给图像存储器1230,以便在被显示之前进行另外的处理。ISP处理器1240还可从图像存储器1230接收处理数据,对处理数据进行原始域中以及RGB和YCbCr颜色空间中的图像数据处理。处理后的图像数据可输出给显示器1280,以供用户观看和/或由图形引擎或GPU(Graphics Processing Unit,图形处理器)进一步处理。此外,ISP处理器1240的输出还可发送给图像存储器1230,且显示器1280可从图像存储器1230读取图像数据。在一个实施例中,图像存储器1230可被配置为实现一个或多个帧缓冲器。此外,ISP处理器1240的输出可发送给编码器/解码器1270,以便编码/解码图像数据。编码的图像数据可被保存,并在显示于显示器1280设备上之前解压缩。Upon receiving raw image data from the image sensor 1214 interface or from the sensor 1220 interface or from the image memory 1230, the ISP processor 1240 may perform one or more image processing operations, such as temporal filtering. The processed image data may be sent to image memory 1230 for additional processing before being displayed. The ISP processor 1240 may also receive processed data from the image memory 1230 and perform image data processing in the raw domain and in the RGB and YCbCr color spaces on the processed data. The processed image data may be output to the display 1280 for viewing by the user and/or for further processing by a graphics engine or a GPU (Graphics Processing Unit, graphics processor). In addition, the output of the ISP processor 1240 may also be sent to the image memory 1230 , and the display 1280 may read image data from the image memory 1230 . In one embodiment, image memory 1230 may be configured to implement one or more frame buffers. Also, the output of the ISP processor 1240 may be sent to an encoder/decoder 1270 in order to encode/decode image data. The encoded image data may be saved and decompressed prior to display on the display 1280 device.

ISP处理器1240处理图像数据的步骤包括:对图像数据进行VFE(Video FrontEnd,视频前端)处理和CPP(Camera Post Processing,摄像头后处理)处理。对图像数据的VFE处理可包括修正图像数据的对比度或亮度、修改以数字方式记录的光照状态数据、对图像数据进行补偿处理(如白平衡,自动增益控制,γ校正等)、对图像数据进行滤波处理等。对图像数据的CPP处理可包括对图像进行缩放、向每个路径提供预览帧和记录帧。其中,CPP可使用不同的编解码器来处理预览帧和记录帧。ISP处理器1240处理后的图像数据可发送给美颜模块1260,以便在被显示之前对图像进行美颜处理。美颜模块1260对图像数据美颜处理可包括:美白、祛斑、磨皮、瘦脸、祛痘、增大眼睛等。其中,美颜模块1260可为电子设备中CPU(Central Processing Unit,中央处理器)、GPU或协处理器等。美颜模块1260处理后的数据可发送给编码器/解码器1270,以便编码/解码图像数据。编码的图像数据可被保存,并在显示于显示器1280设备上之前解压缩。其中,美颜模块1260还可位于编码器/解码器1270与显示器1280之间,即美颜模块对已成像的图像进行美颜处理。上述编码器/解码器1270可为电子设备中CPU、GPU或协处理器等。The steps for the ISP processor 1240 to process the image data include: performing VFE (Video Front End, video front end) processing and CPP (Camera Post Processing, camera post processing) processing on the image data. VFE processing of image data may include correction of contrast or brightness of image data, modification of digitally recorded light state data, compensation processing of image data (such as white balance, automatic gain control, gamma correction, etc.), filter processing, etc. CPP processing of image data may include scaling the image, providing preview frames and recording frames for each path. Among them, CPP can use different codecs to process preview frames and record frames. The image data processed by the ISP processor 1240 may be sent to the beautifying module 1260 so as to perform beautifying processing on the image before being displayed. The beauty treatment of the image data by the beauty module 1260 may include: whitening, freckle removal, skin smoothing, face thinning, acne removal, eye enlargement, etc. Wherein, the beautifying module 1260 may be a CPU (Central Processing Unit, central processing unit), a GPU or a co-processor in an electronic device. The data processed by the beauty module 1260 may be sent to the encoder/decoder 1270 for encoding/decoding image data. The encoded image data may be saved and decompressed prior to display on the display 1280 device. Wherein, the beautification module 1260 may also be located between the encoder/decoder 1270 and the display 1280, that is, the beautification module performs beautification processing on the imaged image. The aforementioned encoder/decoder 1270 may be a CPU, GPU, or coprocessor in an electronic device.

ISP处理器1240确定的统计数据可发送给控制逻辑器1250单元。例如,统计数据可包括自动曝光、自动白平衡、自动聚焦、闪烁检测、黑电平补偿、透镜1212阴影校正等图像传感器1214统计信息。控制逻辑器1250可包括执行一个或多个例程(如固件)的处理器和/或微控制器,一个或多个例程可根据接收的统计数据,确定成像设备1210的控制参数以及ISP处理器1240的控制参数。例如,成像设备1210的控制参数可包括传感器1220控制参数(例如增益、曝光控制的积分时间)、照相机闪光控制参数、透镜1212控制参数(例如聚焦或变焦用焦距)、或这些参数的组合。ISP控制参数可包括用于自动白平衡和颜色调整(例如,在RGB处理期间)的增益水平和色彩校正矩阵,以及透镜1212阴影校正参数。The statistics determined by the ISP processor 1240 may be sent to the control logic 1250 unit. For example, statistics may include image sensor 1214 statistics such as auto exposure, auto white balance, auto focus, flicker detection, black level compensation, lens 1212 shading correction, etc. Control logic 1250 may include a processor and/or a microcontroller that executes one or more routines (e.g., firmware) that determine control parameters of imaging device 1210 and ISP processing based on received statistical data. The control parameters of the device 1240. For example, control parameters of imaging device 1210 may include sensor 1220 control parameters (e.g., gain, integration time for exposure control), camera flash control parameters, lens 1212 control parameters (e.g., focal length for focus or zoom), or combinations of these parameters. ISP control parameters may include gain levels and color correction matrices for automatic white balance and color adjustment (eg, during RGB processing), as well as lens 1212 shading correction parameters.

运用图12中图像处理技术可实现如下步骤:Using the image processing technology in Figure 12 can achieve the following steps:

(1)对待处理图像进行人脸识别,识别待处理图像中人脸图像。(1) Perform face recognition on the image to be processed, and identify the face image in the image to be processed.

(2)获取与人脸图像对应的第一正脸图像。(2) Obtain the first front face image corresponding to the face image.

(3)根据预设规则从第一正脸图像上选取多个特征点,分别获取多个特征点与人脸轮廓的水平距离值。(3) Select a plurality of feature points from the first frontal face image according to preset rules, and obtain horizontal distance values between the plurality of feature points and the contour of the face respectively.

(4)根据水平距离值之间的比值确定人脸图像对应的脸型。(4) Determine the face shape corresponding to the face image according to the ratio between the horizontal distance values.

(5)根据脸型调整人脸图像中五官和人脸图像的轮廓。(5) Adjust the facial features in the face image and the outline of the face image according to the face shape.

在一个实施例中,分别获取多个特征点与人脸轮廓的水平距离值包括:确定第一正脸图像的中轴线,根据中轴线和第一正脸图像中五官特征点确定多个特征点的位置。获取多个特征点与人脸轮廓的水平距离值。In one embodiment, obtaining the horizontal distance values between the plurality of feature points and the contour of the face includes: determining the central axis of the first frontal face image, and determining a plurality of feature points according to the central axis and the facial features feature points in the first frontal face image s position. Obtain the horizontal distance values between multiple feature points and the face contour.

在一个实施例中,获取与人脸图像对应的第一正脸图像包括:若人脸图像为侧脸图像,获取人脸图像相对于标准图像的偏移角度。根据偏移角度获取人脸图像对应的第一正脸图像。In one embodiment, acquiring the first front face image corresponding to the face image includes: if the face image is a side face image, acquiring an offset angle of the face image relative to the standard image. The first front face image corresponding to the face image is acquired according to the offset angle.

在一个实施例中,偏移角度包括第一角度、第二角度和第三角度。第一角度表示人脸图像相对于标准图像在第一平面的旋转角度。第二角度表示人脸图像相对于标准图像在第二平面的旋转角度。第三角度表示人脸图像相对于标准图像在第三平面的旋转角度。第一平面、第二平面和第三平面之间每两个平面互相垂直。In one embodiment, the offset angle includes a first angle, a second angle and a third angle. The first angle represents a rotation angle of the face image relative to the standard image on the first plane. The second angle represents a rotation angle of the face image relative to the standard image on the second plane. The third angle represents the rotation angle of the face image relative to the standard image on the third plane. Every two planes among the first plane, the second plane and the third plane are perpendicular to each other.

在一个实施例中,还执行:根据偏移角度旋转预存的标准美颜模板,标准美颜模板为标准图像对应的美颜模板。将旋转后美颜模板与人脸图像进行融合。In an embodiment, it is further performed: rotating a pre-stored standard beautification template according to the offset angle, where the standard beautification template is a beautification template corresponding to the standard image. Fuse the rotated beauty template with the face image.

在一个实施例中,还执行:获取人脸图像中肤色、肤质和人脸图像对应的性别。根据肤色、肤质和性别确定人脸图像对应的美颜参数。根据美颜参数对人脸图像进行美颜处理。In one embodiment, it is also performed: acquiring the skin color, skin quality and gender corresponding to the face image in the face image. Determine the beautification parameters corresponding to the face image according to the skin color, skin quality and gender. Perform beautification processing on the face image according to the beautification parameters.

在一个实施例中,还执行:识别人脸图像对应的联系人。若电子设备中存储联系人对应的联系人信息,将调整后图像发送给联系人对应的电子设备。In an embodiment, it is further performed: identifying a contact person corresponding to the face image. If the contact information corresponding to the contact is stored in the electronic device, the adjusted image is sent to the electronic device corresponding to the contact.

本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。Any reference to memory, storage, database, or other medium as used herein may include non-volatile and/or volatile memory. Suitable nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory. Volatile memory can include random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM (ESDRAM), Synchronous Synchlink DRAM (SLDRAM), Memory Bus (Rambus) Direct RAM (RDRAM), Direct Memory Bus Dynamic RAM (DRDRAM), and Memory Bus Dynamic RAM (RDRAM).

以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above examples only express several implementation modes of the present application, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present application. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the scope of protection of the patent application should be based on the appended claims.

Claims (10)

1.一种图像处理方法,其特征在于,包括:1. An image processing method, characterized in that, comprising: 对待处理图像进行人脸识别,识别所述待处理图像中人脸图像;Perform face recognition on the image to be processed, and identify the face image in the image to be processed; 获取与所述人脸图像对应的第一正脸图像;Acquiring a first front face image corresponding to the face image; 根据预设规则从所述第一正脸图像上选取多个特征点,分别获取所述多个特征点与人脸轮廓的水平距离值;selecting a plurality of feature points from the first front face image according to preset rules, and obtaining horizontal distance values between the plurality of feature points and the contour of the face; 根据所述水平距离值之间的比值确定所述人脸图像对应的脸型;determining the face shape corresponding to the face image according to the ratio between the horizontal distance values; 根据所述脸型调整所述人脸图像中五官和所述人脸图像的轮廓。Adjusting the facial features in the face image and the outline of the face image according to the face shape. 2.根据权利要求1所述的方法。其特征在于,所述分别获取所述多个特征点与人脸轮廓的水平距离值包括:2. The method of claim 1. It is characterized in that said acquiring the horizontal distance values between said plurality of feature points and the human face contour respectively comprises: 确定所述第一正脸图像的中轴线,根据所述中轴线和所述第一正脸图像中五官特征点确定所述多个特征点的位置;Determining the central axis of the first front face image, and determining the positions of the plurality of feature points according to the central axis and the facial features feature points in the first front face image; 获取所述多个特征点与所述人脸轮廓的水平距离值。Acquiring horizontal distance values between the plurality of feature points and the contour of the human face. 3.根据权利要求1所述的方法,其特征在于,所述获取与所述人脸图像对应的第一正脸图像包括:3. The method according to claim 1, wherein said obtaining the first front face image corresponding to said human face image comprises: 若所述人脸图像为侧脸图像,获取所述人脸图像相对于标准图像的偏移角度;If the face image is a side face image, obtain the offset angle of the face image relative to the standard image; 根据所述偏移角度获取所述人脸图像对应的第一正脸图像。Acquire a first front face image corresponding to the face image according to the offset angle. 4.根据权利要求3所述的方法,其特征在于:4. The method according to claim 3, characterized in that: 所述偏移角度包括第一角度、第二角度和第三角度;The offset angle includes a first angle, a second angle and a third angle; 所述第一角度表示所述人脸图像相对于所述标准图像在第一平面的旋转角度;The first angle represents the rotation angle of the face image relative to the standard image on the first plane; 所述第二角度表示所述人脸图像相对于所述标准图像在第二平面的旋转角度;The second angle represents the rotation angle of the face image relative to the standard image on the second plane; 所述第三角度表示所述人脸图像相对于所述标准图像在第三平面的旋转角度;The third angle represents the rotation angle of the face image relative to the standard image on a third plane; 所述第一平面、第二平面和第三平面之间每两个平面互相垂直。Every two planes among the first plane, the second plane and the third plane are perpendicular to each other. 5.根据权利要求3所述的方法,其特征在于,所述方法还包括:5. method according to claim 3, is characterized in that, described method also comprises: 根据所述偏移角度旋转预存的标准美颜模板,所述标准美颜模板为所述标准图像对应的美颜模板;Rotating a pre-stored standard beautification template according to the offset angle, the standard beautification template being a beautification template corresponding to the standard image; 将旋转后美颜模板与所述人脸图像进行融合。The rotated beauty template is fused with the face image. 6.根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:6. The method according to any one of claims 1 to 5, further comprising: 获取所述人脸图像中肤色、肤质和所述人脸图像对应的性别;Obtaining the skin color, skin quality and gender corresponding to the face image in the face image; 根据所述肤色、肤质和性别确定所述人脸图像对应的美颜参数;determining the beautification parameters corresponding to the face image according to the skin color, skin quality and gender; 根据所述美颜参数对所述人脸图像进行美颜处理。Perform beautification processing on the face image according to the beautification parameters. 7.根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:7. The method according to any one of claims 1 to 5, wherein the method further comprises: 识别所述人脸图像对应的联系人;identifying the contact person corresponding to the face image; 若电子设备中存储所述联系人对应的联系人信息,将调整后图像发送给所述联系人对应的电子设备。If the contact information corresponding to the contact is stored in the electronic device, the adjusted image is sent to the electronic device corresponding to the contact. 8.一种图像处理装置,其特征在于,包括:8. An image processing device, comprising: 识别模块,用于对待处理图像进行人脸识别,识别所述待处理图像中人脸图像;The identification module is used to perform face recognition on the image to be processed, and identify the face image in the image to be processed; 获取模块,用于获取与所述人脸图像对应的第一正脸图像;An acquisition module, configured to acquire a first front face image corresponding to the face image; 脸型确定模块,用于根据预设规则从所述第一正脸图像上选取多个特征点,分别获取所述多个特征点与人脸轮廓的水平距离值;根据所述水平距离值之间的比值确定所述人脸图像对应的脸型;A face shape determination module, configured to select a plurality of feature points from the first frontal face image according to preset rules, and respectively obtain horizontal distance values between the plurality of feature points and the contour of the face; The ratio determines the face shape corresponding to the face image; 处理模块,用于根据所述脸型调整所述人脸图像中五官和所述人脸图像的轮廓。A processing module, configured to adjust the facial features in the face image and the contour of the face image according to the face shape. 9.一种电子设备,包括存储器及处理器,所述存储器中储存有计算机可读指令,所述指令被所述处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述的方法。9. An electronic device, comprising a memory and a processor, wherein computer-readable instructions are stored in the memory, and when the instructions are executed by the processor, the processor executes any one of claims 1 to 7. method described in the item. 10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行如权利要求1至7中任一项所述的方法。10. A computer-readable storage medium, on which a computer program is stored, wherein the computer program is executed by a processor according to the method according to any one of claims 1 to 7.
CN201711053857.XA 2017-10-31 2017-10-31 Image processing method, device, electronic device, and computer-readable storage medium Pending CN107705248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711053857.XA CN107705248A (en) 2017-10-31 2017-10-31 Image processing method, device, electronic device, and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711053857.XA CN107705248A (en) 2017-10-31 2017-10-31 Image processing method, device, electronic device, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
CN107705248A true CN107705248A (en) 2018-02-16

Family

ID=61177282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711053857.XA Pending CN107705248A (en) 2017-10-31 2017-10-31 Image processing method, device, electronic device, and computer-readable storage medium

Country Status (1)

Country Link
CN (1) CN107705248A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108446653A (en) * 2018-03-27 2018-08-24 百度在线网络技术(北京)有限公司 Method and apparatus for handling face-image
CN109461117A (en) * 2018-10-30 2019-03-12 维沃移动通信有限公司 A kind of image processing method and mobile terminal
CN109543633A (en) * 2018-11-29 2019-03-29 上海钛米机器人科技有限公司 A kind of face identification method, device, robot and storage medium
CN109584151A (en) * 2018-11-30 2019-04-05 腾讯科技(深圳)有限公司 Method for beautifying faces, device, terminal and storage medium
CN109685015A (en) * 2018-12-25 2019-04-26 北京旷视科技有限公司 Processing method, device, electronic equipment and the computer storage medium of image
CN109934766A (en) * 2019-03-06 2019-06-25 北京市商汤科技开发有限公司 A kind of image processing method and device
CN110097506A (en) * 2019-05-07 2019-08-06 北京市商汤科技开发有限公司 Image processing method and device, vision facilities and storage medium
CN110188711A (en) * 2019-06-03 2019-08-30 北京字节跳动网络技术有限公司 Method and apparatus for output information
CN110223218A (en) * 2019-05-16 2019-09-10 北京达佳互联信息技术有限公司 Face image processing process, device, electronic equipment and storage medium
CN110414370A (en) * 2019-07-05 2019-11-05 深圳云天励飞技术有限公司 Face shape recognition method, device, electronic device and storage medium
CN110490828A (en) * 2019-09-10 2019-11-22 广州华多网络科技有限公司 Image processing method and system in net cast
WO2019227917A1 (en) * 2018-05-31 2019-12-05 北京市商汤科技开发有限公司 Image processing method and device, and computer storage medium
CN110602390A (en) * 2019-08-30 2019-12-20 维沃移动通信有限公司 Image processing method and electronic equipment
CN110730303A (en) * 2019-10-25 2020-01-24 腾讯科技(深圳)有限公司 Image hair dyeing processing method, device, terminal and storage medium
CN110933354A (en) * 2019-11-18 2020-03-27 深圳传音控股股份有限公司 Customizable multi-style multimedia processing method and terminal thereof
CN111292276A (en) * 2018-12-07 2020-06-16 北京字节跳动网络技术有限公司 Image processing method and device
CN111784604A (en) * 2020-06-29 2020-10-16 北京字节跳动网络技术有限公司 Image processing method, device, equipment and computer readable storage medium
CN112150351A (en) * 2020-09-27 2020-12-29 广州虎牙科技有限公司 Image processing method, image processing device, electronic equipment and computer readable storage medium
CN114331815A (en) * 2021-12-24 2022-04-12 广州方硅信息技术有限公司 Image processing method, device, equipment and storage medium
CN114359114A (en) * 2022-03-16 2022-04-15 宁波杜比医疗科技有限公司 Mononuclear focus hue reduction method and device, electronic equipment and storage medium
CN114627003A (en) * 2022-02-09 2022-06-14 厦门美图之家科技有限公司 Method, system, device and storage medium for removing eye fat from face image
WO2023142474A1 (en) * 2022-01-28 2023-08-03 上海商汤智能科技有限公司 Image processing method and apparatus, electronic device, storage medium, and computer program product
CN116739924A (en) * 2023-06-06 2023-09-12 中国人民解放军国防科技大学 Geometric correction method of sequential observation images based on sparse measurement of equivalent offset angles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719326A (en) * 2016-01-19 2016-06-29 华中师范大学 Realistic face generating method based on single photo
CN106203400A (en) * 2016-07-29 2016-12-07 广州国信达计算机网络通讯有限公司 A kind of face identification method and device
CN106909892A (en) * 2017-01-24 2017-06-30 珠海市魅族科技有限公司 A kind of image processing method and system
CN106971164A (en) * 2017-03-28 2017-07-21 北京小米移动软件有限公司 Shape of face matching process and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719326A (en) * 2016-01-19 2016-06-29 华中师范大学 Realistic face generating method based on single photo
CN106203400A (en) * 2016-07-29 2016-12-07 广州国信达计算机网络通讯有限公司 A kind of face identification method and device
CN106909892A (en) * 2017-01-24 2017-06-30 珠海市魅族科技有限公司 A kind of image processing method and system
CN106971164A (en) * 2017-03-28 2017-07-21 北京小米移动软件有限公司 Shape of face matching process and device

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108446653B (en) * 2018-03-27 2022-08-16 百度在线网络技术(北京)有限公司 Method and apparatus for processing face image
CN108446653A (en) * 2018-03-27 2018-08-24 百度在线网络技术(北京)有限公司 Method and apparatus for handling face-image
WO2019227917A1 (en) * 2018-05-31 2019-12-05 北京市商汤科技开发有限公司 Image processing method and device, and computer storage medium
US11288796B2 (en) 2018-05-31 2022-03-29 Beijing Sensetime Technology Development Co., Ltd. Image processing method, terminal device, and computer storage medium
CN109461117B (en) * 2018-10-30 2023-11-24 维沃移动通信有限公司 Image processing method and mobile terminal
CN109461117A (en) * 2018-10-30 2019-03-12 维沃移动通信有限公司 A kind of image processing method and mobile terminal
CN109543633A (en) * 2018-11-29 2019-03-29 上海钛米机器人科技有限公司 A kind of face identification method, device, robot and storage medium
CN109584151A (en) * 2018-11-30 2019-04-05 腾讯科技(深圳)有限公司 Method for beautifying faces, device, terminal and storage medium
WO2020108291A1 (en) * 2018-11-30 2020-06-04 腾讯科技(深圳)有限公司 Face beautification method and apparatus, and computer device and storage medium
US11410284B2 (en) 2018-11-30 2022-08-09 Tencent Technology (Shenzhen) Company Limited Face beautification method and apparatus, computer device, and storage medium
CN109584151B (en) * 2018-11-30 2022-12-13 腾讯科技(深圳)有限公司 Face beautifying method, device, terminal and storage medium
CN111292276A (en) * 2018-12-07 2020-06-16 北京字节跳动网络技术有限公司 Image processing method and device
CN109685015B (en) * 2018-12-25 2021-01-08 北京旷视科技有限公司 Image processing method and device, electronic equipment and computer storage medium
CN109685015A (en) * 2018-12-25 2019-04-26 北京旷视科技有限公司 Processing method, device, electronic equipment and the computer storage medium of image
CN109934766A (en) * 2019-03-06 2019-06-25 北京市商汤科技开发有限公司 A kind of image processing method and device
US11244449B2 (en) 2019-03-06 2022-02-08 Beijing Sensetime Technology Development Co., Ltd. Image processing methods and apparatuses
CN110097506B (en) * 2019-05-07 2023-06-16 北京市商汤科技开发有限公司 Image processing method and device, image equipment and storage medium
CN110097506A (en) * 2019-05-07 2019-08-06 北京市商汤科技开发有限公司 Image processing method and device, vision facilities and storage medium
CN110223218B (en) * 2019-05-16 2024-01-12 北京达佳互联信息技术有限公司 Face image processing method and device, electronic equipment and storage medium
CN110223218A (en) * 2019-05-16 2019-09-10 北京达佳互联信息技术有限公司 Face image processing process, device, electronic equipment and storage medium
CN110188711A (en) * 2019-06-03 2019-08-30 北京字节跳动网络技术有限公司 Method and apparatus for output information
CN110414370A (en) * 2019-07-05 2019-11-05 深圳云天励飞技术有限公司 Face shape recognition method, device, electronic device and storage medium
CN110414370B (en) * 2019-07-05 2021-09-14 深圳云天励飞技术有限公司 Face shape recognition method and device, electronic equipment and storage medium
CN110602390B (en) * 2019-08-30 2021-02-02 维沃移动通信有限公司 Image processing method and electronic equipment
CN110602390A (en) * 2019-08-30 2019-12-20 维沃移动通信有限公司 Image processing method and electronic equipment
CN110490828A (en) * 2019-09-10 2019-11-22 广州华多网络科技有限公司 Image processing method and system in net cast
WO2021047433A1 (en) * 2019-09-10 2021-03-18 广州华多网络科技有限公司 Image processing method and system in live streaming
CN110490828B (en) * 2019-09-10 2022-07-08 广州方硅信息技术有限公司 Image processing method and system in video live broadcast
CN110730303A (en) * 2019-10-25 2020-01-24 腾讯科技(深圳)有限公司 Image hair dyeing processing method, device, terminal and storage medium
CN110730303B (en) * 2019-10-25 2022-07-12 腾讯科技(深圳)有限公司 Image hair dyeing processing method, device, terminal and storage medium
CN110933354B (en) * 2019-11-18 2023-09-01 深圳传音控股股份有限公司 Customizable multi-style multimedia processing method and terminal thereof
CN110933354A (en) * 2019-11-18 2020-03-27 深圳传音控股股份有限公司 Customizable multi-style multimedia processing method and terminal thereof
CN111784604A (en) * 2020-06-29 2020-10-16 北京字节跳动网络技术有限公司 Image processing method, device, equipment and computer readable storage medium
CN112150351A (en) * 2020-09-27 2020-12-29 广州虎牙科技有限公司 Image processing method, image processing device, electronic equipment and computer readable storage medium
CN114331815A (en) * 2021-12-24 2022-04-12 广州方硅信息技术有限公司 Image processing method, device, equipment and storage medium
CN114331815B (en) * 2021-12-24 2024-07-02 广州方硅信息技术有限公司 Image processing method, device, equipment and storage medium
WO2023142474A1 (en) * 2022-01-28 2023-08-03 上海商汤智能科技有限公司 Image processing method and apparatus, electronic device, storage medium, and computer program product
CN114627003A (en) * 2022-02-09 2022-06-14 厦门美图之家科技有限公司 Method, system, device and storage medium for removing eye fat from face image
CN114359114B (en) * 2022-03-16 2022-08-23 宁波杜比医疗科技有限公司 Mononuclear focus hue reduction method and device, electronic equipment and storage medium
CN114359114A (en) * 2022-03-16 2022-04-15 宁波杜比医疗科技有限公司 Mononuclear focus hue reduction method and device, electronic equipment and storage medium
CN116739924A (en) * 2023-06-06 2023-09-12 中国人民解放军国防科技大学 Geometric correction method of sequential observation images based on sparse measurement of equivalent offset angles
CN116739924B (en) * 2023-06-06 2024-05-03 中国人民解放军国防科技大学 Geometric correction method of sequential observation images based on sparse measurement of equivalent offset angle

Similar Documents

Publication Publication Date Title
CN107705248A (en) Image processing method, device, electronic device, and computer-readable storage medium
KR102362544B1 (en) Method and apparatus for image processing, and computer readable storage medium
CN107730444B (en) Image processing method, image processing device, readable storage medium and computer equipment
CN107766831B (en) Image processing method, image processing device, mobile terminal and computer-readable storage medium
CN107808136B (en) Image processing method, image processing device, readable storage medium and computer equipment
CN107680128B (en) Image processing method, image processing device, electronic equipment and computer readable storage medium
CN107945135B (en) Image processing method, image processing apparatus, storage medium, and electronic device
CN107886484B (en) Beautifying method, beautifying device, computer-readable storage medium and electronic equipment
CN107993209B (en) Image processing method, image processing device, computer-readable storage medium and electronic equipment
CN107734253B (en) Image processing method, image processing device, mobile terminal and computer-readable storage medium
CN107862663A (en) Image processing method, device, readable storage medium and computer equipment
CN107742274A (en) Image processing method, device, computer-readable storage medium, and electronic device
CN107945107A (en) Image processing method, device, computer-readable storage medium, and electronic device
CN107862274A (en) Beautifying method, device, electronic device and computer-readable storage medium
CN107862658B (en) Image processing method, apparatus, computer-readable storage medium and electronic device
CN107368806B (en) Image rectification method, image rectification device, computer-readable storage medium and computer equipment
CN107909057A (en) Image processing method, device, electronic device, and computer-readable storage medium
CN107833197A (en) Method, apparatus, computer-readable recording medium and the electronic equipment of image procossing
CN108022206A (en) Image processing method, image processing device, electronic equipment and computer readable storage medium
CN108022207A (en) Image processing method, device, storage medium and electronic equipment
CN107844764B (en) Image processing method, image processing device, electronic equipment and computer readable storage medium
CN107909058A (en) Image processing method, image processing device, electronic equipment and computer readable storage medium
CN107820017A (en) Image capturing method, device, computer-readable recording medium and electronic equipment
CN107578372B (en) Image processing method, image processing device, computer-readable storage medium and electronic equipment
CN107743200A (en) Method, device, computer-readable storage medium and electronic device for taking pictures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216