CN107703490A - Range ambiguity clutter suppression method based on FDA MIMO radars - Google Patents
Range ambiguity clutter suppression method based on FDA MIMO radars Download PDFInfo
- Publication number
- CN107703490A CN107703490A CN201710902373.1A CN201710902373A CN107703490A CN 107703490 A CN107703490 A CN 107703490A CN 201710902373 A CN201710902373 A CN 201710902373A CN 107703490 A CN107703490 A CN 107703490A
- Authority
- CN
- China
- Prior art keywords
- msub
- mrow
- mover
- vector
- clutter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000001629 suppression Effects 0.000 title claims abstract description 11
- 239000013598 vector Substances 0.000 claims abstract description 60
- 239000011159 matrix material Substances 0.000 claims abstract description 31
- 230000001419 dependent effect Effects 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 10
- 238000001914 filtration Methods 0.000 claims abstract description 8
- 230000001427 coherent effect Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 8
- 238000004088 simulation Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
- G01S7/292—Extracting wanted echo-signals
- G01S7/2923—Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/42—Diversity systems specially adapted for radar
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于FDA‑MIMO雷达的局域联合降维距离模糊杂波抑制方法,主要解决现有距离模糊杂波抑制方法检测性能不佳而且运算量大和对独立同分布样本数目要求高的问题。其实现步骤为:(1)用发射波形对雷达的回波数据进行匹配滤波;(2)对匹配滤波后的数据进行距离依赖补偿;(3)构造局域联合降维矩阵并对接收数据进行降维处理;(3)用降维后的数据估计出杂波协方差矩阵;(4)根据最小方差无畸变响应波束形成得到最优权矢量;(5)用最优权对降维后的数据加权,抑制距离模糊杂波,检测出目标信号。本发明与现有距离模糊杂波抑制方法相比,具有计算复杂度低,对独立同分布样本数目的要求低和抑制杂波性能好的优点,实现对机载雷达的距离模糊杂波抑制,可应用于机载雷达地面运动目标检测。
The invention discloses a local joint dimensionality reduction range ambiguity clutter suppression method based on FDA-MIMO radar, which mainly solves the poor detection performance of the existing range ambiguity clutter suppression method and the large amount of computation and high requirements for the number of independent and identically distributed samples The problem. The implementation steps are: (1) use the transmitted waveform to perform matched filtering on the echo data of the radar; (2) perform distance-dependent compensation on the data after the matched filtering; (3) construct a local joint dimensionality reduction matrix and process the received data Dimensionality reduction processing; (3) Estimating the clutter covariance matrix with the reduced dimension data; (4) Obtaining the optimal weight vector according to the minimum variance undistorted response beamforming; (5) Using the optimal weight to reduce the dimensionality Data weighting, suppressing range ambiguity clutter, and detecting target signals. Compared with the existing range ambiguous clutter suppression method, the present invention has the advantages of low computational complexity, low requirements on the number of independent and identically distributed samples and good clutter suppression performance, and realizes range ambiguous clutter suppression for airborne radar, It can be applied to airborne radar ground moving target detection.
Description
技术领域technical field
本发明属于雷达技术领域,特别涉及一种距离模糊杂波抑制方法,可用于对动目标的检测。The invention belongs to the technical field of radar, in particular to a range fuzzy clutter suppression method, which can be used for detecting moving targets.
背景技术Background technique
当机载预警雷达处于下视工作状态时,杂波多普勒会扩散,导致微弱目标信号被杂波淹没。空时二维自适应处理STAP联合空间和时间二维信息能有效提高杂波抑制能力和动目标检测性能。传统的STAP方法都是假定不存在距离模糊的情况下,当发生了距离模糊时,目标要同时与无模糊和有模糊的杂波竞争,大大降低了STAP的检测性能。When the airborne early warning radar is in the looking-down working state, the clutter Doppler will spread, causing the weak target signal to be submerged by the clutter. Space-time two-dimensional adaptive processing STAP joint space and time two-dimensional information can effectively improve the ability of clutter suppression and the performance of moving target detection. The traditional STAP method assumes that there is no range ambiguity. When range ambiguity occurs, the target has to compete with both unambiguous and ambiguous clutter, which greatly reduces the detection performance of STAP.
T.B.Hale等在论文“Localized three-dimensional adaptive spatial-temporal processing for airborne radar”(IEE Radar Sonar and Navig.,vol.150,no.1,pp.18-22,Feb.2003)和“Clutter suppression using elevation interferometryfused with space-time adaptive processing”(Electron.Lett.,vol.37,no.12,pp.793-794,Jun.2001)中提出了一种三维SATP方法,通过引入俯仰维的自由度来解决距离模糊杂波问题。但该种方法计算量很大而且需要大量的训练数据,难以在实际情况中进行运用。T.B.Hale et al. in the paper "Localized three-dimensional adaptive spatial-temporal processing for airborne radar" (IEE Radar Sonar and Navig., vol.150, no.1, pp.18-22, Feb.2003) and "Clutter suppression using "elevation interferometryfused with space-time adaptive processing" (Electron.Lett., vol.37, no.12, pp.793-794, Jun.2001) proposed a three-dimensional SATP method, by introducing the degree of freedom of the pitch dimension to Solve the problem of distance blur clutter. However, this method requires a lot of calculation and requires a large amount of training data, which is difficult to apply in actual situations.
D.Cristallini等在论文“A robust direct data domain approach for STAP”(IEEE Trans.Signal Process.,vol.60,no.3,pp.1283-1294,Mar.2012)中介绍了一种直接数据域STAP方法,通过单次快拍在空域和时域的平滑获得二阶训练样本实现对距离模糊杂波的抑制,但该方法牺牲了一定的自由度,造成检测性能的下降。D.Cristallini et al. introduced a direct data domain in the paper "A robust direct data domain approach for STAP" (IEEE Trans.Signal Process., vol.60, no.3, pp.1283-1294, Mar.2012) The STAP method obtains second-order training samples through the smoothing of a single snapshot in the spatial and temporal domains to suppress range ambiguity clutter, but this method sacrifices a certain degree of freedom, resulting in a decline in detection performance.
发明内容Contents of the invention
本发明的目的在于针对上述已有技术的不足,提出一种基于FDA-MIMO雷达的距离模糊杂波抑制方法,以在发生距离模糊的情况下,提高动目标的检测性能。本发明的技术方案是:通过采用多输入多输出MIMO雷达技术可有效的虚拟发射自由度,利用频率分集阵列的发射导向矢量的距离角度依赖特点,对距离模糊杂波进行分离和抑制,同时通过局域联合降维方法降低计算复杂度和杂波抑制对独立同分布杂波样本数目的要求,对地面目标检测过程进行实时处理,其实现步骤包括如下:The object of the present invention is to address the shortcomings of the above-mentioned prior art, and propose a range ambiguity clutter suppression method based on FDA-MIMO radar, so as to improve the detection performance of moving targets in the case of range ambiguity. The technical scheme of the present invention is: by adopting multiple-input multiple-output MIMO radar technology, the virtual launch degree of freedom can be effectively realized, and the range-angle dependence characteristics of the transmit steering vector of the frequency diversity array are used to separate and suppress the range ambiguous clutter, and at the same time, through The local joint dimension reduction method reduces the computational complexity and clutter suppression requirements for the number of independent and identically distributed clutter samples, and performs real-time processing on the ground target detection process. The implementation steps include the following:
(1)利用正侧视FDA—MIMO雷达模式,对雷达接收机端N个天线每次快拍数据分别用M个发射天线阵元的发射波形进行匹配滤波;将每个接收天线匹配滤波后的回波数据首尾相连,得到MNK×1维的第l个距离门的空时数据矢量xl,其中,m=1,2,...,M,上标*表示共轭,K为一次相干处理间隔内的脉冲数;(1) Utilize the side-looking FDA-MIMO radar mode, use the transmit waveforms of the M transmit antenna array elements for each snapshot data of the N antennas at the radar receiver end Perform matched filtering; connect the echo data of each receiving antenna matched and filtered end to end to obtain the space-time data vector x l of the l-th range gate in MNK×1 dimension, where m=1,2,..., M, superscript * means conjugate, K is the number of pulses in a coherent processing interval;
(2)对空时数据矢量xl进行距离依赖补偿,得到补偿后的空时数据矢量:(2) Perform distance-dependent compensation on the space-time data vector xl , and obtain the compensated space-time data vector:
其中,为补偿矢量,rl为对应于待检测距离门的主值距离,gT(rl)表示发射端的补偿矢量,1N为N维全1的列矢量,1K为K维全1的列矢量,符号表示Kronecker积,上标H表示共轭转置,diag表示将补偿矢量对角化;in, is the compensation vector, r l is the principal value distance corresponding to the range gate to be detected, g T (r l ) is the compensation vector at the transmitting end, 1 N is the column vector of all 1s in N dimension, and 1 K is the column of all 1s in K dimension vector, symbol Represents the Kronecker product, the superscript H represents the conjugate transpose, and diag represents the diagonalization of the compensation vector;
(3)对补偿后的空时数据矢量和目标的导向矢量进行降维,得到降维后的数据矢量和降维后的目标导向矢量 (3) For the compensated space-time data vector and the orientation vector of the target Perform dimensionality reduction to obtain the data vector after dimensionality reduction and the reduced goal-directed vector
其中,T表示局域联合降维矩阵,p0表示目标所在的距离区域索引号,ψ0为目标的角度,v0为目标的速度;Among them, T represents the local joint dimensionality reduction matrix, p 0 represents the index number of the distance region where the target is located, ψ 0 is the angle of the target, and v 0 is the speed of the target;
(4)利用L个距离门的降维后数据矢量估计目标所在距离门的协方差矩阵:(4) Dimensionality-reduced data vectors using L range gates Estimate the covariance matrix of the range gate where the target is located:
其中,为降维后的杂波加噪声的协方差矩阵;in, is the covariance matrix of clutter plus noise after dimensionality reduction;
(5)根据步骤(3)和步骤(4)的结果,由最小方差无畸变响应波束形成器得到最优权矢量:(5) According to the results of step (3) and step (4), the optimal weight vector is obtained by the minimum variance undistorted response beamformer:
其中,为协方差矩阵估计值的逆矩阵;in, Estimated values for the covariance matrix the inverse matrix;
(6)利用最优权矢量w对降维后的数据矢量进行加权求和,将回波数据中的杂波抑制滤除,检测出动目标。(6) Use the optimal weight vector w to reduce the dimensionality of the data vector Carry out weighted summation, filter out the clutter in the echo data, and detect the moving target.
本发明与现有技术相比,具有以下优点:Compared with the prior art, the present invention has the following advantages:
(a)本发明利用FDA雷达距离维的自由度,同时利用MIMO技术,先通过距离依赖补偿将距离模糊杂波在发射-接收空间分离,再对不同距离区域的杂波进行抑制,提高了动目标的检测性能。(a) The present invention utilizes the degree of freedom of the FDA radar distance dimension, and utilizes MIMO technology at the same time to separate the range-ambiguous clutter in the transmitting-receiving space through distance-dependent compensation, and then suppresses the clutter in different distance regions, thereby improving the dynamic range. Target detection performance.
(b)本发明对距离依赖补偿之后的数据利用局域联合降维处理方法进行降维,不仅减小了计算量,降低了计算复杂度,也降低了对独立同分布数据样本数目的要求,可实现对地面动目标的实时检测。(b) The present invention uses the local joint dimensionality reduction processing method to reduce the dimensionality of the data after distance-dependent compensation, which not only reduces the amount of calculation, reduces the complexity of calculation, but also reduces the requirement for the number of independent and identically distributed data samples, Real-time detection of ground moving targets can be realized.
本发明的目的、特征、优点可通过如下附图和实例详细描述。The purpose, features and advantages of the present invention can be described in detail by the following drawings and examples.
附图说明Description of drawings
图1是本发明的实现流程图;Fig. 1 is the realization flowchart of the present invention;
图2是本发明中所采用的正侧视机载FDA-MIMO雷达的模型示意图;Fig. 2 is the model schematic diagram of the side-looking airborne FDA-MIMO radar adopted in the present invention;
图3是FDA-MIMO雷达未进行距离依赖补偿的杂波功率谱;Figure 3 is the clutter power spectrum of the FDA-MIMO radar without distance-dependent compensation;
图4是本发明中对FDA-MIMO雷达进行距离依赖补偿后的杂波功率谱;Fig. 4 is the clutter power spectrum after carrying out distance-dependent compensation to FDA-MIMO radar in the present invention;
图5是用本发明对杂波进行抑制的发射-接收-多普勒三维处理器响应图;Fig. 5 is the transmit-receive-Doppler three-dimensional processor response figure that suppresses clutter with the present invention;
图6是图5在空时二维平面上的切片图。FIG. 6 is a slice diagram of FIG. 5 on a space-time two-dimensional plane.
具体实施方式Detailed ways
本发明所用的正侧视机载FDA-MIMO雷达模型如图2所示,坐标系原点O为平台在水平面的投影点,发射阵列与接收阵列均采用均匀线阵,发射天线阵元数为M,接收天线阵元数为N,dT为发射天线阵元间距,dR为接收天线阵元间距,x轴为平台运动速度υp的方向,H为平台的高度,θq为杂波点的方位角,φl,p为杂波点的俯仰角,rl,p为杂波点到平台的距离,ψl,p,q为杂波点与平台连线的夹角,ξl,p,q为杂波点的散射系数。The front and side looking airborne FDA-MIMO radar model used in the present invention is shown in Figure 2, and the origin O of the coordinate system is the projection point of the platform on the horizontal plane, and both the transmitting array and the receiving array adopt a uniform linear array, and the number of transmitting antenna array elements is M , the number of receiving antenna elements is N, d T is the distance between transmitting antenna elements, d R is the distance between receiving antenna elements, the x-axis is the direction of platform motion velocity υ p , H is the height of the platform, θ q is the clutter point azimuth, φ l,p is the pitch angle of the clutter point, r l,p is the distance from the clutter point to the platform, ψ l,p,q are the angles between the clutter point and the platform, ξ l, p and q are the scattering coefficients of the clutter points.
参照图1,本发明的具体实现步骤如下:With reference to Fig. 1, the concrete realization steps of the present invention are as follows:
步骤1:对雷达的回波数据进行匹配滤波。Step 1: Perform matched filtering on the echo data of the radar.
利用正侧视FDA—MIMO雷达模式,用每个接收天线的回波数据与发射波形的共轭作内积进行匹配滤波,将匹配滤波之后的回波数据首尾相连,即可得到MNK×1维的回波数据为:Using the side-looking FDA-MIMO radar mode, the echo data of each receiving antenna and the conjugate of the transmitting waveform The inner product is used for matching filtering, and the echo data after matching filtering are connected end-to-end to obtain the MNK×1-dimensional echo data as follows:
其中,上标*表示共轭,m=1,2,…,M,K为一次相干处理时间内的脉冲数,ξt为目标的反射系数,为目标的导向矢量,符号表示Kronecker积,aT(fT(r0,ψ0))为目标的发射导向矢量,fT(r0,ψ0)为目标的发射空间频率,aR(fR(ψ0))为目标的接收导向矢量,fR(ψ0)为目标的接收空间频率,b(fd(ψ0,v0))为目标的多普勒导向矢量,fd(ψ0,v0)为目标的多普勒频率,r0为目标的距离,ψ0为目标的角度,v0为目标的速度,Np为距离模糊数,Nc为每个距离门内统计独立的杂波点数,为杂波点的导向矢量,aT(fT(rl,p,ψl,p,q))为杂波的发射导向矢量,fT(rl,p,ψl,p,q)=-2Δfrl,p/c+dT cos(ψl,p,q)/λ0为杂波点的归一化发射空间频率,aR(fR(ψl,p,q))为杂波的接收导向矢量,fR(ψl,p,q)=dR cos(ψl,p,q)/λ0为杂波的归一化接收空间频率,b(fd(ψl,p,q))为杂波的多普勒导向矢量,fd(ψl,p,q)=2vpT cos(ψl,p,q)/λ0为杂波的归一化多普勒频率,Δf为步进频率量,c为光速,λ0为载波波长,T为脉冲重复周期,nl为高斯白噪声的空时数据矢量。Among them, the superscript * represents the conjugate, m=1,2,...,M, K is the number of pulses within a coherent processing time, ξ t is the reflection coefficient of the target, Direction vector for target, symbol represents the Kronecker product, a T (f T (r 0 ,ψ 0 )) is the launch steering vector of the target, f T (r 0 ,ψ 0 ) is the launch spatial frequency of the target, a R (f R (ψ 0 )) is the receiving steering vector of the target, f R (ψ 0 ) is the receiving spatial frequency of the target, b(f d (ψ 0 ,v 0 )) is the Doppler steering vector of the target, f d (ψ 0 ,v 0 ) is the Doppler frequency of the target, r 0 is the distance of the target, ψ 0 is the angle of the target, v 0 is the velocity of the target, N p is the range ambiguity number, N c is the number of statistically independent clutter points in each range gate , is the steering vector of the clutter point, a T (f T (r l,p ,ψ l,p,q )) is the steering vector of the clutter emission, f T (r l,p ,ψ l,p,q ) =-2Δfr l,p /c+d T cos(ψ l,p,q )/λ 0 is the normalized emission spatial frequency of the clutter point, a R (f R (ψ l,p,q )) is The receiving steering vector of clutter, f R (ψ l,p,q )=d R cos(ψ l,p,q )/λ 0 is the normalized receiving spatial frequency of clutter, b(f d (ψ l ,p,q )) is the Doppler steering vector of the clutter, f d (ψ l,p,q )=2v p T cos(ψ l,p,q )/λ 0 is the normalized multiple Δf is the step frequency, c is the speed of light, λ 0 is the carrier wavelength, T is the pulse repetition period, n l is the space-time data vector of Gaussian white noise.
所述的正侧视FDA-MIMO雷达模式,是指每个发射天线单元的发射信号载频具有线性步进量,且平台的飞行方向与天线法线方向垂直,在发射端由多个发射天线发射相互正交的信号产生多个发射通道,在接收端用多个天线接收回波信号。The described positive and side-looking FDA-MIMO radar mode means that the carrier frequency of the transmitting signal of each transmitting antenna unit has a linear step, and the flight direction of the platform is perpendicular to the normal direction of the antenna, and multiple transmitting antennas are used at the transmitting end Multiple transmission channels are generated by transmitting mutually orthogonal signals, and echo signals are received by multiple antennas at the receiving end.
步骤2:对匹配滤波之后的数据进行距离依赖补偿。Step 2: Perform distance-dependent compensation on the data after matched filtering.
由于频率分集阵列FDA雷达通过阵元间载频的频率增量,引入距离维的自由度,导致发射导向矢量存在距离依赖性,需要进行距离依赖补偿,补偿矢量为补偿后的数据矢量表示为:Since the frequency diversity array FDA radar introduces the degree of freedom in the distance dimension through the frequency increment of the carrier frequency between the array elements, the launch steering vector has a distance dependence, and distance dependence compensation is required. The compensation vector is The compensated data vector is expressed as:
其中,rl为待检测距离门的主值距离,上标H表示共轭转置,diag表示将补偿矢量对角化,gT(rl)=[1,exp{-j4πΔfrl/c},…,exp{-j4πΔf(M-1)rl/c}]T表示发射端的补偿矢量,上标T表示转置,j表示虚数,1N和1K分别为N维和K维全1的列矢量;Among them, r l is the principal value distance of the range gate to be detected, the superscript H indicates the conjugate transpose, diag indicates the diagonalization of the compensation vector, g T (r l )=[1,exp{-j4πΔfr l /c} ,…,exp{-j4πΔf(M-1)r l /c}] T represents the compensation vector at the transmitting end, the superscript T represents the transpose, j represents the imaginary number, 1 N and 1 K are N-dimensional and K-dimensional all-ones respectively column vector;
补偿后的杂波发射空间频率为其中p为距离区域的索引号,ru为最大无模糊距离,接收空间频率和多普勒频率不变;为补偿后的目标导向矢量,其中,表示补偿后的目标发射空间频率,p0表示目标处在第p0个距离区域;The spatial frequency of the compensated clutter emission is where p is the index number of the distance region, r u is the maximum unambiguous distance, and the receiving spatial frequency and Doppler frequency constant; is the compensated target-oriented vector, where, Indicates the target emission spatial frequency after compensation, p 0 indicates that the target is in the p 0th distance zone;
步骤3:利用局域联合降维矩阵对数据进行降维处理。Step 3: Use the local joint dimensionality reduction matrix to reduce the dimensionality of the data.
由于直接对回波数据处理的运算量和要求的独立同分布杂波样本数目太大,无法实现实时处理,导致检测性能下降。所以,在估计杂波协方差矩阵之前,需要采用局域联合降维方法对接收数据进行降维处理,其降维步骤如下:Due to the large amount of computing and the required number of independent and identically distributed clutter samples for direct echo data processing, real-time processing cannot be realized, resulting in a decline in detection performance. Therefore, before estimating the clutter covariance matrix, it is necessary to use the local joint dimensionality reduction method to reduce the dimensionality of the received data. The dimensionality reduction steps are as follows:
3a)构造发射空间的降维矩阵:3a) Construct the dimensionality reduction matrix of the launch space:
其中,表示目标发射空间通道周围的Q1个辅助通道;in, Indicates the Q 1 auxiliary channels around the target launch space channel;
3b)构造接收空间的降维矩阵:3b) Construct the dimensionality reduction matrix of the receiving space:
其中,表示目标接收空间通道周围的Q2个辅助通道;in, Indicates the Q 2 auxiliary channels around the target receiving space channel;
3c)根据3a)和3b)得到发射-接收空间的联合降维矩阵为:3c) According to 3a) and 3b), the joint dimensionality reduction matrix of the transmit-receive space is obtained as:
3d)构造多普勒域的降维矩阵为:3d) Construct the dimensionality reduction matrix of the Doppler domain as:
其中,表示目标多普勒通道周围的Q3个辅助通道;in, Indicates the Q 3 auxiliary channels around the target Doppler channel;
3e)根据3c)和3d)得到发射-接收-多普勒三维空间的联合降维矩阵为:3e) According to 3c) and 3d), the joint dimensionality reduction matrix of the transmit-receive-Doppler three-dimensional space is obtained as:
3f)用降维矩阵T(p0,ψ0,v0)乘以补偿后的空时数据矢量和目标的导向矢量得到降维后的数据矢量和降维后的目标导向矢量 3f) Multiply the compensated space-time data vector by the dimensionality reduction matrix T(p 0 ,ψ 0 ,v 0 ) and the orientation vector of the target Get the reduced data vector and the reduced goal-directed vector
步骤4:估计杂波协方差矩阵。Step 4: Estimate the clutter covariance matrix.
对L个距离门的杂波协方差矩阵取平均,得到目标所在距离门的协方差矩阵估计值 Average the clutter covariance matrix of L range gates to obtain the estimated value of the covariance matrix of the target range gate
其中,表示第l个距离门的降维后的数据矢量。in, Represents the dimensionality-reduced data vector of the l-th range gate.
步骤5:计算最优权矢量。Step 5: Calculate the optimal weight vector.
根据降维后的杂波协方差矩阵和目标导向矢量由最小方差无畸变响应波束形成器计算得到最优权矢量:According to the reduced clutter covariance matrix and the goal-directed vector The optimal weight vector is calculated by the minimum variance undistorted response beamformer:
其中为杂波协方差矩阵估计值的逆矩阵。in Estimated value for the clutter covariance matrix the inverse matrix of .
步骤6:对降维后的数据进行加权处理。Step 6: Perform weighting processing on the data after dimensionality reduction.
利用最优权矢量w对降维后的数据矢量进行加权处理,将回波数据中的杂波进行抑制,检测出目标。Use the optimal weight vector w to reduce the dimensionality of the data vector Perform weighting processing to suppress the clutter in the echo data and detect the target.
本发明的效果可以通过以下仿真实验进一步说明。The effects of the present invention can be further illustrated by the following simulation experiments.
一.实验环境1. Experimental environment
参照图2,本发明的实例所用的各种参数如表1With reference to Fig. 2, various parameters used in the example of the present invention are as table 1
表1 正侧视FDA-MIMO雷达参数Table 1 Front and side looking FDA-MIMO radar parameters
二.仿真内容与结果2. Simulation content and results
在所述仿真条件下,进行如下实验。Under the simulation conditions, the following experiments were performed.
仿真实验1,对正侧视FDA-MIMO雷达未进行距离依赖补偿的杂波谱仿真,结果如图3。In simulation experiment 1, the clutter spectrum simulation without range-dependent compensation is performed on the side-looking FDA-MIMO radar, and the results are shown in Figure 3.
仿真实验2,对正侧视FDA-MIMO雷达进行距离依赖补偿后的杂波谱仿真,结果如图4。In simulation experiment 2, the clutter spectrum simulation of the side-looking FDA-MIMO radar after distance-dependent compensation is performed, and the results are shown in Figure 4.
从图3和图4的比较可以看出,未进行补偿的杂波谱存在距离依赖,经过距离依赖补偿后,来自不同距离区域的杂波实现了分离。From the comparison of Figure 3 and Figure 4, it can be seen that the clutter spectrum without compensation has distance dependence, and after distance-dependent compensation, the clutter from different distance regions is separated.
仿真实验3,用本发明方法对距离模糊杂波进行抑制,结果如图5,Simulation experiment 3, using the method of the present invention to suppress range ambiguity clutter, the result is shown in Figure 5,
对图5的三维响应图在空时二维平面做切片,结果如图6。Slicing the three-dimensional response map in Figure 5 on the space-time two-dimensional plane, the result is shown in Figure 6.
从图5和图6可以看出,发射-接收-多普勒三维处理器响应凹口对准了杂波谱,表明本发明有效地抑制了距离模糊杂波。It can be seen from Fig. 5 and Fig. 6 that the response notch of the transmit-receive-Doppler three-dimensional processor is aligned with the clutter spectrum, indicating that the present invention effectively suppresses the range ambiguous clutter.
综上所述,本发明基于正侧视FDA-MIMO雷达模式,先通过FDA引入距离维的自由度实现距离模糊杂波的分离,再利用局域联合降维方法对回波数据进行降维,不仅降低了计算复杂度和对独立同分布样本数据数目的要求,而且也能保持距离模糊杂波抑制良好的性能,实现对动目标的有效检测。To sum up, the present invention is based on the side-looking FDA-MIMO radar mode. First, the FDA introduces the degree of freedom of the distance dimension to realize the separation of range ambiguity clutter, and then uses the local joint dimensionality reduction method to reduce the dimensionality of the echo data. It not only reduces the computational complexity and the requirements for the number of independent and identically distributed sample data, but also maintains the good performance of range ambiguity clutter suppression, and realizes the effective detection of moving targets.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710902373.1A CN107703490A (en) | 2017-09-29 | 2017-09-29 | Range ambiguity clutter suppression method based on FDA MIMO radars |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710902373.1A CN107703490A (en) | 2017-09-29 | 2017-09-29 | Range ambiguity clutter suppression method based on FDA MIMO radars |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107703490A true CN107703490A (en) | 2018-02-16 |
Family
ID=61175367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710902373.1A Pending CN107703490A (en) | 2017-09-29 | 2017-09-29 | Range ambiguity clutter suppression method based on FDA MIMO radars |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107703490A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108693509A (en) * | 2018-04-08 | 2018-10-23 | 中国人民解放军海军航空大学 | Frequency control battle array radar Ullage frequency focuses moving-target integration detection method |
CN108761452A (en) * | 2018-07-19 | 2018-11-06 | 山东省科学院自动化研究所 | The multiple-input and multiple-output array millimeter wave three-dimensional image forming apparatus and method of compensated distance |
CN108776337A (en) * | 2018-04-24 | 2018-11-09 | 桂林电子科技大学 | MIMO-FDA Ground Penetrating Radar close-target two-dimensional imaging methods |
CN109061619A (en) * | 2018-06-25 | 2018-12-21 | 西北大学 | A kind of method of signal processing, equipment and computer storage medium |
CN109212489A (en) * | 2018-10-24 | 2019-01-15 | 西安空间无线电技术研究所 | A kind of fuzzy clutter suppression method of the FDA-MIMO radar based on false impulse |
CN109597034A (en) * | 2018-12-12 | 2019-04-09 | 哈尔滨工业大学 | A kind of space-time adaptive processing method based on Euclidean distance |
CN109765536A (en) * | 2018-10-22 | 2019-05-17 | 西北大学 | FDA-MIMO dimensionality reduction space-time adaptive clutter suppression method and device based on auxiliary channel |
CN109814070A (en) * | 2019-01-31 | 2019-05-28 | 西安电子科技大学 | Auxiliary pulse-based range fuzzy clutter suppression method |
CN110082744A (en) * | 2019-04-24 | 2019-08-02 | 西安电子科技大学 | The MIMO airborne bistatic radar clutter suppression method of Doppler's stepped multiplexing |
CN110146871A (en) * | 2019-05-21 | 2019-08-20 | 西安电子科技大学 | Target parameter estimation method based on dual frequency offset FDA-MIMO radar |
CN110208763A (en) * | 2019-04-28 | 2019-09-06 | 西安电子科技大学 | The estimation method of FDA-MIMO radar frequency offset error |
CN110412533A (en) * | 2019-07-26 | 2019-11-05 | 西安电子科技大学 | Clutter suppression method based on three-dimensional angle Doppler compensation |
CN110531326A (en) * | 2018-05-24 | 2019-12-03 | 南京锐达思普电子科技有限公司 | Launching beam control algolithm of the low slow small radar to ground bounce removal |
CN110596707A (en) * | 2019-09-24 | 2019-12-20 | 中国人民解放军国防科技大学 | Three-dimensional imaging method for MIMO radar based on multi-snapshot image union |
CN111505600A (en) * | 2020-05-19 | 2020-08-07 | 西北大学 | FDA-MIMO radar signal processing method, device and medium based on STPC |
CN111965610A (en) * | 2020-07-07 | 2020-11-20 | 西安电子科技大学 | Spatial Dimensionality Reduction Method for Rectangular Area Arrays in Nonideal Motion State |
CN112698297A (en) * | 2019-10-22 | 2021-04-23 | 广州极飞科技有限公司 | Radar antenna, radar, unmanned aerial vehicle and equipment |
CN113093143A (en) * | 2021-04-15 | 2021-07-09 | 电子科技大学 | Dimensionality reduction parameter estimation method based on conformal frequency control array MIMO radar |
CN113093136A (en) * | 2021-03-31 | 2021-07-09 | 桂林电子科技大学 | Frequency diversity array radar target position removing fuzzy imaging method |
CN113466813A (en) * | 2021-06-18 | 2021-10-01 | 上海交通大学 | Space-time adaptive processing method, system and medium for space-time two-dimensional sliding window |
CN113504509A (en) * | 2021-06-08 | 2021-10-15 | 西安理工大学 | Clutter suppression method for uniform acceleration airborne radar based on beam domain compensation |
CN114428228A (en) * | 2022-01-24 | 2022-05-03 | 西安电子科技大学 | Clutter Suppression Method for Radar Seeker with High Repetition Frequency and Difference Antenna |
CN114527444A (en) * | 2022-04-24 | 2022-05-24 | 中国人民解放军空军预警学院 | Airborne MIMO radar self-adaptive clutter suppression method based on space-time sampling matrix |
CN114609595A (en) * | 2022-03-03 | 2022-06-10 | 西安电子科技大学 | Frequency division orthogonal MIMO radar signal processing method |
CN114779182A (en) * | 2022-04-08 | 2022-07-22 | 西安电子科技大学 | A time-domain sliding window three-dimensional multi-channel joint clutter suppression method based on FDA-MIMO radar |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1759224A1 (en) * | 2004-06-24 | 2007-03-07 | BAE Systems Integrated System Technologies Limited | Improvements relating to velocity extraction |
CN101799535A (en) * | 2009-11-27 | 2010-08-11 | 西安电子科技大学 | Method for estimating target direction by multiple input multiple output (MIMO) radar |
CN103018727A (en) * | 2011-09-27 | 2013-04-03 | 中国科学院电子学研究所 | Sample-training-based non-stationary clutter suppression method of vehicle-mounted radar |
CN103353591A (en) * | 2013-06-19 | 2013-10-16 | 西安电子科技大学 | Bistatic radar localization dimension reduction clutter suppression method based on MIMO |
CN104360325A (en) * | 2014-11-26 | 2015-02-18 | 西安电子科技大学 | Space-time adaptive processing method for airborne forward-looking array radar |
US20160012164A1 (en) * | 2014-07-11 | 2016-01-14 | Eli Levi | Phase noise simulation model for pulse doppler radar target detection |
CN105445701A (en) * | 2015-11-11 | 2016-03-30 | 西安电子科技大学 | Mono-pulse angle estimation method for DDMA-MIMO radar target |
CN105785327A (en) * | 2016-01-19 | 2016-07-20 | 西安电子科技大学 | Frequency diversity array synthetic aperture radar high resolution and wide swath imaging method |
-
2017
- 2017-09-29 CN CN201710902373.1A patent/CN107703490A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1759224A1 (en) * | 2004-06-24 | 2007-03-07 | BAE Systems Integrated System Technologies Limited | Improvements relating to velocity extraction |
CN101799535A (en) * | 2009-11-27 | 2010-08-11 | 西安电子科技大学 | Method for estimating target direction by multiple input multiple output (MIMO) radar |
CN103018727A (en) * | 2011-09-27 | 2013-04-03 | 中国科学院电子学研究所 | Sample-training-based non-stationary clutter suppression method of vehicle-mounted radar |
CN103353591A (en) * | 2013-06-19 | 2013-10-16 | 西安电子科技大学 | Bistatic radar localization dimension reduction clutter suppression method based on MIMO |
US20160012164A1 (en) * | 2014-07-11 | 2016-01-14 | Eli Levi | Phase noise simulation model for pulse doppler radar target detection |
CN104360325A (en) * | 2014-11-26 | 2015-02-18 | 西安电子科技大学 | Space-time adaptive processing method for airborne forward-looking array radar |
CN105445701A (en) * | 2015-11-11 | 2016-03-30 | 西安电子科技大学 | Mono-pulse angle estimation method for DDMA-MIMO radar target |
CN105785327A (en) * | 2016-01-19 | 2016-07-20 | 西安电子科技大学 | Frequency diversity array synthetic aperture radar high resolution and wide swath imaging method |
Non-Patent Citations (4)
Title |
---|
JINGWEI XU: "An Adaptive Range-Angle-Doppler Processing Approach for FDA-MIMO Radar Using Three-Dimensional Localization", 《IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 11, NO. 2, MARCH 2017》 * |
JINGWEI XU: "Joint Range and Angle Estimation Using MIMO Radar With Frequency Diverse Array", 《IEEE TRANSACTIONS ON SIGNAL PROCESSING》 * |
JINGWEI XU: "Space-Time-Range Adaptive Processing for Airborne Radar Systems", 《IEEE SENSORS JOURNAL》 * |
王成浩: "FDA-SAR高分辨宽测绘带成像距离解模糊方法", 《电子学报》 * |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108693509A (en) * | 2018-04-08 | 2018-10-23 | 中国人民解放军海军航空大学 | Frequency control battle array radar Ullage frequency focuses moving-target integration detection method |
CN108693509B (en) * | 2018-04-08 | 2021-01-26 | 中国人民解放军海军航空大学 | Frequency control array radar space-distance frequency focusing moving target accumulation detection method |
CN108776337A (en) * | 2018-04-24 | 2018-11-09 | 桂林电子科技大学 | MIMO-FDA Ground Penetrating Radar close-target two-dimensional imaging methods |
CN108776337B (en) * | 2018-04-24 | 2021-11-05 | 桂林电子科技大学 | MIMO-FDA Ground Penetrating Radar Near Target 2D Imaging Method |
CN110531326A (en) * | 2018-05-24 | 2019-12-03 | 南京锐达思普电子科技有限公司 | Launching beam control algolithm of the low slow small radar to ground bounce removal |
CN109061619A (en) * | 2018-06-25 | 2018-12-21 | 西北大学 | A kind of method of signal processing, equipment and computer storage medium |
CN108761452A (en) * | 2018-07-19 | 2018-11-06 | 山东省科学院自动化研究所 | The multiple-input and multiple-output array millimeter wave three-dimensional image forming apparatus and method of compensated distance |
CN108761452B (en) * | 2018-07-19 | 2023-09-08 | 山东省科学院自动化研究所 | Distance-compensated multi-input multi-output array millimeter wave three-dimensional imaging device and method |
CN109765536A (en) * | 2018-10-22 | 2019-05-17 | 西北大学 | FDA-MIMO dimensionality reduction space-time adaptive clutter suppression method and device based on auxiliary channel |
CN109212489A (en) * | 2018-10-24 | 2019-01-15 | 西安空间无线电技术研究所 | A kind of fuzzy clutter suppression method of the FDA-MIMO radar based on false impulse |
CN109597034A (en) * | 2018-12-12 | 2019-04-09 | 哈尔滨工业大学 | A kind of space-time adaptive processing method based on Euclidean distance |
CN109597034B (en) * | 2018-12-12 | 2021-08-31 | 哈尔滨工业大学 | A Space-Time Adaptive Processing Method Based on Euclidean Distance |
CN109814070B (en) * | 2019-01-31 | 2022-11-18 | 西安电子科技大学 | Range ambiguity clutter suppression method based on auxiliary pulse |
CN109814070A (en) * | 2019-01-31 | 2019-05-28 | 西安电子科技大学 | Auxiliary pulse-based range fuzzy clutter suppression method |
CN110082744A (en) * | 2019-04-24 | 2019-08-02 | 西安电子科技大学 | The MIMO airborne bistatic radar clutter suppression method of Doppler's stepped multiplexing |
CN110208763A (en) * | 2019-04-28 | 2019-09-06 | 西安电子科技大学 | The estimation method of FDA-MIMO radar frequency offset error |
CN110146871A (en) * | 2019-05-21 | 2019-08-20 | 西安电子科技大学 | Target parameter estimation method based on dual frequency offset FDA-MIMO radar |
CN110146871B (en) * | 2019-05-21 | 2022-11-04 | 西安电子科技大学 | Target parameter estimation method based on double-frequency offset FDA-MIMO radar |
CN110412533A (en) * | 2019-07-26 | 2019-11-05 | 西安电子科技大学 | Clutter suppression method based on three-dimensional angle Doppler compensation |
CN110596707B (en) * | 2019-09-24 | 2021-05-11 | 中国人民解放军国防科技大学 | MIMO radar 3D imaging method based on multi-snapshot image combination |
CN110596707A (en) * | 2019-09-24 | 2019-12-20 | 中国人民解放军国防科技大学 | Three-dimensional imaging method for MIMO radar based on multi-snapshot image union |
CN112698297A (en) * | 2019-10-22 | 2021-04-23 | 广州极飞科技有限公司 | Radar antenna, radar, unmanned aerial vehicle and equipment |
CN111505600A (en) * | 2020-05-19 | 2020-08-07 | 西北大学 | FDA-MIMO radar signal processing method, device and medium based on STPC |
CN111965610A (en) * | 2020-07-07 | 2020-11-20 | 西安电子科技大学 | Spatial Dimensionality Reduction Method for Rectangular Area Arrays in Nonideal Motion State |
CN111965610B (en) * | 2020-07-07 | 2024-03-26 | 西安电子科技大学 | Airspace dimension reduction method of rectangular area array in non-ideal motion state |
CN113093136B (en) * | 2021-03-31 | 2022-06-10 | 桂林电子科技大学 | A Frequency Diversity Array Radar De-ambiguity Imaging Method for Target Position |
CN113093136A (en) * | 2021-03-31 | 2021-07-09 | 桂林电子科技大学 | Frequency diversity array radar target position removing fuzzy imaging method |
CN113093143A (en) * | 2021-04-15 | 2021-07-09 | 电子科技大学 | Dimensionality reduction parameter estimation method based on conformal frequency control array MIMO radar |
CN113504509B (en) * | 2021-06-08 | 2023-07-11 | 西安理工大学 | A Beam Domain Compensated Uniform Acceleration Airborne Radar Clutter Suppression Method |
CN113504509A (en) * | 2021-06-08 | 2021-10-15 | 西安理工大学 | Clutter suppression method for uniform acceleration airborne radar based on beam domain compensation |
CN113466813B (en) * | 2021-06-18 | 2022-06-28 | 上海交通大学 | Space-time adaptive processing method, system and medium for space-time two-dimensional sliding window |
CN113466813A (en) * | 2021-06-18 | 2021-10-01 | 上海交通大学 | Space-time adaptive processing method, system and medium for space-time two-dimensional sliding window |
CN114428228A (en) * | 2022-01-24 | 2022-05-03 | 西安电子科技大学 | Clutter Suppression Method for Radar Seeker with High Repetition Frequency and Difference Antenna |
CN114428228B (en) * | 2022-01-24 | 2024-06-07 | 西安电子科技大学 | Clutter suppression method for high-repetition-frequency sum-difference antenna radar seeker |
CN114609595A (en) * | 2022-03-03 | 2022-06-10 | 西安电子科技大学 | Frequency division orthogonal MIMO radar signal processing method |
CN114779182A (en) * | 2022-04-08 | 2022-07-22 | 西安电子科技大学 | A time-domain sliding window three-dimensional multi-channel joint clutter suppression method based on FDA-MIMO radar |
CN114527444B (en) * | 2022-04-24 | 2022-07-15 | 中国人民解放军空军预警学院 | Airborne MIMO radar self-adaptive clutter suppression method based on space-time sampling matrix |
CN114527444A (en) * | 2022-04-24 | 2022-05-24 | 中国人民解放军空军预警学院 | Airborne MIMO radar self-adaptive clutter suppression method based on space-time sampling matrix |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107703490A (en) | Range ambiguity clutter suppression method based on FDA MIMO radars | |
CN102156279B (en) | Method for detecting moving target on ground by utilizing bistatic radar based on MIMO (Multiple Input Multiple Output) | |
CN103353591B (en) | Bistatic radar localization dimension reduction clutter suppression method based on MIMO | |
CN102520395B (en) | Clutter suppression method based on bistatic multiple-input and multiple-output radar | |
CN104360325B (en) | Space-time adaptive processing method for airborne forward-looking array radar | |
CN103353592B (en) | Bistatic radar multichannel combination dimension reduction clutter suppression method based on MIMO | |
Kogon et al. | Bistatic STAP for airborne radar systems | |
CN103257344B (en) | Iteration-adaptive-algorithm-based method for detecting coherent MIMO radar target | |
CN109814070B (en) | Range ambiguity clutter suppression method based on auxiliary pulse | |
JP2011158471A (en) | Method for detecting target in time-space adaptive processing system | |
CN104635214B (en) | Air-borne Forward-looking frequency diversity array radar range ambiguity clutter suppression method | |
CN104635219B (en) | Even acceleration platform space-time adaptive processing method based on array element pulse domain compensation | |
CN104793194B (en) | Range Doppler method of estimation based on the compression of improved self adaptation multiple-pulse | |
CN104155633B (en) | Clutter suppression method of non-positive side-looking bistatic MIMO radar | |
CN110412533A (en) | Clutter suppression method based on three-dimensional angle Doppler compensation | |
CN105223557B (en) | Airborne early warning radar clutter suppression method based on accessory channel | |
CN101907702A (en) | Two-dimensional multi-pulse canceller for MIMO radar | |
CN111999727B (en) | Method for detecting fast moving target of airborne frequency diversity array radar based on main lobe amplitude response control | |
CN104280720B (en) | Method for designing transmitting directional diagram of foresight airborne radar | |
CN103760540B (en) | Based on moving target detect and the method for parameter estimation of reconstruction signal and 1-norm | |
CN105372635A (en) | Improved dimension-reduction space-time adaptive processing-based ship-borne high-frequency ground wave radar sea clutter suppression method | |
CN104101868B (en) | Radar multi-false-target jamming suppressing method based on interference space reconstruct | |
Li et al. | Range-dependent clutter cancellation method in bistatic MIMO-STAP radars | |
CN114428228B (en) | Clutter suppression method for high-repetition-frequency sum-difference antenna radar seeker | |
CN110456342A (en) | Far-field multi-moving target detection method for single-transmitting antenna radar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180216 |