CN107690557B - Ultra-low NOx combustion device - Google Patents
Ultra-low NOx combustion device Download PDFInfo
- Publication number
- CN107690557B CN107690557B CN201780001400.6A CN201780001400A CN107690557B CN 107690557 B CN107690557 B CN 107690557B CN 201780001400 A CN201780001400 A CN 201780001400A CN 107690557 B CN107690557 B CN 107690557B
- Authority
- CN
- China
- Prior art keywords
- combustion
- recirculation
- fuel injection
- combustion furnace
- main fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 160
- 239000000446 fuel Substances 0.000 claims abstract description 208
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 164
- 239000000567 combustion gas Substances 0.000 claims abstract description 53
- 238000002347 injection Methods 0.000 claims abstract description 46
- 239000007924 injection Substances 0.000 claims abstract description 46
- 230000002093 peripheral effect Effects 0.000 claims abstract description 24
- 239000007800 oxidant agent Substances 0.000 claims description 72
- 230000001590 oxidative effect Effects 0.000 claims description 66
- 230000001737 promoting effect Effects 0.000 claims description 7
- 238000005457 optimization Methods 0.000 abstract description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 13
- 229910002091 carbon monoxide Inorganic materials 0.000 description 13
- 239000007789 gas Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000010531 catalytic reduction reaction Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 244000249914 Hemigraphis reptans Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 235000009781 Myrtillocactus geometrizans Nutrition 0.000 description 1
- 240000009125 Myrtillocactus geometrizans Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C5/00—Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
- F23C5/08—Disposition of burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C9/00—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
- F23C9/006—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C9/00—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
- F23C9/06—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for completing combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2202/00—Fluegas recirculation
- F23C2202/20—Premixing fluegas with fuel
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
- Combustion Of Fluid Fuel (AREA)
- Pre-Mixing And Non-Premixing Gas Burner (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种基于燃烧气体的内部再循环的超低氮氧化物燃烧装置,更详细而言,涉及一种超低氮氧化物燃烧装置,在其燃烧室内产生的燃烧气体无需额外的装置即从燃烧室内部传递,而不由所述燃烧室的外部连接通道传递,通过用于实现更高效的燃烧气体流动的燃烧器的结构和燃料分配优化控制,实现更高效的燃烧气体的内部再循环。The present invention relates to an ultra-low nitrogen oxide combustion device based on internal recirculation of combustion gas, and more particularly, to an ultra-low nitrogen oxide combustion device, in which the combustion gas generated in the combustion chamber does not require additional devices. Passing from inside the combustion chamber, rather than by the external connecting passages of said combustion chamber, enables more efficient internal recirculation of combustion gases through optimal control of the structure and fuel distribution of the burner for more efficient combustion gas flow.
背景技术Background technique
现今人类的主要能源是烃类的化石燃料。但这类化石燃料燃烧后的生成物导致的环境污染问题严重。主要环境污染源有氮氧化物(NOx)、二氧化碳(CO2),还有燃料的不完全燃烧所产生的一氧化碳(CO)和煤烟(soot)等。The main source of energy for humans today is hydrocarbon fossil fuels. However, the environmental pollution caused by the combustion products of such fossil fuels is a serious problem. The main sources of environmental pollution are nitrogen oxides (NO x ), carbon dioxide (CO 2 ), and carbon monoxide (CO) and soot (soot) produced by incomplete combustion of fuel.
使用化石燃料的现有的燃烧器中,由于燃烧时的化学反应,不可避免地生成化学式为NO以及NO2的氮氧化物(NOx)。低NOx燃烧技术通过燃料和空气的混合形式、空燃比等燃烧器的结构改良而达到抑制氮氧化物生成的目的。在燃烧过程中所产生的氮氧化物与大气中的其它氧发生反应,引发烟雾以及大气臭氧增加等环境问题。特别是在这种燃烧过程中所产生的排放物(emission)对环境以及人体健康造成危害,因此各国正以越来越严格的标准来加强管制。In conventional burners using fossil fuels, nitrogen oxides (NO x ) having chemical formulae NO and NO 2 are inevitably generated due to chemical reactions during combustion. The low NOx combustion technology achieves the purpose of suppressing the formation of nitrogen oxides by improving the structure of the burner such as the mixing form of fuel and air and the air-fuel ratio. Nitrogen oxides produced during combustion react with other oxygen in the atmosphere, causing environmental problems such as smog and increased atmospheric ozone. In particular, the emission produced in this combustion process is harmful to the environment and human health, so countries are strengthening the control with increasingly strict standards.
根据生成原因,可以将氮氧化物的种类划分为热氮氧化物(Thermal NOx)、快速型氮氧化物(Prompt NOx)以及燃料型氮氧化物(Fuel NOx)。热氮氧化物是空气中的氮与氧在1600℃以上的高温下发生反应而生成的,快速型氮氧化物是烃类燃料燃烧时在燃烧初期生成的,燃料型氮氧化物是通过燃料中所含的氮成分的反应所生成的。在这样的氮氧化物的对策方面,由于天然气等气体燃料不含氮成分,因此对于热氮氧化物以及快速型氮氧化物的相关事项的控制有可能更为有效。The types of nitrogen oxides can be classified into thermal nitrogen oxides (Thermal NO x ), rapid nitrogen oxides (Prompt NO x ), and fuel nitrogen oxides (Fuel NO x ) according to the reasons for their generation. Thermal nitrogen oxides are generated by the reaction of nitrogen and oxygen in the air at high temperatures above 1600 °C. Rapid nitrogen oxides are generated during the initial combustion of hydrocarbon fuels. Fuel nitrogen oxides are produced through the fuel. It is produced by the reaction of the contained nitrogen components. In terms of countermeasures against such nitrogen oxides, since gas fuels such as natural gas do not contain nitrogen components, there is a possibility that the control of matters related to thermal nitrogen oxides and rapid nitrogen oxides may be more effective.
氮氧化物成为光化学烟雾以及酸雨的原因,已知对动植物造成严重的影响,长久以来很多研究者研究了各种减少NOx的方法。Nitrogen oxides are the cause of photochemical smog and acid rain, and are known to have serious effects on animals and plants. For a long time, many researchers have studied various methods to reduce NOx .
因而目前尝试的低NOx方法有排气再循环、水或蒸汽喷射、空气及燃料的多级燃烧、选择性非催化还原反应(SNCR,selective non-catalytic reduction)、选择性催化还原反应(SNCR,selective catalytic reduction)等。最近在发达国家正尝试在后燃烧区域去除NOx的方法,认为不管是在NOx削减率还是在经济性方面都有效。Therefore, the currently tried low NOx methods include exhaust gas recirculation, water or steam injection, multi-stage combustion of air and fuel, selective non-catalytic reduction reaction (SNCR, selective non-catalytic reduction), selective catalytic reduction reaction (SNCR). ,selective catalytic reduction) and so on. Recently, a method of removing NOx in the post-combustion region is being tried in developed countries, and it is considered to be effective both in terms of NOx reduction rate and economical efficiency.
作为上述的用于削减NOx的现有方法,专利文献1提供一种液体以及气体用排气再循环三级燃烧器,其为了削减氮氧化物(NOx)的生成量,对燃烧用空气与一般空气以及排气进行混合并分三级来供给,各级的混合比不同,以便使多级燃烧引起的局部高温区域的生成最小化,并且扩张燃烧区域,以实现锅炉内部的均匀加热。As a conventional method for reducing NOx as described above,
所述专利文献1中,作为用于使排气进行再循环的要素,具备多个排气供给管、再循环导管以及风门(damper)等额外的装置,以便使排气重新流入燃烧炉内,但是缺点在于,所述装置需要额外设置在燃烧炉的外部,因此所需的空间变大。In the above-mentioned
另一方面,关于专利文献2,参照本申请人在先申请的授权专利,如图4所示,提供一种内部再循环技术,在其燃烧炉1'内产生的燃烧气体3'、4'无需额外的装置即从燃烧炉1'内部向燃烧器2'内部传递,而不通过燃烧炉的外部连接通道传递,但是缺点在于,无法有效地利用燃烧炉1'内的部分区域的燃烧气体4'的流动,并且未考虑燃料供给量的控制。On the other hand, with regard to
【在线技术文献】【Online technical literature】
【专利文献】【Patent Literature】
(专利文献1)KR 10-2005-0117417 A(Patent Document 1) KR 10-2005-0117417 A
(专利文献1)KR 10-1512352 B1(Patent Document 1) KR 10-1512352 B1
发明内容SUMMARY OF THE INVENTION
所要解决的技术问题technical problem to be solved
因此,本发明为了解决上述的问题,旨在提供一种超低氮氧化物燃烧装置,其采用内部再循环技术,该技术在向燃烧炉的中心区域供给氧化剂的同时,使产生于形成有多重火焰场的燃烧炉内的燃烧气体无需额外的装置即从燃烧炉内部传递,而不由燃烧炉的外部连接通道传递,其通过在燃烧炉内的再循环区域流动的燃烧气体的更加顺畅的再循环以及燃料分配优化控制,提升氮氧化物削减效果。Therefore, in order to solve the above-mentioned problems, the present invention aims to provide an ultra-low nitrogen oxide combustion device, which adopts an internal recirculation technology, which supplies the oxidant to the central area of the combustion furnace, and makes The combustion gas in the combustion furnace of the flame field is passed from the inside of the combustion furnace without additional means, rather than by the external connecting channel of the combustion furnace, which is through the smoother recirculation of the combustion gas flowing in the recirculation area in the combustion furnace And fuel distribution optimization control, improve the nitrogen oxide reduction effect.
解决技术问题的方案Solutions to technical problems
为了达成上述的目的,本发明提供一种超低氮氧化物燃烧装置,其包括:燃烧炉;燃烧器,其一侧插入于所述燃烧炉内,所插入的一侧以及外周面与所述燃烧炉的内部面隔开规定间隔;主燃料喷射体,位于所述燃烧器的中央;辅助燃料喷射体,环绕所述主燃料喷射体,且其端部从所述燃烧器的一侧端部朝向另一侧缩进规定的间隔;燃料再循环端口,位于所述燃烧器的外周面上的所述辅助燃料喷射体的端部所处位置附近;以及传感器,用于感测产生于所述燃烧炉内的燃烧气体中所含的CO浓度,其中,通过所述主燃料喷射体向所述燃烧炉供给主燃料,其供给量少于预设的量,并且通过所述辅助燃料喷射体向所述燃烧炉追加供给辅助燃料,其供给量等于所述主燃料相对于所述预设的量所减少的量,从而在所述燃烧炉内进行燃烧,当由所述传感器感测的所述燃烧炉内的CO浓度在预设的浓度以上时,增加所述主燃料的供给量,因所述燃烧而产生并在所述燃烧炉的内周面与所述燃烧器的外周面之间流动的燃烧气体,依靠由所述辅助燃料喷射体喷射的辅助燃料的流速而通过所述燃料再循环端口流入所述燃烧器的内部,从而进行再次燃烧。In order to achieve the above object, the present invention provides an ultra-low nitrogen oxide combustion device, which includes: a combustion furnace; a burner, one side of which is inserted into the combustion furnace, and the inserted side and the outer peripheral surface The internal surfaces of the burner are spaced apart by a predetermined interval; a main fuel injector is located in the center of the burner; an auxiliary fuel injector surrounds the main fuel injector and has an end from one side end of the burner a fuel recirculation port on the outer peripheral surface of the combustor near where the end of the auxiliary fuel injection body is located; and a sensor for sensing the CO concentration contained in the combustion gas in the combustion furnace, wherein the main fuel is supplied to the combustion furnace through the main fuel injection body in an amount smaller than a preset amount and is supplied to the combustion furnace through the auxiliary fuel injection body. The combustion furnace additionally supplies auxiliary fuel, the supply amount of which is equal to the amount by which the main fuel is reduced relative to the preset amount, so as to carry out combustion in the combustion furnace, when the When the CO concentration in the combustion furnace is greater than or equal to a preset concentration, the supply amount of the main fuel is increased, which is generated by the combustion and flows between the inner peripheral surface of the combustion furnace and the outer peripheral surface of the burner The combusted gas flows into the inside of the burner through the fuel recirculation port depending on the flow rate of the auxiliary fuel injected by the auxiliary fuel injector, thereby reburning.
优选,进一步包括氧化剂再循环引导部,其位于所述主燃料喷射体与所述辅助燃料喷射体之间,以所述主燃料喷射体为中心,在同一圆周上隔着规定的间隔配置有多个所述辅助燃料喷射体,向所述再循环端口侧流入的燃烧气体中的一部分向所述辅助燃料喷射体之间的间隙流动而流入所述氧化剂再循环引导部,并与供应至所述主燃料喷射体的氧化剂混合而与供给至所述主燃料喷射体的主燃料一同燃烧。Preferably, an oxidant recirculation guide portion is further included, which is located between the main fuel injector and the auxiliary fuel injector, with the main fuel injector as the center, and a plurality of oxidant recirculation guides are arranged at predetermined intervals on the same circumference. Each of the auxiliary fuel injectors flows into the oxidant recirculation guide portion, and is supplied to the The oxidant of the main fuel injector is mixed and combusted with the main fuel supplied to the main fuel injector.
优选,所述氧化剂再循环引导部包括:内部再循环套管,其以所述辅助燃料喷射体为基准倾斜地配置;连接导件,其从所述内部再循环套管的后端延伸;喷嘴,其连接于所述连接导件的后端,用于改变流动的燃烧气体的移动方向。Preferably, the oxidant recirculation guide includes: an inner recirculation sleeve disposed obliquely with respect to the auxiliary fuel injector; a connection guide extending from a rear end of the inner recirculation sleeve; and a nozzle , which is connected to the rear end of the connecting guide for changing the moving direction of the flowing combustion gas.
优选,所述喷嘴倾斜地配置在所述主燃料喷射体与所述氧化剂再循环引导部之间,从而减小所述氧化剂的流动空间即所述主燃料喷射体与所述氧化剂再循环引导部之间的宽度。Preferably, the nozzle is arranged obliquely between the main fuel injector and the oxidant recirculation guide, so that the flow space of the oxidant, that is, the main fuel injector and the oxidant recirculation guide, is reduced. width between.
优选,进一步包括再循环促进凸起部,其附设在所述喷嘴与所述主燃料喷射体的外部面之间,所述再循环促进凸起部增加在所述主燃料喷射体与所述氧化剂再循环引导部之间流动的燃烧气体的流速。Preferably, it further includes a recirculation promoting boss attached between the nozzle and the outer surface of the main fuel injector, the recirculation promoting boss increasing between the main fuel injector and the oxidant The flow rate of the combustion gas flowing between the recirculation guides.
有益效果beneficial effect
如上所述,根据本发明涉及的超低氮氧化物燃烧装置,采用内部再循环技术,无需额外的装置即从燃烧室内部传递产生于燃烧炉内部的燃烧气体,而不通过所述燃烧室的外部连接通道传递。As described above, according to the ultra-low NOx combustion device according to the present invention, the internal recirculation technology is adopted, and the combustion gas generated in the combustion furnace is transferred from the interior of the combustion chamber without additional devices, without passing through the combustion chamber. External connection channel pass.
此外,通过引导燃烧气体的顺畅流动的再循环端口的结构,优化燃烧气体的再循环,随之使燃烧炉内的燃烧气体以多级形式流动而更加顺畅地燃烧,从而能够实现超低氮氧化物运行,并且基于再循环的燃烧气体与氧化剂以及燃料一同燃烧,从而使燃烧炉内的火焰稳定。In addition, through the structure of the recirculation port that guides the smooth flow of the combustion gas, the recirculation of the combustion gas is optimized, and the combustion gas in the combustion furnace flows in a multi-stage form for smoother combustion, so that ultra-low NOx can be realized. The fuel is operated and the recirculated combustion gas is combusted with the oxidant and the fuel, thereby stabilizing the flame in the combustion furnace.
此外,通过供给的燃料分配的优化控制,能够进一步削减氮氧化物。In addition, nitrogen oxides can be further reduced by optimal control of the distribution of the supplied fuel.
附图说明Description of drawings
图1是本发明一实施例涉及的超低氮氧化物燃烧装置的侧面概略图。FIG. 1 is a schematic side view of an ultra-low nitrogen oxide combustion device according to an embodiment of the present invention.
图2是本发明一实施例涉及的超低氮氧化物燃烧装置的侧面概略图,示出了超低氮氧化物燃烧装置的燃烧过程。2 is a schematic side view of an ultra-low NOx combustion device according to an embodiment of the present invention, showing the combustion process of the ultra-low NOx combustion device.
图3是本发明另一实施例涉及的超低氮氧化物燃烧装置的侧面概略图,示出了超低氮氧化物燃烧装置的燃烧过程。3 is a schematic side view of an ultra-low NOx combustion device according to another embodiment of the present invention, showing the combustion process of the ultra-low NOx combustion device.
图4是现有的燃烧装置的侧面概略图。FIG. 4 is a schematic side view of a conventional combustion apparatus.
图5是示出本发明涉及的超低氮氧化物燃烧装置的燃烧过程的流程图。FIG. 5 is a flow chart showing the combustion process of the ultra-low NOx combustion device according to the present invention.
图6示出了NOx生成量,示出了作为现有的再循环多级燃烧装置(专利文献2)而未采用再循环端口的情形下的NOx生成量以及作为本发明涉及的超低氮氧化物燃烧装置而采用再循环端口的情形下的NOx生成量。Fig. 6 shows the NOx generation amount, the NOx generation amount in the case where the recirculation port is not used as the conventional recirculation multi-stage combustion device (Patent Document 2), and the ultra-low gas generation amount according to the present invention The NOx generation amount when a recirculation port is used as a nitrogen oxide combustion device.
图7示出了NOx生成量,分别示出了未采用燃料分配优化控制的情形下以及采用的情形下的NOx生成量。FIG. 7 shows the NO x generation amount, respectively showing the NO x generation amount in the case where the fuel distribution optimization control is not employed and in the case where it is employed.
【附图标记】[reference number]
1:燃烧炉1: Burner
5:燃烧器5: Burner
10:主燃料喷射体10: Main fuel injector
11:主燃料喷射部11: Main fuel injection part
21:燃料再循环端口21: Fuel recirculation port
20:辅助燃料喷射体20: Auxiliary fuel injector
30:旋流器30: Cyclone
40:氧化剂再循环引导部40: Oxidant recirculation guide
41:内部再循环套管41: Internal recirculation sleeve
43:连接导件43: Connection guide
45:喷嘴45: Nozzle
47:倾斜构件47: Inclined member
50:燃料供给部50: Fuel Supply Department
51:第一燃料供给管线51: First fuel supply line
52:第二燃料供给管线52: Second fuel supply line
55、56:电磁阀55, 56: Solenoid valve
60:空气多级套60: Air multi-stage sleeve
72:第一次火焰空间72: The first flame space
74:第二次火焰空间74: Second Flame Space
76:再循环区域的燃烧气体76: Combustion gases in the recirculation zone
78:预混合区域78: Premix Area
80:氧化剂供给部80: Oxidant supply part
85:中心氧化剂喷射体85: Central oxidizer jet
90:再循环促进凸起部90: Recirculation-promoting boss
100:超低氮氧化物燃烧装置100: Ultra-low NOx combustion device
具体实施方式Detailed ways
通过参照附图对本发明的优选实施例进行详细说明,本发明的如上目的、特征以及其它优点将会更加明确。描述的实施例是为说明本发明而作为示例来提供的,并不用于限定本发明的技术范围。The above objects, features and other advantages of the present invention will become more apparent by detailed description of the preferred embodiments of the present invention with reference to the accompanying drawings. The described embodiments are provided as examples to illustrate the present invention, and are not intended to limit the technical scope of the present invention.
根据需要,构成本发明的超低氮氧化物燃烧装置的各个构成要素可以作为一体型来使用,或者彼此分离使用。此外,根据使用形式,可以省略部分构成要素而使用。As necessary, the respective constituent elements constituting the ultra-low nitrogen oxide combustion device of the present invention may be used as an integrated type, or may be used separately from each other. In addition, depending on the usage form, some constituent elements may be omitted and used.
下面,参照附图对本发明一实施例涉及的超低氮氧化物燃烧装置进行详细说明。Hereinafter, an ultra-low nitrogen oxide combustion device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
超低氮氧化物燃烧装置的整体结构说明Overall structure description of ultra-low NOx combustion device
首先,参照图1观察本发明一实施例涉及的超低氮氧化物燃烧装置100的整体结构。First, with reference to FIG. 1 , the overall structure of an ultra-low
超低氮氧化物燃烧装置100包括:燃烧炉;燃烧器5,其一侧插入于所述燃烧炉内;主燃料喷射体10,位于所述燃烧器5的中央部;辅助燃料喷射体20,环绕主燃料喷射体10,且其端部从所述燃烧器5的一侧端部朝向另一侧缩进规定的间隔;燃料再循环端口21,位于所述燃烧器5的外周面上的所述辅助燃料喷射体20的端部所处位置附近;以及氧化剂再循环引导部40,位于所述主燃料喷射体10与辅助燃料喷射体20之间。The ultra-low
燃烧器5的一侧插入于燃烧炉1内,其外周边缘与燃烧炉1的内周面隔开规定的间隔。One side of the
具体而言,燃烧器5的插入方式为,其前端部6从插入燃烧炉1中的插入面(图2中为燃烧炉1的下侧面)隔开规定的间隔a,由此,可划分产生于燃烧炉内的燃烧气体的再循环区域。Specifically, the
主燃料喷射体10包括:移送部13,其与主燃料供给管线51连接;以及主燃料喷射部11,其与所述移送部13直接连接。所述移送部13用于将主燃料安全地移送至主燃料喷射部11,可以具有均匀的直径。The
作为一实施例,主燃料喷射部11可以具有直径逐渐变大的形状,并通过其外周面喷射所供给的主燃料。即,通过形成在主燃料喷射部11的外周面的喷射孔(未图示)进入主燃料喷射部11内的燃料被喷射到各燃料喷射体10、20之间的内部空间(参照图2的附图标记15)。即,主燃料喷射部11内的燃料沿着所述主燃料喷射部11的半径方向喷射到流入的氧化剂上。As an example, the main
另一方面,可以沿着主燃料喷射体10的内部配置中心氧化剂喷射体85。其中,构成为能够在中心氧化剂喷射体85的末端插入喷嘴,以便能够调节空气供给量。所述中心氧化剂喷射体85使从氧化剂供给部80供给的氧化剂沿着主燃料喷射体10的中心轴流动之后,供给至燃烧炉1的火焰中心部即第一次火焰空间72。On the other hand, the
由此,在火焰中心部即第一次火焰空间72中促进火焰与氧化剂的混合效果,抑制形成红焰,从而引导蓝焰形成。与此同时,减小火焰中心部周边的局部高温区域,从而第一次削减氮氧化物的生成。Thereby, the mixing effect of the flame and the oxidant is promoted in the
辅助燃料喷射体20以主燃料喷射体10为中心,在同一圆周上隔着规定的间隔配置。辅助燃料喷射体20的数量并无限制,但是可以配置6至12个辅助燃料喷射体20,优选保持相同的间隔配置8个辅助燃料喷射体20。辅助燃料喷射体20的前端从位于燃烧炉1内的燃烧器5的一侧向另一侧缩进。The
换言之,辅助燃料喷射体20的前端位于从燃烧器5的前端部6朝向燃烧炉的所述插入面(图1中为下侧面)隔开规定间隔之处。In other words, the front end of the
从辅助燃料喷射体20喷射的燃料在燃烧炉1内燃烧,并在燃烧炉1内产生旋转流动。The fuel injected from the
如上所述,将燃烧器5更深地插入到燃烧炉1内,从而在燃烧炉1内明确地划分产生于燃烧炉1内的燃烧气体的再循环区域,以使燃烧气体顺畅地流动,并且由于上述的辅助燃料喷射体20的位置,能够更加有效地进行后述的燃烧气体的再循环。As described above, by inserting the
主燃料喷射体10以及辅助燃料喷射体20都可以由中空的圆筒形管构成。从氧化剂供给部80向主燃料喷射体10与辅助燃料喷射体20之间的空间供给氧化剂。所述氧化剂可以以通过位于主燃料喷射体10前端的旋流器(swirler)30形成轴向或切向动量的状态供给至燃烧炉1内部,或者不通过旋流器30而直接供给至燃烧炉1内。Both the
依靠向主燃料喷射体10与辅助燃料喷射体20之间的空间高速供给的氧化剂的流速,形成低压状态。The low-pressure state is formed by the flow rate of the oxidizer supplied at a high speed to the space between the
燃料从燃料供给部50被分为主燃料(Main fuel)和辅助燃料(2nd fuel)并供给至所述主燃料喷射体10以及辅助燃料喷射体20。具体而言,燃料从燃料供给部50通过过滤器(未图示)去除杂质,通过泵(未图示)抽吸之后,分成第一供给管线51和第二供给管线52而供给至各个燃料喷射体10、20。所述供给管线51、52上分别设置有电磁阀55、56,以便能够适当地供给以及阻断作为主燃料(Main fuel)和辅助燃料(2nd fuel)来供给的各燃料。The fuel is divided into the main fuel (Main fuel) and the auxiliary fuel (2nd fuel) from the
燃料再循环端口21位于燃烧器5的前端部6与燃烧炉1的插入面之间。具体而言,以狭缝形式位于辅助燃料喷射体20的端部所处的位置,由此使在燃烧炉内产生的燃烧气体流入燃烧器5的内部,并向所述辅助燃料喷射体20以及/或者后述的氧化剂再循环引导部40侧流动而进行燃烧,从而削减燃烧气体中所含的氮氧化物。The
氧化剂再循环引导部40包括:内部再循环套管41(Forced Internalrecirculation sleeve),在燃烧炉1的开口部(未图示)上以辅助燃料喷射体20为基准倾斜地配置;连接导件43,从内部再循环套管41延伸;喷嘴45,连接于连接导件43的后端,用于改变流动的燃烧气体的移动方向;以及倾斜构件47,倾斜地配置在氧化剂再循环引导部40的内部下端。The oxidant
内部再循环套管41倾斜地配置,从燃烧气体的最初流入部即燃烧器5的前端越趋向后端越接近开口部中心。即,越趋向内部再循环套管41的后端,内部宽度就越小。连接导件43用于使通过内部再循环套管41流入的燃烧气体能够进行缓慢的流动,其保持一定的宽度。The
喷嘴45将通过内部再循环套管41以及连接导件43在燃烧炉1内流动的燃烧气体向主燃料喷射体10与氧化剂再循环引导部40之间的空间喷射。喷射的燃烧气体与氧化剂一同向燃烧炉1内部流动。所述喷嘴45在主燃料喷射体10与氧化剂再循环引导部40之间倾斜地配置。即,减小主燃料喷射体10与氧化剂再循环引导部40之间的宽度,从而实现孔(orifice)状的结构。如上所述的喷嘴45的配置结构使向主燃料喷射体10与辅助燃料喷射体20之间的空间供给的氧化剂的流动速度更快,从而高速地向燃烧炉1内流动。The
即,主燃料喷射体10与喷嘴45之间的空间变窄,从而根据伯努利定理,氧化剂的流速会增加。通过这样的结构,能够增加燃烧炉1内发生的流动的动量。That is, the space between the
倾斜构件47是配置在连接导件43与喷嘴45的边界线上的结构体,其调节燃烧气体可流动的宽度,最终调节流速。The
空气多级套60是中空圆筒形状的结构体,构成为将从氧化剂供给部80供给的氧化剂分离供给至空气多级套60的内部以及外部,从而实现氧化剂的多级供给,最终由此易于在燃烧炉1的内部形成多级火焰。The air
再循环促进凸起部90配置在空气多级套60的外周面上。具体而言,所述再循环促进凸起部90起到减小构成氧化剂再循环引导部40的喷嘴45与空气多级套60之间的空间的功能。通过如上的结构,通过氧化剂再循环引导部40从燃烧炉1流动的燃烧气体的流速在经过再循环促进凸起部90附近时得以提高。由此,防止通过氧化剂再循环引导部40再次流入燃烧炉1中的燃烧气体分离(separation),最终促进燃烧气体的再循环。The recirculation-promoting
超低氮氧化物燃烧装置的燃烧过程的说明Description of the combustion process of the ultra-low NOx combustion device
接下来,进一步参照图2至图3以及图5,对本发明实施例涉及的超低氮氧化物燃烧装置的燃烧过程以及效果进行说明。Next, with further reference to FIGS. 2 to 3 and FIG. 5 , the combustion process and effects of the ultra-low nitrogen oxide combustion device according to the embodiment of the present invention will be described.
向超低氮氧化物燃烧装置供给燃料以及氧化剂,从而进行燃烧(S100)。A fuel and an oxidant are supplied to the ultra-low NOx combustion device to perform combustion ( S100 ).
其中,供给的燃料分成主燃料和辅助燃料来供给,以少于预设的量(例如,与氧化剂的理论当量比)供给主燃料,并追加供给辅助燃料,其量等于少供给主燃料的量。Wherein, the supplied fuel is divided into main fuel and auxiliary fuel and supplied, the main fuel is supplied in an amount less than a preset amount (for example, the theoretical equivalence ratio to the oxidant), and an auxiliary fuel is additionally supplied in an amount equal to the amount of the main fuel that is less supplied .
通过氧化剂供给部80供给氧化剂,所供给的氧化剂中的一部分通过主燃料喷射体10内部的中心氧化剂喷射体85进行流动。The oxidant is supplied by the
与此同时,主燃料从燃料供给部50经过第一燃料供给管线51被供给至主燃料喷射体10。At the same time, the main fuel is supplied from the
在主燃料喷射体10内流动的主燃料经历通过主燃料喷射部11的外周面沿着半径方向喷射的过程,如此喷射的主燃料与氧化剂发生反应,形成预混合区域78。其中,所述主燃料喷射部11具有越趋向燃烧炉1方向就越敞开的形状,因此喷射的燃料能够形成较宽部位的预混合区域78。The main fuel flowing in the
形成在预混合区域78的预混合物通过主燃料喷射体10的前端或者通过旋流器30以具有轴向动量(Axial momentum)以及切向动量(Tangential momentum)的状态喷射到燃烧炉1内,形成着第一次火焰空间进行燃烧。The pre-mixture formed in the pre-mixing region 78 is injected into the
然后,燃料从燃料供给部50经过第二燃料供给管线52供给至辅助燃料喷射体20。通过辅助燃料喷射体20向第一次火焰空间72的上部侧喷射的辅助燃料通过与第一次火焰空间72中的未反应的氧化剂进行反应的过程,形成第二次火焰空间74。第一次火焰空间72中的可燃性气体中的一部分与供给至旋流器30外缘的预混合物混合,并移动至第一次火焰的尾流中,形成第二火焰空间74。Then, the fuel is supplied from the
从主燃料喷射体10喷射的燃料基于燃烧炉1内的多级空气流动形成第一次火焰空间72,从辅助燃料喷射体20喷射的燃料基于由主燃料喷射体10的第一次火焰空间72传递的热量所产生的氛围温度和残留氧气进行部分氧化反应,转化为多种可燃性气体,从而在火焰尾流形成第二次火焰空间74。因此,明确划分地组成包括所述燃料浓厚区域和燃料稀薄区域的、燃烧炉内构成为多级的火焰状态。The fuel injected from the
换言之,沿着主燃料喷射体10的半径方向喷射的主燃料与氧化剂进行预混合,形成预混合区域78,从所述预混合区域78供给到燃烧炉1内的预混合物形成第一次火焰空间72,并从辅助燃料喷射体20向第一次火焰空间72的后端喷射辅助燃料,从而形成最终火焰的形态。In other words, the main fuel injected along the radial direction of the
如上所述,在燃烧炉1内通过由主燃料喷射体10以及辅助燃料喷射体20喷射的燃料形成多级火焰空间。在所述第一次火焰空间72的后端部形成第二次火焰空间74。第二次火焰空间74形成为将第一次火焰空间72环绕在更深入燃烧炉1内部侧的空间的形式。As described above, a multi-stage flame space is formed in the
依靠因上述的氧化剂的供给而形成在主燃料喷射体10与辅助燃料喷射体20之间的低压,包括所述第一次火焰空间72、第二次火焰空间74的多级火焰空间中的燃烧气体75流入氧化剂再循环引导部40并进行流动,随之流动到形成在主燃料喷射体10与辅助燃料喷射体20之间的预混合区域78侧,并在燃烧炉1内燃烧。Combustion in the multi-stage flame space including the
与此独立地,在燃烧炉1的内周面与燃烧器5的外周面之间的空间形成再循环区域。在这样的再循环区域中,燃烧气体76以涡流形式流动。Independent of this, a recirculation region is formed in the space between the inner peripheral surface of the
通过上述燃烧过程在燃烧炉1内部再循环区域产生的燃烧气体76通过燃烧器5的外周面与燃烧炉1的内周面之间的空间即再循环区域进行流动。The
依靠从辅助燃料喷射体20的前端高速喷射的燃料所形成的低压,在再循环区域流动的燃烧气体76流入燃料再循环端口21。The
如此流入燃料再循环端口21的燃烧气体76能够与从辅助燃料喷射体20的前端喷射的燃料混合并供给至燃烧炉1内部进行燃烧。The
此外,作为另一实施例,使燃烧炉1内部与氧化剂再循环引导部40的外周边缘连通,从而使在再循环区域流动的燃烧气体76中的一部分因向氧化剂再循环引导部40供给的氧化剂所产生的低压而流动,通过相互隔开的各辅助燃料喷射体20之间,流入氧化剂再循环引导部40,并流动到主燃料喷射体10的周围,与预混合区域78混合,并供给至燃烧炉1内第一次火焰空间72,从而能够进行燃烧。In addition, as another example, the inside of the
此外,在再循环区域流动的燃烧气体76的其余一部分如上所述,依靠从辅助燃料喷射体20的前端高速喷射的燃料所形成的低压,通过燃料再循环端口21流入燃烧炉1内进行燃烧。另一方面,从氧化剂再循环引导部40排出至氧化剂的流动空间的燃烧气体通过再循环促进凸起部90增加流动速度,从而能够在提高燃烧气体以及氧化剂的流速的同时防止分离。In addition, the rest of the
经过上述的过程后,预混合物以及燃烧气体经历流入第一次火焰空间72并燃烧的过程,从而在燃烧炉1内形成火焰。After the above-mentioned process, the premix and the combustion gas undergo a process of flowing into the
并且,实时感测燃烧炉1内的CO浓度(S200)。Then, the CO concentration in the
在进行如上所述的燃烧的期间内,通过设置在燃烧炉1上的传感器(未图示)实时感测燃烧炉1内的CO浓度以进行监控。During the period in which the combustion as described above is being performed, the CO concentration in the
如上所述,少供给主燃料并进行燃烧,因此或多或少会形成不完全燃烧,产生CO,因而实时感测因不完全燃烧而产生的CO的浓度。As described above, since less main fuel is supplied and burned, incomplete combustion is more or less formed, and CO is generated. Therefore, the concentration of CO generated by incomplete combustion is sensed in real time.
并且,比较燃烧炉1内的CO浓度与预设的CO浓度(S300),当燃烧炉1内的CO浓度低于预设的浓度时,保持其状态而继续进行燃烧以及监控,当燃烧炉1内的CO浓度在预设的浓度以上时,增加主燃料的供给量(S400)。And, compare the CO concentration in the
图6分别示出了现有的再循环多级燃烧装置(专利文献2)以及本发明涉及的超低氮氧化物燃烧装置的NOx生成量。FIG. 6 shows the NOx generation amounts of the conventional recirculation multi-stage combustion device (Patent Document 2) and the ultra-low NOx combustion device according to the present invention, respectively.
图7分别示出了本发明涉及的超低氮氧化物燃烧装置未采用燃料分配优化控制的情形下以及采用燃料分配优化控制的情形下的NOx生成量。FIG. 7 shows the NOx generation amount in the case where the ultra-low NOx combustion device according to the present invention does not adopt the optimal control of fuel distribution and in the case where the optimal control of fuel distribution is adopted.
参照所述图6以及图7即可确认,通过再循环端口21的结构以及供给的燃料分配的优化控制,在减小燃烧炉1内负荷的同时,能够有效防止NOx的生成。6 and 7 , it can be confirmed that the structure of the
如上所述,根据本发明涉及的超低氮氧化物燃烧装置,在燃烧炉内产生的燃烧气体无需额外的动力即与氧化剂一同重新流入燃烧炉中并进行反应,从而能够在源头上削减燃料中的氮成分氧化而产生的氮氧化物,在此基础上通过有别于现有的燃烧装置的结构,通过在燃烧炉内产生的燃烧气体的多级再循环,使燃烧气体的再循环更为顺畅,并且通过供给的燃料分配的优化控制,能够得到更高的氮氧化物削减效果。As described above, according to the ultra-low NOx combustion device according to the present invention, the combustion gas generated in the combustion furnace is re-flowed into the combustion furnace together with the oxidant and reacts without additional power, so that it is possible to reduce the amount of fuel at the source. The nitrogen oxides produced by the oxidation of the nitrogen components are different from the existing combustion equipment, and the combustion gas is recycled through the multi-stage recirculation of the combustion gas generated in the combustion furnace. It is smooth, and a higher NOx reduction effect can be obtained by optimal control of the distribution of the supplied fuel.
Claims (5)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0069481 | 2016-06-03 | ||
KR20160069481 | 2016-06-03 | ||
KR10-2017-0066890 | 2017-05-30 | ||
KR1020170066890A KR101992413B1 (en) | 2016-06-03 | 2017-05-30 | Low NOx Burner |
PCT/KR2017/005668 WO2017209503A1 (en) | 2016-06-03 | 2017-05-31 | Ultra-low nitrogen oxide combustion apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107690557A CN107690557A (en) | 2018-02-13 |
CN107690557B true CN107690557B (en) | 2020-03-06 |
Family
ID=60954161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780001400.6A Active CN107690557B (en) | 2016-06-03 | 2017-05-31 | Ultra-low NOx combustion device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6703626B2 (en) |
KR (1) | KR101992413B1 (en) |
CN (1) | CN107690557B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102068037B1 (en) * | 2018-03-19 | 2020-01-20 | 한국생산기술연구원 | Low NOx combustion device through premixing and diffusion flame formation |
KR102115576B1 (en) * | 2018-11-30 | 2020-05-27 | 한국생산기술연구원 | Low NOx Burner |
CN109519917B (en) * | 2019-01-03 | 2025-04-25 | 上海华之邦科技股份有限公司 | A low-nitrogen combustion device with internal flue gas circulation |
CN109631036B (en) * | 2019-01-14 | 2023-08-25 | 唐山亿昌热能科技有限公司 | Combustion method of ultralow nitrogen oxides, matched combustion head and combustion device |
WO2020226206A1 (en) * | 2019-05-08 | 2020-11-12 | 주식회사 수국 | Low-nox burner having perforated plate-type combustion head |
KR102217216B1 (en) | 2019-05-08 | 2021-02-18 | 주식회사 수국 | Low NOx Burner Having Combustion Head of Perforated Plate Type |
KR102261150B1 (en) * | 2019-09-20 | 2021-06-07 | 한국생산기술연구원 | A Low-NOx combustor capable of internal recirculation of flue gas by using venturi effect through improvement of burner structure |
KR102317704B1 (en) * | 2019-11-29 | 2021-10-27 | 한국생산기술연구원 | Low NOx Burner comprising recirculation ports |
CN111174204A (en) * | 2020-01-21 | 2020-05-19 | 无锡顺盟科技有限公司 | Reflux gas burner in low nitrogen furnace |
CN111174205A (en) * | 2020-01-21 | 2020-05-19 | 无锡顺盟科技有限公司 | Low nitrogen gas burner |
CN111271707A (en) * | 2020-03-07 | 2020-06-12 | 欧保(中国)环境工程股份有限公司 | Center ultra-mixing low-nitrogen internal reflux gas burner |
KR102378008B1 (en) * | 2020-08-14 | 2022-03-24 | 주식회사 파나시아 | Steam Hydrocarbon Reformer with Burner |
KR102416025B1 (en) * | 2020-08-14 | 2022-07-05 | 주식회사 파나시아 | Steam Hydrocarbon Reformer with Burner |
KR102424883B1 (en) * | 2020-08-14 | 2022-07-26 | 주식회사 파나시아 | Steam Hydrocarbon Reformer with Burner |
KR102382599B1 (en) * | 2020-11-13 | 2022-04-05 | 한국생산기술연구원 | Ultra-low NOx combustion apparatus and combustion system comprising the same |
US20230213182A1 (en) * | 2021-12-31 | 2023-07-06 | Honeywell International Inc. | Low nox gas burner with cooled flue gas recycle |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60105911U (en) * | 1983-12-23 | 1985-07-19 | バブコツク日立株式会社 | Low NOx combustion equipment |
JP3798914B2 (en) * | 1998-08-04 | 2006-07-19 | 大阪瓦斯株式会社 | Low NOx burner |
KR100578110B1 (en) | 2004-06-10 | 2006-05-10 | 한국에너지기술연구원 | Flue gas recirculation 3 burners for liquid and gas |
WO2006091967A1 (en) * | 2005-02-25 | 2006-08-31 | Clean Combustion Technologies Llc | Combustion method and system |
JP5075900B2 (en) * | 2009-09-30 | 2012-11-21 | 株式会社日立製作所 | Hydrogen-containing fuel compatible combustor and its low NOx operation method |
KR200448947Y1 (en) * | 2009-10-19 | 2010-06-09 | 주식회사 수국 | Low Nox Burner |
KR101254928B1 (en) * | 2013-02-15 | 2013-04-19 | 주식회사 수국 | Low nitrogen oxide burner |
KR101512352B1 (en) * | 2013-11-12 | 2015-04-23 | 한국생산기술연구원 | Low NOx Burner using forced internal recirculation of flue gas and method thereof |
KR101569455B1 (en) * | 2015-07-14 | 2015-11-16 | 주식회사 수국 | Complex burner for Low nitrogen oxide |
-
2017
- 2017-05-30 KR KR1020170066890A patent/KR101992413B1/en active Active
- 2017-05-31 CN CN201780001400.6A patent/CN107690557B/en active Active
- 2017-05-31 JP JP2018562983A patent/JP6703626B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019517657A (en) | 2019-06-24 |
CN107690557A (en) | 2018-02-13 |
JP6703626B2 (en) | 2020-06-03 |
KR20170138042A (en) | 2017-12-14 |
KR101992413B1 (en) | 2019-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107690557B (en) | Ultra-low NOx combustion device | |
KR101512352B1 (en) | Low NOx Burner using forced internal recirculation of flue gas and method thereof | |
KR101203189B1 (en) | Burner for generating reduced nitrogen oxide through forced internal recirculation of flue gas | |
KR101583509B1 (en) | A Burner for generating reduced nitrogen oxide | |
CN104755844A (en) | Sequential combustion with dilution gas mixer | |
CN107477579B (en) | Low nitrogen oxide burner | |
KR102115576B1 (en) | Low NOx Burner | |
WO2017209503A1 (en) | Ultra-low nitrogen oxide combustion apparatus | |
US20240288157A1 (en) | Industrial premixed gas combustor using internal exhaust gas recirculation and operating method thereof | |
KR20190109860A (en) | Low NOx combustion device through premixing and diffusion flame formation | |
CN216953044U (en) | Full-premixing flue gas internal circulation low-nitrogen combustor | |
ES2427154T3 (en) | Combustion furnace and combustion method using oxy fuel burners | |
KR101733611B1 (en) | Ultra-low NOx burner through internal recirculation of combustion gas and multi-fuel operation | |
CN207527582U (en) | The low nitrogen rotational flow gas-fired combustor of flue gas recirculation built in gas-air Accurate Classification | |
KR102317704B1 (en) | Low NOx Burner comprising recirculation ports | |
CN116464990B (en) | Combustion chamber and gas turbine | |
KR101730545B1 (en) | Low NOx burner | |
CN112204307A (en) | Low nitrogen oxide burner with punching plate type burner head | |
CN111386428B (en) | Radiant wall burner | |
WO2000061992A1 (en) | Tunneled multi-blade swirler/gas injector for a burner | |
KR101822997B1 (en) | Low NOx burner | |
CN118623308B (en) | Combustor suitable for mixed combustion of multiple fuels | |
RU2797080C1 (en) | Method for reducing nitrogen oxide emissions and a dual-flow burner for its implementation | |
RU2777164C1 (en) | Method for reduction in nitrogen oxide emission and conversion of burner into low-toxic one, device for its implementation | |
KR102572047B1 (en) | Burners and Burner Combustion Methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |