[go: up one dir, main page]

CN107681193A - Solid electrolyte and preparation method thereof, battery - Google Patents

Solid electrolyte and preparation method thereof, battery Download PDF

Info

Publication number
CN107681193A
CN107681193A CN201710912029.0A CN201710912029A CN107681193A CN 107681193 A CN107681193 A CN 107681193A CN 201710912029 A CN201710912029 A CN 201710912029A CN 107681193 A CN107681193 A CN 107681193A
Authority
CN
China
Prior art keywords
solid electrolyte
lithium
electrode active
layer
polyethylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710912029.0A
Other languages
Chinese (zh)
Inventor
吴华强
赵振璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710912029.0A priority Critical patent/CN107681193A/en
Publication of CN107681193A publication Critical patent/CN107681193A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

A kind of solid electrolyte and preparation method thereof, battery.The solid electrolyte includes:Matrix, lithium salts and PEO (PEO) additive.The solid electrolyte can be used for preparing solid state battery, have the characteristics that flexible, nonflammable, intensity is high, ionic mobility is high.

Description

固体电解质及其制备方法、电池Solid electrolyte, preparation method thereof, and battery

技术领域technical field

本发明的实施例涉及一种固体电解质及其制备方法、电池。Embodiments of the present invention relate to a solid electrolyte, a preparation method thereof, and a battery.

背景技术Background technique

锂离子电池作为一种重要的能量储蓄器件经历了多次技术革新,因其具有高能量密度、轻便和寿命长的特点,广泛应用于普通电子器件和电动汽车等各个领域。As an important energy storage device, lithium-ion battery has undergone many technological innovations. Because of its high energy density, light weight and long life, it is widely used in various fields such as ordinary electronic devices and electric vehicles.

近几年,具有可弯曲、可折叠、可穿戴、便携特点的柔性电子器件成为新一代电子器件的发展趋势。但是,在柔性电子器件的研发过程中,用于提供能源的锂离子电池无法同柔性电子器件的特殊构造相匹配,这成为遏制柔性电子器件发展进程的致命因素。因此,研发一种超薄、便携、具有柔性并可用于跟进并满足新一代柔性电子器件需求的全固态锂离子电池成为当下研究的重点项目。In recent years, flexible electronic devices with the characteristics of bendable, foldable, wearable, and portable have become the development trend of a new generation of electronic devices. However, during the development of flexible electronic devices, the lithium-ion batteries used to provide energy cannot match the special structure of flexible electronic devices, which has become a fatal factor that curbs the development of flexible electronic devices. Therefore, the development of an ultra-thin, portable, flexible all-solid-state lithium-ion battery that can be used to follow up and meet the needs of a new generation of flexible electronic devices has become a key project of current research.

发明内容Contents of the invention

本发明至少一实施例提供一种固体电解质,包括:基体、锂盐及聚环氧乙烷(PEO)添加剂。At least one embodiment of the present invention provides a solid electrolyte, including: a matrix, a lithium salt, and a polyethylene oxide (PEO) additive.

例如,在该固体电解质中,所述基体为乙氧基三羟甲基丙烷三丙烯酸酯(ETPTA)。For example, in the solid electrolyte, the matrix is ethoxytrimethylolpropane triacrylate (ETPTA).

例如,在该固体电解质中,所述锂盐为双三氟甲磺酰亚胺锂(LiTFSI)。For example, in the solid electrolyte, the lithium salt is lithium bistrifluoromethanesulfonimide (LiTFSI).

例如,该固体电解质还可以包括无机纳米颗粒。For example, the solid electrolyte may also include inorganic nanoparticles.

例如,在该固体电解质中,所述纳米颗粒为Al2O3纳米颗粒或TiO2纳米颗粒。For example, in the solid electrolyte, the nanoparticles are Al 2 O 3 nanoparticles or TiO 2 nanoparticles.

例如,该固体电解质还可以包括紫外聚合引发剂。For example, the solid electrolyte may further include an ultraviolet polymerization initiator.

例如,在该固体电解质中,所述紫外聚合引发剂为2-羟基-2-甲基-1-苯基-1-丙酮(HMPP)。For example, in the solid electrolyte, the ultraviolet polymerization initiator is 2-hydroxy-2-methyl-1-phenyl-1-propanone (HMPP).

例如,在该固体电解质中,所述基体:所述聚环氧乙烷:所述纳米颗粒的质量比为12:(0-8):20。For example, in the solid electrolyte, the mass ratio of the matrix: the polyethylene oxide: the nanoparticles is 12:(0-8):20.

本发明至少一实施例提供一种电池,包括正极活性材料、负极活性材料以及在所述正极活性材料和所述负极活性材料之间上述的固体电解质。At least one embodiment of the present invention provides a battery, including a positive electrode active material, a negative electrode active material, and the above-mentioned solid electrolyte between the positive electrode active material and the negative electrode active material.

例如,在该电池中,所述正极活性材料和所述负极活性材料是用于锂离子电池的正极活性材料和负极活性材料。For example, in the battery, the positive electrode active material and the negative electrode active material are positive electrode active materials and negative electrode active materials for lithium ion batteries.

本发明至少一实施例提供一种固体电解质的制备方法,包括:将基体、锂盐溶液及添加剂聚环氧乙烷(PEO)混合形成固体电解质前驱液,并经过固化后形成所述固态电解质。At least one embodiment of the present invention provides a method for preparing a solid electrolyte, comprising: mixing a matrix, a lithium salt solution, and an additive polyethylene oxide (PEO) to form a solid electrolyte precursor, and curing to form the solid electrolyte.

例如,在该固体电解质的制备方法中,所述基体为乙氧基三羟甲基丙烷三丙烯酸酯(ETPTA)。For example, in the preparation method of the solid electrolyte, the matrix is ethoxytrimethylolpropane triacrylate (ETPTA).

例如,在该固体电解质的制备方法中,所述锂盐溶液为双三氟甲磺酰亚胺锂(LiTFSI)溶液。For example, in the preparation method of the solid electrolyte, the lithium salt solution is lithium bistrifluoromethanesulfonimide (LiTFSI) solution.

例如,在该固体电解质的制备方法中,将所述双三氟甲磺酰亚胺锂溶入无水有机物溶剂中,配成0.6-1.2mol/L的锂盐溶液,再与所述基体及添加剂聚环氧乙烷(PEO)混合形成混合浆料。For example, in the preparation method of the solid electrolyte, the lithium bistrifluoromethanesulfonimide is dissolved in an anhydrous organic solvent to form a 0.6-1.2 mol/L lithium salt solution, and then mixed with the substrate and The additive polyethylene oxide (PEO) is mixed to form a mixed slurry.

例如,在该固体电解质的制备方法中,所述无水有机物溶剂为乙二腈或丁乙二腈。For example, in the preparation method of the solid electrolyte, the anhydrous organic solvent is ethanedinitrile or butanedinitrile.

例如,在该固体电解质的制备方法中,所述基体为乙氧基三羟甲基丙烷三丙烯酸酯(ETPTA),所述锂盐溶液:乙氧基三羟甲基丙烷三丙烯酸酯:聚环氧乙烷的质量比例为(60-70):12:(0-8)。For example, in the preparation method of the solid electrolyte, the matrix is ethoxytrimethylolpropane triacrylate (ETPTA), the lithium salt solution: ethoxytrimethylolpropane triacrylate: polycyclic The mass ratio of oxyethane is (60-70):12:(0-8).

例如,该固体电解质的制备方法,还包括:在所述混合浆料中加入无机纳米颗粒,所述无机纳米颗粒为Al2O3纳米颗粒或TiO2纳米颗粒。For example, the preparation method of the solid electrolyte further includes: adding inorganic nanoparticles to the mixed slurry, and the inorganic nanoparticles are Al 2 O 3 nanoparticles or TiO 2 nanoparticles.

例如,在该固体电解质的制备方法中,所述锂盐溶液:乙氧基三羟甲基丙烷三丙烯酸酯:聚环氧乙烷:纳米颗粒的质量比例为(60-70):12:(0-8):20。For example, in the preparation method of the solid electrolyte, the lithium salt solution: ethoxytrimethylolpropane triacrylate: polyethylene oxide: the mass ratio of nanoparticles is (60-70):12:( 0-8): 20.

例如,该固体电解质的制备方法,还包括在所述混合浆料中加入紫外聚合引发剂,利用紫外光进行辐照以固化所述混合浆料。For example, the preparation method of the solid electrolyte further includes adding an ultraviolet polymerization initiator into the mixed slurry, and irradiating with ultraviolet light to cure the mixed slurry.

例如,在该固体电解质的制备方法中,所述紫外聚合引发剂为2-羟基-2-甲基-1-苯基-1-丙酮,所述2-羟基-2-甲基-1-苯基-1-丙酮的添加质量百分比为1-5%。For example, in the preparation method of the solid electrolyte, the ultraviolet polymerization initiator is 2-hydroxyl-2-methyl-1-phenyl-1-propanone, and the 2-hydroxyl-2-methyl-1-benzene The mass percentage of base-1-propanone added is 1-5%.

附图说明Description of drawings

为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the accompanying drawings of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description only relate to some embodiments of the present invention, rather than limiting the present invention .

图1为本发明一实施例提供的一种固体电解质的制备流程图;Fig. 1 is a flow chart of the preparation of a solid electrolyte provided by an embodiment of the present invention;

图2A和图2B为本发明一实施例提供的一种电池的结构示意图;2A and 2B are schematic structural views of a battery provided by an embodiment of the present invention;

图3为本发明一实施例提供的一种电池的进行弯曲实验的图片;Fig. 3 is a picture of a bending test of a battery provided by an embodiment of the present invention;

图4A和图4B为本发明另一实施例提供的一种电池的结构示意图。4A and 4B are schematic structural views of a battery provided by another embodiment of the present invention.

附图标记:Reference signs:

101-基底;102-导电集流层;1021-第一导电集流层;1022-第二导电集流层;103-负极活性层;104-电解质层;105-正极活性层;106-封装层;201-基底;202-导电集流层;2021-第一导电集流层;2022-第二导电集流层;203-负极活性层;204-电解质层;205-正极活性层;206-封装层。101-substrate; 102-conductive current collecting layer; 1021-first conductive current collecting layer; 1022-second conductive current collecting layer; 103-negative active layer; 104-electrolyte layer; 105-positive active layer; 106-encapsulation layer 201-substrate; 202-conductive current collecting layer; 2021-first conductive current collecting layer; 2022-second conductive current collecting layer; 203-negative active layer; 204-electrolyte layer; 205-positive active layer; 206-package Floor.

具体实施方式detailed description

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, the following will clearly and completely describe the technical solutions of the embodiments of the present invention in conjunction with the drawings of the embodiments of the present invention. Apparently, the described embodiments are some, not all, embodiments of the present invention. Based on the described embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。Unless otherwise defined, the technical terms or scientific terms used in the present disclosure shall have the usual meanings understood by those skilled in the art to which the present invention belongs. "First", "second" and similar words used in the present disclosure do not indicate any order, quantity or importance, but are only used to distinguish different components. "Comprising" or "comprising" and similar words mean that the elements or items appearing before the word include the elements or items listed after the word and their equivalents, without excluding other elements or items. Words such as "connected" or "connected" are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Up", "Down", "Left", "Right" and so on are only used to indicate the relative positional relationship. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.

现有的应用于柔性电子器件的电池所采用的固体电解质往往缺乏强度,在多次弯曲后,固体电解质易损坏从而导致正负电极接触短路;而且,固态电解质在制备过程中,其表面刷涂正极活性材料浆料或负极活性材料浆料时,由于毛细管作用力正、负极活性材料浆料中所含有的有机溶液极易吸附进固体电解质内的孔隙中,从而造成电池的局部变形损坏;而且,固态电解质材料同与其相邻的正极或负极活性层材料间具有差异,因此会构成异质结,会提高固态电解质与正极或负极活性层界面的接触电阻。The solid electrolyte used in the existing batteries used in flexible electronic devices often lacks strength. After repeated bending, the solid electrolyte is easily damaged, resulting in a short circuit between the positive and negative electrodes; moreover, during the preparation process of the solid electrolyte, its surface is brushed. In the case of positive electrode active material slurry or negative electrode active material slurry, due to capillary force, the organic solution contained in the positive and negative electrode active material slurry is easily absorbed into the pores in the solid electrolyte, thereby causing local deformation and damage of the battery; and , There is a difference between the solid electrolyte material and the adjacent positive or negative active layer material, so a heterojunction will be formed, which will increase the contact resistance between the solid electrolyte and the positive or negative active layer interface.

本发明至少一实施例提供一种固体电解质,包括:基体、锂盐及聚环氧乙烷(PEO)添加剂。At least one embodiment of the present invention provides a solid electrolyte, including: a matrix, a lithium salt, and a polyethylene oxide (PEO) additive.

本发明至少一实施例提供一种电池,包括正极活性材料、负极活性材料以及在正极活性材料和负极活性材料之间上述的固体电解质。At least one embodiment of the present invention provides a battery, including a positive electrode active material, a negative electrode active material, and the above-mentioned solid electrolyte between the positive electrode active material and the negative electrode active material.

本发明至少一实施例提供一种固体电解质的制备方法,包括:将基体、锂盐溶液及添加剂聚环氧乙烷(PEO)混合形成固体电解质前驱液,并经过固化后形成所述固态电解质。At least one embodiment of the present invention provides a method for preparing a solid electrolyte, comprising: mixing a matrix, a lithium salt solution, and an additive polyethylene oxide (PEO) to form a solid electrolyte precursor, and curing to form the solid electrolyte.

下面通过几个具体的实施例对本发明的固体电解质及其制备方法、电池进行说明。The solid electrolyte, its preparation method, and battery of the present invention will be described below through several specific examples.

实施例一Embodiment one

本实施例提供一种固体电解质,该固体电解质例如用于锂离子电池。该固体电解质包括:基体、锂盐及聚环氧乙烷(PEO)添加剂。例如,基体材料可以选用乙氧基三羟甲基丙烷三丙烯酸酯(ETPTA),锂盐可以选用双三氟甲磺酰亚胺锂(LiTFSI)。双三氟甲磺酰亚胺锂不易受潮分解,在空气气氛中也可以进行合成处理,降低制造成本;聚环氧乙烷(PEO)作为添加剂可以防止固体电解质因吸入有机溶液而产生形变,同时PEO添加剂还可以降低以PEO为粘结剂的正极活性层和负极活性层同固体电解质之间的界面阻抗,提高固体电解质的导电率,改善采用该固体电解质的锂离子电池的性能。This embodiment provides a solid electrolyte, which is used, for example, in a lithium-ion battery. The solid electrolyte includes: matrix, lithium salt and polyethylene oxide (PEO) additive. For example, the matrix material can be ethoxytrimethylolpropane triacrylate (ETPTA), and the lithium salt can be lithium bistrifluoromethanesulfonimide (LiTFSI). Lithium bistrifluoromethanesulfonylimide is not easily decomposed by moisture, and can also be synthesized in an air atmosphere to reduce manufacturing costs; polyethylene oxide (PEO) as an additive can prevent the solid electrolyte from being deformed due to inhalation of organic solutions, and at the same time The PEO additive can also reduce the interfacial impedance between the positive electrode active layer and the negative electrode active layer with PEO as the binder and the solid electrolyte, increase the conductivity of the solid electrolyte, and improve the performance of the lithium ion battery using the solid electrolyte.

例如,在一个示例中,该固体电解质还可以包括一定量的无机纳米颗粒,例如Al2O3纳米颗粒或TiO2纳米颗粒等,这些无机纳米颗粒的粒径例如不大于30纳米,例如粒径为10nm。添加无机纳米颗粒可以增强固体电解质制备的薄膜的强度,可使其制成的电池在多次弯曲后不会因固态电解质易损坏而造成正负极接触短路等事故。For example, in one example, the solid electrolyte may also include a certain amount of inorganic nanoparticles, such as Al 2 O 3 nanoparticles or TiO 2 nanoparticles, etc., and the particle diameter of these inorganic nanoparticles is, for example, not greater than 30 nanometers, such as a particle diameter of 10nm. The addition of inorganic nanoparticles can enhance the strength of the thin film prepared by the solid electrolyte, so that the battery made of it will not cause accidents such as short circuit of the positive and negative electrodes due to the fragile solid electrolyte after being bent many times.

本实施例中,该固体电解质还可以包括2-羟基-2-甲基-1-苯基-1-丙酮(HMPP)作为紫外聚合引发剂,因此固态电解质可在紫外线辐照下形成孔道细密的半穿透结构固态薄膜,从而保证固态电解质具有较高的锂离子迁移率的同时提高固体电解质在制备过程中的固化效率。In this embodiment, the solid electrolyte can also include 2-hydroxy-2-methyl-1-phenyl-1-propanone (HMPP) as an ultraviolet polymerization initiator, so that the solid electrolyte can form fine-pored The semi-penetrating structure of the solid film ensures that the solid electrolyte has a high mobility of lithium ions and improves the solidification efficiency of the solid electrolyte during the preparation process.

将本实施例提供的含有PEO添加剂的固体电解质与不含PEO添加剂的固体电解质进行性能测试,例如观察在两种固体电解质表层滴入无水乙腈后的状态。测试结果得出,在不含PEO添加剂的固态电解质表层滴加无水乙腈后固态电解质发生形变,而含有PEO添加剂的固态电解质表层滴加无水乙腈,固态电解质未发生形变;无水乙腈挥发干燥后,不含PEO添加剂的固态电解质形变无法恢复,而含有PEO添加剂的固态电解质仍未发生形变,保持了固体电解质的原貌。可见,PEO作为添加剂有效防止了固体电解质因吸入有机溶液而产生形变。Performance tests were performed on the solid electrolyte containing PEO additive and the solid electrolyte not containing PEO additive provided in this example, for example, observing the state after the surface layer of the two solid electrolytes was dropped into anhydrous acetonitrile. The test results show that the solid electrolyte is deformed after dropping anhydrous acetonitrile on the surface layer of the solid electrolyte without PEO additives, and the solid electrolyte does not deform when the surface layer of the solid electrolyte containing PEO additives is dripped with anhydrous acetonitrile; anhydrous acetonitrile volatilizes and dries After that, the deformation of the solid electrolyte without the PEO additive could not be recovered, while the solid electrolyte with the PEO additive was still not deformed, maintaining the original appearance of the solid electrolyte. It can be seen that PEO as an additive effectively prevents the deformation of the solid electrolyte due to the inhalation of the organic solution.

实施例二Embodiment two

本实施例提供一种固体电解质的制备方法,如图1所示,该制备方法包括:This embodiment provides a method for preparing a solid electrolyte, as shown in Figure 1, the preparation method includes:

S101:配置固体电解质前驱液。S101: Prepare a solid electrolyte precursor solution.

本实施例中,固体电解质前驱液可以包括基体、锂盐溶液及聚环氧乙烷(PEO)添加剂。例如,基体材料可以选用乙氧基三羟甲基丙烷三丙烯酸酯(ETPTA),锂盐溶液可以选用双三氟甲磺酰亚胺锂(LiTFSI)溶液。首先,将双三氟甲磺酰亚胺锂溶入高沸点并可紫外交联的有机物溶剂,例如该有机溶剂可以选用乙二腈或丁二腈溶剂。该有机溶剂是不可燃性聚合物,用于制备固体电解质可以提升其安全可靠性。将双三氟甲磺酰亚胺锂溶入乙二腈或丁二腈溶剂,配成0.6-1.2mol/L的锂盐溶液,例如配成1mol/L的锂盐溶液;在配制过程中,可以对锂盐溶液进行加热处理,例如进行60摄氏度加热处理以提高锂盐的溶解速度。然后,将上述锂盐溶液与基体乙氧基三羟甲基丙烷三丙烯酸酯及添加剂聚环氧乙烷混合形成混合溶液。本实施例中,锂盐溶液:基体乙氧基三羟甲基丙烷三丙烯酸酯:聚环氧乙烷添加剂的质量比例如可以为(60-70):12:(0-8),例如65:12:1或67:12:3等。In this embodiment, the solid electrolyte precursor solution may include a matrix, a lithium salt solution, and a polyethylene oxide (PEO) additive. For example, ethoxytrimethylolpropane triacrylate (ETPTA) can be selected as the matrix material, and lithium bistrifluoromethanesulfonimide (LiTFSI) solution can be selected as the lithium salt solution. First, lithium bistrifluoromethanesulfonimide is dissolved in a high-boiling organic solvent capable of UV cross-linking. For example, ethanedinitrile or succinonitrile solvent can be selected as the organic solvent. The organic solvent is a non-flammable polymer, which can improve its safety and reliability when used to prepare a solid electrolyte. Dissolve lithium bistrifluoromethanesulfonylimide into ethanedinitrile or succinonitrile solvent to form a 0.6-1.2mol/L lithium salt solution, for example, a 1mol/L lithium salt solution; during the preparation process, The lithium salt solution may be heated, for example, at 60 degrees Celsius to increase the dissolution rate of the lithium salt. Then, the above lithium salt solution is mixed with the matrix ethoxytrimethylolpropane triacrylate and the additive polyethylene oxide to form a mixed solution. In this embodiment, the lithium salt solution: matrix ethoxytrimethylolpropane triacrylate: the mass ratio of polyethylene oxide additive can be (60-70): 12: (0-8), for example 65 :12:1 or 67:12:3 etc.

在本实施例的另一个示例中,还可以在上述混合浆料中加入一定量的纳米粉末,例如粒径为10nm的Al2O3纳米粉末。锂盐溶液:基体乙氧基三羟甲基丙烷三丙烯酸酯:聚环氧乙烷添加剂:纳米颗粒的质量比可以为(60-70):12:(0-8):20。充分搅拌混合浆料,例如可以进行超声分散处理,例如在100Hz下超声分散10分钟以保证混合浆料的均匀性,然后将混合浆料进行真空干燥处理,例如可以放入80摄氏度的真空干燥箱中干燥24小时,最终形成固体电解质前驱液。In another example of this embodiment, a certain amount of nano-powder, such as Al 2 O 3 nano-powder with a particle size of 10 nm, may also be added to the above mixed slurry. The mass ratio of lithium salt solution: matrix ethoxytrimethylolpropane triacrylate: polyethylene oxide additive: nanoparticles can be (60-70):12:(0-8):20. Fully stir the mixed slurry, for example, ultrasonic dispersion treatment can be carried out, for example, ultrasonic dispersion at 100 Hz for 10 minutes to ensure the uniformity of the mixed slurry, and then the mixed slurry can be vacuum-dried, for example, it can be placed in a vacuum drying oven at 80 degrees Celsius Drying in medium for 24 hours finally forms a solid electrolyte precursor.

S102:成膜处理。S102: film forming treatment.

将上述干燥好的固体电解质前驱液进行除杂处理,例如可以将固体电解质前驱液放入手套箱内,遮蔽光源,在60摄氏度下搅拌固体电解质前驱液,在其中加入一定的紫外聚合引发剂,例如可以以(1-5)%的质量百分数添加2-羟基-2-甲基-1-苯基-1-丙酮(HMPP)作为紫外聚合引发剂;HMPP可使固体电解质在紫外线辐照下形成孔道细密的半穿透结构,可保证固态电解质具有较高的锂离子迁移率同时提高固体电解质在制备过程中的固化效率。将上述准备好的固体电解质前驱液刮涂在所需的基材表面;其中,该基材事先可以进行预热处理,例如进行60摄氏度的加热处理;然后将固体电解质前驱液刮涂好的基材置于匀胶机进行甩膜处理,例如置于匀胶机吸盘处在1000rpm的转速下甩膜1分钟,然后将基材置于例如60摄氏度的加热板上,通过紫外线辐照,例如使用250W的紫外灯在距基板高度为约5厘米的高度处进行辐照30秒,进而将固体电解质前驱液固化得到固体电解质膜。The above-mentioned dried solid electrolyte precursor solution is subjected to impurity removal treatment, for example, the solid electrolyte precursor solution can be put into a glove box, the light source is shielded, the solid electrolyte precursor solution is stirred at 60 degrees Celsius, and a certain amount of ultraviolet polymerization initiator is added therein. For example, 2-hydroxyl-2-methyl-1-phenyl-1-propanone (HMPP) can be added at a mass percentage of (1-5)% as an ultraviolet polymerization initiator; HMPP can form a solid electrolyte under ultraviolet irradiation The fine semi-penetrating structure of the pores can ensure that the solid electrolyte has a high mobility of lithium ions and improve the solidification efficiency of the solid electrolyte during the preparation process. Scrape-coat the prepared solid electrolyte precursor solution on the surface of the desired substrate; wherein, the substrate can be preheated in advance, for example, heat treatment at 60 degrees Celsius; then scrape-coat the solid electrolyte precursor solution The material is placed in a homogenizer for film removal treatment, for example, placed in the suction cup of the homogenizer, and the film is thrown at a speed of 1000rpm for 1 minute, and then the substrate is placed on a heating plate such as 60 degrees Celsius, and irradiated by ultraviolet rays, such as using A 250W ultraviolet lamp is irradiated for 30 seconds at a height of about 5 cm from the substrate, and then the solid electrolyte precursor solution is cured to obtain a solid electrolyte membrane.

需要说明的是,对于本实施例中所使用的各种原材料,例如乙氧基三羟甲基丙烷三丙烯酸酯,双三氟甲磺酰亚胺锂、聚环氧乙烷等还可以进行前期的预处理;例如将乙氧基三羟甲基丙烷三丙烯酸酯、HMPP、双三氟甲磺酰亚胺锂、聚环氧乙烷、乙二腈溶剂在真空干燥箱内于80摄氏度下干燥24小时;将Al2O3纳米粉末在真空干燥箱内于120摄氏度下干燥24小时等;该过程可以根据原材料的具体状态等实际情况进行调整,本实施例对此不做限定。It should be noted that for the various raw materials used in this embodiment, such as ethoxytrimethylolpropane triacrylate, lithium bistrifluoromethanesulfonimide, polyethylene oxide, etc., can also be prepared in the early stage. Pretreatment; for example, ethoxytrimethylolpropane triacrylate, HMPP, lithium bistrifluoromethanesulfonimide, polyethylene oxide, and ethanedinitrile solvents are dried at 80 degrees Celsius in a vacuum oven 24 hours; dry the Al 2 O 3 nanometer powder in a vacuum drying oven at 120 degrees Celsius for 24 hours, etc.; this process can be adjusted according to the actual conditions such as the specific state of the raw material, which is not limited in this embodiment.

本实施例中,当锂盐溶液:基体乙氧基三羟甲基丙烷三丙烯酸酯:聚环氧乙烷添加剂的质量比为68:12:1时(以下称为示例一),最终得到的固体电解质膜厚约70微米,经测试得到固态电解质的离子导电率在常温下约为1.5×10-3S/cm。本实施例中,测试离子导电率方法为:在氩气保护手套箱中,将所制备的固态电解质夹在两片不锈钢垫片之间并压制成纽扣电池,然后置于温度为60摄氏度的烘箱中保温2小时,使得固态电解质同不锈钢电极接触良好,然后使用电化学工作站测试含有固态电解质纽扣电池的交流阻抗谱,测试时频率设置为0.01至106Hz。最后利用公式σ=l/SR可计算出其离子导电率,其中σ表示为离子导电率,l表示为固态电解质膜厚,S表示为固态电解质膜的表面积,R表示为交流阻抗谱中测试所得的阻抗值。In this embodiment, when the mass ratio of lithium salt solution: matrix ethoxytrimethylolpropane triacrylate: polyethylene oxide additive is 68:12:1 (hereinafter referred to as Example 1), the finally obtained The thickness of the solid electrolyte membrane is about 70 microns, and the ionic conductivity of the solid electrolyte is about 1.5×10 -3 S/cm at room temperature. In this example, the method for testing the ionic conductivity is as follows: in an argon protective glove box, sandwich the prepared solid electrolyte between two stainless steel gaskets and press it into a button battery, and then place it in an oven at a temperature of 60 degrees Celsius The medium was kept warm for 2 hours, so that the solid electrolyte was in good contact with the stainless steel electrode, and then the electrochemical workstation was used to test the AC impedance spectrum of the button battery containing the solid electrolyte, and the frequency was set at 0.01 to 10 6 Hz during the test. Finally, the ionic conductivity can be calculated by using the formula σ=l/SR, where σ represents the ionic conductivity, l represents the thickness of the solid electrolyte film, S represents the surface area of the solid electrolyte film, and R represents the test results in the AC impedance spectrum the impedance value.

本实施例中,当锂盐溶液:基体乙氧基三羟甲基丙烷三丙烯酸酯:聚环氧乙烷添加剂的质量比为68:12:2,而成膜处理时将基材置于匀胶机吸盘处在3000rpm的转速下甩膜1分钟,其他条件不变的实验条件下(以下称为示例二),最终得到的固体电解质膜厚约80微米,经测试得到固态电解质的锂离子迁移率在常温下约为1.8×10-3S/cm。In this embodiment, when the mass ratio of lithium salt solution: substrate ethoxytrimethylolpropane triacrylate: polyethylene oxide additive is 68:12:2, the substrate is placed in a uniform The suction cup of the glue machine is at the speed of 3000rpm and the film is thrown for 1 minute. Under the experimental conditions of other conditions unchanged (hereinafter referred to as Example 2), the thickness of the final solid electrolyte film is about 80 microns, and the lithium ion migration of the solid electrolyte is obtained through testing. The rate is about 1.8×10 -3 S/cm at normal temperature.

本实施例中,当锂盐溶液:基体乙氧基三羟甲基丙烷三丙烯酸酯:聚环氧乙烷添加剂的质量比为68:12:4,成膜处理时将基材置于匀胶机吸盘处仍在1000rpm的转速下甩膜1分钟,其他条件不变的实验条件下时(以下称为示例三),最终得到的固体电解质膜厚约80微米,经测试得到固态电解质的锂离子迁移率在常温下约为2.5×10-3S/cm。相对于上述示例,本示例中聚环氧乙烷添加剂的添加比例提高,而锂盐溶液的添加量降低,这会有利于在固态电解质表面刷涂有机溶液含量高的正负电解浆料。In this example, when the mass ratio of lithium salt solution: matrix ethoxytrimethylolpropane triacrylate: polyethylene oxide additive is 68:12:4, the base material is placed in a uniform glue The suction cup of the machine is still at the rotating speed of 1000rpm and the film is thrown for 1 minute. When the other conditions are constant (hereinafter referred to as Example 3), the thickness of the solid electrolyte film finally obtained is about 80 microns, and the lithium ion of the solid electrolyte is obtained after testing. The mobility is about 2.5×10 -3 S/cm at normal temperature. Compared with the above example, in this example, the addition ratio of the polyethylene oxide additive is increased, while the addition amount of the lithium salt solution is reduced, which will facilitate the brushing of the positive and negative electrolytic slurry with high organic solution content on the surface of the solid electrolyte.

本实施例中,当锂盐溶液:基体乙氧基三羟甲基丙烷三丙烯酸酯:聚环氧乙烷添加剂的质量比为68:12:8,成膜处理时将基材置于匀胶机吸盘处在3000rpm的转速下甩膜1分钟,其他条件不变的实验条件下时(以下称为示例四),最终得到的固体电解质膜厚约80微米,经测试得到固态电解质的锂离子迁移率在常温下约为1.6×10-3S/cm。In this example, when the mass ratio of lithium salt solution: matrix ethoxytrimethylolpropane triacrylate: polyethylene oxide additive is 68:12:8, the base material is placed in a uniform glue When the suction cup of the machine is at a speed of 3000rpm and the film is thrown for 1 minute, and other conditions are kept constant (hereinafter referred to as Example 4), the thickness of the final solid electrolyte film is about 80 microns, and the lithium ion migration of the solid electrolyte is obtained through testing. The rate is about 1.6×10 -3 S/cm at normal temperature.

本实施例中,当固体电解质中添加纳米颗粒时(以下称为示例五),例如添加Al2O3纳米颗粒并且固体电解质中锂盐溶液:基体乙氧基三羟甲基丙烷三丙烯酸酯:聚环氧乙烷添加剂的质量比为68:12:4::20时,得到的固体电解质的锂离子迁移率在常温下约为4.8×10-4S/cm。虽然本示例中固体电解质的锂离子迁移率相比于未添加纳米颗粒的固体电解质略有降低,但是纳米颗粒的加入会使固体电解质的强度有所增加,而固体电解质强度的增加可以在一定程度上避免电池在长期使用时因锂枝晶刺破固体电解质膜而产生的短路现象。In this embodiment, when nanoparticles are added to the solid electrolyte (hereinafter referred to as Example 5 ), for example, Al2O3 nanoparticles are added and the lithium salt solution in the solid electrolyte: matrix ethoxytrimethylolpropane triacrylate: When the mass ratio of the polyethylene oxide additive is 68:12:4::20, the lithium ion mobility of the obtained solid electrolyte is about 4.8×10 −4 S/cm at room temperature. Although the lithium ion mobility of the solid electrolyte in this example is slightly lower than that of the solid electrolyte without nanoparticles, the addition of nanoparticles will increase the strength of the solid electrolyte, and the increase in the strength of the solid electrolyte can be to a certain extent In order to avoid the short circuit phenomenon caused by lithium dendrites piercing the solid electrolyte membrane during long-term use of the battery.

由示例一、二、三、四、五可以看出,当选取不同的原料配比及实验条件时,所得到的固体电解质的各项性能略有差异,因此可以根据产品需求或生产条件选择合适的原料配比及实验参数。It can be seen from Examples 1, 2, 3, 4, and 5 that when different raw material ratios and experimental conditions are selected, the properties of the obtained solid electrolytes are slightly different, so the appropriate one can be selected according to product requirements or production conditions. Raw material ratio and experimental parameters.

需要说明的是,本实施例中固体电解质的原料配比及生产工艺参数还可以采取其他合理数值,其最终得到的固体电解质的各项性能可以结合上述实施例所选择的原料配比及生产工艺参数与所得到固体电解质的各项性能指标的对比做出合理推断,本实施例不再赘述。It should be noted that the raw material ratio and production process parameters of the solid electrolyte in this embodiment can also adopt other reasonable values, and the properties of the finally obtained solid electrolyte can be combined with the raw material ratio and production process selected in the above embodiment A reasonable inference can be made by comparing the parameters with the various performance indexes of the obtained solid electrolyte, which will not be described in detail in this embodiment.

实施例三Embodiment three

如图2A和图2B所示,本实施例提供一种电池,该电池包括正极活性材料、负极活性材料以及本发明实施例提供的固体电解质,该固体电解质位于正极活性材料和负极活性材料之间。该电池例如可以为锂离子电池,因此上述正极活性材料和负极活性材料为用于锂离子电池的正极活性材料和负极活性材料。As shown in Fig. 2A and Fig. 2B, this embodiment provides a battery, which includes a positive electrode active material, a negative electrode active material, and a solid electrolyte provided by an embodiment of the present invention, and the solid electrolyte is located between the positive electrode active material and the negative electrode active material . The battery can be, for example, a lithium ion battery, so the above-mentioned positive electrode active material and negative electrode active material are positive electrode active materials and negative electrode active materials for lithium ion batteries.

例如,该电池包括:在基底101上形成的第一导电集流层1021和第二导电集流层1022、第一电极材料层、第二电极材料层和电解质层。第一导电集流层1021和第二导电集流层1022彼此绝缘;第一电极材料层设置在第一导电集流层1021上;第二电极材料层设置在第二导电集流层1022上;电解质层104,设置在第一电极材料层和第二电极材料层之间。For example, the battery includes: a first conductive current collecting layer 1021 and a second conductive current collecting layer 1022 formed on a substrate 101 , a first electrode material layer, a second electrode material layer and an electrolyte layer. The first conductive current collecting layer 1021 and the second conductive current collecting layer 1022 are insulated from each other; the first electrode material layer is disposed on the first conductive current collecting layer 1021; the second electrode material layer is disposed on the second conductive current collecting layer 1022; The electrolyte layer 104 is disposed between the first electrode material layer and the second electrode material layer.

本实施例中,第一导电集流层1021和第二导电集流层1022可以具有相同的材质,例如可以为铜或铜合金膜、铝或铝合金膜、镍或镍合金膜,或者为透明导电氧化物薄膜,例如氧化铟锡(ITO)等。本实施例中,第一导电集流层1021和第二导电集流层1022形成在基底101的同一层上,因此可以简化电池的制造工艺和组装工艺。In this embodiment, the first conductive current collecting layer 1021 and the second conductive current collecting layer 1022 can have the same material, for example, they can be copper or copper alloy film, aluminum or aluminum alloy film, nickel or nickel alloy film, or transparent Conductive oxide films, such as indium tin oxide (ITO), etc. In this embodiment, the first conductive current collecting layer 1021 and the second conductive current collecting layer 1022 are formed on the same layer of the substrate 101 , so the manufacturing process and assembly process of the battery can be simplified.

本实施例中,第一电极材料层可以为负极活性层103。负极活性层103可以包括例如均匀混合的负极活性材料、导电剂、添加剂等。在一个示例中,负极活性层包括负极活性材料、导电剂、聚环氧乙烷(PEO),其中,负极活性材料可以是钛酸锂、钛酸锰锂或其他合适的负极活性材料;导电剂可以是聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐(PEDOT:PSS),而且PEDOT:PSS不仅具有导电剂的作用,还能起到粘结剂的功能;聚环氧乙烷(PEO)作为一种添加剂,具有较强的导电能力和与电极活性材料的粘结能力,可以保证负极活性材料能够涂覆且贴附于具有疏水特征的塑料基底或与其相邻的导电集流层表面,聚环氧乙烷的加入还可以增强负极活性层103的锂离子迁移能力和的导电能力。本实施例中,负极活性材料、导电剂、聚环氧乙烷的质量比例如可以为(8:1:1)-(12:1:0.5),例如负极活性材料、导电剂、聚环氧乙烷的质量比例如可以为12:1:1,例如还可以为9:1:0.5。In this embodiment, the first electrode material layer may be the negative electrode active layer 103 . The negative active layer 103 may include, for example, a negative active material, a conductive agent, additives, etc. that are uniformly mixed. In one example, the negative electrode active layer includes a negative electrode active material, a conductive agent, polyethylene oxide (PEO), wherein the negative electrode active material can be lithium titanate, lithium manganese titanate or other suitable negative electrode active materials; the conductive agent It can be poly 3,4-ethylenedioxythiophene/polystyrene sulfonate (PEDOT:PSS), and PEDOT:PSS not only functions as a conductive agent, but also as a binder; polyethylene oxide (PEO), as an additive, has strong electrical conductivity and bonding ability with the electrode active material, which can ensure that the negative electrode active material can be coated and attached to the plastic substrate with hydrophobic characteristics or the conductive current collector adjacent to it. The addition of polyethylene oxide on the surface of the negative electrode active layer 103 can also enhance the lithium ion mobility and electrical conductivity of the negative electrode active layer 103 . In this embodiment, the mass ratio of negative electrode active material, conductive agent, and polyethylene oxide can be (8:1:1)-(12:1:0.5), for example, negative electrode active material, conductive agent, polyethylene oxide The mass ratio of ethane may be, for example, 12:1:1, for example, 9:1:0.5.

本实施例中,第二电极材料层可以为正极活性层105。正极活性层105可以包括例如均匀混合的正极活性材料、导电剂、添加剂剂等。例如,该正极活性层包括正极活性材料、导电剂、聚环氧乙烷(PEO)等,其中,正极活性材料可以是钴酸锂、镍酸锂、磷酸铁锂、磷酸钴锂、锰酸锂或其他合适的正极活性材料;导电剂同样可以是聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐(PEDOT:PSS),PEDOT:PSS具有导电剂的作用,还能起到粘结剂的功能;聚环氧乙烷(PEO)作为一种添加剂,具有较强的导电能力和与电极活性材料的粘结能力,还可以增强正极活性层105的锂离子迁移能力和的导电能力。本实施例中,正极活性材料、导电剂、聚环氧乙烷的质量比例如可以为(8:1:1)-(12:1:0.5),例如负极活性材料、导电剂、聚环氧乙烷的质量比例如可以为10:1:1,例如还可以为11:1:0.5。In this embodiment, the second electrode material layer may be the positive electrode active layer 105 . The positive active layer 105 may include, for example, a uniformly mixed positive active material, a conductive agent, an additive agent, and the like. For example, the positive active layer includes a positive active material, a conductive agent, polyethylene oxide (PEO), etc., wherein the positive active material can be lithium cobaltate, lithium nickelate, lithium iron phosphate, lithium cobalt phosphate, lithium manganate Or other suitable positive electrode active materials; the conductive agent can also be poly 3,4-ethylenedioxythiophene/polystyrene sulfonate (PEDOT:PSS), PEDOT:PSS has the effect of conductive agent, and can also play a role in bonding The function of the agent; as an additive, polyethylene oxide (PEO) has strong electrical conductivity and bonding ability with the electrode active material, and can also enhance the lithium ion migration ability and electrical conductivity of the positive electrode active layer 105. In this embodiment, the mass ratio of the positive electrode active material, conductive agent, and polyethylene oxide can be (8:1:1)-(12:1:0.5), for example, the negative electrode active material, conductive agent, polyethylene oxide The mass ratio of ethane may be, for example, 10:1:1, for example, 11:1:0.5.

本实施例中,当锂离子电池对负极活性层103或正极活性层105的粘结性要求较高时,电极材料组合物还可以包括粘合剂,例如该粘合剂可以为聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)或其他合适的粘结剂,其具体类型在此不做限定。In this embodiment, when the lithium-ion battery requires high adhesion to the negative electrode active layer 103 or the positive electrode active layer 105, the electrode material composition can also include a binder, for example, the binder can be polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE) or other suitable binders, the specific type of which is not limited here.

需要注意的是,本实施例中第一电极材料层也可以为正极活性层,而第二电极材料层为负极活性层,第一电极材料层和第二电极材料层的具体极性设置在此不做限定。It should be noted that in this embodiment, the first electrode material layer can also be a positive electrode active layer, while the second electrode material layer is a negative electrode active layer, and the specific polarities of the first electrode material layer and the second electrode material layer are set here No limit.

本实施例中,电解质层104设置在第一电极材料层即负极活性层103上,与之接触;第二电极材料即正极活性层105设置在电解质层104上,与之接触。本实施例中,电解质层104可以为固体电解质;例如,电解质层104可以为上述任一实施例提供的固体电解质,该固体电解质具有柔性、不易燃,还具有强度高、锂离子迁移率高等特点。例如,该固体电解质可以包括基体、锂盐和添加剂等。例如,基体可以选用乙氧基三羟甲基丙烷三丙烯酸酯(ETPTA),锂盐可以选用双三氟甲磺酰亚胺锂(LiTFSI),添加剂可以选择聚环氧乙烷(PEO);PEO添加剂可减小或避免固体电解质发生弯曲断裂的风险,并提高固体电解质的锂迁移数及离子导电性能。在上述采用PEO作为活性层中的粘结剂的示例中,PEO添加剂还可以降低以PEO为粘结剂的正极活性层或负极活性层同固体电解质之间的界面阻抗,改善所获得的锂离子电池的性能。在一个示例中,该固体电解质还可以包括例如2-羟基-2-甲基-1-苯基-1-丙酮(HMPP)作为紫外聚合引发剂,使得固态电解质可在紫外线辐照下形成孔道细密的半穿透结构固态薄膜,从而保证固态电解质具有较高的锂离子迁移率同时提高固体电解质在制备过程中的固化效率。In this embodiment, the electrolyte layer 104 is disposed on and in contact with the first electrode material layer, that is, the negative electrode active layer 103 ; the second electrode material, that is, the positive electrode active layer 105 is disposed on and in contact with the electrolyte layer 104 . In this embodiment, the electrolyte layer 104 can be a solid electrolyte; for example, the electrolyte layer 104 can be the solid electrolyte provided in any of the above embodiments, the solid electrolyte is flexible, non-flammable, and also has the characteristics of high strength and high mobility of lithium ions. . For example, the solid electrolyte may include a matrix, a lithium salt, additives, and the like. For example, the matrix can be selected from ethoxytrimethylolpropane triacrylate (ETPTA), the lithium salt can be selected from lithium bistrifluoromethanesulfonimide (LiTFSI), and the additive can be selected from polyethylene oxide (PEO); The additive can reduce or avoid the risk of bending fracture of the solid electrolyte, and improve the lithium migration number and ion conductivity of the solid electrolyte. In the above-mentioned example of using PEO as the binder in the active layer, the PEO additive can also reduce the interface impedance between the positive electrode active layer or the negative electrode active layer with PEO as the binder and the solid electrolyte, and improve the obtained lithium ions. battery performance. In one example, the solid electrolyte can also include, for example, 2-hydroxy-2-methyl-1-phenyl-1-propanone (HMPP) as an ultraviolet polymerization initiator, so that the solid electrolyte can form fine pores under ultraviolet irradiation. The semi-penetrating structure of the solid film ensures that the solid electrolyte has a high mobility of lithium ions and improves the solidification efficiency of the solid electrolyte during the preparation process.

例如,在另一个示例中,该固体电解质还可以包括适量的无机纳米粉末,例如粒径为8~15nm(例如10nm)的Al2O3纳米粉末以增强固体电解质的强度,可使其制成的电池在多次弯曲后不会因固态电解质损坏而造成正、负极接触短路。而且,该固态电解质具有柔性、不易燃,还具有强度高、离子迁移率高等特点。本实施例中,该固体电解质不仅起到电解质的作用,还兼具隔膜的功能,即在正负极之间传导离子的同时阻止电子的传导。无机纳米粉末添加的量以改善其机械性能而又不影响电学性能为准。For example, in another example, the solid electrolyte may also include an appropriate amount of inorganic nanopowder, such as Al 2 O 3 nanopowder with a particle size of 8-15nm (for example, 10nm) to enhance the strength of the solid electrolyte, making it possible to make The battery will not be short-circuited by the positive and negative electrodes due to the damage of the solid electrolyte after being bent many times. Moreover, the solid electrolyte is flexible, non-flammable, and also has the characteristics of high strength and high ion mobility. In this embodiment, the solid electrolyte not only functions as an electrolyte, but also functions as a separator, that is, it conducts ions between the positive and negative electrodes while preventing the conduction of electrons. The amount of inorganic nano-powder added is based on improving its mechanical properties without affecting its electrical properties.

本实施例中,基底101可以是塑料基底,例如其材质可以为普通塑料材料,例如聚对苯二甲酸乙二醇酯膜(PET);基底101也可以选择具有高温耐热性的聚萘二甲酸乙二醇酯膜(PEN)等具有特殊性能的塑料材料。塑料基底的具体材质在此不做限定。以塑料作为基底可以保证所得到的锂离子电池的柔性,同时还降低了电池的原材料成本。In this embodiment, the substrate 101 can be a plastic substrate, for example, its material can be a common plastic material, such as polyethylene terephthalate film (PET); the substrate 101 can also be selected from polyethylene naphthalene with high temperature resistance. Plastic materials with special properties such as ethylene glycol formate film (PEN). The specific material of the plastic base is not limited here. Using plastic as a substrate can ensure the flexibility of the resulting lithium-ion battery, while also reducing the raw material cost of the battery.

本实施例中,锂离子电池还可以进一步包括封装层106,封装层106至少可以将负极活性层103、固体电解质104和正极活性层105密封。封装层106可以为柔性封装膜。例如,封装层106的材质可以选择聚甲基丙烯酸甲酯(PMMA)、聚二甲基硅氧烷(PDMS)或普通硅胶等材料,封装层106的具体材质在此不做限定。In this embodiment, the lithium-ion battery can further include an encapsulation layer 106 , and the encapsulation layer 106 can at least seal the negative electrode active layer 103 , the solid electrolyte 104 and the positive electrode active layer 105 . The encapsulation layer 106 may be a flexible encapsulation film. For example, the material of the encapsulation layer 106 can be polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS) or common silica gel, and the specific material of the encapsulation layer 106 is not limited here.

需要说明的是,本实施例的锂离子电池还可以包括正、负极引线、中心端子、安全阀等结构,这些均可以采取常规方式设置,在此不再赘述。It should be noted that the lithium-ion battery of this embodiment may also include structures such as positive and negative lead wires, a central terminal, and a safety valve, all of which may be arranged in a conventional manner and will not be repeated here.

本实施例提供的锂离子电池将正负极导电集流层形成于基底上的同一层上,可以简化电池的制造工艺和组装工艺。In the lithium-ion battery provided in this embodiment, the positive and negative conductive current-collecting layers are formed on the same layer on the substrate, which can simplify the manufacturing process and assembly process of the battery.

本实施例提供的锂离子电池的电解质层104为固体电解质,该锂离子电池可以克服液态锂离子电池可能因漏液或短路造成的电池爆炸的潜在危险性。The electrolyte layer 104 of the lithium ion battery provided in this embodiment is a solid electrolyte, and the lithium ion battery can overcome the potential danger of battery explosion caused by liquid lithium ion battery leakage or short circuit.

本实施例提供的锂离子电池的基底材料可以采用普通塑料材料,或根据器件使用条件选取特殊塑料材料等,使锂离子电池具有柔性,同时还降低了锂离子电池的原材料成本。The base material of the lithium-ion battery provided in this embodiment can be an ordinary plastic material, or a special plastic material can be selected according to the service conditions of the device, so as to make the lithium-ion battery flexible and reduce the raw material cost of the lithium-ion battery.

本实施例的锂离子电池具有柔性的特点,可用于柔性电子器件。图3为本发明一实施例提供的锂离子电池进行弯曲实验的图片,可以看出,该实施例提供的锂离子电池可随意弯曲,具有很好的柔性。The lithium-ion battery of this embodiment is flexible and can be used in flexible electronic devices. FIG. 3 is a picture of a lithium-ion battery provided by an embodiment of the present invention subjected to a bending test. It can be seen that the lithium-ion battery provided by this embodiment can be bent at will and has good flexibility.

此外,在本实施例中,由于锂离子电池可采用ITO、IGZO等透明导电薄膜为导电集流层,因此可用于锂离子电池和太阳能电池兼容的柔性电子装置的储能器件以及供能器件。In addition, in this embodiment, since the lithium-ion battery can use transparent conductive films such as ITO and IGZO as the conductive current-collecting layer, it can be used as an energy storage device and an energy supply device for flexible electronic devices compatible with lithium-ion batteries and solar cells.

实施例四Embodiment four

图4A和图4B分别为本实施例提供的一种锂离子电池的平面图和截面图,该锂离子电池包括:在基底201上形成的第一导电集流层2021和第二导电集流层2022,第一导电集流层2021和第二导电集流层2022彼此绝缘。4A and 4B are respectively a plan view and a cross-sectional view of a lithium-ion battery provided in this embodiment, and the lithium-ion battery includes: a first conductive current collecting layer 2021 and a second conductive current collecting layer 2022 formed on a substrate 201 , the first conductive current collecting layer 2021 and the second conductive current collecting layer 2022 are insulated from each other.

与实施例三不同的是,本实施例中,第一导电集流层2021呈“凹”字型,第二导电集流层2022呈“凸”字型,第一导电集流层2021的凹陷部分包覆第二导电集流层2022突出的部分;第一电极材料层设置在第一导电集流层1021的突出部分上;第二电极材料层设置在第二导电集流层1022上;电解质层204设置在第一电极材料层和第二电极材料层之间。Different from Embodiment 3, in this embodiment, the first conductive current collecting layer 2021 is in the shape of "concave", the second conductive current collecting layer 2022 is in the shape of "convex", and the concave shape of the first conductive current collecting layer 2021 is Partially covering the protruding part of the second conductive current collecting layer 2022; the first electrode material layer is disposed on the protruding part of the first conductive current collecting layer 1021; the second electrode material layer is disposed on the second conductive current collecting layer 1022; the electrolyte Layer 204 is disposed between the first electrode material layer and the second electrode material layer.

本实施例中,第一电极材料层可以为负极活性层203,第二电极材料层可以为正极活性层205,电解质层204设置在第一电极材料层即负极活性层203上,而第二电极材料即正极活性层205设置在电解质层204上。In this embodiment, the first electrode material layer can be the negative electrode active layer 203, the second electrode material layer can be the positive electrode active layer 205, the electrolyte layer 204 is arranged on the first electrode material layer, that is, the negative electrode active layer 203, and the second electrode material layer can be the positive electrode active layer 205. The material, that is, the positive electrode active layer 205 is provided on the electrolyte layer 204 .

需要注意的是,本实施例中第一电极材料层也可以为正极活性层,而第二电极材料层为负极活性层,第一电极材料层和第二电极材料层的具体极性设置在此不做限定。It should be noted that in this embodiment, the first electrode material layer can also be a positive electrode active layer, while the second electrode material layer is a negative electrode active layer, and the specific polarities of the first electrode material layer and the second electrode material layer are set here No limit.

同样,本实施例提供的锂离子电池还可以包括封装层206,封装层206至少将负极活性层203、固体电解质204和正极活性层205密封。Likewise, the lithium ion battery provided in this embodiment may further include an encapsulation layer 206 , and the encapsulation layer 206 at least seals the negative electrode active layer 203 , the solid electrolyte 204 and the positive electrode active layer 205 .

本实施例中,各个功能层的材质与上述实施例相同,因此不再赘述。In this embodiment, the material of each functional layer is the same as that of the above embodiment, so details are not repeated here.

有以下几点需要说明:The following points need to be explained:

(1)本发明实施例附图只涉及到与本发明实施例涉及到的结构,其他结构可参考通常设计。(1) Embodiments of the present invention The drawings only relate to the structures related to the embodiments of the present invention, other structures can refer to the general design.

(2)为了清晰起见,在用于描述本发明的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。(2) For the sake of clarity, in the drawings used to describe the embodiments of the present invention, the thickness of layers or regions is enlarged or reduced, that is, these drawings are not drawn according to actual scale. It will be understood that when an element such as a layer, film, region, or substrate is referred to as being "on" or "under" another element, it can be "directly on" or "under" the other element, Or intervening elements may be present.

(3)在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。(3) In the case of no conflict, the embodiments of the present invention and the features in the embodiments can be combined with each other to obtain new embodiments.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以权利要求的保护范围为准。The above description is only a specific implementation mode of the present invention, but the protection scope of the present invention is not limited thereto, and the protection scope of the present invention should be based on the protection scope of the claims.

Claims (10)

1.一种固体电解质,包括:基体、锂盐及聚环氧乙烷添加剂。1. A solid electrolyte, comprising: matrix, lithium salt and polyethylene oxide additive. 2.根据权利要求1所述的固体电解质,其中,所述基体为乙氧基三羟甲基丙烷三丙烯酸酯。2. The solid electrolyte according to claim 1, wherein the matrix is ethoxytrimethylolpropane triacrylate. 3.根据权利要求1所述的固体电解质,其中,所述锂盐为双三氟甲磺酰亚胺锂。3. The solid electrolyte according to claim 1, wherein the lithium salt is lithium bistrifluoromethanesulfonimide. 4.根据权利要求1所述的固体电解质,还包括无机纳米颗粒。4. The solid electrolyte according to claim 1, further comprising inorganic nanoparticles. 5.根据权利要求1所述的固体电解质,还包括紫外聚合引发剂。5. The solid electrolyte according to claim 1, further comprising an ultraviolet polymerization initiator. 6.一种电池,包括正极活性材料、负极活性材料以及在所述正极活性材料和所述负极活性材料之间如权利要求1-5所述的固体电解质。6. A battery, comprising a positive electrode active material, a negative electrode active material, and a solid electrolyte according to claims 1-5 between the positive electrode active material and the negative electrode active material. 7.一种固体电解质的制备方法,包括:将基体、锂盐溶液及添加剂聚环氧乙烷混合形成固体电解质前驱液,并经过固化后形成所述固态电解质。7. A method for preparing a solid electrolyte, comprising: mixing a matrix, a lithium salt solution, and an additive polyethylene oxide to form a solid electrolyte precursor solution, and forming the solid electrolyte after curing. 8.根据权利要求7所述的固体电解质的制备方法,其中,所述锂盐溶液为双三氟甲磺酰亚胺锂溶液。8. The method for preparing a solid electrolyte according to claim 7, wherein the lithium salt solution is a lithium bistrifluoromethanesulfonimide solution. 9.根据权利要求8所述的固体电解质的制备方法,其中,将所述双三氟甲磺酰亚胺锂溶入无水有机物溶剂中,配成0.6-1.2mol/L的锂盐溶液,再与所述基体及添加剂聚环氧乙烷混合形成混合浆料。9. The preparation method of the solid electrolyte according to claim 8, wherein the lithium bistrifluoromethanesulfonimide is dissolved in an anhydrous organic solvent to form a 0.6-1.2mol/L lithium salt solution, Then mix with the matrix and the additive polyethylene oxide to form a mixed slurry. 10.根据权利要求7所述的固体电解质的制备方法,还包括在所述混合浆料中加入紫外聚合引发剂,利用紫外光进行辐照以固化所述混合浆料。10. The method for preparing a solid electrolyte according to claim 7, further comprising adding an ultraviolet polymerization initiator into the mixed slurry, and irradiating with ultraviolet light to cure the mixed slurry.
CN201710912029.0A 2017-09-29 2017-09-29 Solid electrolyte and preparation method thereof, battery Pending CN107681193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710912029.0A CN107681193A (en) 2017-09-29 2017-09-29 Solid electrolyte and preparation method thereof, battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710912029.0A CN107681193A (en) 2017-09-29 2017-09-29 Solid electrolyte and preparation method thereof, battery

Publications (1)

Publication Number Publication Date
CN107681193A true CN107681193A (en) 2018-02-09

Family

ID=61137803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710912029.0A Pending CN107681193A (en) 2017-09-29 2017-09-29 Solid electrolyte and preparation method thereof, battery

Country Status (1)

Country Link
CN (1) CN107681193A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244537A (en) * 2018-09-26 2019-01-18 上海大学 Composite solid electrolyte, preparation method and its application
CN111628213A (en) * 2019-02-28 2020-09-04 湖南农业大学 Organic/inorganic composite electrolyte membrane for solid sodium-ion battery and preparation and application thereof
CN113555600A (en) * 2020-04-26 2021-10-26 深圳新宙邦科技股份有限公司 Solid-state battery
CN114551993A (en) * 2021-07-20 2022-05-27 万向一二三股份公司 Three-dimensional PEO polymer composite solid electrolyte containing modified inorganic filler, preparation method and solid lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428363A (en) * 2001-12-25 2003-07-09 成都茵地乐电源科技有限公司 Nano-pore polymer electrolyte film and its preparation method
CN102939681A (en) * 2010-06-14 2013-02-20 株式会社Lg化学 Electrolyte for electrochemical device, the preparation method thereof and electrochemical device comprising the same
CN103329332A (en) * 2011-01-20 2013-09-25 株式会社Lg化学 Electrolyte for an electrochemical device, method for manufacturing same, and electrochemical device including same
US20170018799A1 (en) * 2014-04-03 2017-01-19 Soongsil University Research Consortium Techno-Park Flexible lithium secondary battery and method for manufacturing the same
CN107039680A (en) * 2016-02-03 2017-08-11 三星电子株式会社 Solid electrolyte and the lithium battery for including the solid electrolyte

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428363A (en) * 2001-12-25 2003-07-09 成都茵地乐电源科技有限公司 Nano-pore polymer electrolyte film and its preparation method
CN102939681A (en) * 2010-06-14 2013-02-20 株式会社Lg化学 Electrolyte for electrochemical device, the preparation method thereof and electrochemical device comprising the same
CN103329332A (en) * 2011-01-20 2013-09-25 株式会社Lg化学 Electrolyte for an electrochemical device, method for manufacturing same, and electrochemical device including same
US20170018799A1 (en) * 2014-04-03 2017-01-19 Soongsil University Research Consortium Techno-Park Flexible lithium secondary battery and method for manufacturing the same
CN107039680A (en) * 2016-02-03 2017-08-11 三星电子株式会社 Solid electrolyte and the lithium battery for including the solid electrolyte

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244537A (en) * 2018-09-26 2019-01-18 上海大学 Composite solid electrolyte, preparation method and its application
CN111628213A (en) * 2019-02-28 2020-09-04 湖南农业大学 Organic/inorganic composite electrolyte membrane for solid sodium-ion battery and preparation and application thereof
CN111628213B (en) * 2019-02-28 2021-09-28 湖南农业大学 Organic/inorganic composite electrolyte membrane for solid sodium-ion battery and preparation and application thereof
CN113555600A (en) * 2020-04-26 2021-10-26 深圳新宙邦科技股份有限公司 Solid-state battery
WO2021218803A1 (en) * 2020-04-26 2021-11-04 深圳新宙邦科技股份有限公司 Solid-state battery
CN114551993A (en) * 2021-07-20 2022-05-27 万向一二三股份公司 Three-dimensional PEO polymer composite solid electrolyte containing modified inorganic filler, preparation method and solid lithium ion battery
CN114551993B (en) * 2021-07-20 2023-10-03 万向一二三股份公司 Three-dimensional PEO polymer composite solid electrolyte containing modified inorganic filler, preparation method and solid lithium ion battery

Similar Documents

Publication Publication Date Title
CN107634184B (en) Flexible all-solid-state polymer lithium battery and preparation method thereof
CN104538670B (en) A kind of full solid state polymer electrolyte, its preparation method and application
CN107346833B (en) Composite solid polymer electrolyte film and preparation method thereof
CN109755630A (en) A kind of Recombination gel polymer dielectric preparation method and its lithium ion battery
CN107681193A (en) Solid electrolyte and preparation method thereof, battery
CN104362347B (en) Preparation method for modified electrode materials of conductive polymers
CN106784966A (en) One class low interfacial resistance, the preparation method and application of high mechanical properties all-solid-state battery
CN104650375B (en) Preparation method of composite polymer electrolyte membrane
CN107342437A (en) It is a kind of mixed with solid polymer electrolyte of modified Nano filling and preparation method thereof
CN102709597A (en) Composite all solid-state polymer electrolyte lithium ion battery and preparation method of composite all solid-state polymer electrolyte lithium ion battery
CN111682261B (en) A repairable cross-linked solid polymer electrolyte and its preparation method and application
CN111313089A (en) A kind of preparation method of ion conductor/polyethylene oxide composite solid electrolyte based on ultraviolet cross-linking
CN108933281A (en) Flexible ceramic/polymer composite solid electrolyte and preparation method thereof
CN109411716A (en) Based lithium-ion battery positive plate and preparation method thereof and lithium ion battery
CN106229514A (en) Preparation method and application of graphene modified conductive polymer gel coated metal nanoparticles
CN114744289A (en) Magnetic composite solid-state electrolyte membrane, preparation method and method for preparing solid-state lithium metal battery
CN105006591A (en) Composite stable lithium battery separation membrane
CN102709598B (en) Compound all-solid polymer electrolyte and preparation method thereof
CN106602064A (en) Preparation method and application of iodine-doped graphene
CN108822586B (en) A kind of preparation method of modified barium titanate material, battery separator and lithium ion battery
CN107482223B (en) Lithium ion battery electrode material composition, lithium ion battery and preparation method of electrode slurry thereof
CN1903940A (en) Modifide mesopore molecular sieve composite full solid state polymer electrolyte and its preparation method
CN1260278C (en) Process for preparing blended micrometer TiO2 polymer electrolyte
CN107109662B (en) The manufacturing method and dye-sensitized solar cells of semiconductor film
CN107681192B (en) Lithium ion battery, manufacturing method thereof and electronic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180209