CN107680964A - A kind of microwave power amplifier for improving power cell temperature homogeneity - Google Patents
A kind of microwave power amplifier for improving power cell temperature homogeneity Download PDFInfo
- Publication number
- CN107680964A CN107680964A CN201711084235.3A CN201711084235A CN107680964A CN 107680964 A CN107680964 A CN 107680964A CN 201711084235 A CN201711084235 A CN 201711084235A CN 107680964 A CN107680964 A CN 107680964A
- Authority
- CN
- China
- Prior art keywords
- metal layer
- power
- connection unit
- improving
- power amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 73
- 239000002184 metal Substances 0.000 claims abstract description 73
- 230000007423 decrease Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 230000017525 heat dissipation Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/10—Integrated device layouts
- H10D89/105—Integrated device layouts adapted for thermal considerations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
- H03F1/301—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3205—Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/193—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Amplifiers (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域technical field
本发明属于微波功率放大器技术领域,具体地涉及一种改善功率单元温度均匀性的微波功率放大器。The invention belongs to the technical field of microwave power amplifiers, in particular to a microwave power amplifier for improving the temperature uniformity of a power unit.
背景技术Background technique
现代通讯要求微波功率放大器能够提供大功率输出,并同时具有良好的线性与效率。然而对于功率管,由于其衬底散热系数低,大功率的输出使得晶体管的热效应增强,形成高温有源器件,此时晶体管的性能发生退化,线性度与效率恶化,甚至在更高温条件下,其可靠性都会受到影响,因此,为得到高性能的功率放大器,应解决热效应的瓶颈效应。Modern communications require microwave power amplifiers to be able to provide high-power output, and at the same time have good linearity and efficiency. However, for power tubes, due to the low heat dissipation coefficient of the substrate, the high-power output increases the thermal effect of the transistor and forms a high-temperature active device. At this time, the performance of the transistor is degraded, and the linearity and efficiency deteriorate. Even under higher temperature conditions, Its reliability will be affected. Therefore, in order to obtain a high-performance power amplifier, the bottleneck effect of thermal effects should be solved.
现有技术中通常的做法即改善散热环境以及降低热源,如从放大器版图着手,优化散热环境,改变指间距、指长等手段获取均匀温度分布的功率单元,再者利用镇流电阻改变热电之间的负反馈作用,稳定电路。在一定的功耗条件下能够获得低温的晶体管具有重要的意义,但是其散热效果不佳。The usual practice in the prior art is to improve the heat dissipation environment and reduce the heat source, such as starting from the layout of the amplifier, optimizing the heat dissipation environment, changing the finger spacing, finger length, etc. to obtain a power unit with uniform temperature distribution, and using the ballast resistor to change the thermoelectric The negative feedback between them stabilizes the circuit. It is of great significance to obtain a low-temperature transistor under certain power consumption conditions, but its heat dissipation effect is not good.
发明内容Contents of the invention
本发明的目的在于针对现有技术的缺陷,提供一种改善功率单元温度均匀性的微波功率放大器。The object of the present invention is to provide a microwave power amplifier that improves the temperature uniformity of the power unit in view of the defects in the prior art.
本发明的技术方案如下:一种改善功率单元温度均匀性的微波功率放大器包括并联设置的多个功率单元,每个所述功率单元包括多个晶体管,相邻两个所述功率单元中晶体管的集电极均通过第一连接单元电性连接;所述第一连接单元包括从下向上依次设置的第一金属层、绝缘介质层和第二金属层,所述第一连接单元的第一层金属与降热装置相连通,所述第一连接单元的第二金属层与相邻两个所述功率单元中晶体管的集电极相连;在所述第一连接单元内,根据所述功率单元内晶体管的温度分布方向,所述第二金属层的面积沿温度降低方向逐渐减小。The technical solution of the present invention is as follows: a microwave power amplifier for improving the temperature uniformity of a power unit includes a plurality of power units arranged in parallel, each of the power units includes a plurality of transistors, and the transistors in two adjacent power units The collectors are electrically connected through the first connection unit; the first connection unit includes a first metal layer, an insulating medium layer and a second metal layer arranged in sequence from bottom to top, and the first layer of metal in the first connection unit The second metal layer of the first connection unit is connected to the collectors of the transistors in two adjacent power units; in the first connection unit, according to the transistors in the power unit The temperature distribution direction, the area of the second metal layer gradually decreases along the temperature decreasing direction.
优选地,所述功率单元内的多个晶体管呈直线并排排列,沿所述多个晶体管的排列方向,所述第二金属层的面积从中间向两边逐渐减小。Preferably, a plurality of transistors in the power unit are arranged side by side in a straight line, and along the arrangement direction of the plurality of transistors, the area of the second metal layer gradually decreases from the middle to both sides.
优选地,沿所述多个晶体管的排列方向,所述第二金属层从中间向两边呈梯状分布。Preferably, along the arrangement direction of the plurality of transistors, the second metal layer is distributed in a ladder shape from the middle to both sides.
优选地,所述第一连接单元的第一金属层和第二金属层为互补结构。Preferably, the first metal layer and the second metal layer of the first connection unit are complementary structures.
优选地,相邻两个所述功率单元中晶体管的发射极通过第二连接单元电性连接,所述第二连接单元为第一金属层,所述第二连接单元的第一金属层与降热装置相连通。Preferably, the emitters of the transistors in two adjacent power units are electrically connected through a second connection unit, the second connection unit is a first metal layer, and the first metal layer of the second connection unit is connected to the lower The thermal device is connected.
优选地,所述第一连接单元和所述第二连接单元的下方设置均有多个背孔,所述第一连接单元和所述第二连接单元均所述背孔与降热装置相连通。Preferably, a plurality of back holes are arranged below the first connection unit and the second connection unit, and the back holes of the first connection unit and the second connection unit communicate with the heat reducing device .
优选地,所述背孔均呈圆台状设置,且所述背孔的横截面积从上往下逐渐增大。Preferably, the back holes are arranged in the shape of a truncated cone, and the cross-sectional area of the back holes gradually increases from top to bottom.
优选地,所述第一金属层和所述第二金属层的材质相同。Preferably, the first metal layer and the second metal layer are made of the same material.
优选地,所述绝缘介质层的材质为Si3N4。Preferably, the insulating medium layer is made of Si 3 N 4 .
优选地,所述微波功率放大器为InGaP/GaAs HBT功率器件、GaN功率器件或LDMOS功率器件。Preferably, the microwave power amplifier is an InGaP/GaAs HBT power device, a GaN power device or an LDMOS power device.
本发明提供的技术方案具有如下有益效果:The technical scheme provided by the invention has the following beneficial effects:
所述改善功率单元温度均匀性的微波功率放大器热源最短路径进行散热,引入集电极金属提供到地散热路径,通过增加此条散热路径,降低改善功率单元的温度,从而得到高效率、高线性度的放大器,版图结构简单、易于实现。The shortest path of the microwave power amplifier heat source for improving the temperature uniformity of the power unit is used for heat dissipation, and the collector metal is introduced to provide a heat dissipation path to the ground. By increasing this heat dissipation path, the temperature of the power unit is reduced and improved, thereby obtaining high efficiency and high linearity The amplifier has a simple layout structure and is easy to implement.
同时,在第一连接单元内第二金属层可以为功率单元提供横向散热通道,从而降低功放温度,因此第二金属层为位于中间位置的晶体管提供更宽的金属散热路径,进而改善功率单元温度分布的均匀性,降低横向耦合强度;At the same time, the second metal layer in the first connection unit can provide a lateral heat dissipation channel for the power unit, thereby reducing the temperature of the power amplifier, so the second metal layer provides a wider metal heat dissipation path for the transistor located in the middle, thereby improving the temperature of the power unit The uniformity of distribution reduces the lateral coupling strength;
此外,所述第一连接单元的第一金属层和第二金属层为互补结构,如此可以极大的减小了第一金属层和第二金属层之间的重叠面积,降低二者对电气性能的影响。In addition, the first metal layer and the second metal layer of the first connection unit are complementary structures, which can greatly reduce the overlapping area between the first metal layer and the second metal layer, and reduce the electrical influence between the two. performance impact.
附图说明Description of drawings
图1为本发明实施例提供的改善功率单元温度均匀性的微波功率放大器的示意结构图;FIG. 1 is a schematic structural diagram of a microwave power amplifier for improving temperature uniformity of a power unit provided by an embodiment of the present invention;
图2为图1所示改善功率单元温度均匀性的微波功率放大器中AA’方向的剖面示意图;Fig. 2 is the sectional schematic diagram of AA ' direction in the microwave power amplifier that improves power cell temperature uniformity shown in Fig. 1;
图3为图1所示改善功率单元温度均匀性的微波功率放大器中BB’方向的剖面示意图;Fig. 3 is the sectional schematic diagram of BB' direction in the microwave power amplifier that improves power cell temperature uniformity shown in Fig. 1;
图4为图1所示改善功率单元温度均匀性的微波功率放大器中CC’方向的剖面示意图;Fig. 4 is the sectional schematic diagram of CC ' direction in the microwave power amplifier that improves power cell temperature uniformity shown in Fig. 1;
图5为图1所示改善功率单元温度均匀性的微波功率放大器中DD’方向的剖面示意图。Fig. 5 is a schematic cross-sectional view of the DD' direction in the microwave power amplifier for improving the temperature uniformity of the power unit shown in Fig. 1 .
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
除非上下文另有特定清楚的描述,本发明中的元件和组件,数量既可以单个的形式存在,也可以多个的形式存在,本发明并不对此进行限定。本发明中的步骤虽然用标号进行了排列,但并不用于限定步骤的先后次序,除非明确说明了步骤的次序或者某步骤的执行需要其他步骤作为基础,否则步骤的相对次序是可以调整的。可以理解,本文中所使用的术语“和/或”涉及且涵盖相关联的所列项目中的一者或一者以上的任何和所有可能的组合。Unless the context clearly states otherwise, the number of elements and components in the present invention can exist in a single form or in multiple forms, and the present invention is not limited thereto. Although the steps in the present invention are arranged with labels, they are not used to limit the order of the steps. Unless the order of the steps is clearly stated or the execution of a certain step requires other steps as a basis, the relative order of the steps can be adjusted. It can be understood that the term "and/or" used herein refers to and covers any and all possible combinations of one or more of the associated listed items.
本发明提供的微波功率放大器可以为InGaP/GaAs HBT功率器件、GaN功率器件或LDMOS功率器件等。The microwave power amplifier provided by the present invention may be an InGaP/GaAs HBT power device, a GaN power device or an LDMOS power device, and the like.
如图1-5所示,本发明实施例提供的微波功率放大器包括并联设置的第一功率单元10、第二功率单元20及第三功率单元30,所述第一功率单元10包括呈直线并排排列设置的T1-T8共8个晶体管,所述第二功率单元20包括呈直线并排排列设置的T9-T16共8个晶体管,所述第三功率单元30包括呈直线并排排列设置的T17-T24共8个晶体管,collector为各个晶体管的集电极,emitter为发射极。每个所述功率单元内晶体管的集电极collector均电性互联,每个所述功率单元内晶体管的发射极emitter均电性互联。As shown in Figures 1-5, the microwave power amplifier provided by the embodiment of the present invention includes a first power unit 10, a second power unit 20, and a third power unit 30 arranged in parallel, and the first power unit 10 includes A total of 8 transistors T1-T8 arranged in a row, the second power unit 20 includes a total of 8 transistors T9-T16 arranged side by side in a straight line, and the third power unit 30 includes T17-T24 arranged side by side in a straight line There are 8 transistors in total, the collector is the collector of each transistor, and the emitter is the emitter. The collectors of the transistors in each of the power units are electrically interconnected, and the emitters of the transistors in each of the power units are electrically interconnected.
可选择的,在其他可替代实施例中,所述微波功率放大器可以包括两个、四个或者至少五个功率单元,而且,每个功率单元内的晶体管的数量不限于8个,还可以为其他合适的数目,这需要根据实际设计需要进行选择,本发明对此不做限定。需要说明的是,每一个功率单元内晶体管均呈直线并排排列设置。Optionally, in other alternative embodiments, the microwave power amplifier may include two, four or at least five power units, and the number of transistors in each power unit is not limited to 8, and may also be Other suitable numbers need to be selected according to actual design needs, which is not limited in the present invention. It should be noted that the transistors in each power unit are arranged side by side in a straight line.
其中,本实施例中,第一功率单元10中晶体管(T1-T8)的集电极和第二功率单元20中晶体管(T9-T16)的集电极通过第一连接单元40电性连接,第二功率单元20中晶体管(T9-T16)的发射极和第三功率单元30中晶体管(T17-T24)的发射极通过第二连接单元50电性连接。Wherein, in this embodiment, the collectors of the transistors (T1-T8) in the first power unit 10 and the collectors of the transistors (T9-T16) in the second power unit 20 are electrically connected through the first connection unit 40, and the second The emitters of the transistors ( T9 - T16 ) in the power unit 20 and the emitters of the transistors ( T17 - T24 ) in the third power unit 30 are electrically connected through the second connection unit 50 .
结合图2所示,第一连接单元40包括从上到下依次层叠设置的第一金属层41(M1金属层)、第二金属层42(M2金属层)、及绝缘介质层43。其中,在本实施例中,第一金属层41和第二金属层42的材质相同,仅仅厚度上不同,但是在其他实施方式中也可以设置为不同材质的金属层;绝缘介质层43的材质为Si3N4。As shown in FIG. 2 , the first connection unit 40 includes a first metal layer 41 (M1 metal layer), a second metal layer 42 (M2 metal layer), and an insulating dielectric layer 43 stacked in order from top to bottom. Wherein, in this embodiment, the material of the first metal layer 41 and the second metal layer 42 are the same, only different in thickness, but in other implementation manners, they can also be set as metal layers of different materials; the material of the insulating medium layer 43 is Si 3 N 4 .
由于金属热导率很大,如银为420W/mK,而GaAs等半导体材料具有相对较小散热系数(GaAs为46W/mk),因此第一金属层41和第二金属层42可以为第连接单元40提供快速散热通道。Because the thermal conductivity of metal is very large, such as silver is 420W/mK, and semiconductor materials such as GaAs have a relatively small heat dissipation coefficient (GaAs is 46W/mK), so the first metal layer 41 and the second metal layer 42 can be the first connection. Unit 40 provides a fast heat dissipation path.
所述第一连接单元40的第一金属层41与降热装置(图未示)相连通,所述第一连接单元40的第二金属层42分别与第一功率单元10和第二功率单元20的集电极相连。而且,在第一连接单元40内,根据所述功率单元内晶体管的温度分布方向,所述第二金属层42的面积沿温度降低方向逐渐减小。The first metal layer 41 of the first connection unit 40 communicates with the heat reducing device (not shown in the figure), and the second metal layer 42 of the first connection unit 40 is connected with the first power unit 10 and the second power unit respectively. The collector of 20 is connected. Moreover, in the first connection unit 40 , according to the temperature distribution direction of the transistors in the power unit, the area of the second metal layer 42 gradually decreases along the temperature decreasing direction.
众所周知,微波功率放大器的几何结构中,热源大小应集中于峰值电场处,在功放正常偏置下,集电结的偏压最大,发热最为厉害,因此如果对集电极做相应散热处理则可以更有效地提高散热效果。但是,考虑到集电极电气上无法与地连接,本实施例中,采用在相邻的第一功率单元10和第二功率单元20之间通过第二金属层42间接散热。As we all know, in the geometric structure of microwave power amplifiers, the size of the heat source should be concentrated at the peak electric field. Under the normal bias of the power amplifier, the bias voltage of the collector junction is the largest and the heat is the most severe. Therefore, if the corresponding heat dissipation treatment is performed on the collector, it can be more Effectively improve the cooling effect. However, considering that the collector cannot be electrically connected to the ground, in this embodiment, indirect heat dissipation is adopted between adjacent first power units 10 and second power units 20 through the second metal layer 42 .
此外,在本实施例中,各个功率单元内的8个晶体管分别沿直线并排排列。由于热耦合作用,各个功率单元中间位置的温度高于边缘位置的温度。实际上,根据热分布理论可知,每一个功率单元内的温度分布从中间向两端逐渐降低,并呈对称钟状分布。In addition, in this embodiment, the eight transistors in each power unit are respectively arranged side by side along a straight line. Due to thermal coupling, the temperature at the middle of each power unit is higher than that at the edge. In fact, according to the heat distribution theory, the temperature distribution in each power unit gradually decreases from the middle to both ends, and presents a symmetrical bell-shaped distribution.
因此,考虑到晶体管之间由于横向热耦合效应造成的温度非均匀分布,且为了进一步地减小功率单元内的温度分布的不均匀性,则在所述第一连接单元40内,沿所述多个晶体管的排列方向,所述第二金属层42的面积从中间向两边逐渐减小。在本实施例中,第二金属层42可以为功率单元提供横向散热通道,从而降低功放温度,因此第二金属层42为位于中间位置的晶体管提供更宽的金属散热路径,进而改善功率单元温度分布的均匀性,降低横向耦合强度。优选地,沿所述多个晶体管的排列方向,所述第二金属层42从中间向两边呈梯状分布。Therefore, considering the non-uniform temperature distribution caused by the lateral thermal coupling effect between transistors, and in order to further reduce the non-uniform temperature distribution in the power unit, in the first connecting unit 40, along the In the arrangement direction of multiple transistors, the area of the second metal layer 42 gradually decreases from the middle to both sides. In this embodiment, the second metal layer 42 can provide a lateral heat dissipation channel for the power unit, thereby reducing the temperature of the power amplifier. Therefore, the second metal layer 42 provides a wider metal heat dissipation path for the transistor located in the middle, thereby improving the temperature of the power unit. The uniformity of distribution reduces the lateral coupling strength. Preferably, along the arrangement direction of the plurality of transistors, the second metal layer 42 is distributed in a ladder shape from the middle to both sides.
而且,在第一连接单元40中第一金属层41的下方设置有若干第一背孔44,第一连接单元40通过第一背孔44与降热装置相连通。优选地,第一背孔44呈圆台状设置,且第一背孔44的横截面积从上向下逐渐增大,在本实施例中,第一背孔44设置为两个,分别为C1、C2;可选择的,在其他可替代实施方式中,第一背孔44的数量和形状还可以设计为其他数量和形状。Moreover, a number of first back holes 44 are provided under the first metal layer 41 in the first connection unit 40 , and the first connection unit 40 communicates with the heat reducing device through the first back holes 44 . Preferably, the first back hole 44 is set in the shape of a conical cone, and the cross-sectional area of the first back hole 44 gradually increases from top to bottom. In this embodiment, there are two first back holes 44, respectively C1 , C2; Optionally, in other alternative embodiments, the number and shape of the first back holes 44 can also be designed as other numbers and shapes.
此外,由于集电极不能与地连接,在第一连接单元40内,在第一金属层41和第二金属层42之间设置绝缘介质层43。由于第一金属层41、第二金属层43和绝缘介质层42之间会形成金属-介质-金属的寄生电容,因此,在本实施例中,所述第一连接单元40的第一金属层41和第二金属层42为互补结构,如此可以极大的减小了第一金属层41和第二金属层42之间的重叠面积,降低二者对电气性能的影响。而且,对第一金属层41而言,部分的纵向热流仍可以借助于第一金属层41通过第一背孔44到地散热以降低整体的温度。In addition, since the collector cannot be connected to the ground, an insulating dielectric layer 43 is provided between the first metal layer 41 and the second metal layer 42 in the first connection unit 40 . Since a metal-dielectric-metal parasitic capacitance is formed between the first metal layer 41, the second metal layer 43, and the insulating dielectric layer 42, in this embodiment, the first metal layer of the first connection unit 40 41 and the second metal layer 42 are complementary structures, so that the overlapping area between the first metal layer 41 and the second metal layer 42 can be greatly reduced, and the influence of both on the electrical performance can be reduced. Moreover, for the first metal layer 41 , part of the longitudinal heat flow can still be dissipated to the ground through the first back hole 44 by means of the first metal layer 41 to reduce the overall temperature.
结合图2所示,所述第二连接单元50包括第一金属层51,所述第二连接单元50的第一金属层51与降热装置相连通。As shown in FIG. 2 , the second connection unit 50 includes a first metal layer 51 , and the first metal layer 51 of the second connection unit 50 communicates with the heat reducing device.
而且,在第二连接单元50中第一金属层51的下方设置有若干第二背孔52,第二连接单元50通过第二背孔52与降热装置相连通。优选地,第二背孔52呈圆台状设置,且第二背孔52的横截面积从上向下逐渐增大,在本实施例中,第二背孔52设置为两个,分别为C3、C4;可选择的,在其他可替代实施方式中,第二背孔52的数量和形状还可以设计为其他数量和形状。Moreover, a number of second back holes 52 are provided under the first metal layer 51 in the second connection unit 50 , and the second connection unit 50 communicates with the heat reducing device through the second back holes 52 . Preferably, the second back hole 52 is arranged in the shape of a conical cone, and the cross-sectional area of the second back hole 52 gradually increases from top to bottom. In this embodiment, there are two second back holes 52, respectively C3 , C4; Optionally, in other alternative embodiments, the number and shape of the second back holes 52 can also be designed as other numbers and shapes.
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。It will be apparent to those skilled in the art that the invention is not limited to the details of the above-described exemplary embodiments, but that the invention can be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Accordingly, the embodiments should be regarded in all points of view as exemplary and not restrictive, the scope of the invention being defined by the appended claims rather than the foregoing description, and it is therefore intended that the scope of the invention be defined by the appended claims rather than by the foregoing description. All changes within the meaning and range of equivalents of the elements are embraced in the present invention. Any reference sign in a claim should not be construed as limiting the claim concerned.
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。In addition, it should be understood that although this specification is described according to implementation modes, not each implementation mode only contains an independent technical solution, and this description in the specification is only for clarity, and those skilled in the art should take the specification as a whole , the technical solutions in the various embodiments can also be properly combined to form other implementations that can be understood by those skilled in the art.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711084235.3A CN107680964A (en) | 2017-11-07 | 2017-11-07 | A kind of microwave power amplifier for improving power cell temperature homogeneity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711084235.3A CN107680964A (en) | 2017-11-07 | 2017-11-07 | A kind of microwave power amplifier for improving power cell temperature homogeneity |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107680964A true CN107680964A (en) | 2018-02-09 |
Family
ID=61144892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711084235.3A Pending CN107680964A (en) | 2017-11-07 | 2017-11-07 | A kind of microwave power amplifier for improving power cell temperature homogeneity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107680964A (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009272559A (en) * | 2008-05-09 | 2009-11-19 | Nitto Denko Corp | Printed circuit board and method of manufacturing same |
CN102017134A (en) * | 2008-02-08 | 2011-04-13 | 株式会社渊上微 | Heatsink, cooling module, and coolable electronic board |
US20120092833A1 (en) * | 2010-10-13 | 2012-04-19 | Ho Cheng Industrial Co., Ltd. | Led heat-conducting substrate and its thermal module |
DE202013003035U1 (en) * | 2013-03-28 | 2013-08-20 | Neuman Aluminium Fliesspresswerk Gmbh | Heat sink for electrical components |
CN104104341A (en) * | 2014-07-28 | 2014-10-15 | 苏州英诺迅科技有限公司 | Thermal shunt type microwave power amplifier |
US20140360699A1 (en) * | 2013-06-07 | 2014-12-11 | Mide Technology Corporation | Variable geometry heat sink assembly |
CN104791734A (en) * | 2015-04-21 | 2015-07-22 | 乐健科技(珠海)有限公司 | Heat sink with embedded circuit, manufacturing method thereof, LED module and manufacturing method thereof |
CN205122574U (en) * | 2014-11-27 | 2016-03-30 | 松下知识产权经营株式会社 | Base plate device and electronic equipment |
US9414530B1 (en) * | 2012-12-18 | 2016-08-09 | Amazon Technologies, Inc. | Altering thermal conductivity in devices |
WO2016194158A1 (en) * | 2015-06-03 | 2016-12-08 | 三菱電機株式会社 | Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler |
-
2017
- 2017-11-07 CN CN201711084235.3A patent/CN107680964A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102017134A (en) * | 2008-02-08 | 2011-04-13 | 株式会社渊上微 | Heatsink, cooling module, and coolable electronic board |
JP2009272559A (en) * | 2008-05-09 | 2009-11-19 | Nitto Denko Corp | Printed circuit board and method of manufacturing same |
US20120092833A1 (en) * | 2010-10-13 | 2012-04-19 | Ho Cheng Industrial Co., Ltd. | Led heat-conducting substrate and its thermal module |
US9414530B1 (en) * | 2012-12-18 | 2016-08-09 | Amazon Technologies, Inc. | Altering thermal conductivity in devices |
DE202013003035U1 (en) * | 2013-03-28 | 2013-08-20 | Neuman Aluminium Fliesspresswerk Gmbh | Heat sink for electrical components |
US20140360699A1 (en) * | 2013-06-07 | 2014-12-11 | Mide Technology Corporation | Variable geometry heat sink assembly |
CN104104341A (en) * | 2014-07-28 | 2014-10-15 | 苏州英诺迅科技有限公司 | Thermal shunt type microwave power amplifier |
CN205122574U (en) * | 2014-11-27 | 2016-03-30 | 松下知识产权经营株式会社 | Base plate device and electronic equipment |
CN104791734A (en) * | 2015-04-21 | 2015-07-22 | 乐健科技(珠海)有限公司 | Heat sink with embedded circuit, manufacturing method thereof, LED module and manufacturing method thereof |
WO2016194158A1 (en) * | 2015-06-03 | 2016-12-08 | 三菱電機株式会社 | Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler |
Non-Patent Citations (1)
Title |
---|
曾庆贵: "《集成电路版图设计教程》", 31 March 2012, 上海科学技术出版社, pages: 256 - 257 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015085841A1 (en) | Semiconductor device and manufacturing method thereof | |
JP6064054B2 (en) | Transistor, transistor heat dissipation structure, and transistor manufacturing method | |
US7705425B2 (en) | Solid-state high power device and method | |
US10361271B2 (en) | Semiconductor device and method of manufacturing the same | |
TWI695579B (en) | Power amplifier circuit | |
CN107785342B (en) | Semiconductor device with a plurality of semiconductor chips | |
CN112259606B (en) | Gallium nitride semiconductor device | |
CN111162123B (en) | Trench type gate structure IGBT | |
CN110416296A (en) | Semiconductor device, semiconductor chip and semiconductor device manufacturing method | |
CN207705195U (en) | A kind of microwave power amplifier improving power cell temperature uniformity | |
JP2006313881A (en) | Bipolar transistor and high-frequency amplifier circuit | |
CN107680964A (en) | A kind of microwave power amplifier for improving power cell temperature homogeneity | |
US10553709B2 (en) | Heterojunction bipolar transistor | |
JP3660832B2 (en) | Semiconductor integrated circuit device | |
CN110310984B (en) | Isothermal common emitter lateral SiGe heterojunction bipolar transistor | |
CN104104341A (en) | Thermal shunt type microwave power amplifier | |
US6856004B2 (en) | Compact layout for a semiconductor device | |
CN204013417U (en) | Thermal shunt type micro-wave power amplifier | |
TWI685969B (en) | Bipolar transistor | |
JP2000040705A (en) | Semiconductor device and amplifier using semiconductor thereof | |
CN217116064U (en) | Geminate transistor circuit | |
US20060244012A1 (en) | Heterojunction bipolar transistor power device with efficient heat sinks | |
CN101847967A (en) | RF Power Amplifier Circuit | |
CN107230708A (en) | A kind of GaAs HBT power devices | |
CN111081702B (en) | A SiGeHBT Array with Isothermal Distribution of Dielectric Trench Isolation Structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180209 |