[go: up one dir, main page]

CN107665924A - A kind of mesolow groove type MOS device and preparation method thereof - Google Patents

A kind of mesolow groove type MOS device and preparation method thereof Download PDF

Info

Publication number
CN107665924A
CN107665924A CN201710852616.5A CN201710852616A CN107665924A CN 107665924 A CN107665924 A CN 107665924A CN 201710852616 A CN201710852616 A CN 201710852616A CN 107665924 A CN107665924 A CN 107665924A
Authority
CN
China
Prior art keywords
region
conductivity type
layer
contact hole
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710852616.5A
Other languages
Chinese (zh)
Inventor
陈雪萌
王艳颖
杨林森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Aviation Chongqing Microelectronics Co Ltd
Original Assignee
China Aviation Chongqing Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Aviation Chongqing Microelectronics Co Ltd filed Critical China Aviation Chongqing Microelectronics Co Ltd
Priority to CN201710852616.5A priority Critical patent/CN107665924A/en
Publication of CN107665924A publication Critical patent/CN107665924A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/63Vertical IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/025Manufacture or treatment of FETs having insulated gates [IGFET] of vertical IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/512Disposition of the gate electrodes, e.g. buried gates
    • H10D64/513Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0149Manufacturing their interconnections or electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及半导体制造技术领域,尤其涉及一种中低压沟槽型MOS器件及其制备方法,通过利用沟槽结构作为器件的终端结,所以省去传统工艺中的工作区和保护环掩膜板这两块光刻掩膜板;并应用接触孔掩膜板来形成器件的源区,所以节省了传统工艺中的源区掩膜板,因此仅需要沟槽掩膜板,接触孔掩膜板和金属掩膜板三个光刻掩膜板即可制备中低压沟槽型MOS器件,由于光刻版层数的减少,减少了器件制作的工艺步骤,从而大大降低了中低压沟槽型MOS器件的生产成本,进而提升了产品的竞争力。

The present invention relates to the field of semiconductor manufacturing technology, in particular to a medium and low voltage trench type MOS device and its preparation method. By using the trench structure as the terminal junction of the device, the working area and protective ring mask in the traditional process are omitted. These two photolithographic mask plates; and the contact hole mask plate is used to form the source area of the device, so the source area mask plate in the traditional process is saved, so only the trench mask plate and the contact hole mask plate are needed Medium and low voltage trench MOS devices can be prepared by using three photolithographic masks and a metal mask. Due to the reduction in the number of photolithographic plates, the process steps for device production are reduced, thereby greatly reducing the cost of medium and low voltage trench MOS devices. The production cost of the device, thereby enhancing the competitiveness of the product.

Description

一种中低压沟槽型MOS器件及其制备方法A medium and low voltage trench MOS device and its preparation method

技术领域technical field

本发明涉及半导体制造技术领域,尤其涉及一种中低压沟槽型MOSFET器件及其制备方法。The invention relates to the technical field of semiconductor manufacturing, in particular to a medium and low voltage trench MOSFET device and a preparation method thereof.

背景技术Background technique

中低压沟槽型MOS(MOSFET)器件(Trench MOS)由于高可靠性,低导通电阻和大功率大电流的处理能力在网络通信,电脑及消费类领域和工业控制领域类有重要的应用;例如在锂电池保护模块、LED显示器、LCD监视器、笔记本电源和手机电源管理等领域都有广泛应用,所以目前对这种器件的研究已经非常深入,并且这种器件设计和制造工艺已经非常成熟。Medium and low voltage trench MOS (MOSFET) devices (Trench MOS) have important applications in network communication, computer and consumer fields and industrial control fields due to their high reliability, low on-resistance and high power and high current processing capabilities; For example, it is widely used in the fields of lithium battery protection modules, LED displays, LCD monitors, notebook power supplies and mobile phone power management, so the current research on this device has been very in-depth, and the design and manufacturing process of this device has been very mature. .

目前,在传统的低压沟槽型场效应晶体管制造流程中,一般应用6层掩膜板来实现器件的制造,分别为工作区、保护环、沟槽、源区、接触孔和金属的掩膜板,这需要较高的成本。随着半导体器件集成度的日益提高,降低单颗芯片的制造成本是非常必要的。At present, in the traditional manufacturing process of low-voltage trench field effect transistors, a 6-layer mask is generally used to realize the manufacture of the device, which are the working area, the guard ring, the trench, the source area, the contact hole and the metal mask. board, which requires a higher cost. With the increasing integration of semiconductor devices, it is very necessary to reduce the manufacturing cost of a single chip.

中国专利(公开号:CN101866923A)公开了一种三层光罩沟槽N型MOS器件及制造方法,在沟槽以及导电多晶硅制作完成后,利用栅极沟槽与栅极接触沟槽之间的不同开口尺寸,通过沉积具有良好台阶覆盖能力的介质层,使栅极沟槽槽口和栅极接触沟槽槽口出现不同形貌,然后经过干法刻蚀制程,再辅助以光刻制程,可以实现在需要的区域保留介质层。该存留下来的介质层可以取代光刻胶掩膜,用作N+源极离子注入的掩膜以及P型阱离子注入的掩膜,还可以用来自对准的源极接触孔和自对准的栅极接触孔。因此仅需三层光罩就可以制造出沟槽MOSFET器件。从而在制造工艺简单,成本低的同时,可以实现更高的单胞密度,即更好的性能。Chinese patent (publication number: CN101866923A) discloses a three-layer photomask trench N-type MOS device and its manufacturing method. With different opening sizes, by depositing a dielectric layer with good step coverage ability, the gate trench notch and the gate contact trench notch have different shapes, and then undergo a dry etching process, and then assist a photolithography process, It can be achieved to retain the dielectric layer in the required area. The remaining dielectric layer can replace the photoresist mask and be used as a mask for N+ source ion implantation and a mask for P-type well ion implantation. It can also be used from aligned source contact holes and self-aligned gate contact hole. Therefore, trench MOSFET devices can be fabricated with only three layers of photomasks. Therefore, while the manufacturing process is simple and the cost is low, a higher unit cell density, that is, better performance can be achieved.

上述虽然给出了用三层光罩(即光刻掩膜板)来实现沟槽型MOS器件的制造方法,但是这种制造方法要针对栅极沟槽宽度小于栅极接触沟槽宽度的器件,不具通用性。Although the above-mentioned method of using a three-layer photomask (ie, a photolithography mask) to realize a trench type MOS device is provided, this manufacturing method is aimed at a device whose gate trench width is smaller than the gate contact trench width. , is not universal.

因此,如何找到一种通用的利用尽可能少的光刻掩膜板即可制备的中低压沟槽型MOS器件的方法成为本领域技术人员致力于研究的方向。Therefore, how to find a general method of using as few photolithography masks as possible to prepare medium and low voltage trench MOS devices has become a research direction for those skilled in the art.

发明内容Contents of the invention

针对上述存在的问题,本发明公开了一种中低压沟槽型MOS器件,包括:In view of the above problems, the present invention discloses a medium and low voltage trench MOS device, including:

第一导电类型重掺杂衬底,所述第一导电类型重掺杂衬底上方分为元胞区和终端区;A heavily doped substrate of the first conductivity type, where the heavily doped substrate of the first conductivity type is divided into a cell region and a terminal region;

第一导电类型轻掺杂外延层,设置于所述第一导电类型重掺杂衬底之上;a lightly doped epitaxial layer of the first conductivity type, disposed on the heavily doped substrate of the first conductivity type;

第二导电类型体区掺杂层,设置于所述第一导电类型轻掺杂外延层之上;a second conductivity type body region doped layer disposed on the first conductivity type lightly doped epitaxial layer;

沟槽结构,包括设置于所述元胞区中的元胞区沟槽结构和设置于所述终端区中的终端区沟槽结构,所述元胞区沟槽结构和所述终端区沟槽结构均贯穿所述第二导电类型体区掺杂层设置于所述第一导电类型轻掺杂外延层中;A groove structure, including a cell region groove structure disposed in the cell region and a terminal region groove structure disposed in the terminal region, the cell region groove structure and the terminal region groove The structures are all disposed in the lightly doped epitaxial layer of the first conductivity type through the body doped layer of the second conductivity type;

介质层,设置于所述第二导电类型体区掺杂层和所述沟槽结构之上;a dielectric layer disposed on the doped layer of the body region of the second conductivity type and the trench structure;

第二导电类型体区接触区,设置于所述第二导电类型体区掺杂层中;a second conductivity type body region contact region, disposed in the second conductivity type body region doped layer;

第一导电类型源区,设置于所述第二导电类型体区掺杂层中,且位于所述第二导电类型体区接触区之上;a source region of the first conductivity type, disposed in the doped layer of the body region of the second conductivity type, and located on the contact region of the body region of the second conductivity type;

接触孔,包括元胞区接触孔和终端区接触孔,所述元胞区接触孔贯穿所述介质层设置于所述第二导电类型体区接触区中,所述终端区接触孔包括贯穿所述介质层设置于所述终端区沟槽结构中的第一接触孔和贯穿所述终端区的介质层设置于所述所述第二导电类型体区接触区中的第二接触孔;A contact hole includes a cell region contact hole and a terminal region contact hole, the cell region contact hole is disposed in the second conductivity type body region contact region through the dielectric layer, and the terminal region contact hole includes a terminal region contact hole that penetrates through the dielectric layer The dielectric layer is disposed in the first contact hole in the trench structure of the termination region and the dielectric layer passing through the termination region is disposed in the second contact hole in the contact region of the second conductivity type body region;

电极,设置于所述接触孔中并覆盖部分所述介质层的上表面。An electrode is arranged in the contact hole and covers part of the upper surface of the dielectric layer.

上述的中低压沟槽型MOS器件,其中,所述第一导电类型为N型,所述第二导电类型为P型或所述第一导电类型为P型,所述第二导电类型为N型。The above medium and low voltage trench MOS device, wherein, the first conductivity type is N-type, the second conductivity type is P-type or the first conductivity type is P-type, and the second conductivity type is N-type type.

上述的中低压沟槽型MOS器件,其中,所述沟槽结构包括:In the above medium and low voltage trench MOS device, wherein the trench structure includes:

沟槽,贯穿所述第二导电类型体区掺杂层设置于所述第一导电类型轻掺杂外延层中;a trench, disposed in the lightly doped epitaxial layer of the first conductivity type through the body doped layer of the second conductivity type;

栅氧化层,设置于所述沟槽的底部及其侧壁表面;a gate oxide layer disposed on the bottom of the trench and its sidewall surfaces;

导电层,设置于所述沟槽中。The conductive layer is arranged in the groove.

上述的中低压沟槽型MOS器件,其中,所述沟槽的宽度为0.2-1um。In the above medium and low voltage trench MOS device, the width of the trench is 0.2-1um.

上述的中低压沟槽型MOS器件,其中,所述栅氧化层的厚度为200-600埃。In the above medium and low voltage trench MOS device, the gate oxide layer has a thickness of 200-600 angstroms.

上述的中低压沟槽型MOS器件,其中,所述第二导电类型体区掺杂层的厚度为0.5-1um。In the above medium and low voltage trench MOS device, the thickness of the doped layer in the body region of the second conductivity type is 0.5-1um.

上述的中低压沟槽型MOS器件,其中,所述介质层的厚度为0.2-1um。In the above medium and low voltage trench MOS device, the thickness of the dielectric layer is 0.2-1um.

本发明公开了一种中低压沟槽型MOS器件的制备方法,包括如下步骤:The invention discloses a method for preparing a medium-low voltage trench type MOS device, which comprises the following steps:

步骤S1,提供第一光刻掩膜板、第二光刻掩膜板、第三光刻掩膜板和一具有元胞区和终端区的半导体结构,所述半导体结构包括第一导电类型重掺杂衬底和位于所述第一导电类型重掺杂衬底之上的第一导电类型轻掺杂外延层;Step S1, providing a first photolithography mask, a second photolithography mask, a third photolithography mask and a semiconductor structure having a cell region and a terminal region, the semiconductor structure includes a first conductivity type heavy a doped substrate and a lightly doped epitaxial layer of the first conductivity type located on the heavily doped substrate of the first conductivity type;

步骤S2,于所述第一导电类型轻掺杂外延层之上形成第二导电类型体区掺杂层;Step S2, forming a doped body layer of a second conductivity type on the lightly doped epitaxial layer of the first conductivity type;

步骤S3,利用所述第一光刻掩膜板进行沟槽刻蚀工艺,以形成位于所述元胞区中的元胞区沟槽和位于所述终端区的终端区沟槽,且所述元胞区沟槽和所述终端区沟槽均贯穿所述第二导电类型体区掺杂层设置于所述第一导电类型轻掺杂外延层中;Step S3, using the first photolithography mask to perform a trench etching process to form a trench in the cell region in the cell region and a trench in the termination region in the termination region, and the Both the trenches in the cell region and the trenches in the terminal region are disposed in the lightly doped epitaxial layer of the first conductivity type through the doped layer of the body region of the second conductivity type;

步骤S4,于所述元胞区沟槽和所述终端区沟槽中均形成导电层;Step S4, forming a conductive layer in both the trenches of the cell region and the trenches of the terminal region;

步骤S5,于所述导电层和所述第二导电类型体区掺杂层之上形成介质层;Step S5, forming a dielectric layer on the conductive layer and the second conductive type body region doped layer;

步骤S6,利用所述第二光刻掩膜板刻蚀所述介质层形成接触孔,并对位于所述接触孔底部的所述第二导电类型体区掺杂层进行离子注入工艺,以形成第一导电类型源区;Step S6, using the second photolithography mask to etch the dielectric layer to form a contact hole, and performing an ion implantation process on the doped layer of the second conductivity type body region at the bottom of the contact hole to form a first conductivity type source region;

步骤S7,并于刻蚀部分所述第一导电类型源区后,向位于所述接触孔底部的第二导电类型体区掺杂层和所述导电层中注入离子,以形成第二导电类型体区接触区;Step S7, and after etching part of the source region of the first conductivity type, implanting ions into the doped layer of the body region of the second conductivity type at the bottom of the contact hole and the conductive layer to form a second conductivity type Body area contact area;

步骤S8,于所述半导体结构的正反面均形成导电材料后,利用所述第三掩膜板对所述导电材料进行刻蚀工艺以形成所述MOS器件的电极。Step S8 , after forming conductive materials on both the front and back surfaces of the semiconductor structure, performing an etching process on the conductive materials by using the third mask to form electrodes of the MOS device.

上述的中低压沟槽型MOS器件的制备方法,其中,所述第一导电类型为N型,所述第二导电类型为P型或所述第一导电类型为P型,所述第二导电类型为N型。The above method for manufacturing a low-voltage trench MOS device, wherein the first conductivity type is N-type, the second conductivity type is P-type or the first conductivity type is P-type, and the second conductivity type is P-type. The type is N type.

上述的中低压沟槽型MOS器件的制备方法,其中,所述步骤S2包括:The above-mentioned method for manufacturing a low-voltage trench MOS device, wherein the step S2 includes:

步骤S21,于所述第一导电类型轻掺杂外延层之上生长第一氧化层;Step S21, growing a first oxide layer on the lightly doped epitaxial layer of the first conductivity type;

步骤S22,对所述第一氧化层进行离子注入和退火工艺以形成所述第二导电类型体区掺杂层。Step S22 , performing ion implantation and annealing processes on the first oxide layer to form the doped body layer of the second conductivity type.

上述的中低压沟槽型MOS器件的制备方法,其中,所述步骤S3包括:The above-mentioned method for manufacturing a low-voltage trench MOS device, wherein the step S3 includes:

步骤S31,于所述第二导电类型体区掺杂层之上形成第二氧化层;Step S31, forming a second oxide layer on the doped layer of the body region of the second conductivity type;

步骤S32,利用所述第一光刻掩膜板进行沟槽刻蚀工艺,以形成依次贯穿所述第二氧化层和P型体区掺杂层设置于所述第一导电类型轻掺杂外延层的所述元胞区沟槽和所述终端区沟槽。Step S32, using the first photolithography mask to perform a trench etching process to form a lightly doped epitaxial layer disposed on the first conductivity type through the second oxide layer and the doped layer of the P-type body region in sequence. The cell region trenches and the terminal region trenches of the layer.

上述的中低压沟槽型MOS器件的制备方法,其中,所述步骤S4包括:The above-mentioned method for manufacturing a low-voltage trench MOS device, wherein the step S4 includes:

步骤S41,于所述元胞区沟槽和所述终端区沟槽的底部及其侧壁形成牺牲氧化层;Step S41, forming a sacrificial oxide layer on the bottom and sidewalls of the trenches in the cell region and the trenches in the terminal region;

步骤S42,移除所述牺牲氧化层和所述第二氧化层;Step S42, removing the sacrificial oxide layer and the second oxide layer;

步骤S43,形成栅氧化层以将所述元胞区沟槽和所述终端区沟槽的底部及其侧壁表面均予以覆盖,并将所述第二导电类型体区掺杂层裸露的上表面予以覆盖;Step S43, forming a gate oxide layer to cover the bottoms and sidewall surfaces of the trenches in the cell region and the trenches in the terminal region, and exposing the upper doped layer of the body region of the second conductivity type the surface is covered;

步骤S44,于所述沟槽中填充导电材料以形成所述导电层。Step S44 , filling the trench with a conductive material to form the conductive layer.

上述的中低压沟槽型MOS器件的制备方法,其中,所述步骤S7包括:The above-mentioned method for manufacturing a low-voltage trench MOS device, wherein the step S7 includes:

步骤S71,刻蚀所述元胞区中位于所述接触孔底部的所述第一导电类型源区以形成元胞区接触孔,并刻蚀所述终端区中位于所述接触孔底部的导电层以形成第一终端区接触孔,同时刻蚀所述终端区中位于所述接触孔底部的所述第一导电类型源区以形成第二终端区接触孔。Step S71, etching the source region of the first conductivity type at the bottom of the contact hole in the cell region to form a cell region contact hole, and etching the conductive source region at the bottom of the contact hole in the terminal region. layer to form a contact hole in the first termination region, and simultaneously etch the source region of the first conductivity type at the bottom of the contact hole in the termination region to form a contact hole in the second termination region.

步骤S72,通过所述元胞区接触孔对所述第二导电类型体区掺杂区进行孔注入工艺,并通过所述终端区接触孔对所述导电层和所述第二导电类型体区掺杂层进行孔注入工艺,以于所述元胞区接触孔和所述终端区接触孔的底部周围形成第二导电类型体区接触区。Step S72, performing a hole implantation process on the doped region of the body region of the second conductivity type through the contact hole in the cell region, and performing a hole implantation process on the conductive layer and the body region of the second conductivity type through the contact hole in the termination region A hole implantation process is performed on the doped layer to form a second conductivity type body region contact region around bottoms of the cell region contact hole and the terminal region contact hole.

上述的中低压沟槽型MOS器件的制备方法,其中,所述栅氧化层的厚度为200-600埃。In the manufacturing method of the above medium and low voltage trench MOS device, the thickness of the gate oxide layer is 200-600 angstroms.

上述的中低压沟槽型MOS器件的制备方法,其中,所述元胞区沟槽和所述终端区沟槽的宽度为0.2-1um。In the manufacturing method of the above medium and low voltage trench MOS device, the width of the trench in the cell region and the trench in the terminal region is 0.2-1um.

上述的中低压沟槽型MOS器件的制备方法,其中,所述第二导电类型体区掺杂层的厚度为0.5-1um。In the manufacturing method of the above medium and low voltage trench MOS device, the thickness of the doped layer of the body region of the second conductivity type is 0.5-1um.

上述的中低压沟槽型MOS器件的制备方法,其中,所述介质层的厚度为0.2-1um。In the above-mentioned manufacturing method of a medium-low voltage trench MOS device, the thickness of the dielectric layer is 0.2-1um.

上述发明具有如下优点或者有益效果:The above invention has the following advantages or beneficial effects:

本发明公开了一种中低压沟槽型MOS器件及其制备方法,通过利用沟槽结构作为器件的终端结,所以省去传统工艺中的工作区和保护环掩膜板这两块光刻掩膜板;并应用接触孔掩膜板(即第二光刻掩膜板)来形成器件的源区,所以节省了传统工艺中的源区掩膜板,因此仅需要沟槽掩膜板(即第一光刻掩膜板),接触孔掩膜板(即第二光刻掩膜板)和金属掩膜板(即第三光刻掩膜板)三个光刻掩膜板即可制备中低压沟槽型MOS器件,由于光刻版层数的减少,减少了器件制作的工艺步骤,从而大大降低了中低压沟槽型MOS器件的生产成本,进而提升了产品的竞争力。The invention discloses a medium and low voltage trench type MOS device and a preparation method thereof. By using the trench structure as the terminal junction of the device, two photolithography masks, the working area and the protective ring mask plate, are omitted in the traditional process. and use a contact hole mask (i.e. the second photolithography mask) to form the source region of the device, so the source region mask in the traditional process is saved, so only the trench mask (i.e. The first photolithography mask), the contact hole mask (ie the second photolithography mask) and the metal mask (ie the third photolithography mask) three photolithography masks can be prepared For low-voltage trench MOS devices, due to the reduction in the number of layers of the photolithography plate, the process steps for device production are reduced, thereby greatly reducing the production cost of medium and low-voltage trench MOS devices, and thus improving the competitiveness of products.

附图说明Description of drawings

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明及其特征、外形和优点将会变得更加明显。在全部附图中相同的标记指示相同的部分。并未可以按照比例绘制附图,重点在于示出本发明的主旨。The invention and its characteristics, configurations and advantages will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings. Like numbers designate like parts throughout the drawings. The drawings may not be drawn to scale, emphasis instead being placed upon illustrating the gist of the invention.

图1是本发明实施例中中低压沟槽型MOS器件的结构示意图;FIG. 1 is a schematic structural view of a medium-low voltage trench MOS device in an embodiment of the present invention;

图2是本发明实施例中制备中低压沟槽型MOS器件的方法流程图;Fig. 2 is the flow chart of the method for preparing medium and low voltage trench type MOS devices in the embodiment of the present invention;

图3~16是本发明实施例中制备中低压沟槽型MOS器件的方法流程结构示意图。3 to 16 are schematic diagrams of the process flow structure of the method for preparing a medium-low voltage trench MOS device in the embodiment of the present invention.

具体实施方式Detailed ways

下面结合附图和具体的实施例对本发明作进一步的说明,但是不作为本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.

实施例一Embodiment one

如图1所示,本实施例涉及一种中低压沟槽型MOS器件,具体的,该中低压沟槽型MOS器件包括上方分为元胞区和终端区的第一导电类型重掺杂衬底100、设置于第一导电类型重掺杂衬底100之上的第一导电类型轻掺杂外延层101、设置于第一导电类型轻掺杂外延层101之上的第二导电类型体区掺杂层102、包括元胞区沟槽结构和终端区沟槽结构的沟槽结构,且元胞区沟槽结构和终端区沟槽结构均贯穿第二导电类型体区掺杂层102设置于第一导电类型轻掺杂外延层101中、设置于第二导电类型体区掺杂层102和沟槽结构之上的介质层105、设置于第二导电类型体区掺杂层102中的第二导电类型体区接触区106、设置于第二导电类型体区掺杂层102中,且位于第二导电类型体区接触区106之上的第一导电类型源区107、包括元胞区接触孔1081和终端区接触孔的接触孔,且元胞区接触孔1081贯穿介质层105设置于第二导电类型体区接触区106中,终端区接触孔包括贯穿介质层105设置于终端区沟槽结构中的第一接触孔10821和贯穿终端区的介质层105设置于第二导电类型体区接触区106中的第二接触孔10822以及设置于接触孔中并覆盖部分介质层105的上表面的电极109(栅极和源极)。As shown in Figure 1, this embodiment relates to a medium-low voltage trench MOS device. Specifically, the medium-low voltage trench MOS device includes a heavily doped liner of the first conductivity type that is divided into a cell region and a terminal region. The bottom 100, the first conductivity type lightly doped epitaxial layer 101 disposed on the first conductivity type heavily doped substrate 100, the second conductivity type body region disposed on the first conductivity type lightly doped epitaxial layer 101 The doped layer 102, the trench structure including the trench structure in the cell region and the trench structure in the termination region, and the trench structure in the cell region and the trench structure in the termination region are both disposed through the doped layer 102 in the body region of the second conductivity type In the lightly doped epitaxial layer 101 of the first conductivity type, the dielectric layer 105 arranged on the body doped layer 102 of the second conductivity type and the trench structure, and the second doped layer of the body region of the second conductivity type 102 The second conductivity type body region contact region 106, the first conductivity type source region 107 disposed in the second conductivity type body region doped layer 102 and located on the second conductivity type body region contact region 106, including a cell region contact The hole 1081 and the contact hole of the terminal area contact hole, and the cell area contact hole 1081 penetrates the dielectric layer 105 and is disposed in the second conductivity type body region contact area 106, and the terminal area contact hole includes a trench that penetrates the dielectric layer 105 and is disposed in the terminal area The first contact hole 10821 in the structure and the dielectric layer 105 penetrating through the terminal region are arranged in the second contact hole 10822 in the contact region 106 of the body region of the second conductivity type, and the second contact hole 10822 is arranged in the contact hole and covers part of the upper surface of the dielectric layer 105 Electrodes 109 (gate and source).

在本发明的一个优选的实施例中,上述第一导电类型为N型,第二导电类型为P型或第一导电类型为P型,第二导电类型为N型。In a preferred embodiment of the present invention, the first conductivity type is N type and the second conductivity type is P type or the first conductivity type is P type and the second conductivity type is N type.

在本发明的一个优选的实施例中,上述包括元胞区沟槽结构和终端区沟槽结构的沟槽结构包括贯穿第二导电类型体区掺杂层102设置于第一导电类型轻掺杂外延层101中的沟槽、设置于沟槽的底部及其侧壁表面的栅氧化层103和设置于沟槽中的导电层104,在本发明的实施例中,该导电层104为多晶硅中,该导电层104也可以为其他的导电材料,并不限于多晶硅。In a preferred embodiment of the present invention, the above-mentioned trench structure including the trench structure in the cell region and the trench structure in the termination region includes lightly doped layers of the first conductivity type disposed through the doped layer 102 of the body region of the second conductivity type. The trench in the epitaxial layer 101, the gate oxide layer 103 disposed on the bottom of the trench and its sidewall surface, and the conductive layer 104 disposed in the trench, in an embodiment of the present invention, the conductive layer 104 is polysilicon , the conductive layer 104 can also be other conductive materials, not limited to polysilicon.

在此基础上,进一步的,上述沟槽的宽度为0.2~1um(例如0.2um、0.5um、0.6um或1um等),一般来说,位于终端区的沟槽的深度要大于位于元胞区的沟槽的深度。On this basis, further, the width of the above-mentioned trenches is 0.2-1um (such as 0.2um, 0.5um, 0.6um or 1um, etc.), generally speaking, the depth of the trenches located in the terminal area is greater than that located in the cell area the depth of the groove.

在此基础上,进一步的,上述栅氧化层103的厚度为200~600埃(例如200埃、300埃、400埃或600埃等)。On this basis, further, the gate oxide layer 103 has a thickness of 200-600 angstroms (for example, 200 angstroms, 300 angstroms, 400 angstroms or 600 angstroms, etc.).

在本发明的一个优选的实施例中,上述第二导电类型体区掺杂层102的厚度为-0.5-1um(0.5um、0.7um、0.8um、1um等)。In a preferred embodiment of the present invention, the thickness of the doped layer 102 in the body region of the second conductivity type is -0.5-1 um (0.5 um, 0.7 um, 0.8 um, 1 um, etc.).

在本发明的一个优选的实施例中,上述介质层105的厚度为0.2~1um(例如0.2um、0.6um、0.8um和1um等)。In a preferred embodiment of the present invention, the thickness of the dielectric layer 105 is 0.2-1um (for example, 0.2um, 0.6um, 0.8um and 1um, etc.).

在本发明的一个优选的实施例中,上述电极109包括栅极和源极,且该电极109的最大厚度优选为0.8~2um(例如0.8um、1um、1.4um或2um等)。In a preferred embodiment of the present invention, the electrode 109 includes a gate and a source, and the maximum thickness of the electrode 109 is preferably 0.8-2um (for example, 0.8um, 1um, 1.4um or 2um, etc.).

实施例二Embodiment two

如图2所示,本实施例涉及一种中低压沟槽型MOS器件的制备方法,下面以中低压N型沟槽型MOS器件的制备方法为例来对本发明的方法作具体的描述;具体的,该方法包括As shown in Figure 2, the present embodiment relates to a method for preparing a medium-low voltage trench type MOS device. The method of the present invention will be specifically described below by taking the preparation method of a medium-low voltage N-type trench type MOS device as an example; , the method includes

步骤S1,提供第一光刻掩膜板(即沟槽掩膜板)、第二光刻掩膜板(即接触孔掩膜板)、第三光刻掩膜板(即金属掩膜板)和一具有元胞区和终端区的半导体结构200,该半导体结构200包括N型重掺杂衬底2001(N+)和位于第一导电类型重掺杂衬底2001之上的N型轻掺杂外延层2002(N-),如图3所示的结构。Step S1, providing a first photolithography mask (ie trench mask), a second photolithography mask (ie contact hole mask), a third photolithography mask (ie metal mask) And a semiconductor structure 200 having a cell region and a terminal region, the semiconductor structure 200 includes an N-type heavily doped substrate 2001 (N+) and an N-type lightly doped substrate 2001 located on the first conductivity type heavily doped substrate The epitaxial layer 2002 (N-) has a structure as shown in FIG. 3 .

步骤S2,于N型轻掺杂外延层2002之上形成P型体区掺杂层201,如图4所示的结构。Step S2 , forming a P-type body doped layer 201 on the N-type lightly doped epitaxial layer 2002 , as shown in FIG. 4 .

在本发明的一个优选的实施例中,上述步骤S2具体包括:In a preferred embodiment of the present invention, the above step S2 specifically includes:

步骤S21,于N型轻掺杂外延层2002之上生长第一氧化层,该第一氧化层的厚度约200埃(180~220埃)。Step S21 , growing a first oxide layer on the N-type lightly doped epitaxial layer 2002 , the thickness of the first oxide layer is about 200 angstroms (180˜220 angstroms).

步骤S22,对第一氧化层进行离子注入和适当的高温退火工艺以形成P型体区掺杂层201,如图4所示的结构。Step S22 , performing ion implantation and appropriate high-temperature annealing process on the first oxide layer to form a P-type body doped layer 201 , as shown in FIG. 4 .

在本发明的一个优选的实施例中,上述P型体区掺杂层201的厚度为-0.5-1um(0.5um、0.7um、0.8um、1um等)。In a preferred embodiment of the present invention, the thickness of the P-type body region doped layer 201 is -0.5-1um (0.5um, 0.7um, 0.8um, 1um, etc.).

步骤S3,利用第一光刻掩膜板进行沟槽刻蚀工艺,以形成位于元胞区中的元胞区沟槽2031和位于终端区的终端区沟槽2032,且元胞区沟槽2031和终端区沟槽2032均贯穿P型体区掺杂层201设置于N型轻掺杂外延层2002中,如图5~6所示的结构。Step S3, using the first photolithography mask to perform a trench etching process to form a cell region trench 2031 located in the cell region and a terminal region trench 2032 located in the terminal region, and the cell region trench 2031 The groove 2032 in the terminal region and the terminal region are both disposed in the N-type lightly doped epitaxial layer 2002 through the P-type body region doped layer 201 , as shown in FIGS. 5-6 .

在本发明一个优选的实施例中,上述步骤S3包括:In a preferred embodiment of the present invention, the above step S3 includes:

步骤S31,通过化学气相沉积法于P型体区掺杂层201之上形成厚度约为200~10000埃(例如2000埃、6000埃、8000埃或10000埃等)的第二氧化层202,如图5所示的结构。Step S31, forming a second oxide layer 202 with a thickness of about 200-10000 angstroms (such as 2000 angstroms, 6000 angstroms, 8000 angstroms or 10000 angstroms) on the doped layer 201 in the p-type body region by chemical vapor deposition, such as The structure shown in Figure 5.

步骤S32,利用第一光刻掩膜板进行沟槽刻蚀工艺,以形成依次贯穿第二氧化层202和P型体区掺杂层201设置于N型轻掺杂外延层2002的元胞区沟槽2031和终端区沟槽2032;即首先应用第一光刻掩膜板定义出沟槽,沟槽的宽度大约为0.2-1um,之后通过干法刻蚀形成器件的元胞区沟槽2031和终端区沟槽2032,优选的,上述元胞区沟槽2031和终端区沟槽2032的宽度为0.2~1um(例如0.2um、0.5um、0.6um或1um等),且终端区沟槽2032的深度要大于位于元胞区沟槽2031的深度;如图6所示的结构。Step S32, using the first photolithography mask to perform a trench etching process to form a cell region that is disposed in the N-type lightly doped epitaxial layer 2002 through the second oxide layer 202 and the P-type body region doped layer 201 in sequence The groove 2031 and the terminal area groove 2032; that is, the first photolithography mask is used to define the groove, and the width of the groove is about 0.2-1um, and then the cell area groove 2031 of the device is formed by dry etching and terminal region groove 2032, preferably, the width of the above-mentioned cell region groove 2031 and terminal region groove 2032 is 0.2-1um (such as 0.2um, 0.5um, 0.6um or 1um, etc.), and the terminal region groove 2032 The depth is greater than the depth of the trench 2031 in the cell area; the structure shown in FIG. 6 .

步骤S4,于元胞区沟槽2031和终端区沟槽2032中均形成导电层206,如图7~10所示的结构。In step S4 , a conductive layer 206 is formed in both the cell region trench 2031 and the terminal region trench 2032 , as shown in FIGS. 7-10 .

在本发明的一个优选的实施例中,上述步骤S4包括:In a preferred embodiment of the present invention, the above step S4 includes:

步骤S41,于元胞区沟槽2031和终端区沟槽2032的底部及其侧壁形成牺牲氧化层204,且该牺牲氧化层204的厚度为500~1250埃(例如500埃、600埃、900埃或1250埃等),如图7所示的结构。Step S41, forming a sacrificial oxide layer 204 on the bottom and sidewalls of the cell region trench 2031 and the termination region trench 2032, and the thickness of the sacrificial oxide layer 204 is 500˜1250 angstroms (for example, 500 angstroms, 600 angstroms, 900 angstroms) Angstroms or 1250 Angstroms, etc.), the structure shown in Figure 7.

步骤S42,然后采用湿法刻蚀工艺移除牺牲氧化层204和第二氧化层202,如图8所示的结构。In step S42, wet etching is used to remove the sacrificial oxide layer 204 and the second oxide layer 202, as shown in FIG. 8 .

步骤S43,采用高温氧化的方式生长栅氧化层205以将元胞区沟槽2031和终端区沟槽2032的底部及其侧壁表面均予以覆盖,并将P型体区掺杂层201裸露的上表面予以覆盖,如图9所示的结构。In step S43, the gate oxide layer 205 is grown by high temperature oxidation to cover the bottoms and sidewall surfaces of the trenches 2031 in the cell region and the trenches 2032 in the terminal region, and expose the doped layer 201 in the P-type body region. The upper surface is covered, as shown in FIG. 9 .

在本发明的一个优选的实施例中,上述栅氧化层205的厚度为200~600埃(例如200埃、300埃、400埃或600埃等)。In a preferred embodiment of the present invention, the gate oxide layer 205 has a thickness of 200-600 angstroms (for example, 200 angstroms, 300 angstroms, 400 angstroms or 600 angstroms, etc.).

步骤S44,通过化学气相沉积的方式向上述步骤S43所形成的半导体结构的上表面沉积导电材料,该导电材料的厚度为0.5-2μm(例如0.5μm、0.6μm、0.8μm或2μm等),一般选用多晶硅作为导电材料;之后应用干法刻蚀去掉多余的导电材料,且该干法刻蚀停在栅氧化层205的上表面以形成填充在沟槽中的导电层206,如图10所示的结构。Step S44, depositing a conductive material on the upper surface of the semiconductor structure formed in the above step S43 by means of chemical vapor deposition, the thickness of the conductive material is 0.5-2 μm (such as 0.5 μm, 0.6 μm, 0.8 μm or 2 μm, etc.), generally Polysilicon is selected as the conductive material; then dry etching is used to remove excess conductive material, and the dry etching stops on the upper surface of the gate oxide layer 205 to form a conductive layer 206 filled in the trench, as shown in FIG. 10 Structure.

步骤S5,通过化学气相沉积的方式于上述导电层206和上述P型体区掺杂层201之上形成介质层207,如图11所示的结构。Step S5 , forming a dielectric layer 207 on the conductive layer 206 and the P-type body doped layer 201 by chemical vapor deposition, as shown in FIG. 11 .

在本发明的一个优选的实施例中,上述介质层207的厚度为0.2~1um(例如0.2um、0.6um、0.8um和1um等)。In a preferred embodiment of the present invention, the dielectric layer 207 has a thickness of 0.2-1um (for example, 0.2um, 0.6um, 0.8um and 1um, etc.).

步骤S6,利用第二光刻掩膜板刻蚀介质层207形成接触孔208,并对位于接触孔208底部的P型体区掺杂层201进行离子注入工艺,以形成N型源区209,如图12~13所示的结构。Step S6, using a second photolithographic mask to etch the dielectric layer 207 to form a contact hole 208, and performing an ion implantation process on the P-type body region doped layer 201 at the bottom of the contact hole 208 to form an N-type source region 209, The structure shown in Figure 12-13.

在本发明一个优选的实施例中,上述步骤S6具体包括:In a preferred embodiment of the present invention, the above step S6 specifically includes:

首先利用第二光刻掩膜板定义出器件的接触孔,之后通过干法刻蚀蚀刻掉介质层207形成接触孔208,如图12所示的结构,其次对位于接触孔底部的P型体区掺杂层201进行离子注入工艺,以形成N型源区209,如图13所示的结构。First, use the second photolithography mask to define the contact hole of the device, then etch away the dielectric layer 207 by dry etching to form a contact hole 208, the structure shown in Figure 12, and then the P-type body at the bottom of the contact hole The region doping layer 201 is subjected to an ion implantation process to form an N-type source region 209, as shown in FIG. 13 .

步骤S7,并于刻蚀部分N型源区209后,向位于接触孔底部的P型体区掺杂层201和导电层206中注入离子,以形成P型体区接触区;如图14~15所示的结构。Step S7, and after etching part of the N-type source region 209, implant ions into the P-type body region doped layer 201 and the conductive layer 206 at the bottom of the contact hole to form a P-type body region contact region; as shown in Figure 14- 15 shows the structure.

在本发明的一个优选的实施例中,上述步骤S7具体包括:In a preferred embodiment of the present invention, the above step S7 specifically includes:

步骤S71,刻蚀元胞区中位于接触孔底部的N型源区209以形成元胞区接触孔2101,并刻蚀终端区中位于接触孔底部的导电层206以形成第一终端区接触孔21021,同时刻蚀终端区中位于接触孔底部的N型源区209以形成第二终端区接触孔21022,优选的,上述刻蚀采用干法刻蚀工艺,如图14所示的结构。Step S71, etching the N-type source region 209 at the bottom of the contact hole in the cell region to form a cell region contact hole 2101, and etching the conductive layer 206 at the bottom of the contact hole in the terminal region to form a first terminal region contact hole 21021, while etching the N-type source region 209 at the bottom of the contact hole in the terminal region to form the second terminal region contact hole 21022. Preferably, the above etching adopts a dry etching process, as shown in FIG. 14 .

步骤S72,通过元胞区接触孔2101对P型体区掺杂区进行孔注入工艺(孔离子注入工艺),并通过终端区接触孔(包括第一终端区接触孔21021和第二终端区接触孔21022)对导电层206和P型体区掺杂层201进行孔注入工艺(孔离子注入工艺),以于元胞区接触孔2101和终端区接触孔(包括第一终端区接触孔21021和第二终端区接触孔21022)的底部周围形成P型体区接触区211(即体区的欧姆接触),如图15所示的结构。Step S72, perform a hole implantation process (hole ion implantation process) on the doped region of the P-type body region through the contact hole 2101 in the cell region, and contact holes 21022) to the conductive layer 206 and the p-type body doped layer 201 hole implantation process (hole ion implantation process), in order to contact holes 2101 in the cell area and terminal area contact holes (including the first terminal area contact hole 21021 and A P-type body region contact region 211 (that is, an ohmic contact of the body region) is formed around the bottom of the second termination region contact hole 21022), as shown in FIG. 15 .

步骤S8,利用物理气相沉积的方法于半导体结构的正反面均形成金属材料(也可以为其他的导电材料,并不限于金属材料)后,利用第三掩膜板对金属材料进行刻蚀工艺以形成MOS器件的电极212(栅极和源极),如图16所示的结构。Step S8, after forming metal materials (or other conductive materials, not limited to metal materials) on both the front and back surfaces of the semiconductor structure by physical vapor deposition, use the third mask to etch the metal materials to The electrodes 212 (gate and source) of the MOS device are formed, as shown in FIG. 16 .

不难发现,本实施例为与上述中低压沟槽型MOS器件的实施例相对应的方法实施例,本实施例可与上述中低压沟槽型MOS器件的实施例互相配合实施。上述中低压沟槽型MOS器件的实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述中低压沟槽型MOS器件的实施例中。It is not difficult to find that this embodiment is a method embodiment corresponding to the embodiment of the above medium and low voltage trench type MOS device, and this embodiment can be implemented in cooperation with the above embodiment of the above medium and low voltage trench type MOS device. The relevant technical details mentioned in the above embodiment of the medium and low voltage trench MOS device are still valid in this embodiment, and will not be repeated here in order to reduce repetition. Correspondingly, the relevant technical details mentioned in this embodiment can also be applied to the above embodiments of the medium and low voltage trench MOS devices.

本领域技术人员应该理解,本领域技术人员在结合现有技术以及上述实施例可以实现变化例,在此不做赘述。这样的变化例并不影响本发明的实质内容,在此不予赘述。Those skilled in the art should understand that those skilled in the art can implement variations by combining the existing technology and the foregoing embodiments, and details are not described here. Such variations do not affect the essence of the present invention, and will not be repeated here.

以上对本发明的较佳实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,其中未尽详细描述的设备和结构应该理解为用本领域中的普通方式予以实施;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容。The preferred embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and the devices and structures that are not described in detail should be understood to be implemented in a common manner in the art; Within the scope of the technical solutions of the invention, the methods and technical contents disclosed above can be used.

Claims (17)

1.一种中低压沟槽型MOS器件,其特征在于,包括:1. A medium and low voltage trench MOS device, characterized in that it comprises: 第一导电类型重掺杂衬底,所述第一导电类型重掺杂衬底上方分为元胞区和终端区;A heavily doped substrate of the first conductivity type, where the heavily doped substrate of the first conductivity type is divided into a cell region and a terminal region; 第一导电类型轻掺杂外延层,设置于所述第一导电类型重掺杂衬底之上;a lightly doped epitaxial layer of the first conductivity type, disposed on the heavily doped substrate of the first conductivity type; 第二导电类型体区掺杂层,设置于所述第一导电类型轻掺杂外延层之上;a second conductivity type body region doped layer disposed on the first conductivity type lightly doped epitaxial layer; 沟槽结构,包括设置于所述元胞区中的元胞区沟槽结构和设置于所述终端区中的终端区沟槽结构,所述元胞区沟槽结构和所述终端区沟槽结构均贯穿所述第二导电类型体区掺杂层设置于所述第一导电类型轻掺杂外延层中;A groove structure, including a cell region groove structure disposed in the cell region and a terminal region groove structure disposed in the terminal region, the cell region groove structure and the terminal region groove The structures are all disposed in the lightly doped epitaxial layer of the first conductivity type through the body doped layer of the second conductivity type; 介质层,设置于所述第二导电类型体区掺杂层和所述沟槽结构之上;a dielectric layer disposed on the doped layer of the body region of the second conductivity type and the trench structure; 第二导电类型体区接触区,设置于所述第二导电类型体区掺杂层中;a second conductivity type body region contact region, disposed in the second conductivity type body region doped layer; 第一导电类型源区,设置于所述第二导电类型体区掺杂层中,且位于所述第二导电类型体区接触区之上;a source region of the first conductivity type, disposed in the doped layer of the body region of the second conductivity type, and located on the contact region of the body region of the second conductivity type; 接触孔,包括元胞区接触孔和终端区接触孔,所述元胞区接触孔贯穿所述介质层设置于所述第二导电类型体区接触区中,所述终端区接触孔包括贯穿所述介质层设置于所述终端区沟槽结构中的第一接触孔和贯穿所述终端区的介质层设置于所述所述第二导电类型体区接触区中的第二接触孔;A contact hole includes a cell region contact hole and a terminal region contact hole, the cell region contact hole is disposed in the second conductivity type body region contact region through the dielectric layer, and the terminal region contact hole includes a terminal region contact hole that penetrates through the dielectric layer The dielectric layer is disposed in the first contact hole in the trench structure of the termination region and the dielectric layer passing through the termination region is disposed in the second contact hole in the contact region of the second conductivity type body region; 电极,设置于所述接触孔中并覆盖部分所述介质层的上表面。An electrode is arranged in the contact hole and covers part of the upper surface of the dielectric layer. 2.如权利要求1所述的中低压沟槽型MOS器件,其特征在于,所述第一导电类型为N型,所述第二导电类型为P型或所述第一导电类型为P型,所述第二导电类型为N型。2. The medium and low voltage trench MOS device according to claim 1, wherein the first conductivity type is N-type, the second conductivity type is P-type or the first conductivity type is P-type , the second conductivity type is N type. 3.如权利要求1所述的中低压沟槽型MOS器件,其特征在于,所述沟槽结构包括:3. The medium and low voltage trench MOS device according to claim 1, wherein the trench structure comprises: 沟槽,贯穿所述第二导电类型体区掺杂层设置于所述第一导电类型轻掺杂外延层中;a trench, disposed in the lightly doped epitaxial layer of the first conductivity type through the body doped layer of the second conductivity type; 栅氧化层,设置于所述沟槽的底部及其侧壁表面;a gate oxide layer disposed on the bottom of the trench and its sidewall surfaces; 导电层,设置于所述沟槽中。The conductive layer is arranged in the groove. 4.如权利要求3所述的中低压沟槽型MOS器件,其特征在于,所述沟槽的宽度为0.2-1um。4. The medium and low voltage trench MOS device according to claim 3, characterized in that the width of the trench is 0.2-1um. 5.如权利要求3所述的中低压沟槽型MOS器件,其特征在于,所述栅氧化层的厚度为200-600埃。5. The medium and low voltage trench MOS device according to claim 3, wherein the gate oxide layer has a thickness of 200-600 angstroms. 6.如权利要求1所述的中低压沟槽型MOS器件,其特征在于,所述第二导电类型体区掺杂层的厚度为0.5-1um。6 . The medium and low voltage trench MOS device according to claim 1 , wherein the thickness of the doped layer in the body region of the second conductivity type is 0.5-1 μm. 7.如权利要求1所述的中低压沟槽型MOS器件,其特征在于,所述介质层的厚度为0.2-1um。7. The medium and low voltage trench MOS device according to claim 1, characterized in that the thickness of the dielectric layer is 0.2-1um. 8.一种中低压沟槽型MOS器件的制备方法,其特征在于,包括如下步骤:8. A method for preparing a medium and low voltage trench type MOS device, characterized in that it comprises the steps of: 步骤S1,提供第一光刻掩膜板、第二光刻掩膜板、第三光刻掩膜板和一具有元胞区和终端区的半导体结构,所述半导体结构包括第一导电类型重掺杂衬底和位于所述第一导电类型重掺杂衬底之上的第一导电类型轻掺杂外延层;Step S1, providing a first photolithography mask, a second photolithography mask, a third photolithography mask and a semiconductor structure having a cell region and a terminal region, the semiconductor structure includes a first conductivity type heavy a doped substrate and a lightly doped epitaxial layer of the first conductivity type located on the heavily doped substrate of the first conductivity type; 步骤S2,于所述第一导电类型轻掺杂外延层之上形成第二导电类型体区掺杂层;Step S2, forming a doped body layer of a second conductivity type on the lightly doped epitaxial layer of the first conductivity type; 步骤S3,利用所述第一光刻掩膜板进行沟槽刻蚀工艺,以形成位于所述元胞区中的元胞区沟槽和位于所述终端区的终端区沟槽,且所述元胞区沟槽和所述终端区沟槽均贯穿所述第二导电类型体区掺杂层设置于所述第一导电类型轻掺杂外延层中;Step S3, using the first photolithography mask to perform a trench etching process to form a trench in the cell region in the cell region and a trench in the termination region in the termination region, and the Both the trenches in the cell region and the trenches in the terminal region are disposed in the lightly doped epitaxial layer of the first conductivity type through the doped layer of the body region of the second conductivity type; 步骤S4,于所述元胞区沟槽和所述终端区沟槽中均形成导电层;Step S4, forming a conductive layer in both the trenches of the cell region and the trenches of the terminal region; 步骤S5,于所述导电层和所述第二导电类型体区掺杂层之上形成介质层;Step S5, forming a dielectric layer on the conductive layer and the second conductive type body region doped layer; 步骤S6,利用所述第二光刻掩膜板刻蚀所述介质层形成接触孔,并对位于所述接触孔底部的所述第二导电类型体区掺杂层进行离子注入工艺,以形成第一导电类型源区;Step S6, using the second photolithography mask to etch the dielectric layer to form a contact hole, and performing an ion implantation process on the doped layer of the second conductivity type body region at the bottom of the contact hole to form a first conductivity type source region; 步骤S7,并于刻蚀部分所述第一导电类型源区后,向位于所述接触孔底部的第二导电类型体区掺杂层和所述导电层中注入离子,以形成第二导电类型体区接触区;Step S7, and after etching part of the source region of the first conductivity type, implanting ions into the doped layer of the body region of the second conductivity type at the bottom of the contact hole and the conductive layer to form a second conductivity type Body area contact area; 步骤S8,于所述半导体结构的正反面均形成导电材料后,利用所述第三光刻掩膜板对所述导电材料进行刻蚀工艺以形成所述MOS器件的电极。Step S8 , after forming conductive materials on both the front and back surfaces of the semiconductor structure, performing an etching process on the conductive materials by using the third photolithography mask to form electrodes of the MOS device. 9.如权利要求8所述的中低压沟槽型MOS器件的制备方法,其特征在于,所述第一导电类型为N型,所述第二导电类型为P型或所述第一导电类型为P型,所述第二导电类型为N型。9. The manufacturing method of medium and low voltage trench MOS devices according to claim 8, wherein the first conductivity type is N-type, and the second conductivity type is P-type or the first conductivity type is P-type, and the second conductivity type is N-type. 10.如权利要求8所述的中低压沟槽型MOS器件的制备方法,其特征在于,所述步骤S2包括:10. The preparation method of medium and low voltage trench MOS devices as claimed in claim 8, characterized in that, said step S2 comprises: 步骤S21,于所述第一导电类型轻掺杂外延层之上生长第一氧化层;Step S21, growing a first oxide layer on the lightly doped epitaxial layer of the first conductivity type; 步骤S22,对所述第一氧化层进行离子注入和退火工艺以形成所述第二导电类型体区掺杂层。Step S22 , performing ion implantation and annealing processes on the first oxide layer to form the doped body layer of the second conductivity type. 11.如权利要求8所述的中低压沟槽型MOS器件的制备方法,其特征在于,所述步骤S3包括:11. The manufacturing method of medium and low voltage trench MOS devices as claimed in claim 8, characterized in that said step S3 comprises: 步骤S31,于所述第二导电类型体区掺杂层之上形成第二氧化层;Step S31, forming a second oxide layer on the doped layer of the body region of the second conductivity type; 步骤S32,利用所述第一光刻掩膜板进行沟槽刻蚀工艺,以形成依次贯穿所述第二氧化层和P型体区掺杂层设置于所述第一导电类型轻掺杂外延层的所述元胞区沟槽和所述终端区沟槽。Step S32, using the first photolithography mask to perform a trench etching process to form a lightly doped epitaxial layer disposed on the first conductivity type through the second oxide layer and the doped layer of the P-type body region in sequence. The cell region trenches and the terminal region trenches of the layer. 12.如权利要求11所述的中低压沟槽型MOS器件的制备方法,其特征在于,所述步骤S4包括:12. The preparation method of medium and low voltage trench MOS devices as claimed in claim 11, characterized in that said step S4 comprises: 步骤S41,于所述元胞区沟槽和所述终端区沟槽的底部及其侧壁形成牺牲氧化层;Step S41, forming a sacrificial oxide layer on the bottom and sidewalls of the trenches in the cell region and the trenches in the terminal region; 步骤S42,移除所述牺牲氧化层和所述第二氧化层;Step S42, removing the sacrificial oxide layer and the second oxide layer; 步骤S43,形成栅氧化层以将所述元胞区沟槽和所述终端区沟槽的底部及其侧壁表面均予以覆盖,并将所述第二导电类型体区掺杂层裸露的上表面予以覆盖;Step S43, forming a gate oxide layer to cover the bottoms and sidewall surfaces of the trenches in the cell region and the trenches in the terminal region, and exposing the upper doped layer of the body region of the second conductivity type the surface is covered; 步骤S44,于所述沟槽中填充导电材料以形成所述导电层。Step S44 , filling the trench with a conductive material to form the conductive layer. 13.如权利要求12所述的中低压沟槽型MOS器件的制备方法,其特征在于,所述步骤S7包括:13. The manufacturing method of medium and low voltage trench MOS devices as claimed in claim 12, characterized in that, the step S7 comprises: 步骤S71,刻蚀所述元胞区中位于所述接触孔底部的所述第一导电类型源区以形成元胞区接触孔,并刻蚀所述终端区中位于所述接触孔底部的导电层以形成第一终端区接触孔,同时刻蚀所述终端区中位于所述接触孔底部的所述第一导电类型源区以形成第二终端区接触孔。Step S71, etching the source region of the first conductivity type at the bottom of the contact hole in the cell region to form a cell region contact hole, and etching the conductive source region at the bottom of the contact hole in the terminal region. layer to form a contact hole in the first termination region, and simultaneously etch the source region of the first conductivity type at the bottom of the contact hole in the termination region to form a contact hole in the second termination region. 步骤S72,通过所述元胞区接触孔对所述第二导电类型体区掺杂区进行孔注入工艺,并通过所述终端区接触孔对所述导电层和所述第二导电类型体区掺杂层进行孔注入工艺,以于所述元胞区接触孔和所述终端区接触孔的底部周围形成第二导电类型体区接触区。Step S72, performing a hole implantation process on the doped region of the body region of the second conductivity type through the contact hole in the cell region, and performing a hole implantation process on the conductive layer and the body region of the second conductivity type through the contact hole in the termination region A hole implantation process is performed on the doped layer to form a second conductivity type body region contact region around bottoms of the cell region contact hole and the terminal region contact hole. 14.如权利要求12所述的中低压沟槽型MOS器件的制备方法,其特征在于,所述栅氧化层的厚度为200-600埃。14. The method for manufacturing a medium-low voltage trench MOS device according to claim 12, wherein the gate oxide layer has a thickness of 200-600 angstroms. 15.如权利要求8所述的中低压沟槽型MOS器件的制备方法,其特征在于,所述元胞区沟槽和所述终端区沟槽的宽度为0.2-1um。15. The manufacturing method of a medium-low voltage trench MOS device according to claim 8, wherein the width of the trench in the cell region and the trench in the terminal region is 0.2-1 um. 16.如权利要求8所述的中低压沟槽型MOS器件的制备方法,其特征在于,所述第二导电类型体区掺杂层的厚度为0.5-1um。16 . The method for manufacturing a medium-low voltage trench MOS device according to claim 8 , wherein the thickness of the doped layer in the body region of the second conductivity type is 0.5-1 μm. 17.如权利要求8所述的中低压沟槽型MOS器件的制备方法,其特征在于,所述介质层的厚度为0.2-1um。17. The method for manufacturing a medium-low voltage trench MOS device according to claim 8, wherein the dielectric layer has a thickness of 0.2-1um.
CN201710852616.5A 2017-09-19 2017-09-19 A kind of mesolow groove type MOS device and preparation method thereof Pending CN107665924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710852616.5A CN107665924A (en) 2017-09-19 2017-09-19 A kind of mesolow groove type MOS device and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710852616.5A CN107665924A (en) 2017-09-19 2017-09-19 A kind of mesolow groove type MOS device and preparation method thereof

Publications (1)

Publication Number Publication Date
CN107665924A true CN107665924A (en) 2018-02-06

Family

ID=61098123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710852616.5A Pending CN107665924A (en) 2017-09-19 2017-09-19 A kind of mesolow groove type MOS device and preparation method thereof

Country Status (1)

Country Link
CN (1) CN107665924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511340A (en) * 2018-03-27 2018-09-07 刘自奇 A kind of lateral transistor and preparation method thereof
TWI717082B (en) * 2019-03-22 2021-01-21 大陸商上海微電子裝備(集團)股份有限公司 Double-workpiece stage flexible tape exposure device and exposure method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100078774A1 (en) * 2008-09-30 2010-04-01 Infineon Technologies Austria Ag Semiconductor device with channel stop trench and method
CN102569403A (en) * 2012-01-14 2012-07-11 哈尔滨工程大学 Terminal structure of splitting gate groove power modular operating system (MOS) device and manufacturing method thereof
CN202473933U (en) * 2012-03-13 2012-10-03 无锡新洁能功率半导体有限公司 Power metal oxide semiconductor (MOS) device with improved terminal structure
CN103247681A (en) * 2012-02-02 2013-08-14 万国半导体股份有限公司 Nano MOSFET of trench bottom oxide shield and three-dimensional P-body contact region
CN104241356A (en) * 2013-06-17 2014-12-24 北大方正集团有限公司 DMOS device and manufacturing method thereof
CN105336785A (en) * 2014-08-15 2016-02-17 北大方正集团有限公司 Depletion-type VDMOS device and manufacturing method therefor
CN105529371A (en) * 2014-09-29 2016-04-27 无锡华润华晶微电子有限公司 Groove Schottky diode and manufacturing method thereof
CN105870194A (en) * 2016-05-31 2016-08-17 苏州同冠微电子有限公司 Groove type CoolMOS and manufacturing method thereof
CN106298544A (en) * 2016-11-04 2017-01-04 无锡新洁能股份有限公司 The manufacture method of trench-dmos devices and structure
CN106384718A (en) * 2016-10-21 2017-02-08 中航(重庆)微电子有限公司 Method and structure for making middle and high voltage groove type MOSFET device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100078774A1 (en) * 2008-09-30 2010-04-01 Infineon Technologies Austria Ag Semiconductor device with channel stop trench and method
CN102569403A (en) * 2012-01-14 2012-07-11 哈尔滨工程大学 Terminal structure of splitting gate groove power modular operating system (MOS) device and manufacturing method thereof
CN103247681A (en) * 2012-02-02 2013-08-14 万国半导体股份有限公司 Nano MOSFET of trench bottom oxide shield and three-dimensional P-body contact region
CN202473933U (en) * 2012-03-13 2012-10-03 无锡新洁能功率半导体有限公司 Power metal oxide semiconductor (MOS) device with improved terminal structure
CN104241356A (en) * 2013-06-17 2014-12-24 北大方正集团有限公司 DMOS device and manufacturing method thereof
CN105336785A (en) * 2014-08-15 2016-02-17 北大方正集团有限公司 Depletion-type VDMOS device and manufacturing method therefor
CN105529371A (en) * 2014-09-29 2016-04-27 无锡华润华晶微电子有限公司 Groove Schottky diode and manufacturing method thereof
CN105870194A (en) * 2016-05-31 2016-08-17 苏州同冠微电子有限公司 Groove type CoolMOS and manufacturing method thereof
CN106384718A (en) * 2016-10-21 2017-02-08 中航(重庆)微电子有限公司 Method and structure for making middle and high voltage groove type MOSFET device
CN106298544A (en) * 2016-11-04 2017-01-04 无锡新洁能股份有限公司 The manufacture method of trench-dmos devices and structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511340A (en) * 2018-03-27 2018-09-07 刘自奇 A kind of lateral transistor and preparation method thereof
TWI717082B (en) * 2019-03-22 2021-01-21 大陸商上海微電子裝備(集團)股份有限公司 Double-workpiece stage flexible tape exposure device and exposure method

Similar Documents

Publication Publication Date Title
CN111883592B (en) Shielded gate trench power device and manufacturing method thereof
US7514749B2 (en) Semiconductor device and a method of manufacturing the same
CN104282645A (en) trench type power semiconductor device and manufacturing method thereof
CN107799601A (en) Shield grid groove power MOSTET devices and its manufacture method
CN103715133A (en) Mos transistor and forming method thereof
CN105428241B (en) The manufacture method of trench-gate power devices with shield grid
CN102623495B (en) Tunneling field effect transistor with multi-doping pocket structure and manufacturing method for tunneling field effect transistor
CN106206322A (en) The manufacture method of autoregistration low pressure superjunction MOFET
CN109979823A (en) A shielded grid power device and its manufacturing method
CN113053738A (en) Split gate type groove MOS device and preparation method thereof
US8759910B2 (en) Trench MOSFET with trenched floating gates having thick trench bottom oxide as termination
WO2016015501A1 (en) Tunneling transistor structure and manufacturing method therefor
CN104617045A (en) Manufacturing method of trench gate power device
CN113130633B (en) Trench type field effect transistor structure and manufacturing method thereof
CN107665924A (en) A kind of mesolow groove type MOS device and preparation method thereof
CN106024607B (en) The manufacturing method of shield grid power MOSFET
CN104638011B (en) A kind of groove MOSFET device and preparation method thereof
CN109801960A (en) Semiconductor devices and its manufacturing method and electronic equipment including the device
CN101964326B (en) Manufacturing method of high voltage semiconductor device
CN107785427A (en) Vertical DMOS device and preparation method thereof
CN112133750A (en) Deep trench power device and method of making the same
CN106252277B (en) Low temperature polysilicon thin film transistor array substrate, manufacturing method and display device
CN112054024B (en) Field effect transistor device, preparation method and battery management system
CN203746863U (en) Trench Power Metal Oxide Half Field Effect Transistor
US20110084332A1 (en) Trench termination structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 401331 No. 25 Xiyong Avenue, Shapingba District, Chongqing

Applicant after: Huarun Microelectronics (Chongqing) Co., Ltd.

Address before: 401331 No. 25 Xiyong Avenue, Shapingba District, Chongqing

Applicant before: China Aviation (Chongqing) Microelectronics Co., Ltd.

CB02 Change of applicant information
RJ01 Rejection of invention patent application after publication

Application publication date: 20180206

RJ01 Rejection of invention patent application after publication