CN107659800A - A kind of DMD high frame frequency and high resolutions synchronous dynamic display system - Google Patents
A kind of DMD high frame frequency and high resolutions synchronous dynamic display system Download PDFInfo
- Publication number
- CN107659800A CN107659800A CN201710692977.8A CN201710692977A CN107659800A CN 107659800 A CN107659800 A CN 107659800A CN 201710692977 A CN201710692977 A CN 201710692977A CN 107659800 A CN107659800 A CN 107659800A
- Authority
- CN
- China
- Prior art keywords
- dmd
- image data
- frame rate
- data
- display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 14
- 238000004422 calculation algorithm Methods 0.000 claims description 30
- 230000009467 reduction Effects 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 abstract description 29
- 238000004088 simulation Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 41
- 230000008569 process Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 15
- 238000013461 design Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 101100498818 Arabidopsis thaliana DDR4 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3179—Video signal processing therefor
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
本发明涉及一种DMD高帧频高分辨率同步动态显示系统,包括:上位机、接口模块、控制模块、数字微镜器件;所述上位机连接所述接口模块,用于发送特定帧频的图像数据;所述接口模块连接所述控制模块,用于接收所述特定帧频的图像数据,并对所述图像数据进行解码;所述控制模块连接所述数字微镜器件,用于对解码后的图像数据进行灰度调制和格式转换处理,以满足所述数字微镜器件的显示帧频和显示格式,并将处理后的图像数据加载到所述数字微镜器件;所述数字微镜器件用于显示所述处理后的图像数据。本发明能够实现高帧率、实时传输、高分辨率显示,弥补了国内在半实物仿真领域缺少能够利用DMD对高帧频、高灰度等级图像进行实时显示的缺陷。
The present invention relates to a DMD high frame rate and high resolution synchronous dynamic display system, comprising: a host computer, an interface module, a control module, and a digital micromirror device; image data; the interface module is connected to the control module for receiving the image data of the specific frame rate and decoding the image data; the control module is connected to the digital micromirror device for decoding Gray scale modulation and format conversion processing are carried out on the image data after, so as to satisfy the display frame rate and the display format of the digital micromirror device, and the image data after processing are loaded into the digital micromirror device; the digital micromirror device A device is used to display the processed image data. The invention can realize high frame rate, real-time transmission, and high-resolution display, and makes up for the lack of real-time display of high frame rate and high gray-level images by using DMD in the field of semi-physical simulation in China.
Description
技术领域technical field
本发明属于图像处理技术领域,具体涉及一种DMD高帧频高分辨率同 步动态显示系统。The invention belongs to the technical field of image processing, in particular to a DMD high frame rate and high resolution synchronous dynamic display system.
背景技术Background technique
数字微镜投影系统是一种基于微机电结构的反射式光空间调制器,它 的核心器件是TI公司生产的DMD(Digital Micromirror Device数字微镜器 件)。DMD是一个由微反射镜组成的微镜阵列,每个微镜代表一个像素, 通过控制微镜的翻转来通断光源向外的辐射。该器件目前广泛应用于采用 DLP技术的投影仪中,在可见光投影方面发展较为迅速。通过更换DMD 微镜的透射窗口也可以用于红外投影领域,无论应用于哪个光辐射波段, DMD微镜的控制原理都是一样的,并且国内在DMD的购买上也没有太多 限制,这给其在军事领域的应用开始提供了极大的便利。相比于其它红外 场景生成系统,DMD具有图像分辨率高、均匀性好、几何形变小、帧频高、 能量集中等优点。The digital micromirror projection system is a reflective optical spatial modulator based on a micro-electromechanical structure, and its core device is a DMD (Digital Micromirror Device) produced by TI. DMD is a micromirror array composed of micromirrors, each micromirror represents a pixel, and the external radiation of the light source is switched on and off by controlling the flipping of the micromirrors. This device is currently widely used in projectors using DLP technology, and is developing rapidly in visible light projection. By replacing the transmission window of the DMD micromirror, it can also be used in the field of infrared projection. No matter which optical radiation band it is applied to, the control principle of the DMD micromirror is the same, and there are not many restrictions on the purchase of DMD in China, which gives Its application in the military field began to provide great convenience. Compared with other infrared scene generation systems, DMD has the advantages of high image resolution, good uniformity, small geometric deformation, high frame rate, and energy concentration.
上海技术物理研究所、哈尔滨工业大学、兵器211所等研究单位都在 对DMD进行换窗的基础上研制出了相应的红外图像投影系统。其中哈工大 的康为民等人于2008年研制的DMD红外动态景象模拟器分辨率为 800×600,灰度等级8bit,帧频为60Hz,温度分辨等级为0.1℃,图像无闪 烁(参看“康为民,李延彬,高伟志.数字微镜阵列红外动态景象模拟器的研 制[J].红外与激光工程,2008,(05):753-756”);哈工大的任国涛研制的基于 DMD的可见光成像制导仿真系统,帧频可达60Hz(参看“任国焘.基于DMD的可见光成像制导仿真系统设计[D].哈尔滨工业大学,2016.”)。西北 工业大学的张凯、马骏等人于2011年研制的基于DMD的红外动态目标模 拟器分辨率为1024×768,图像同样为灰度等级8bit,帧频10-100连续可调 (参看“张凯,马骏,孙嗣良.红外动态目标模拟器驱动及控制系统设计[J]. 激光与红外,2011,(01):58-62.”、“梁勇,赵晓蓓,马骏,李少毅,孙力.基于DMD 的红外场景仿真器硬件系统设计[J].红外技术,2011,(12):683-686.”)。兵器 211所研制的红外投影系统分辨率为1024×768,帧频达到了100Hz。中国 空空导弹研究院张二磊、祁鸣等人研制的基于DMD的红外场景模拟器帧频 同样为100Hz,能量对比度达到了91:1(参看“张二磊,祁鸣.基于DMD的 动态红外场景生成系统[J].电子科技,2011,(07):140-143.”)。Shanghai Institute of Technical Physics, Harbin Institute of Technology, Weapon 211 and other research institutes have all developed corresponding infrared image projection systems on the basis of changing the window of DMD. Among them, the DMD infrared dynamic scene simulator developed by Kang Weimin and others of Harbin Institute of Technology in 2008 has a resolution of 800×600, a gray scale of 8 bits, a frame frequency of 60Hz, a temperature resolution of 0.1°C, and no flicker in the image (see "Kang Weimin, Li Yanbin , Gao Weizhi. Development of digital micromirror array infrared dynamic scene simulator[J]. Infrared and Laser Engineering, 2008, (05): 753-756”); Ren Guotao of Harbin Institute of Technology developed a DMD-based visible light imaging guidance simulation system, The frame frequency can reach 60Hz (see "Ren Guotao. Design of Visible Light Imaging Guidance Simulation System Based on DMD [D]. Harbin Institute of Technology, 2016."). The DMD-based infrared dynamic target simulator developed by Zhang Kai and Ma Jun of Northwestern Polytechnical University in 2011 has a resolution of 1024×768, the image is also grayscale 8bit, and the frame frequency is continuously adjustable from 10 to 100 (see " Zhang Kai, Ma Jun, Sun Siliang. Design of Infrared Dynamic Target Simulator Drive and Control System[J]. Laser and Infrared, 2011, (01):58-62.", "Liang Yong, Zhao Xiaobei, Ma Jun, Li Shaoyi, Sun Li. Hardware system design of infrared scene simulator based on DMD [J]. Infrared Technology, 2011, (12): 683-686."). The infrared projection system developed by Weapon 211 has a resolution of 1024×768 and a frame rate of 100Hz. The frame rate of the DMD-based infrared scene simulator developed by Zhang Erlei and Qi Ming of China Air-to-Air Missile Research Institute is also 100Hz, and the energy contrast ratio reaches 91:1 (see "Zhang Erlei, Qi Ming. DMD-Based Dynamic Infrared Scene Generation System [ J]. Electronic Science and Technology, 2011, (07): 140-143.").
然而,现有技术的方案存在以下缺点:1、现有的DMD进行高灰度图 像显示的帧频不高。简单的对DMD微镜进行开关操作只能表达出一幅二值 图像,要想单片DMD能够显示出灰度图像,就需要对DMD进行灰度调制。 传统的灰度调制算法,在8bit等高灰度图像的显示过程中,帧频很难提升 150Hz以上,不能满足高帧率的要求。2、DMD的图像显示缺乏实时性。目前国内在基于DMD的场景模拟器的研制中,对超过200Hz帧频的高帧 频、高灰度图像进行投影显示的过程中,其图像数据多是预先经过转换缓 存起来,并不是从上位机同步传输的,DMD投射的红外场景并不是对上位 机所模拟场景的实时显示。Yet, there is following shortcoming in the scheme of prior art: 1, the frame rate that existing DMD carries out the high-grayscale image display is not high. A simple switching operation of the DMD micromirror can only express a binary image. If a single DMD can display a grayscale image, it is necessary to perform grayscale modulation on the DMD. The traditional grayscale modulation algorithm, in the display process of high grayscale images such as 8bit, is difficult to increase the frame rate by more than 150Hz, which cannot meet the requirements of high frame rate. 2. The image display of DMD lacks real-time performance. At present, in the development of DMD-based scene simulators in China, in the process of projecting and displaying high frame rate and high grayscale images with a frame rate exceeding 200Hz, the image data is mostly converted and cached in advance, not from the host computer. Synchronously transmitted, the infrared scene projected by the DMD is not a real-time display of the scene simulated by the host computer.
发明内容Contents of the invention
为了解决现有技术中存在的上述问题,本发明提供了一种能够实现高 帧率、实时传输显示的DMD高帧频高分辨率同步动态显示系统。In order to solve the above-mentioned problems existing in the prior art, the present invention provides a kind of DMD high frame rate high resolution synchronous dynamic display system capable of realizing high frame rate and real-time transmission display.
为了实现上述发明目的,本发明采用的技术方案是:In order to realize the above-mentioned purpose of the invention, the technical scheme that the present invention adopts is:
一种DMD高帧频高分辨率同步动态显示系统,包括:上位机、接口模 块、控制模块、数字微镜器件;A DMD high frame rate and high resolution synchronous dynamic display system, comprising: upper computer, interface module, control module, digital micromirror device;
所述上位机连接所述接口模块,用于发送特定帧频的图像数据;The host computer is connected to the interface module for sending image data with a specific frame rate;
所述接口模块连接所述控制模块,用于接收所述特定帧频的图像数据, 并对所述图像数据进行解码;The interface module is connected to the control module, and is used to receive the image data of the specific frame rate and decode the image data;
所述控制模块连接所述数字微镜器件,用于对解码后的图像数据进行 灰度调制和格式转换处理,以满足所述数字微镜器件的显示帧频和显示格 式,并将处理后的图像数据加载到所述数字微镜器件;The control module is connected to the digital micromirror device, and is used to perform grayscale modulation and format conversion processing on the decoded image data, so as to meet the display frame rate and display format of the digital micromirror device, and convert the processed image data loaded into said digital micromirror device;
所述数字微镜器件用于显示所述处理后的图像数据。The digital micromirror device is used to display the processed image data.
进一步地,所述控制模块包括控制处理器、DMD驱动单元、存储单元;Further, the control module includes a control processor, a DMD drive unit, and a storage unit;
所述控制处理器用于对所述解码后的图像数据进行灰度调制,将调制 后的灰度值图像转换为位平面图像;The control processor is used to perform grayscale modulation on the decoded image data, and convert the modulated grayscale value image into a bit plane image;
所述DMD驱动单元连接所述控制处理器,用于将所述位平面图像加载 到所述数字微镜器件;The DMD drive unit is connected to the control processor for loading the bit plane image to the digital micromirror device;
所述存储单元连接所述控制处理器,用于存储所述解码后的图像数据、 所述多灰度值图像数据、所述位平面图像数据中的至少一种。The storage unit is connected to the control processor and used for storing at least one of the decoded image data, the multi-gray value image data, and the bit plane image data.
进一步地,所述灰度调制算法为PWM算法。Further, the gray scale modulation algorithm is a PWM algorithm.
进一步地,所述存储单元包括至少两个子空间,每个所述子空间包括 多个位平面空间,其中,所述位平面空间数根据像素数据的位宽确定。Further, the storage unit includes at least two subspaces, each of which includes a plurality of bit plane spaces, wherein the number of bit plane spaces is determined according to the bit width of the pixel data.
进一步地,还包括显示器,所述显示器连接所述接口模块;Further, a display is also included, and the display is connected to the interface module;
所述控制模块还用于对所述解码后的图像数据进行降帧处理,将所述 降帧处理的图像数据通过所述接口模块发送到显示器;The control module is also used to perform frame down processing on the decoded image data, and send the frame down processed image data to the display through the interface module;
所述显示器用于显示所述降帧处理的图像数据。The display is used for displaying the image data of the down-frame processing.
进一步地,所述控制处理器为FPGA。Further, the control processor is FPGA.
进一步地,所述存储单元为DDR2 SDRAM高速存储器。Further, the storage unit is DDR2 SDRAM high-speed memory.
进一步地,所述接口模块包括DVI接口和HDMI接口。Further, the interface module includes a DVI interface and an HDMI interface.
本发明实施例,弥补了国内在半实物仿真领域缺少能够利用DMD对高 帧频、高灰度等级图像进行实时显示的缺陷。首先对传统的PWM算法进行 了优化,使得DMD能够显示8bit灰度图像的帧频达到200Hz以上。然后 提出了基于DDR2 SDRAM的分块存储的数据缓存方式,解决了DMD在进 行高帧频动态图的像格式转换和灰度调制过程中的数据缓存问题。最终实 现了DMD实时显示XGA分辨率、8bit灰度图像,帧频高达200Hz的设计 目标。The embodiment of the present invention makes up for the lack of real-time display of high frame rate and high grayscale images by using DMD in the field of hardware-in-the-loop simulation in China. Firstly, the traditional PWM algorithm is optimized, so that the DMD can display 8bit grayscale images with a frame rate of over 200Hz. Then a data cache method based on DDR2 SDRAM block storage is proposed, which solves the data cache problem of DMD in the process of image format conversion and grayscale modulation of high frame rate dynamic images. Finally, the design goal of DMD real-time display of XGA resolution, 8bit grayscale images and frame frequency up to 200Hz was realized.
附图说明Description of drawings
图1为本发明的DMD高帧频高分辨率同步动态显示系统模块框图。Fig. 1 is a module block diagram of the DMD high frame rate and high resolution synchronous dynamic display system of the present invention.
图2为本发明的控制模块的模块框图。Fig. 2 is a block diagram of the control module of the present invention.
图3为本发明一个具体实施方式中的DMD高帧频高分辨率同步动态显 示系统硬件结构图。Fig. 3 is a hardware structural diagram of the DMD high frame rate high resolution synchronous dynamic display system in a specific embodiment of the present invention.
图4为本发明实施例中的DMD连续加载过程中的时间关系图。Fig. 4 is a time relation diagram during the continuous loading process of the DMD in the embodiment of the present invention.
图5为本发明实施例中的传统PWM算法时序关系图。FIG. 5 is a time sequence diagram of a traditional PWM algorithm in an embodiment of the present invention.
图6为本发明实施例中的清零复位法的操作流程图。FIG. 6 is an operation flowchart of the clearing and resetting method in the embodiment of the present invention.
图7为本发明实施例中的清零复位法时序关系图。FIG. 7 is a time sequence diagram of the clearing and resetting method in the embodiment of the present invention.
图8为“像素包”格式转换为“位平面”格式的格式转换示意图。FIG. 8 is a schematic diagram of format conversion from a "pixel packet" format to a "bit plane" format.
图9为本发明的分块存储的DDR2 SDRAM的存储空间划分示意图。FIG. 9 is a schematic diagram of the storage space division of the block-stored DDR2 SDRAM of the present invention.
图10为本发明的分块缓存的数据流向示意图。FIG. 10 is a schematic diagram of the data flow of the block cache according to the present invention.
图11为本发明的并串转换示意图。FIG. 11 is a schematic diagram of the parallel-to-serial conversion of the present invention.
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步的详细描述。但不应将此理 解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实 现的技术均属于本发明的范围。The present invention will be further described in detail below in combination with specific embodiments. But this should not be interpreted as that the scope of the above-mentioned theme of the present invention is limited to the following embodiments, and all technologies realized based on the content of the present invention all belong to the scope of the present invention.
实施例一Embodiment one
本实施例以图像灰度等级8bit,显示帧频200Hz为例进行说明。In this embodiment, the image gray level is 8 bits, and the display frame frequency is 200 Hz as an example for illustration.
图1为本发明的DMD高帧频高分辨率同步动态显示系统模块框图,包 括:上位机1、接口模块2、控制模块3、数字微镜器件4;Fig. 1 is a DMD high frame frequency high resolution synchronous dynamic display system module block diagram of the present invention, comprising: host computer 1, interface module 2, control module 3, digital micromirror device 4;
所述上位机1连接所述接口模块2,用于发送特定帧频的图像数据;The host computer 1 is connected to the interface module 2 for sending image data at a specific frame rate;
所述接口模块2连接所述控制模块3,用于接收所述特定帧频的图像数 据,并对所述图像数据进行解码;The interface module 2 is connected to the control module 3, for receiving the image data of the specific frame rate, and decoding the image data;
所述控制模块3连接所述数字微镜器件4,用于对解码后的图像数据进 行灰度调制和格式转换处理,以满足所述数字微镜器件4的显示帧频和显 示格式,并将处理后的图像数据加载到所述数字微镜器件4;The control module 3 is connected to the digital micromirror device 4, and is used to perform grayscale modulation and format conversion processing on the decoded image data, so as to meet the display frame rate and display format of the digital micromirror device 4, and The processed image data is loaded into the digital micromirror device 4;
所述数字微镜器件4用于显示所述处理后的图像数据。The digital micromirror device 4 is used to display the processed image data.
参看图2,所述控制模块3包括控制处理器31、DMD驱动单元32、存 储单元33;Referring to Fig. 2, described control module 3 comprises control processor 31, DMD driving unit 32, storage unit 33;
所述控制处理器31用于对所述解码后的图像数据进行灰度调制,将调 制后的灰度值图像转换为位平面图像;The control processor 31 is used to perform grayscale modulation on the decoded image data, and convert the modulated grayscale value image into a bit plane image;
所述DMD驱动单元32连接所述控制处理器31,用于将所述位平面图 像加载到所述数字微镜器4件;Described DMD driving unit 32 is connected described control processor 31, is used for loading described bit plane image to described digital micromirror device 4;
所述存储单元33连接所述控制处理器31,用于存储所述解码后的图像 数据、所述多灰度值图像数据、所述位平面图像数据中的至少一种。The storage unit 33 is connected to the control processor 31, and is used for storing at least one of the decoded image data, the multi-grayscale image data, and the bit-plane image data.
所述存储单元包括至少两个子空间,每个所述子空间包括多个位平面 空间,其中,所述位平面空间数根据像素数据的位宽确定。其中,像素数 据即为待存储的图像灰度值的位宽。在本实施例中以图像灰度等级8bit为 例,因此位平面空间数即为8个。The storage unit includes at least two subspaces, each of which includes a plurality of bit plane spaces, wherein the number of bit plane spaces is determined according to the bit width of the pixel data. Among them, the pixel data is the bit width of the gray value of the image to be stored. In this embodiment, an image gray level of 8 bits is taken as an example, so the number of bit plane spaces is 8.
首先介绍本发明的硬件组成。本发明硬件部分按照功能划分,可分为 数据传输和系统控制两个模块。数据传输的内容主要包含图像信号和与其 同步的控制信号,数据通道存在于上位机、DMD以及显示器与控制核心 FPGA之间,系统控制部分主要负责实现DMD灰度调制算法以及控制DMD 进行准确显示。本实施例中,本发明硬件系统框图如图3所示。First introduce the hardware composition of the present invention. The hardware part of the present invention can be divided into two modules according to functions, data transmission and system control. The content of data transmission mainly includes the image signal and its synchronous control signal. The data channel exists between the host computer, DMD, display and control core FPGA. The system control part is mainly responsible for realizing the DMD gray-scale modulation algorithm and controlling the DMD for accurate display. In this embodiment, the block diagram of the hardware system of the present invention is shown in FIG. 3 .
控制模块的核心控制处理器为FPGA(Field-Programmable Gate Array 现场可编程门阵列);接口模块具有HDMI(High Definition Multimedia Interface高清晰度多媒体接口)和DVI(Digital Visual Interface数字视频接 口)dual link两种数据传输接口,用于满足不同的数据传输需求。The core control processor of the control module is FPGA (Field-Programmable Gate Array Field Programmable Gate Array); the interface module has HDMI (High Definition Multimedia Interface) and DVI (Digital Visual Interface) dual link Various data transmission interfaces are used to meet different data transmission requirements.
具体的,接口模块主要负责接收上位机的高频实时图像,并向显示器 输出一路经过降帧的低频图像。本发明的上位机传输的实时图像帧频高达 200Hz,以上位机NVIDIA显卡输出的VESA(Video Electronics Standards Association视频电子标准协会)时序进行计算,像素时钟为250MHz,即 使通过手动自定义时序来降低像素时钟,单考虑到时序的稳定性,像素时 钟也不会低于200MHz。因此接口必须支持超过200MHz像素时钟的图像的 传输。目前计算机的视频输出接口中,最常见的是DVI和HDMI,这两者 都是高带宽纯数字接口,并且各有特点。为了满足不同的应用需求,本发 明在接口模块的视频输入端设计了DVI和HDMI两种接口,用于接收上位 机图像。为了便于调试以及监视系统的工作情况,本发明还设计了一路 HDMI输出接口,将其连接至显示器。Specifically, the interface module is mainly responsible for receiving high-frequency real-time images from the host computer, and outputting a low-frequency image that has undergone frame reduction to the display. The real-time image frame frequency transmitted by the host computer of the present invention is as high as 200Hz, and the VESA (Video Electronics Standards Association Video Electronics Standards Association) timing output by the upper computer NVIDIA graphics card is calculated, and the pixel clock is 250MHz, even if the pixel clock is reduced by manually customizing the timing Clock, considering the stability of timing alone, the pixel clock will not be lower than 200MHz. Therefore the interface must support the transmission of images with a pixel clock exceeding 200MHz. Among the video output interfaces of computers at present, the most common ones are DVI and HDMI, both of which are high-bandwidth pure digital interfaces, and each has its own characteristics. In order to meet different application requirements, the present invention designs two interfaces, DVI and HDMI, at the video input end of the interface module for receiving images from the upper computer. In order to facilitate debugging and monitor the working conditions of the system, the present invention also designs one HDMI output interface, which is connected to the display.
本发明的DMD高帧频高分辨率同步动态显示系统在数据的输入端设 计了满足高带宽图像实时传输需求的高速视频传输接口模块。其中DVI双 链路接口和HDMI接口传输RGB 8bit图像的像素时钟最高可达300MHz, 支持传输XGA分辨率图像帧频可达200Hz以上。为了便于调试和监视系统 工作状况,接口板还添加了HDMI输出接口,连接至显示器。The DMD high frame rate and high resolution synchronous dynamic display system of the present invention has designed a high-speed video transmission interface module meeting the real-time transmission requirements of high-bandwidth images at the input end of the data. Among them, the DVI dual-link interface and HDMI interface can transmit RGB 8bit images with a pixel clock of up to 300MHz, and support the transmission of XGA resolution images with a frame frequency of up to 200Hz. In order to facilitate debugging and monitor the working status of the system, the interface board also adds an HDMI output interface, which is connected to the monitor.
根据上述设计方案,接口模块上设计了两路HDMI接口,一路作为输 入另一路作为输出。其中HDMI的输入芯片选用的是ADI公司的ADV7619, 该芯片支持HDMI1.4版本,图像颜色深度最高可达36bit。物理结构上, ADV7619同时支持两个接口输入,输出图像颜色深度24bit情况下,像素 时钟最高可达300MHz。ADV7619与FPGA之间数据传输,如果想要使像 素时钟达到300MHz,其数据传输时序与DVI双链路类似,同样采用奇数 和偶数像素分开传输的方式。这种方式虽然会导致数据总线位宽增加,占 用更多芯片IO(Input/Output输入/输出)管脚,但是数据的传输速率会降 低,有助于提升数据传输的稳定性。According to the above design scheme, two HDMI interfaces are designed on the interface module, one as input and the other as output. Among them, the input chip of HDMI is ADV7619 of ADI Company, which supports HDMI1.4 version, and the image color depth can reach up to 36bit. In terms of physical structure, ADV7619 supports two interface inputs at the same time. When the output image color depth is 24bit, the pixel clock can reach up to 300MHz. For data transmission between ADV7619 and FPGA, if you want to make the pixel clock reach 300MHz, the data transmission timing is similar to that of DVI dual link, and the odd and even pixels are also transmitted separately. Although this method will increase the bit width of the data bus and occupy more chip IO (Input/Output input/output) pins, the data transmission rate will be reduced, which helps to improve the stability of data transmission.
对于HDMI输出芯片的选择,本发明采用了Silicon Image公司的 SiI9136-3,该芯片支持HDMI1.4版本,图像颜色深度最高支持48bit,像素 时钟同样最高支持300MHz。在RGB格式,24bit颜色深度情况下,这两款 芯片的数据格式都是R[23:16]、G[15:8]、B[7:0]。将RGB通道赋成相同的 值,那么显示器上就会出现灰度图像。以8bit灰度图像为例,在图像输入 的时候可以选用24bit通道的任意8bit作为有效数据输入位,在监视输出的 时候,可以将8bit数据分别给RGB三个通道赋值,输出给显示器。For the selection of HDMI output chip, the present invention has adopted SiI9136-3 of Silicon Image company, and this chip supports HDMI1.4 version, and image color depth supports 48bit at the highest, and pixel clock supports 300MHz at the highest equally. In the case of RGB format and 24bit color depth, the data formats of these two chips are R[23:16], G[15:8], B[7:0]. Assign the RGB channels to the same value, and a grayscale image will appear on the monitor. Taking the 8bit grayscale image as an example, any 8bit of the 24bit channel can be selected as the effective data input bit when the image is input, and the 8bit data can be assigned to the three channels of RGB and output to the display when monitoring the output.
在调试和工作过程中,需要用显示器监视算法输出结果。由于当前市 场上的显示器显示图像的最高帧频大多低于100Hz,而本系统图像帧频为 200Hz,所以在监视图像输出的时候需要对图像进行降帧。为了简化逻辑, 本发明对图像进行了整数倍的降帧,将图像帧频降到50Hz。In the process of debugging and working, it is necessary to monitor the output results of the algorithm with a monitor. Since the highest frame rate of images displayed by monitors currently on the market is mostly lower than 100Hz, while the image frame rate of this system is 200Hz, it is necessary to downframe the image when monitoring image output. In order to simplify the logic, the present invention down-frames the image by an integer multiple, reducing the frame frequency of the image to 50 Hz.
经过降帧的图像,还是以VESA时序标准进行输出,由FPGA输出至 HDMI发送芯片SiI9136-3,在SiI9136-3内部,将FPGA发送来的数据编码 成适合接口高速传输的TMDS(Transition-minimized differential signaling最 小化传输差分信号)格式,送至显示器。在ADV7619和SiI9136-3工作之 前,还需要FPGA通过I2C(Inter-Integrated Circuit)总线(由时钟SCL 和数据总线SDA构成)对芯片进行配置,使其处于当前所需的工作模式。The frame-down image is still output according to the VESA timing standard, and is output from the FPGA to the HDMI sending chip SiI9136-3. Inside the SiI9136-3, the data sent by the FPGA is encoded into a TMDS (Transition-minimized differential) suitable for high-speed transmission of the interface. signaling minimized transmission differential signal) format, sent to the display. Before ADV7619 and SiI9136-3 work, the FPGA also needs to configure the chip through the I2C (Inter-Integrated Circuit) bus (composed of clock SCL and data bus SDA) to make it in the current required working mode.
具体的,控制模块是整个系统的控制核心,主要负责DMD灰度调制算 法和视频图像降帧算法的实现以及DMD的显示驱动等工作。控制模块的核 心控制处理器为Xilinx公司的一款Virtex-5LX系列(XC5VLX50)FPGA, 外挂一个金士顿公司的DDR2 SDRAM(KTL-TP667/2G)高速存储器。控 制模块通过板对板高速接口(QTE-060-01)与接口模块相连,进行数据通 信。Specifically, the control module is the control core of the whole system, mainly responsible for the realization of the DMD grayscale modulation algorithm and the video image frame reduction algorithm, as well as the display driver of the DMD. The core control processor of the control module is a Virtex-5LX series (XC5VLX50) FPGA of Xilinx Company, and a DDR2 SDRAM (KTL-TP667/2G) high-speed memory of Kingston Company is plugged in. The control module is connected with the interface module through the board-to-board high-speed interface (QTE-060-01) for data communication.
上位机将图像由显卡以TMDS格式送至DVI和HDMI接口,图像数据 被DVI和HDMI解码芯片解码后通过QTE-060-01接口送至控制核心板的 FPGA。FPGA根据接收到的数据结合DDR2 SDRAM完成DMD灰度调制 和降帧算法的运算,并分别驱动DMD和HDMI编码芯片将算法结果输出 显示。The upper computer sends the image from the graphics card to the DVI and HDMI interface in TMDS format, and the image data is decoded by the DVI and HDMI decoding chip and then sent to the FPGA of the control core board through the QTE-060-01 interface. According to the received data, FPGA completes the operation of DMD grayscale modulation and frame reduction algorithm in combination with DDR2 SDRAM, and drives the DMD and HDMI encoding chips to output and display the algorithm results.
DMD的驱动指令被送至DMD芯片组中的DMD控制器DLPC410,由 DLPC410结合DMD驱动器DAD2000共同控制DMD进行显示。经过降帧 的图像数据按照VESA标准通过QTE-060-01接口被送至接口板的HDMI 编码芯片SII9136-3,SII9136-3在对图像数据进行编码后以TMDS格式送至 显示器进行显示。The DMD driving instruction is sent to the DMD controller DLPC410 in the DMD chipset, and the DMD is jointly controlled by the DLPC410 and the DMD driver DAD2000 to display. The frame-down image data is sent to the HDMI encoding chip SII9136-3 of the interface board through the QTE-060-01 interface according to the VESA standard. After encoding the image data, the SII9136-3 sends it to the monitor in TMDS format for display.
对于DMD灰度显示算法,灰度是表示图像的一个重要指标,灰度等级 越高,图像层次越丰富,画面越柔和。对于一幅黑白图像而言,灰度等级 体现的是像素点由白到黑之间的亮度层次。人的视觉系统对亮度强弱的判 断由多种因素决定,除了发光物体本身的亮度强弱之外,还与发光物体的 发光时间和发光面积有关。对于快速闪烁的发光体,人眼和探测器都会产 生一定的“视觉暂留”效应。利用这种“视觉暂留”效应,可以通过改变 发光体的点亮时间,达到产生不同灰度图像的目的,从而实现图像的灰度 调制。在一定距离外,对于非常弱小的发光体,通过改变点亮发光体的面 积,也可以达到改变视觉灰度的效果。DMD的两种工作状态“开”和“关”, 只代表了像素值的“0”和“1”,投影出来得到的是一幅二值图像,其灰 度位宽只有1bit。要想让DMD显示多bit灰度等级,需要对DMD进行灰 度调制。DMD主要基于时间和空间两方面进行灰度调制,所以其灰度调制 方式也主要可以分为空间灰度调制和时间灰度调制两类。For the DMD grayscale display algorithm, the grayscale is an important index to represent the image. The higher the grayscale, the richer the image layer and the softer the picture. For a black and white image, the gray scale reflects the brightness level of pixels from white to black. The human visual system's judgment on the intensity of brightness is determined by many factors, in addition to the brightness of the luminous object itself, it is also related to the luminous time and luminous area of the luminous object. For fast flickering illuminants, both human eyes and detectors will produce a certain "persistence of vision" effect. Using this "persistence of vision" effect, the purpose of generating different grayscale images can be achieved by changing the lighting time of the illuminant, thereby realizing the grayscale modulation of the image. At a certain distance, for a very weak illuminant, the effect of changing the visual gray scale can also be achieved by changing the area of the illuminated illuminant. The two working states of DMD "on" and "off" only represent "0" and "1" of the pixel value, and what is projected out is a binary image with a gray bit width of only 1 bit. To make the DMD display multi-bit gray levels, the DMD needs to be gray-scale modulated. DMD mainly performs grayscale modulation based on two aspects of time and space, so its grayscale modulation methods can be mainly divided into two types: spatial grayscale modulation and time grayscale modulation.
空间灰度调制优点是控制简单,单帧图像中,微镜不需要翻转,图像 的帧频可以达到很高。但是它又有不可避免的缺陷,首先像素单元分割成 的“子像素”个数有限,导致它不能显示较高的灰度。其次,它扩大像素 单元面积来提升灰度等级,导致图像的分辨率下降,在保持高分辨率的前 提下,现有规格DMD很难提升太多灰度等级。因此本发明采用时间灰度调 制。The advantage of spatial grayscale modulation is that it is easy to control. In a single frame image, the micromirror does not need to be flipped, and the frame rate of the image can reach a high level. But it has unavoidable defects. First, the pixel unit is divided into a limited number of "sub-pixels", which makes it unable to display higher gray levels. Secondly, it expands the pixel unit area to increase the gray level, resulting in a decrease in the resolution of the image. On the premise of maintaining high resolution, it is difficult for the existing specification DMD to increase too much gray level. Therefore, the present invention adopts time grayscale modulation.
具体的,本发明采用PWM(Pulse Width Modulation脉冲宽度调制) 算法进行灰度调制。Specifically, the present invention uses a PWM (Pulse Width Modulation) algorithm to perform grayscale modulation.
一般的,在本发明的技术领域中,分辨率大于1024×768,帧频1bit 32000hz以上,8bit实时同步可达到200hz以上,不实时同步可达到400hz 以上可以认为是高帧频、高分辨率。本发明的图像灰度要求为8bit,显示帧 频为200Hz,传统的PWM算法很难达到本发明的帧频要求,因此本发明提 供一种PWM优化算法。Generally, in the technical field of the present invention, a resolution greater than 1024×768, a frame frequency of 1 bit above 32000hz, an 8bit real-time synchronization of above 200hz, and a non-real-time synchronization of above 400hz can be regarded as high frame frequency and high resolution. The image grayscale requirement of the present invention is 8bit, and the display frame frequency is 200Hz, and the traditional PWM algorithm is difficult to meet the frame frequency requirement of the present invention, so the present invention provides a PWM optimization algorithm.
由于限制DMD帧频的主要因素是DMD的数据加载和“复位”所消耗 的时间。而选用的DMD数据传输时钟最大为400Mhz,DMD完成一次完 整的数据更新,最少需要30.72us,接收“微镜定时脉冲”进行复位需要5us, 复位后还需要8us的微镜稳定时间,复位期间和微镜稳定时间内都不能加载 新的数据。图4所示为DMD连续加载过程中的时间关系。由图可知一个帧 显示的最小时间是30.72us+8us=38.72us。The main factor limiting DMD frame rate is the time consumed by DMD data loading and "resetting". The selected DMD data transmission clock is up to 400Mhz. It takes at least 30.72us for DMD to complete a complete data update. It takes 5us to reset after receiving the "micromirror timing pulse", and 8us for micromirror stabilization time after reset. No new data can be loaded within the micromirror stabilization time. Figure 4 shows the time relationship during the continuous loading of DMD. It can be seen from the figure that the minimum time for displaying a frame is 30.72us+8us=38.72us.
如果采用传统PWM算法来显示8bit灰度的图像,需要将原图像分成8 个“位平面”,对DMD进行8次数据加载和“复位”,为了保证图像显示 的连续性,需要在当前位平面的显示时间内完成下一个位平面的数据加载 工作。所以“基本位平面”的显示时间t应当满足t≥38.72us。为了计算 8bit图像的极限帧频,这里假设t=38.72us。If the traditional PWM algorithm is used to display an 8-bit grayscale image, the original image needs to be divided into 8 "bit planes", and data loading and "resetting" of the DMD are performed 8 times. In order to ensure the continuity of the image display, the current bit plane needs to be The data loading work of the next bit plane is completed within the display time. Therefore, the display time t of the "basic bit plane" should satisfy t≥38.72us. In order to calculate the limit frame rate of 8bit image, it is assumed here that t=38.72us.
DMD首先进行位平面0数据的加载,数据加载完毕后向DMD发送“微 镜定时脉冲”,使微镜复位并进入“微镜稳定时间”,等待微镜稳定后开 始位平面1数据的加载,这期间DMD显示的是位平面0的数据。位平面1 数据加载完成之后,位平面0的显示时间刚好结束,立刻向DMD发送“微 镜定时脉冲”使微镜复位,复位结束后进入位平面1的显示时间,这个时 间按照PWM算法原理,应当是2t((30.72us×2)us),这个时间足够完成 位平面2数据的加载。位平面1显示时间结束后,位平面2的数据加载早 已完成,立刻向DMD发送“微镜定时脉冲”使微镜复位,进入位平面2 的显示时间。以此类推在上一个位平面显示时间内完成下一个位平面的数 据加载工作,这样才能保证图像显示的连续性。传统PWM算法时序关系具 体如图5所示。The DMD first loads the bit plane 0 data, and after the data is loaded, sends a "micromirror timing pulse" to the DMD to reset the micromirror and enter the "micromirror stabilization time", wait for the micromirror to stabilize and start loading the bit plane 1 data, During this period, DMD displays the data of bit plane 0. After the data loading of bit plane 1 is completed, the display time of bit plane 0 is just over. Immediately send a "micromirror timing pulse" to the DMD to reset the micromirror. After the reset, enter the display time of bit plane 1. This time is according to the principle of PWM algorithm. It should be 2t((30.72us×2)us), which is enough time to complete the loading of bit plane 2 data. After the display time of bit plane 1 is over, the data loading of bit plane 2 has already been completed, and a "micromirror timing pulse" is sent to the DMD immediately to reset the micromirror, and enter the display time of bit plane 2. By analogy, the data loading work of the next bit plane is completed within the display time of the previous bit plane, so as to ensure the continuity of image display. The timing relationship of the traditional PWM algorithm is shown in Figure 5.
等待位平面7显示完成后,一幅8bit灰度图像的PWM调制才算结束。 整个过程,消耗时间tp1等于所有的位平面显示时间td和复位时间tr之和。其 计算方法为:After waiting for the display of bit plane 7 to be completed, the PWM modulation of an 8-bit grayscale image is considered to be completed. In the whole process, the consumption time t p1 is equal to the sum of all bit plane display time t d and reset time t r . Its calculation method is:
tp1=tr+td t p1 =t r +t d
=(5×8+255×38.72)us =(5×8+255×38.72)us
=9913.6us =9913.6us
可得帧频为:The available frame rate is:
fp1=1/tp1=100.9Hzf p1 =1/t p1 =100.9Hz
通过分析可以得出,传统的PWM算法,8bit灰度图像帧频的显示极限 是100.9Hz,难以满足本发明的设计需求。所以必须在PWM算法的基础上 进行优化。Can draw by analysis, traditional PWM algorithm, the display limit of 8bit grayscale image frame frequency is 100.9Hz, is difficult to satisfy the design requirement of the present invention. So it must be optimized on the basis of PWM algorithm.
本发明采用清零复位法对PWM算法进行优化。The invention optimizes the PWM algorithm by adopting a zero-resetting method.
在全局复位的模式下,设定基本位平面的显示时间为t=18us,利用“块 清零”操作对整个DMD清零需要消耗0.64us。每次复位后需要等待8us的 微镜稳定时间,在此期间DMD不能进行数据更新。只有当位平面的显示时 间大于38.72us时,才能满足在当前位平面显示期间完成下一个位平面数据 的加载工作。否则,在位平面显示时间结束时,将微镜数据清零、复位, 使微镜处于关闭状态,图像显示处于消隐区。从位平面2开始,位平面显 示时间都会大于38.72us,所以只需在前两个位平面显示的时候进行“块清 零”操作。清零复位法的操作流程如图6所示。In the global reset mode, set the display time of the basic bit plane as t=18us, and use the "block clear" operation to clear the entire DMD to consume 0.64us. After each reset, it is necessary to wait for the micromirror stabilization time of 8us, during which the DMD cannot perform data update. Only when the display time of the bit plane is longer than 38.72us, can the loading work of the next bit plane data be completed during the display period of the current bit plane. Otherwise, at the end of the display time of the bit plane, the data of the micromirror is cleared and reset, so that the micromirror is in the closed state, and the image display is in the blanking area. Starting from bit plane 2, the bit plane display time will be greater than 38.72us, so it is only necessary to perform the "block clear" operation when the first two bit planes are displayed. The operation flow of the clear reset method is shown in Figure 6.
图7所示为清零复位法的时序关系。首先向DMD加载位平面0的数据, 然后在其显示了17.36us时,向DMD所有块发送“块清零”操作,0.64us 后清零操作完成,接着向DMD发送“微镜定时脉冲”使其复位,此时DMD 位平面0的显示结束,DMD处于BLANK状态,显示全黑。微镜清零复位 后等待8us的微镜稳定时间,然向DMD加载位平面1的数据,同样耗时 30.72us,数据加载完毕后使DMD复位,DMD将会显示位平面1,位平面 1显示了35.36us后,同样对DMD所有块进行“块清零”操作。在DMD 的第二个BLANK区间内加载位平面2的数据,位平面2的显示时间是72us, 显示时间大于38.72us,所以后面的位平面显示过程中,不必再进行“块清零”操作。Figure 7 shows the timing relationship of the clear reset method. First load the data of bit plane 0 to the DMD, and then send the "block clear" operation to all blocks of the DMD when it displays 17.36us, and the clear operation is completed after 0.64us, and then send the "micromirror timing pulse" to the DMD to enable It is reset, and at this time the display of DMD bit plane 0 ends, DMD is in BLANK state, and the display is completely black. Wait for 8us for the micromirror to stabilize after clearing and resetting the micromirror, and then load the data of bit plane 1 to the DMD, which also takes 30.72us. After 35.36us, the "block clear" operation is also performed on all blocks of the DMD. Load the data of bit plane 2 in the second BLANK section of DMD, the display time of bit plane 2 is 72us, and the display time is longer than 38.72us, so there is no need to perform "block clear" operation in the subsequent bit plane display process.
清零复位法下,显示8bit图像所消耗的最小时间tp3计算式为:Under the clear reset method, the calculation formula of the minimum time t p3 consumed by displaying 8bit images is:
tp3=tr+td t p3 =t r +t d
=(5×8+255×18+43.72×2)us =(5×8+255×18+43.72×2)us
=4717.44us =4717.44us
帧频为:The frame rate is:
fp3=1/tp3=211.9Hzf p3 =1/t p3 =211.9Hz
通过计算可得,采用复位清零法后,DMD显示8bit图像的帧频达到了 211.9Hz,满足设计需求。复位清零法,虽然会在低两位的数据显示过程中 出现短暂的BLANK区间,但是BLANK时间很短,占有效显示时间的3.5%, 所以对图像灰度精度的影响并不是很大,可以忽略不计。因此发明采用复 位清零法来作为DMD的8bit灰度调制算法。为了匹配上位机200Hz的图 像帧频,本发明在实现的过程中将基本位平面的显示时间设为19.11us。图 像显示时间tp4计算公式为:It can be obtained through calculation that after adopting the method of resetting and clearing, the frame frequency of DMD displaying 8bit images reaches 211.9Hz, which meets the design requirements. Reset reset method, although there will be a brief BLANK interval during the display process of the lower two bits of data, but the BLANK time is very short, accounting for 3.5% of the effective display time, so the impact on the image grayscale accuracy is not great, you can can be ignored. Therefore, the invention uses the reset and clear method as the 8-bit grayscale modulation algorithm of the DMD. In order to match the 200Hz image frame rate of the upper computer, the present invention sets the display time of the basic bit plane to 19.11us during the implementation process. The formula for calculating the image display time t p4 is:
tp4=tr+td t p4 =t r +t d
=(5×8+255×19.11+43.72×2)us =(5×8+255×19.11+43.72×2)us
=5000.49us =5000.49us
极限帧频为:The limit frame rate is:
fp4=1/tp4=200.0Hzf p4 =1/t p4 =200.0Hz
现有的PWM算法基本位平显示时间过长,限制了DMD显示高灰度图 像的帧频,本发明利用DMD的清零复位操作,对传统的PWM算法进行了 优化,将基本位平面时间降低到19.11us,使得图像帧频达到200Hz以上, 满足系统的设计需求。The existing PWM algorithm’s basic bit-level display time is too long, which limits the frame rate of the DMD to display high-gray images. to 19.11us, making the image frame frequency reach more than 200Hz, which meets the design requirements of the system.
由于基于PWM算法的DMD的显示原理要求数据加载是以位平面的形 式,将一帧图像分成若干个位平面依次显示,位平面的个数决定了图像的 灰度等级。由于输入和输出图像的数据格式不同,这就需要在DMD显示之 前对接收到的上位机的图像进行格式转换,把基于VESA标准的“像素包” 格式的图像信号转换为适用于DMD显示的“位平面”格式的图像信号。Because the display principle of DMD based on PWM algorithm requires data loading in the form of bit planes, a frame of image is divided into several bit planes to be displayed sequentially, and the number of bit planes determines the gray level of the image. Since the data formats of the input and output images are different, it is necessary to convert the format of the image received from the host computer before the DMD display, and convert the image signal based on the VESA standard "pixel packet" format into a "pixel packet" format suitable for DMD display. bit plane” format image signal.
图8所示为格式转换的示意图。左侧为一个像素灰度值位宽为8bit,遵 循VESA时序的“像素包”格式的图像,经过格式转换得到8个位平面。 位平面0就相当于由原图像所有像素的最低位组合在一起所形成的一幅二 值图像,其它位平面本质上也是与原图像对应的“位”所组成的二值图像。Figure 8 is a schematic diagram of format conversion. On the left is an image in the “Pixel Pack” format with a pixel gray value bit width of 8 bits and following the VESA timing sequence. After format conversion, 8 bit planes are obtained. Bit plane 0 is equivalent to a binary image formed by combining the lowest bits of all pixels in the original image, and other bit planes are essentially binary images composed of "bits" corresponding to the original image.
对图像进行格式转换就相当于对图像数据进行了一次重组,那么在数 据重组的过程中不可避免的就是需要对数据进行缓存。FPGA内部存在一定 的Block RAM,具有操作方便,可控性强,逻辑简单,读写稳定等特点, 非常适合做高速数据的缓存。但是Block RAM毕竟是FPGA的内嵌资源, 存储空间有限。如前所述,本发明的系统在FPGA外部还有一块DDR2 SDRAM,它的容量足够,读写速率也很快,但是受限于FPGA硬核资源, 只挂载了一片DDR2 SDRAM,而且读写操作相对复杂,再加上PWM算法 的特殊性,使用外部存储器实现起来也有一定的难度。Converting the image format is equivalent to reorganizing the image data, so it is inevitable to cache the data during the data reorganization process. There is a certain Block RAM inside the FPGA, which has the characteristics of convenient operation, strong controllability, simple logic, and stable reading and writing. It is very suitable for high-speed data cache. However, Block RAM is an embedded resource of FPGA after all, and its storage space is limited. As mentioned above, the system of the present invention also has a piece of DDR2 SDRAM outside the FPGA. Its capacity is sufficient and its reading and writing speed is fast. The operation is relatively complicated, and coupled with the particularity of the PWM algorithm, it is also difficult to implement using an external memory.
本系统要求实时处理的图像数据量为XGA@200Hz,图像灰度值位宽 8bit。对于接受到的上位机图像数据,首先要做的就是将其存储起来。在数 据的存储方式的实现上,一种处理办法是整体存储,直接将其存到一起, 需要输出的时候,按位的读取每个数据,这样对整个存储空间反复读取8 次可以得到8个对应的位平面。另一种办法是分块存储,首先对其进行拆 分,然后分开存储。每个位平面存到一个单独的存储空间。The system requires that the amount of image data processed in real time is XGA@200Hz, and the bit width of the image gray value is 8bit. For the received host computer image data, the first thing to do is to store it. In the implementation of the data storage method, one way to deal with it is to store it as a whole, store it together directly, and read each data bit by bit when it needs to be output, so that the entire storage space can be read repeatedly 8 times to get 8 corresponding bit planes. Another approach is to block storage, first split it, and then store separately. Each bit plane is stored in a separate memory space.
采用整体存储时,由于DDR2 SDRAM数据总线的位宽为64bit,而像 素数据的位宽为8bit,如果存储器每次只存入8bit数据,会造成工作中数据 总线存在空闲的带宽浪费。为了充分利用存储器的传输带宽,在数据存储 之前,本发明对像素数据进行了串并转换,也就是数据合并。将连续的8 个像素合并为一个64bit数据,每8个像素进行一次写入,这样一帧图像一 共有98304个数据。在DMD进行数据加载的时候,需要得到的是位平面格 式的数据,而DDR2 SDRAM的读操作针对的是地址,每读取一个地址数 据都会得到一个DQ[63:0]。DQ[63:0]一共64bit数据,但是系统并不是全部 都需要,所以必须进行数据选择。例如进行位平面0加载的时候,读到的DQ[63:0]中只有DQ[0]、DQ[8]、DQ[16]、DQ[24]、DQ[32]、DQ[40]、DQ[48]、 DQ[56]属于位平面0的前8个像素,其余的都是其他7个位平面的数据。 对于其他的位平面加载也存在相同情况。在一个完整的PWM算法时间内, 需要对整帧图像的存储空间读取8次,分别得到8个位平面。When the overall storage is used, since the bit width of the DDR2 SDRAM data bus is 64 bits, and the bit width of the pixel data is 8 bits, if the memory only stores 8 bits of data each time, it will cause a waste of idle bandwidth in the data bus during work. In order to fully utilize the transmission bandwidth of the memory, the present invention performs serial-to-parallel conversion on the pixel data before data storage, that is, data merging. Combine 8 consecutive pixels into one 64bit data, and write every 8 pixels, so there are 98304 data in one frame of image. When DMD loads data, what needs to be obtained is the data in the bit plane format, while the read operation of DDR2 SDRAM is aimed at the address, and each time an address data is read, a DQ[63:0] will be obtained. DQ[63:0] has a total of 64bit data, but not all of them are required by the system, so data selection must be performed. For example, when loading bit plane 0, only DQ[0], DQ[8], DQ[16], DQ[24], DQ[32], DQ[40], DQ[48], DQ[56] belong to the first 8 pixels of bit plane 0, and the rest are the data of the other 7 bit planes. The same holds true for other bitplane loads. In a complete PWM algorithm time, the storage space of the entire image frame needs to be read 8 times to obtain 8 bit planes respectively.
由于在存储器读取过程中,每次得到的数据中存在56bit的无效数据, 这就造成了数据传输带宽的极大浪费,实际上数据传输带宽的有效利用率 只有12.5%。在该中操作方式下,若要满足DMD加载需求,需要DDR2 SDRAM的传输速率为98304÷30.72us=3.2GHz,这已经超出了DDR2 SDRAM的传输速率上限,即便目前最高等级的DDR4 SDRAM的数据传输速率也很难满足需求。所以整体存储虽然逻辑简单,但是在数据读取的时 候对DDR2 SDRAM传输带宽利用率过低。Since there are 56 bits of invalid data in the data obtained each time during the memory reading process, this causes a great waste of data transmission bandwidth. In fact, the effective utilization rate of the data transmission bandwidth is only 12.5%. In this mode of operation, to meet the DMD loading requirements, the transmission rate of DDR2 SDRAM needs to be 98304÷30.72us=3.2GHz, which has exceeded the upper limit of the transmission rate of DDR2 SDRAM, even the data transmission of the highest level DDR4 SDRAM The speed is also difficult to meet the demand. Therefore, although the overall storage logic is simple, the utilization rate of DDR2 SDRAM transmission bandwidth is too low when data is read.
为了解决上述方案数据传输带宽利用率过低的问题,本发明还提出了 数据分块存储的方式。采用分块存储的方式,需要在数据存储之前对数据 按位进行拆分,并在DDR2SDRAM内部对拆分后的数据分开存放。同样 为了充分利用DDR2 SDRAM的读写带宽,在数据写入之前,对于拆分后 的数据,同样需要进行串并转换,将连续的64个1bit数据合并成一个64bit 数据进行存读操作。为了保证数据处理的连续性,本发明采用乒乓存储的 方式,将整个存储器分成两个子空间,数据在向子空间1写入的过程中, 读取子空间2的上一帧数据,反过来数据向子空间2写入的过程中,读取 子空间1的上一帧数据,两个子空间交替读写保证数据处理的连续性。每 个子空间内部在又分成8个位平面空间。一个位平面包含1024×768×1bit 的数据,位平面空间的一个存储单元可以存放64bit数据,所以一个位平面 空间至少包含12288个存储单元。图9所示为分块存储情况下DDR2 SDRAM的存储空间划分。In order to solve the problem of low utilization rate of the data transmission bandwidth in the above scheme, the present invention also proposes a method of data block storage. In the way of block storage, it is necessary to split the data by bits before storing the data, and store the split data separately in the DDR2SDRAM. Similarly, in order to make full use of the read-write bandwidth of DDR2 SDRAM, before data is written, serial-to-parallel conversion is also required for the split data, and 64 consecutive 1-bit data are merged into one 64-bit data for storage and reading operations. In order to ensure the continuity of data processing, the present invention uses a ping-pong storage method to divide the entire memory into two subspaces. During the process of writing data to subspace 1, the last frame of data in subspace 2 is read, and the data is reversed. In the process of writing to subspace 2, the previous frame of data in subspace 1 is read, and the two subspaces read and write alternately to ensure the continuity of data processing. Each subspace is further divided into 8 bit plane spaces. A bit plane contains 1024×768×1bit data, and a storage unit in the bit plane space can store 64bit data, so a bit plane space contains at least 12288 storage units. Figure 9 shows the storage space division of DDR2 SDRAM in the case of block storage.
DDR2 SDRAM数据传输的高峰同样是DMD数据加载的过程中,采用 分块存储的方式,由于将原始数据进行了分割重组,使得在DMD数据加载 的时候每次读取DDR2 SDRAM得到的全是有效数据,只需要读取12288 个地址就可以得到一个完整的位平面。这个过程中DDR2 SDRAM的数据 传输速率为12288÷30.72us=400MHz。这个速率小于DDR2 SDRAM数 据传输上限,所以分块存储的方式虽然实现起来逻辑复杂但是可以极大的 减小DDR2 SDRAM数据传输的带宽压力,因而本发明采用了分块存储来 作为PWM算法中的数据缓存的方式。其数据流向框图如图10所示。The peak of DDR2 SDRAM data transmission is also in the process of DMD data loading, using the method of block storage, because the original data is divided and reorganized, so that when DMD data is loaded, all the data obtained by reading DDR2 SDRAM every time is valid data , only need to read 12288 addresses to get a complete bit plane. In this process, the data transfer rate of DDR2 SDRAM is 12288÷30.72us=400MHz. This rate is less than the upper limit of DDR2 SDRAM data transmission, so although the block storage method is complex in logic, it can greatly reduce the bandwidth pressure of DDR2 SDRAM data transmission, so the present invention uses block storage as the data in the PWM algorithm The way of caching. Its data flow block diagram is shown in Figure 10.
首先对接收到的上位机传来的8bit数据的每一位分别进行串并转换, 这个过程可以用RAM实现。由于一个RAM的转换比最多可到1:32,所以 本发明使用了两级FIFO级联的方式,每级RAM的转换比分别为1:16和 1:4,两级级联的转换比为1:64。经过串并转换的数据应该送入DDR2 SDRAM,首先乒乓操作选择单元会对子空间进行选择,选择空闲的子空间将数据存进去,被选中的子空间内的8个位平面空间会被逐个访问,分8 次将第一次串并转换得到的8个64bit数据依次存入对应的位平面空间。当 前帧数据存入DDR2 SDRAM的同时,另一个子空间也在配合DMD加载进 行位平面的输出,输出端同样也有一个乒乓操作选择单元,它会选择已经 更新完数据并停止输入的子空间进行输出,每次输出一个位平面空间的数 据送给DMD,在一帧图像的8个位平面加载时间内,从位平面空间0到位 平面空间7依次读完。Firstly, serial-to-parallel conversion is performed on each bit of the 8-bit data received from the host computer, and this process can be realized with RAM. Because the conversion ratio of a RAM can reach 1:32 at most, so the present invention has used the mode of two-stage FIFO cascading, and the conversion ratio of each stage RAM is respectively 1:16 and 1:4, and the conversion ratio of two-stage cascading is 1:64. The serial-to-parallel converted data should be sent to DDR2 SDRAM. First, the ping-pong operation selection unit will select the subspace, select the free subspace to store the data in, and the 8 bit plane spaces in the selected subspace will be accessed one by one. , and store the 8 pieces of 64-bit data obtained by the first serial-to-parallel conversion into the corresponding bit-plane space sequentially in 8 times. While the current frame data is stored in DDR2 SDRAM, another subspace is also outputting the bit plane in conjunction with DMD loading. There is also a ping-pong operation selection unit at the output end, which will select the subspace that has updated the data and stopped the input for output. , each time the data of one bit plane space is output to DMD, and the data from bit plane space 0 to bit plane space 7 are read sequentially within the loading time of 8 bit planes of a frame of image.
在DDR2 SDRAM的使用上,本发明采用了FPGA内置的MIG3.61 DDR2控制器,使用DDR2内核控制器能够使系统在控制DDR2 SDRAM工 作的过程中省去SDRAM读写过程中预充电、刷新等复杂的逻辑操作,只 需要按照用户接口的读写时序进行读写即可。In the use of DDR2 SDRAM, the present invention adopts the built-in MIG3.61 DDR2 controller of FPGA, and the use of DDR2 core controller can make the system save the complicated process of pre-charging and refreshing in the process of SDRAM reading and writing in the process of controlling the work of DDR2 SDRAM. Logical operations, only need to read and write according to the read and write timing of the user interface.
在进行数据输入输出时,DMD加载速率最高可达800MHz,在该速率 下DMD加载一个位平面耗时30.72us。这个时间是DMD数据更新的极限, 如果DMD加载速率达不到800MHz,那么DMD的数据加载时间将会延长, 也就是增加了DMD加载所消耗的时间,这将会降低DMD的显示帧频。同 时由PWM算法可知,DMD加载时间延长也会使清零复位过程中消隐时间 增加,从而影响DMD高灰度显示的精度。When performing data input and output, the DMD loading rate can reach up to 800MHz. At this rate, it takes 30.72us for DMD to load a bit plane. This time is the limit of DMD data update, if the DMD loading rate is less than 800MHz, then the DMD data loading time will be extended, that is, the time consumed by DMD loading will be increased, which will reduce the DMD display frame rate. At the same time, it can be seen from the PWM algorithm that the extension of the DMD loading time will also increase the blanking time during the reset reset process, thus affecting the accuracy of the DMD high grayscale display.
本发明利用复制多个处理模块来降低FPGA的运行速度的方式,使总 的数据处理速率不会降低。本发明在图像数据和控制信号的输出之前做了 并串转换,转换比例为4:1。DMD数据加载过程中的两路位宽16bit的LVDS 总线,在FPGA内部进行运算的过程中对应的是两个位宽64bit的数据信号 DATA_B[63:0]和DATA_B[63:0]。经过并串转换后,FPGA内部只需要 200MHz的运行速度就可以满足数据800MHz的数据输出。具体参看图11 所示的并串转换的示意图。The present invention utilizes the method of duplicating a plurality of processing modules to reduce the operating speed of the FPGA, so that the total data processing rate will not be reduced. The present invention performs parallel-to-serial conversion before the output of image data and control signals, and the conversion ratio is 4:1. The two LVDS buses with a bit width of 16 bits during the DMD data loading process correspond to two data signals DATA_B[63:0] and DATA_B[63:0] with a bit width of 64 bits during the operation process inside the FPGA. After parallel-to-serial conversion, the FPGA only needs a running speed of 200MHz to satisfy the data output of 800MHz. For details, refer to the schematic diagram of the parallel-to-serial conversion shown in Figure 11 .
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对 其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修 改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710692977.8A CN107659800A (en) | 2017-08-14 | 2017-08-14 | A kind of DMD high frame frequency and high resolutions synchronous dynamic display system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710692977.8A CN107659800A (en) | 2017-08-14 | 2017-08-14 | A kind of DMD high frame frequency and high resolutions synchronous dynamic display system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107659800A true CN107659800A (en) | 2018-02-02 |
Family
ID=61128340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710692977.8A Pending CN107659800A (en) | 2017-08-14 | 2017-08-14 | A kind of DMD high frame frequency and high resolutions synchronous dynamic display system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107659800A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109246363A (en) * | 2018-07-18 | 2019-01-18 | 中国科学院国家空间科学中心 | A kind of DMD system and its access method |
CN110262990A (en) * | 2019-07-03 | 2019-09-20 | 延锋伟世通汽车电子有限公司 | LVDS video source module and its application method |
CN110706633A (en) * | 2019-09-30 | 2020-01-17 | 哈尔滨新光光电科技股份有限公司 | DMD high-gray-level image display method and device |
CN110853566A (en) * | 2019-11-29 | 2020-02-28 | 京东方科技集团股份有限公司 | Driving method of silicon-based driving back plate and display device |
CN111770244A (en) * | 2020-07-30 | 2020-10-13 | 哈尔滨方聚科技发展有限公司 | A non-modulated DMD spatial light modulator imaging method |
CN113050385A (en) * | 2021-03-04 | 2021-06-29 | 苏州大学 | Gray image data storage method in DMD photoetching machine |
CN114710651A (en) * | 2022-03-28 | 2022-07-05 | 青岛海信激光显示股份有限公司 | Image display method, device and storage medium |
WO2023169162A1 (en) * | 2022-03-09 | 2023-09-14 | 青岛海信激光显示股份有限公司 | Image display method and apparatus, laser projection device, and storage medium |
CN117714655A (en) * | 2024-02-06 | 2024-03-15 | 长春理工大学 | An ultra-high frame rate projection method and device based on quaternary pulse width modulation |
WO2024165055A1 (en) * | 2023-02-08 | 2024-08-15 | 山东云海国创云计算装备产业创新中心有限公司 | Cooperative control method, system and device for grayscale image display |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101217672A (en) * | 2008-01-09 | 2008-07-09 | 浙江大学 | A high frame rate true color high resolution projection display method |
CN104301701A (en) * | 2014-11-12 | 2015-01-21 | 四川大学 | A Random Flip Digital Micromirror (DMD) Array System |
CN104535194A (en) * | 2015-01-15 | 2015-04-22 | 厦门理工学院 | Simulation device and method of infrared detector based on DMD |
CN106886132A (en) * | 2017-04-25 | 2017-06-23 | 电子科技大学 | A kind of scan-type photoetching machine gray-scale image exposure method based on DMD |
-
2017
- 2017-08-14 CN CN201710692977.8A patent/CN107659800A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101217672A (en) * | 2008-01-09 | 2008-07-09 | 浙江大学 | A high frame rate true color high resolution projection display method |
CN104301701A (en) * | 2014-11-12 | 2015-01-21 | 四川大学 | A Random Flip Digital Micromirror (DMD) Array System |
CN104535194A (en) * | 2015-01-15 | 2015-04-22 | 厦门理工学院 | Simulation device and method of infrared detector based on DMD |
CN106886132A (en) * | 2017-04-25 | 2017-06-23 | 电子科技大学 | A kind of scan-type photoetching machine gray-scale image exposure method based on DMD |
Non-Patent Citations (3)
Title |
---|
周浩: "基于FPGA的高帧频DMD驱动技术研究", 《中国优秀硕士学位论文全文数据库(电子期刊)信息科技辑》 * |
张宁: "基于DMD的大动态范围中波红外仿真系统研究", 《中国优秀硕士学位论文全文数据库(电子期刊)信息科技辑》 * |
范延滨,等: "《嵌入式系统原理与开发》", 31 March 2010 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109246363A (en) * | 2018-07-18 | 2019-01-18 | 中国科学院国家空间科学中心 | A kind of DMD system and its access method |
CN110262990A (en) * | 2019-07-03 | 2019-09-20 | 延锋伟世通汽车电子有限公司 | LVDS video source module and its application method |
CN110706633A (en) * | 2019-09-30 | 2020-01-17 | 哈尔滨新光光电科技股份有限公司 | DMD high-gray-level image display method and device |
CN110853566B (en) * | 2019-11-29 | 2023-06-13 | 京东方科技集团股份有限公司 | Driving method of silicon-based driving backboard and display device |
CN110853566A (en) * | 2019-11-29 | 2020-02-28 | 京东方科技集团股份有限公司 | Driving method of silicon-based driving back plate and display device |
CN111770244A (en) * | 2020-07-30 | 2020-10-13 | 哈尔滨方聚科技发展有限公司 | A non-modulated DMD spatial light modulator imaging method |
CN111770244B (en) * | 2020-07-30 | 2022-10-04 | 哈尔滨方聚科技发展有限公司 | A non-modulated DMD spatial light modulator imaging method |
CN113050385A (en) * | 2021-03-04 | 2021-06-29 | 苏州大学 | Gray image data storage method in DMD photoetching machine |
WO2023169162A1 (en) * | 2022-03-09 | 2023-09-14 | 青岛海信激光显示股份有限公司 | Image display method and apparatus, laser projection device, and storage medium |
CN114710651A (en) * | 2022-03-28 | 2022-07-05 | 青岛海信激光显示股份有限公司 | Image display method, device and storage medium |
CN114710651B (en) * | 2022-03-28 | 2024-04-05 | 青岛海信激光显示股份有限公司 | Image display method, device and storage medium |
WO2024165055A1 (en) * | 2023-02-08 | 2024-08-15 | 山东云海国创云计算装备产业创新中心有限公司 | Cooperative control method, system and device for grayscale image display |
CN117714655A (en) * | 2024-02-06 | 2024-03-15 | 长春理工大学 | An ultra-high frame rate projection method and device based on quaternary pulse width modulation |
CN117714655B (en) * | 2024-02-06 | 2024-04-09 | 长春理工大学 | Ultra-high frame rate projection method and device based on quaternary pulse width modulation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107659800A (en) | A kind of DMD high frame frequency and high resolutions synchronous dynamic display system | |
CN105393209B (en) | Show association's processing | |
US9165537B2 (en) | Method and apparatus for performing burst refresh of a self-refreshing display device | |
TWI424418B (en) | Color sequential display and power-saving method thereof | |
US11721272B2 (en) | Display driving integrated circuit, display device and method of operating same | |
GB2489102A (en) | Method of controlling sparse refresh of a self-refreshing display device coupled to a graphics controller. | |
EP1999740A2 (en) | System, method, and computer program product for controlling stereo glasses shutters | |
CN111613173A (en) | Display driving system, display module, driving method of display screen and electronic device | |
CN112397003B (en) | Display device and driving method thereof | |
CN110751924A (en) | Micro-LED display screen controlled in split screen mode | |
CN104038719A (en) | Video frame-based ultrahigh-definition video display system and method | |
CN113851091A (en) | Electronic ink display screen refreshing method and display system | |
CN102520901B (en) | Data acquisition and storage method, data acquisition and storage system and data acquisition and storage device for naked eye 3D (three-dimensional) display | |
CN101958084A (en) | Miniature intelligent infrared remote control LED character display screen and character display method thereof | |
CN109637438A (en) | A kind of update method of display control parameter, driving chip | |
CN100555401C (en) | Control signal generating circuit and method for display device | |
Tsai et al. | FPGA-based control system for real-time driving of UHD Micro-LED display with color calibration | |
CN113050385B (en) | Gray image data storage method in DMD photoetching machine | |
CN215868589U (en) | A driving device for amplitude type spatial light modulator | |
CN211507077U (en) | LED display screen control system | |
CN104282341A (en) | Integrated asynchronous transmission shift register circuit of LCoS (Liquid Crystal On Silicon) and implementing method thereof | |
CN114664226A (en) | Odd-even double-pixel EDP interface liquid crystal screen driving method and system based on FPGA | |
Ni et al. | The realization of LED display system based on the embedded | |
CN116567161B (en) | Graphic display terminal | |
CN106328044B (en) | LED display control card and LED display control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180202 |