CN107652900B - A gallium nitride wafer photoelectrochemical mechanical polishing liquid and polishing method - Google Patents
A gallium nitride wafer photoelectrochemical mechanical polishing liquid and polishing method Download PDFInfo
- Publication number
- CN107652900B CN107652900B CN201710994767.4A CN201710994767A CN107652900B CN 107652900 B CN107652900 B CN 107652900B CN 201710994767 A CN201710994767 A CN 201710994767A CN 107652900 B CN107652900 B CN 107652900B
- Authority
- CN
- China
- Prior art keywords
- polishing
- wafer
- polishing liquid
- nano
- abrasive particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 134
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000007788 liquid Substances 0.000 title claims description 41
- 239000002245 particle Substances 0.000 claims abstract description 23
- 239000007800 oxidant agent Substances 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 4
- 230000001590 oxidative effect Effects 0.000 claims abstract description 4
- 239000003054 catalyst Substances 0.000 claims description 19
- 238000007517 polishing process Methods 0.000 claims description 15
- 239000006061 abrasive grain Substances 0.000 claims description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical group [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- XXQBEVHPUKOQEO-UHFFFAOYSA-N potassium superoxide Chemical compound [K+].[K+].[O-][O-] XXQBEVHPUKOQEO-UHFFFAOYSA-N 0.000 claims description 4
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 claims description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 2
- 239000005708 Sodium hypochlorite Substances 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 2
- KBKZYWOOZPIUJT-UHFFFAOYSA-N azane;hypochlorous acid Chemical compound N.ClO KBKZYWOOZPIUJT-UHFFFAOYSA-N 0.000 claims description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- SATVIFGJTRRDQU-UHFFFAOYSA-N potassium hypochlorite Chemical compound [K+].Cl[O-] SATVIFGJTRRDQU-UHFFFAOYSA-N 0.000 claims description 2
- 239000012286 potassium permanganate Substances 0.000 claims description 2
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical group [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 239000010948 rhodium Substances 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 2
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 claims description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 2
- 229910021529 ammonia Inorganic materials 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 abstract description 43
- 229910002601 GaN Inorganic materials 0.000 abstract description 14
- 239000000126 substance Substances 0.000 abstract description 12
- 230000003746 surface roughness Effects 0.000 abstract description 5
- 238000003912 environmental pollution Methods 0.000 abstract description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 abstract description 3
- 239000005543 nano-size silicon particle Substances 0.000 abstract description 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 9
- 238000012876 topography Methods 0.000 description 7
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B1/00—Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
技术领域technical field
本发明属于抛光加工技术领域,特别涉及一种氮化镓晶片光电化学机械抛光液及抛光方法。The invention belongs to the technical field of polishing processing, in particular to a gallium nitride wafer photoelectrochemical mechanical polishing liquid and a polishing method.
技术背景technical background
第三代半导体代表材料如氮化镓,与第一、二代半导体材料相比,禁带宽度大热导率高,击穿电场高,电子饱和速率高和抗辐射能力强,更为适合制作高温、高频、高功率、抗辐射大功率器件。氮化镓晶片作为器件或LED基片时,要求材料具有高的表面完整性(如低的表面粗糙度,无划痕、微裂纹、位错与残余应力等表面/亚表面损伤),而在氮化镓晶片的研磨过程中会产生材料的表面/亚表面损伤,需要对晶片进行抛光加工来去除晶片的表面/亚表面损伤而获得超平滑的表面。The third-generation semiconductor representative materials such as gallium nitride, compared with the first and second-generation semiconductor materials, have a large band gap, high thermal conductivity, high breakdown electric field, high electron saturation rate and strong radiation resistance, and are more suitable for production High temperature, high frequency, high power, radiation resistant high power devices. When gallium nitride wafers are used as devices or LED substrates, materials are required to have high surface integrity (such as low surface roughness, no surface/subsurface damage such as scratches, microcracks, dislocations, and residual stress), and in The surface/subsurface damage of the material will occur during the grinding process of the gallium nitride wafer, and the wafer needs to be polished to remove the surface/subsurface damage of the wafer to obtain an ultra-smooth surface.
氮化镓晶体材料键能大,常温下几乎不与任何酸碱试剂发生化学反应,属于典型的硬脆难加工材料,在化学机械抛光加工过程中去除率低导致加工时间长,成本高等一系列问题。Hideo Aida发表在《Mrs Proceedings》,2013,1560(19):2659-2666的文章报道氮化镓晶片的化学机械抛光去除率仅有17nm/h,如果能将氮化镓表面氧化改性生成氧化镓后去除率可到7μm/h,指出氮化镓晶片的化学机械抛光过程中,晶片的氧化改性效率是晶片化学机械抛光去除率的决速步。因此可通过提高晶片在抛光过程中的氧化改性效率来提高抛光过程中的材料去除速率。氮化镓晶体作为一种半导体材料,可以采用紫外光直接辐照到半导体晶片表面的方式产生光生电子-空穴对,抛光液中的强氧化剂夺得光生电子促使光生电子-空穴的分离,再利用分离到达晶片表面的空穴将晶片表面氧化,进而提高晶片抛光过程中的材料去除速率。Gallium nitride crystal material has a large bond energy and almost no chemical reaction with any acid-base reagent at room temperature. It is a typical hard, brittle and difficult-to-process material. The low removal rate in the chemical mechanical polishing process leads to long processing time and high cost. question. The article published by Hideo Aida in "Mrs Proceedings", 2013, 1560(19): 2659-2666 reported that the chemical mechanical polishing removal rate of gallium nitride wafers is only 17nm/h. The post-gallium removal rate can reach 7μm/h, pointing out that in the chemical mechanical polishing process of gallium nitride wafers, the oxidation modification efficiency of the wafer is the speed-determining step of the chemical mechanical polishing removal rate of the wafer. Therefore, the material removal rate during the polishing process can be increased by increasing the oxidation modification efficiency of the wafer during the polishing process. Gallium nitride crystal, as a semiconductor material, can generate photogenerated electron-hole pairs by directly irradiating the surface of the semiconductor wafer with ultraviolet light. The cavities separated to reach the wafer surface are then used to oxidize the wafer surface, thereby increasing the material removal rate during wafer polishing.
由于氮化镓晶片的化学机械抛光去除率低,因此通常会使用高纳米二氧化硅磨粒浓度的抛光液。如Hideo Aida发表在《Journal of the Electrochemical Society》,2011,158(12):H1206上的文献中报道在他们课题组中的实验中,采用硅溶胶抛光GaN时,磨粒浓度高达40wt%,国内清华大学潘国顺课题组发表在《Tribology International》,2016,110的文献中报道,在他们氮化镓晶片的化学机械抛光实验中固体磨粒浓度也高达30wt%,并获得了约120nm/h的去除速率。然而,使用高磨粒浓度的抛光液导致抛光加工中的抛光液成本占比高,同时也会带来抛光液后处理难度增大。D.E.Speed在Advances in ChemicalMechanical Planarization(CMP),p.27,Woodhead Publishing(2016)文献中指出抛光加工生产单位在抛光液在排放前需要进行预处理,厂家通常采用混凝絮凝过程对废液进行处理,经过沉降、过滤、浮选等步骤,处理过程复杂,后处理成本高,进而增大抛光加工厂商成本,另外一旦处理不善,高磨粒浓度的抛光液对环境引起严重的污染。Due to the low chemical mechanical polishing removal rate of GaN wafers, polishing fluids with a high concentration of nano-SiO2 abrasive particles are usually used. For example, in the literature published by Hideo Aida in "Journal of the Electrochemical Society", 2011, 158(12):H1206, in the experiments of their research group, when using silica sol to polish GaN, the concentration of abrasive particles is as high as 40wt%. Tsinghua University’s Pan Guoshun’s research group reported in a document published in Tribology International, 2016, 110, that in their chemical mechanical polishing experiments on gallium nitride wafers, the concentration of solid abrasive particles was also as high as 30wt%, and a removal rate of about 120nm/h was obtained. rate. However, the use of a polishing liquid with a high abrasive concentration leads to a high proportion of the cost of the polishing liquid in the polishing process, and also increases the difficulty of post-processing of the polishing liquid. D.E.Speed pointed out in Advances in Chemical Mechanical Planarization (CMP), p.27, Woodhead Publishing (2016) that polishing production units need to pretreat the polishing liquid before discharge, and manufacturers usually use coagulation and flocculation to treat the waste liquid , after sedimentation, filtration, flotation and other steps, the treatment process is complicated, and the post-treatment cost is high, which will increase the cost of the polishing manufacturer. In addition, if the treatment is not done properly, the polishing solution with high abrasive particle concentration will cause serious pollution to the environment.
因此,针对氮化镓晶片材料在目前的化学机械抛光加工过程中所存在的去除率低,加工时间长,所用抛光液成分复杂,磨粒浓度高易造成环境污染的背景下,亟需寻找一种去除率更高、成分更为简单环保、磨粒浓度更低的抛光液以满足半导体器件的高效制造和日益严格的环保要求。Therefore, in view of the low removal rate of gallium nitride wafer materials in the current chemical mechanical polishing process, the processing time is long, the composition of the polishing liquid used is complex, and the high concentration of abrasive particles is likely to cause environmental pollution. It is urgent to find a A polishing liquid with higher removal rate, simpler and more environmentally friendly components, and lower abrasive particle concentration can meet the efficient manufacturing of semiconductor devices and the increasingly stringent environmental protection requirements.
发明内容Contents of the invention
本发明针对现有技术中氮化镓化学机械抛光去除率较低,抛光后的表面质量较差的研究现状,提供一种氮化镓晶片光电化学机械抛光液,包括纳米磨粒、氧化剂和水;所述纳米磨粒的含量为抛光液的0.05-20wt.%;所述氧化剂的含量为抛光液的0.1-10wt.%。Aiming at the low removal rate of GaN chemical mechanical polishing in the prior art and the poor surface quality after polishing, the present invention provides a GaN wafer photoelectrochemical mechanical polishing solution, which includes nano-abrasive particles, oxidizing agent and water. ; The content of the nano abrasive particles is 0.05-20wt.% of the polishing liquid; the content of the oxidant is 0.1-10wt.% of the polishing liquid.
现有的抛光液磨粒浓度较高,其透光性相对较差,本发明中使用的抛光液通过氧化剂氧化和纳米磨粒的机械去除协同作用实现了快的去除速率。The existing polishing liquid has a high concentration of abrasive grains and relatively poor light transmittance. The polishing liquid used in the present invention achieves a fast removal rate through the synergistic effect of oxidant oxidation and mechanical removal of nano abrasive grains.
本发明所述的光电化学机械抛光,是指在现有的化学机械抛光基础之上,引入紫外线直接辐照被抛光半导体工件,半导体工件在紫外线的辅助下产生光电化学改性后被机械抛光去除的一种加工方式。The photoelectrochemical mechanical polishing described in the present invention refers to the introduction of ultraviolet rays to directly irradiate the polished semiconductor workpiece on the basis of the existing chemical mechanical polishing, and the semiconductor workpiece is removed by mechanical polishing after being photoelectrochemically modified with the assistance of ultraviolet rays a processing method.
作为优选的技术方案,所述的氧化剂为过硫酸钾、过硫酸钠、过硫酸氨、双氧水、过氧化钠、过氧化钾、高锰酸钾、次氯酸钠、次氯酸钾、次氯酸氨中的至少一种。As a preferred technical scheme, the oxidizing agent is at least one of potassium persulfate, sodium persulfate, ammonium persulfate, hydrogen peroxide, sodium peroxide, potassium peroxide, potassium permanganate, sodium hypochlorite, potassium hypochlorite, and ammonium hypochlorite A sort of.
作为优选的技术方案,所述抛光液还包括pH调节剂。As a preferred technical solution, the polishing solution further includes a pH regulator.
作为优选的技术方案,所述的pH调节剂为氢氧化钾、氢氧化钠、氨水、碳酸氢钠、磷酸氢二钠、磷酸、醋酸、盐酸、硝酸、硫酸中的至少一种。As a preferred technical solution, the pH regulator is at least one of potassium hydroxide, sodium hydroxide, ammonia water, sodium bicarbonate, disodium hydrogen phosphate, phosphoric acid, acetic acid, hydrochloric acid, nitric acid, and sulfuric acid.
作为优选的技术方案,所述纳米磨粒的平均粒径为15~100nm;更优选为15~30nm,细粒径的磨粒可以使得抛光液透明度高,抛光后的晶片表面质量更好。As a preferred technical solution, the average particle diameter of the nano-abrasive particles is 15-100 nm; more preferably 15-30 nm. The fine-grained abrasive particles can make the polishing liquid more transparent, and the surface quality of the polished wafer is better.
作为优选的技术方案,所述纳米磨粒为纳米氧化铈磨粒或纳米二氧化硅磨粒。As a preferred technical solution, the nano abrasive grains are nano cerium oxide abrasive grains or nano silicon dioxide abrasive grains.
作为优选的技术方案,所述抛光液还包括催化剂,所述的催化剂为铂、金、铑、钯、铱及其碳负载型催化剂中的至少一种,催化剂的加入可以有效提高晶片的表面改性速率,进而提高抛光去除速率。As a preferred technical solution, the polishing liquid also includes a catalyst, and the catalyst is at least one of platinum, gold, rhodium, palladium, iridium and carbon-supported catalysts thereof, and the addition of the catalyst can effectively improve the surface modification of the wafer. property rate, thereby increasing the polishing removal rate.
作为优选的技术方案,所述催化剂的粒径为15-50nm;含量为抛光液的0.0001-0.0005wt.%。As a preferred technical solution, the particle size of the catalyst is 15-50nm; the content is 0.0001-0.0005wt.% of the polishing liquid.
本发明提供的抛光液用于光电化学机械抛光,使用该抛光液对氮化镓晶片进行抛光加工可以使去除率达到201.1nm/h,材料去除率远高于现有报道,表面粗糙度可以达到~1.63nm,去除率和能够达到的表面粗糙度远好于现有的报道。同时该抛光液成分简单,纳米磨粒浓度极低,使得抛光液的透光率好,紫外光透过抛光液到达晶片表面的强度高,得到更好的改性效果;另外抛光液的后处理方便,抛光液中的磨粒浓度低,可以降低抛光加工后废液的后处理成本,对环境污染小。The polishing solution provided by the present invention is used for photoelectrochemical mechanical polishing. Using the polishing solution to polish gallium nitride wafers can make the removal rate reach 201.1nm/h, the material removal rate is much higher than the existing reports, and the surface roughness can reach ~1.63nm, the removal rate and the achievable surface roughness are much better than the existing reports. At the same time, the composition of the polishing liquid is simple, and the concentration of nano-abrasive particles is extremely low, so that the light transmittance of the polishing liquid is good, and the intensity of ultraviolet light passing through the polishing liquid to the wafer surface is high, and a better modification effect is obtained; in addition, post-treatment of the polishing liquid It is convenient, and the concentration of abrasive particles in the polishing liquid is low, which can reduce the post-treatment cost of the waste liquid after polishing, and has little environmental pollution.
本发明还提供一种半导体的光电化学机械抛光方法,包括以下步骤:The present invention also provides a semiconductor photoelectrochemical mechanical polishing method, comprising the following steps:
(1)将晶片固定在抛光液池中随抛光液池绕轴向旋转,抛光液池中的抛光液完全浸没晶片;(1) The wafer is fixed in the polishing liquid pool and rotates around the axial direction with the polishing liquid pool, and the polishing liquid in the polishing liquid pool completely immerses the wafer;
(2)将抛光垫固定在抛光轴上,经驱动与晶片产生相对运动;所述抛光垫与晶片的接触面积小于晶片的面积;(2) The polishing pad is fixed on the polishing shaft, and is driven to generate relative motion with the wafer; the contact area between the polishing pad and the wafer is smaller than the area of the wafer;
(3)抛光过程中采用紫外光辐照晶片。(3) The wafer is irradiated with ultraviolet light during the polishing process.
抛光垫与晶片接触面积比晶片表面积小,可以使晶片露出剩余表面直接接受紫外光源的在线辐照而被改性。The contact area between the polishing pad and the wafer is smaller than the surface area of the wafer, so that the remaining surface of the wafer can be directly exposed to the online radiation of the ultraviolet light source to be modified.
紫外光源发出的紫外线可在抛光过程中始终在线辐照到晶片未被抛光垫遮挡部分,实时对晶片进行改性进而对晶片进行光电化学抛光加工。The ultraviolet rays emitted by the ultraviolet light source can always be irradiated online to the part of the wafer that is not shielded by the polishing pad during the polishing process, modifying the wafer in real time and then performing photoelectrochemical polishing on the wafer.
优选地,所述抛光垫的面积小于晶片的面积。Preferably, the polishing pad has an area smaller than that of the wafer.
优选地,所述抛光垫粘贴在抛光轴上。Preferably, the polishing pad is pasted on the polishing shaft.
优选地,所述抛光轴在绕轴向旋转的同时也可在平面内移动,进而带动抛光垫选择性地抛光晶片表面。Preferably, the polishing shaft can also move in a plane while rotating around the axis, thereby driving the polishing pad to selectively polish the surface of the wafer.
优选地,抛光过程中抛光压力可通过抛光轴加载。Preferably, the polishing pressure can be loaded through the polishing shaft during the polishing process.
作为优选的技术方案,所述抛光垫负载有催化剂。As a preferred technical solution, the polishing pad is loaded with a catalyst.
作为优选的技术方案,所述催化剂采用以下工序负载在抛光垫上:As a preferred technical scheme, the catalyst is loaded on the polishing pad using the following procedures:
a)先将纳米级粒径的催化剂利用超声波振荡分散在去离子水中;a) first disperse the catalyst with nanoscale particle size in deionized water by ultrasonic oscillation;
b)再将抛光垫浸没在分散有催化剂的去离子水中,超声振荡1-10min,使得催化剂负载在抛光垫上。b) Submerge the polishing pad in the deionized water dispersed with the catalyst, and vibrate ultrasonically for 1-10 min, so that the catalyst is supported on the polishing pad.
作为优选的技术方案,所述催化剂分散在抛光液中。As a preferred technical solution, the catalyst is dispersed in the polishing liquid.
作为优选的技术方案,所述催化剂采用以下工序分散在抛光液中:催化剂先加入抛光液中,再通过超声振荡使其分散均匀。As a preferred technical solution, the catalyst is dispersed in the polishing solution by the following procedure: the catalyst is first added to the polishing solution, and then dispersed evenly by ultrasonic vibration.
作为优选的技术方案,所述抛光垫是含有磨料的抛光垫,所述磨料为氧化铈或者氧化硅中的一种或两种。As a preferred technical solution, the polishing pad is a polishing pad containing abrasives, and the abrasives are one or both of cerium oxide or silicon oxide.
作为优选的技术方案,所述抛光垫的材质为聚氨酯抛光垫,无纺布抛光垫,绒布抛光垫的其中一种。As a preferred technical solution, the material of the polishing pad is one of polyurethane polishing pad, non-woven polishing pad and flannelette polishing pad.
作为优选的技术方案,所述的紫外光源是LED紫外光源、汞灯紫外光源、氙灯紫外光源、氘灯紫外光源中的一种或几种,波长<400nmAs a preferred technical solution, the ultraviolet light source is one or more of LED ultraviolet light source, mercury lamp ultraviolet light source, xenon lamp ultraviolet light source, deuterium lamp ultraviolet light source, wavelength<400nm
与现有技术相比:本发明提供的半导体的光电化学机械抛光方法具有以下优点:Compared with the prior art: the photoelectrochemical mechanical polishing method of the semiconductor provided by the invention has the following advantages:
1.抛光去除效率高。本发明采用了紫外光在线不间断辐照晶片表面方式,在抛光过程中始终照射晶片表面,可以高效地改性晶片,再通过抛光垫机械性地去除改性层,进而提高整个抛光过程中的去除速率。1. High polishing removal efficiency. The present invention adopts the method of irradiating the surface of the wafer continuously with ultraviolet light on-line. During the polishing process, the surface of the wafer is always irradiated, which can efficiently modify the wafer, and then mechanically remove the modified layer through the polishing pad, thereby improving the polishing process. removal rate.
2.催化剂可以在紫外光照的情况下催化促进晶片改性,提高整个光电化学机械抛光过程中的材料去除率。2. The catalyst can catalyze and promote wafer modification under the condition of ultraviolet light, and improve the material removal rate in the whole photoelectrochemical mechanical polishing process.
3.粘贴有抛光垫的抛光头可绕轴向旋转也可以随意移动位置,并在紫外光照的辅助下定点对晶片的某一位置进行抛光,实现晶片的定点抛光去除。3. The polishing head with the polishing pad attached can rotate around the axis or move the position at will, and polish a certain position of the wafer at a fixed point with the assistance of ultraviolet light, so as to realize the fixed-point polishing removal of the wafer.
4.粘贴有抛光垫的抛光头可绕轴向旋转也可以随意移动位置,可以保证抛光过程中抛光头在晶片上的运动的均匀性。4. The polishing head attached with the polishing pad can rotate around the axial direction or move freely, which can ensure the uniformity of the movement of the polishing head on the wafer during the polishing process.
附图说明Description of drawings
本发明附图3幅3 accompanying drawings of the present invention
图1是GaN晶片抛光前的表面形貌;图1中,(a)奥林巴斯显微镜表面形貌图像,(b)ZYGO白光干涉仪表面形貌图像;Figure 1 is the surface topography of the GaN wafer before polishing; in Figure 1, (a) Olympus microscope surface topography image, (b) ZYGO white light interferometer surface topography image;
图2是使用实施例4中的抛光液的GaN晶片加工后的表面形貌;图2中,(a)奥林巴斯显微镜表面形貌图像,(b)ZYGO白光干涉仪表面形貌图像Ra 1.626nm;Fig. 2 is the surface topography after using the GaN wafer processing of the polishing liquid in embodiment 4; Among Fig. 2, (a) Olympus microscope surface topography image, (b) ZYGO white light interferometer surface topography image Ra 1.626nm;
图3是一束激光通过抛光液的丁达尔效应及抛光液透明度和胶体效果示意图。Fig. 3 is a schematic diagram of the Tyndall effect of a beam of laser passing through the polishing liquid and the transparency and colloid effect of the polishing liquid.
具体实施方式Detailed ways
(1)依次采用丙酮,酒精,去离子水清洗GaN并称重,材料去除率采用GaN晶片质量的变化进行折算。利用奥林巴斯显微镜和ZYGO白光干涉仪分别测量GaN晶片表面的原始形貌如图1(a)、(b)所示,原始表面采用氢化物气相沉积法(HVPE)制备,晶片表面有许多大小不一的六角凸起,其较大凸起高度达到了约1μm,表面质量较差。(1) GaN is washed with acetone, alcohol, and deionized water in sequence and weighed. The material removal rate is converted by the change in the mass of the GaN wafer. The original morphology of GaN wafer surface was measured by Olympus microscope and ZYGO white light interferometer respectively, as shown in Fig. 1(a) and (b). The original surface was prepared by hydride vapor deposition (HVPE). Hexagonal protrusions of different sizes, the largest protrusion height reaches about 1 μm, and the surface quality is poor.
(2)将GaN晶片用石蜡粘接固定在抛光机的工件夹具上;抛光垫为SUBA 800;GaN晶片完全浸没在抛光液里,抛光液的成分如表1所示,余量为与离子水。(2) Fix the GaN wafer on the workpiece fixture of the polishing machine by bonding with paraffin; the polishing pad is SUBA 800; the GaN wafer is completely immersed in the polishing solution. .
(3)GaN晶片转速60rpm,抛光垫转速390rpm,抛光压力6.5psi,紫外光强20-30mW·cm-2抛光时长5h。(3) The rotational speed of the GaN wafer is 60 rpm, the rotational speed of the polishing pad is 390 rpm, the polishing pressure is 6.5 psi, and the ultraviolet light intensity is 20-30 mW·cm -2 and the polishing time is 5 hours.
(4)加热融化石蜡,取下晶片依次采用丙酮,酒精,去离子水清洗后吹干,称量质量,测量抛光后的表面粗糙度。(4) Heat and melt the paraffin, take off the wafer, wash it with acetone, alcohol, and deionized water successively, then blow it dry, weigh the mass, and measure the surface roughness after polishing.
表1.实施例条件及抛光效果Table 1. embodiment condition and polishing effect
GaN晶片抛光后,其表面质量改善明显,如图2(a)所示,六角凸起消失,表面变得平整,粗糙度值降低到约1.63nm,同时去除率也达到了202.1nm/min。抛光后的表面形貌测量结果如图2(b)所示。本发明具有抛光去除率快,抛光前后粗糙度明显改善,抛光垫可对晶片表面进行定点抛光,操作简单,工艺参数灵活可调的优点。After the GaN wafer was polished, its surface quality improved significantly. As shown in Figure 2(a), the hexagonal protrusions disappeared, the surface became smooth, the roughness value decreased to about 1.63nm, and the removal rate reached 202.1nm/min. The surface topography measurement results after polishing are shown in Fig. 2(b). The invention has the advantages of fast polishing removal rate, obvious improvement of roughness before and after polishing, fixed-point polishing of the wafer surface by the polishing pad, simple operation, and flexible and adjustable process parameters.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710994767.4A CN107652900B (en) | 2017-10-23 | 2017-10-23 | A gallium nitride wafer photoelectrochemical mechanical polishing liquid and polishing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710994767.4A CN107652900B (en) | 2017-10-23 | 2017-10-23 | A gallium nitride wafer photoelectrochemical mechanical polishing liquid and polishing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107652900A CN107652900A (en) | 2018-02-02 |
CN107652900B true CN107652900B (en) | 2019-10-29 |
Family
ID=61119310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710994767.4A Active CN107652900B (en) | 2017-10-23 | 2017-10-23 | A gallium nitride wafer photoelectrochemical mechanical polishing liquid and polishing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107652900B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109616412A (en) * | 2018-12-14 | 2019-04-12 | 大连理工大学 | Semiconductor wafer processing method combining photochemistry and mechanical polishing |
CN110303385B (en) * | 2019-06-28 | 2021-03-02 | 中国人民解放军国防科技大学 | Monocrystalline silicon nondestructive polishing method based on liquid phase polishing environment regulation and control |
TWI741911B (en) * | 2020-12-16 | 2021-10-01 | 環球晶圓股份有限公司 | Method for removing epitaxial layer |
CN113618502B (en) * | 2021-08-13 | 2023-03-31 | 广东工业大学 | Method and system for calculating material removal rate of diamond wafer polishing |
CN113894695B (en) * | 2021-10-29 | 2022-12-30 | 广东先导微电子科技有限公司 | Double-sided polishing method of gallium antimonide wafer and gallium antimonide double-polished wafer |
CN115558427A (en) * | 2022-10-24 | 2023-01-03 | 浙江奥首材料科技有限公司 | Polishing solution based on micro-electrolysis-Fenton oxidation system, preparation method and application thereof |
CN119167661B (en) * | 2024-11-20 | 2025-03-21 | 苏州大学 | Surface topography prediction method for oblique-axis polishing using cerium oxide polishing slurry with spherical polishing head |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104804649A (en) * | 2015-04-24 | 2015-07-29 | 清华大学 | Polishing solution for gallium nitride |
CN105773399A (en) * | 2016-03-29 | 2016-07-20 | 清华大学 | Polishing solution, polishing machine and polishing method |
CN105940076A (en) * | 2014-02-06 | 2016-09-14 | 旭日化成工业株式会社 | Polishing abrasive particle, production method therefor, polishing method, polishing device, and slurry |
CN106189872A (en) * | 2016-07-13 | 2016-12-07 | 清华大学 | A kind of polishing composition and preparation, finishing method |
CN106398544A (en) * | 2016-07-27 | 2017-02-15 | 清华大学 | A CMP polishing composition suitable for a gallium nitride material |
-
2017
- 2017-10-23 CN CN201710994767.4A patent/CN107652900B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105940076A (en) * | 2014-02-06 | 2016-09-14 | 旭日化成工业株式会社 | Polishing abrasive particle, production method therefor, polishing method, polishing device, and slurry |
CN104804649A (en) * | 2015-04-24 | 2015-07-29 | 清华大学 | Polishing solution for gallium nitride |
CN105773399A (en) * | 2016-03-29 | 2016-07-20 | 清华大学 | Polishing solution, polishing machine and polishing method |
CN106189872A (en) * | 2016-07-13 | 2016-12-07 | 清华大学 | A kind of polishing composition and preparation, finishing method |
CN106398544A (en) * | 2016-07-27 | 2017-02-15 | 清华大学 | A CMP polishing composition suitable for a gallium nitride material |
Also Published As
Publication number | Publication date |
---|---|
CN107652900A (en) | 2018-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107652900B (en) | A gallium nitride wafer photoelectrochemical mechanical polishing liquid and polishing method | |
CN107641835B (en) | A method for photoelectrochemical mechanical polishing of semiconductor wafers | |
CN105773399A (en) | Polishing solution, polishing machine and polishing method | |
Ou et al. | Photochemically combined mechanical polishing of N-type gallium nitride wafer in high efficiency | |
CN109866084A (en) | A kind of UV photocatalysis assistant chemical mechanical polishing apparatus and polishing method | |
CN110197789A (en) | The ultrasonic wave added electrochemical mechanical polishing processing unit (plant) and method of SiC single crystal piece | |
US20160200571A1 (en) | Hydrogen production apparatus, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production | |
CN113334242B (en) | Processing device and technology for UV-assisted chemical mechanical polishing of diamond wafers | |
CN113881349B (en) | Polishing liquid and polishing method for chemical mechanical polishing of silicon carbide wafer silicon surface | |
WO2021078237A1 (en) | Method for polishing large-size single crystal diamond | |
CN117464549A (en) | Silicon carbide polishing device and process | |
Yin et al. | Investigation of SiC single crystal polishing by combination of anodic oxidation and mechanical polishing | |
Zhao et al. | Advance chemical mechanical polishing technique for gallium nitride substrate | |
TW201426834A (en) | Machining method and machining device | |
CN118064061B (en) | Silicon carbide wafer polishing liquid for double-sided synchronous polishing, preparation method and application | |
TWI231523B (en) | Method of cleaning surface of semiconductor wafer | |
JP7281226B2 (en) | Photoelectrochemical mechanical polishing processing apparatus and processing method for semiconductor wafer | |
CN117681064B (en) | Diamond rapid polishing method and device based on ultraviolet light | |
JPWO2007063873A1 (en) | Polishing method and polishing apparatus | |
CN117551424A (en) | Oil-based thermosensitive active grinding fluid and microwave-assisted fixed abrasive grinding method | |
CN116900929B (en) | Method of chemical mechanical polishing | |
CN109913133B (en) | Efficient high-quality chemical mechanical polishing solution for yttrium aluminum garnet crystals | |
CN118024128A (en) | Wafer planarization device and method | |
CN115386298A (en) | Silicon carbide chemical mechanical polishing solution based on photocatalysis mechanism | |
CN118386132A (en) | Polishing device and finish machining method for silicon carbide wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |