CN107649755B - High-speed arc discharge grinding composite processing method - Google Patents
High-speed arc discharge grinding composite processing method Download PDFInfo
- Publication number
- CN107649755B CN107649755B CN201711060060.2A CN201711060060A CN107649755B CN 107649755 B CN107649755 B CN 107649755B CN 201711060060 A CN201711060060 A CN 201711060060A CN 107649755 B CN107649755 B CN 107649755B
- Authority
- CN
- China
- Prior art keywords
- workpiece
- machining
- tool electrode
- electrode
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000227 grinding Methods 0.000 title claims abstract description 64
- 238000010891 electric arc Methods 0.000 title claims abstract description 57
- 239000002131 composite material Substances 0.000 title claims description 11
- 238000003672 processing method Methods 0.000 title claims description 7
- 238000003754 machining Methods 0.000 claims abstract description 87
- 238000000034 method Methods 0.000 claims abstract description 50
- 239000000463 material Substances 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 12
- 238000011010 flushing procedure Methods 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 3
- 239000003595 mist Substances 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 239000004020 conductor Substances 0.000 abstract description 5
- 150000001875 compounds Chemical class 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 8
- 238000009760 electrical discharge machining Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003339 best practice Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010892 electric spark Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H5/00—Combined machining
- B23H5/04—Electrical discharge machining combined with mechanical working
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
技术领域technical field
本发明涉及导电材料,特别是一种导电材料的高速电弧放电磨削复合加工方法。The invention relates to a conductive material, in particular to a high-speed arc discharge grinding compound processing method for the conductive material.
背景技术Background technique
高速电弧放电加工是专门针对难切削材料的高效、低成本加工的迫切需求而提出的新加工方法。其原理是利用放电产生的电弧等离子体的高温将工件材料快速熔化甚至气化,并且配合工具电极和工件之间的高速流场将蚀除的材料快速冲出间隙,该种方法特别适用于具有一定导电性的难切削材料的加工。但是,由于电弧具有极高的能量密度,为了达到高效的目的,每个放电脉冲的能量也很大,这就造成了电弧放电加工后的工件表面蚀坑较大,形成粗糙的表面。而放电加工后的表面,经工作液冷却后,容易在表面形成重铸层使硬度上升,加上表面较为粗糙,可能会对后续的精加工带来负面影响,缩短刀具的使用寿命。而如果在加工过程中能同时采用电弧放电加工和磨削加工组合的加工方法,则不仅可以实现高效低成本的加工,同时也可以有效的解决电弧放电加工后表面粗糙等问题。具体来说,就是采用特殊设计的工具电极(侧面能形成放电,且底部有磨削层),实现电弧放电加工和磨削加工同步进行;电极侧面与工件形成大能量的电弧放电热蚀除工件材料,去除绝大部分材料并形成较为粗糙的加工表面,以此同时通过应用电极底部的磨削层对电弧加工后的工件表面进行磨削加工,最终获得高质量表面。因此,通过高速电弧放电磨削复合加工方法,可以实现高速电弧放电磨削复合加工,实现在一台电弧放电加工机床上实现高效、低成本、精密加工的功能。High-speed arc discharge machining is a new machining method specially proposed for the urgent need of high-efficiency and low-cost machining of difficult-to-cut materials. The principle is to use the high temperature of the arc plasma generated by the discharge to quickly melt or even gasify the workpiece material, and cooperate with the high-speed flow field between the tool electrode and the workpiece to quickly rush the eroded material out of the gap. Machining of difficult-to-cut materials with a certain conductivity. However, due to the extremely high energy density of the arc, in order to achieve high efficiency, the energy of each discharge pulse is also very large, which results in large etch pits on the surface of the workpiece after arc discharge machining, forming a rough surface. The surface after EDM is cooled by the working fluid, and it is easy to form a recast layer on the surface to increase the hardness. In addition, the surface is relatively rough, which may have a negative impact on the subsequent finishing and shorten the service life of the tool. If the combination of arc discharge machining and grinding can be used in the machining process, not only can high-efficiency and low-cost machining be achieved, but also problems such as surface roughness after arc discharge machining can be effectively solved. Specifically, a specially designed tool electrode (which can form discharge on the side and has a grinding layer at the bottom) is used to realize simultaneous arc discharge machining and grinding; the side of the electrode and the workpiece form a high-energy arc discharge thermal erosion to remove the workpiece. material, remove most of the material and form a relatively rough machined surface. At the same time, the surface of the workpiece after arc machining is ground by applying the grinding layer at the bottom of the electrode, and finally a high-quality surface is obtained. Therefore, through the high-speed arc discharge grinding compound machining method, the high-speed arc discharge grinding compound machining can be realized, and the functions of high-efficiency, low-cost and precision machining can be realized on one arc-discharge machining machine tool.
近年来,得益于电弧放电加工得到了快速发展,许多学者提出了各种基于电弧放电蚀除工件材料的新方法,并且这些方法都能有效的解决加工中面临的某些问题,但是同样这些方法也存在一些不足。上世纪,潍坊市坊子木工机械厂在专利CN87212711,苏州电加工机床研究所有限公司在专利CN201644967中分别公开了各自的阳极机械切割装置及部分结构。阳极机械切割机床一般有盘式和带式两种。将工件接直流电源的阳极,将切割电极接电源的负极,并在切割口处加喷导电电解液。在切割过程中,当工具与工件正面接触时,高速直接运动的工具(铁皮带)将工件上的阳极纯化膜划破剔除,形成回路,产生电火花和短电孤放电,瞬时局部高温达5000℃以上。但是,阳极机械切割技术的加工精度和表面粗糙度较差,工具电极易损耗,通常仅用于切割毛坯或下料。In recent years, thanks to the rapid development of arc discharge machining, many scholars have proposed various new methods for removing workpiece materials based on arc discharge, and these methods can effectively solve some problems faced in machining, but these same The method also has some shortcomings. In the last century, Weifang Fangzi Woodworking Machinery Factory disclosed their respective anode mechanical cutting devices and partial structures in patent CN87212711 and Suzhou Electric Machining Machine Tool Research Institute Co., Ltd. in patent CN201644967. There are generally two types of anode mechanical cutting machines: disc type and belt type. Connect the workpiece to the anode of the DC power supply, connect the cutting electrode to the negative pole of the power supply, and spray conductive electrolyte at the cutting port. During the cutting process, when the tool is in contact with the front of the workpiece, the high-speed and direct-moving tool (iron belt) scratches and removes the anode purification film on the workpiece, forming a loop, generating electric sparks and short electric solitary discharges, and the instantaneous local high temperature reaches 5000 ℃ above. However, the machining accuracy and surface roughness of the anode mechanical cutting technology are poor, and the tool electrode is easy to wear, and it is usually only used for cutting blanks or blanking.
叶良才在专利CN87106421A中公开了一种放电机械磨削联合加工方法及设备的新技术。该技术是被命名为电熔爆加工,是一种利用低电压、大电流实现电弧放电加工的方法。工作时,刀盘工具接电源负极,工件接电源正极,在极间会产生具有高能量密度的放电电弧,使加工件表面局部迅速熔化和气化并迅速爆炸抛离。同时工具和工件做相对旋转运动以实现对放电电弧的强迫机械运动断弧,以达到高效、稳定的电弧放电加工。以此同时,经过对现有技术的检索发现,专利CN 1061175A中公开了一种与电熔爆类似的非接触强电加工技术,称为短电弧加工。Ye Liangcai disclosed a new technology of electric discharge mechanical grinding combined processing method and equipment in patent CN87106421A. This technology is named as electric melting and blasting machining, which is a method of realizing arc discharge machining with low voltage and high current. When working, the cutter head tool is connected to the negative pole of the power supply, and the workpiece is connected to the positive pole of the power supply, and a discharge arc with high energy density will be generated between the poles, which will rapidly melt and vaporize the surface of the workpiece and quickly explode and throw away. At the same time, the tool and the workpiece perform relative rotational motion to realize the forced mechanical motion of the discharge arc to break the arc, so as to achieve efficient and stable arc discharge machining. At the same time, after searching the prior art, it is found that patent CN 1061175A discloses a non-contact strong electric machining technology similar to electric melting explosion, which is called short arc machining.
但是,由于电熔爆和短电弧在加工中应用数千安培的放电电流所产生的大量热量难以及时排出,容易造成电极、工件表面及机床部件温升过高,从而导致加工工件表面组织被损害。因此,该技术的加工工件表面质量低,不适宜于对工件表面要求高的场合。同时所采用的圆盘工具电极及其旋转运动使得该方法主要适用于轧辊、磨辊等外圆类零件的加工及简单的开槽加工等。However, due to the large amount of heat generated by the application of a discharge current of thousands of amperes in the process of electric melting explosion and short arc, it is difficult to discharge in time, which is likely to cause the electrode, workpiece surface and machine tool components to rise in temperature too high, resulting in damage to the surface tissue of the workpiece. . Therefore, the surface quality of the workpiece processed by this technology is low, and it is not suitable for occasions with high requirements on the workpiece surface. At the same time, the disc tool electrode and its rotating motion are used, so that the method is mainly suitable for the processing of cylindrical parts such as rollers and grinding rollers, as well as simple grooving processing.
通用电气公司在专利CN 1693024A中公开的分布式电弧电蚀加工方法,其是一种利用中空管状电极端面与工件表面的相对运动,产生分布式放电电弧,利用分布式电弧进行加工。利用该方法进行逐层铣削来仿形加工曲面,能得到高效的材料去除率。在专利CN1397399A中,苏州中特机电科技有限公司公开了一种采用简单中空长电极的旋转进行高效铣削放电加工的方法,并对不同的长径比的中空长电极进行了实验比对。苏州中特机电科技有限公司还在专利CN 1597216A中,提到了采用中空长电极为主并辅以其它装置,在高速放电时能进行高效冷却和排屑。然而,以上专利都是典型的电弧放电加工方法,通过应用大能量密度的电弧等离子体可以实现和高速电弧放电加工类似的加工效果。但是,它们都只阐述了电弧放电加工工艺和方法,并未能对电弧加工后的加工表面进行更深层次的同步磨削加工处理,以进一步提高加工表面质量。The distributed arc electric erosion processing method disclosed in the patent CN 1693024A by General Electric Company is a kind of relative motion between the end face of the hollow tubular electrode and the workpiece surface to generate a distributed discharge arc and use the distributed arc for processing. Using this method to perform layer-by-layer milling to profile a curved surface can achieve an efficient material removal rate. In the patent CN1397399A, Suzhou Zhongte Electromechanical Technology Co., Ltd. disclosed a method for high-efficiency milling and electrical discharge machining using the rotation of a simple hollow long electrode, and an experimental comparison of hollow long electrodes with different aspect ratios was carried out. Suzhou Zhongte Electromechanical Technology Co., Ltd. also mentioned in the patent CN 1597216A that the use of hollow long electrodes as the main and supplemented by other devices can perform efficient cooling and chip removal during high-speed discharge. However, the above patents are all typical arc discharge machining methods, and processing effects similar to high-speed arc discharge machining can be achieved by applying arc plasma with high energy density. However, all of them only describe the arc discharge machining process and method, and fail to carry out deeper synchronous grinding processing on the machined surface after arc machining, so as to further improve the quality of the machined surface.
以此同时,经过对现有技术的检索发现,电解磨削复合加工是近年来应用比较广泛的一种放电复合加工方法。该技术是在传统磨削机床基础上增加电解加工电源,通过在磨轮和工件间加载加工电压,同时配合磨削层喷射的电解液,这样不仅可以通过磨轮磨削去除材料,也可以在磨轮和工件间形成电解加工去除材料。然而该技术主要是以磨轮磨削去除工件材料为主,电解加工辅助去除材料为辅,其加工后表面质量高,加工精度好。但是,加工效率较低,与传统磨削加工相比其加工效率提高不显著,远低于电弧放电加工效率,因此不适合难切削材料的高效、低成本和大余量去除加工。该技术同时应用磨削加工和电解加工,其加工效率都有限;然而本发明提出的方法是先采取电弧放电高效去除材料,而后在同一道工艺中采用磨削加工进一步改善加工表面质量,提高加工精度。At the same time, after searching the prior art, it is found that the electrolytic grinding compound machining is a kind of electric discharge compound machining method that has been widely used in recent years. This technology is to increase the power supply of electrolytic machining on the basis of the traditional grinding machine. By loading the machining voltage between the grinding wheel and the workpiece, and at the same time with the electrolyte sprayed by the grinding layer, not only can the material be removed by grinding the grinding wheel, but also the grinding wheel and the workpiece can be removed. Electrolytic machining removes material between workpieces. However, this technology is mainly based on grinding wheel grinding to remove workpiece materials, supplemented by electrolytic machining to remove materials. However, the processing efficiency is low, and its processing efficiency is not significantly improved compared with traditional grinding, which is far lower than the efficiency of arc discharge machining, so it is not suitable for high-efficiency, low-cost and large allowance removal processing of difficult-to-cut materials. The technology uses both grinding and electrolytic machining, and its processing efficiency is limited; however, the method proposed by the present invention is to first use arc discharge to efficiently remove materials, and then use grinding in the same process to further improve the quality of the machined surface. precision.
本发明中提及了高速电弧放电加工方法,该方法是由本课题组团队成员赵万生、顾琳等人在专利CN102091839A中公布的集束电极高速放电加工方法。该技术是基于专利CN1657208A中公开了一种集束电极,实现强化多孔内冲液的流体动力断弧机制的典型电弧放电加工方法。经过近年来的研究,该方法在难切削材料的高效、低成本和大余量去除方面已取得不错的效果,如加工镍基高温合金时的最大材料去除率可达16000mm3/min(采用600A电流),在加工钛合金的最高效率可达21000mm3/min(采用600A电流),在加工铝基碳化硅材料时的最大材料去除率也可达8000mm3/min(采用600A电流),这些加工效率是传统机械切削加工方法的几倍甚至十几倍。但是,尽管高速电弧放电加工的效率高,其加工后的工件表面较为粗糙,从而影响加工表面质量和加工精度,制约了其进一步的应用和推广。因此,目前该方法主要应用于零件高效、大余量去除的粗加工中。The high-speed arc discharge machining method is mentioned in the present invention, and the method is the high-speed electric discharge machining method of cluster electrode published in patent CN102091839A by Zhao Wansheng, Gu Lin, etc., members of the research group. This technology is a typical arc discharge machining method based on a cluster electrode disclosed in the patent CN1657208A, which realizes the hydrodynamic arc breaking mechanism of strengthening the porous inner flushing liquid. After recent years of research, this method has achieved good results in the removal of high - efficiency, low-cost and large allowances for difficult-to-cut materials. Current), the highest efficiency in processing titanium alloys can reach 21000mm 3 /min (using 600A current), and the maximum material removal rate when processing aluminum-based silicon carbide materials can also reach 8000mm 3 /min (using 600A current), these processing The efficiency is several times or even ten times that of traditional mechanical cutting methods. However, despite the high efficiency of high-speed arc discharge machining, the surface of the workpiece after machining is relatively rough, which affects the surface quality and machining accuracy, and restricts its further application and promotion. Therefore, at present, this method is mainly used in rough machining of parts with high efficiency and large allowance removal.
然而,为了在一台设备实现各种导电材料的高效、低成本、高精度加工,并且进一步扩展高速电弧放电加工的应用领域和范围,势必需要对现有的电弧放电加工方法进行优化和进一步扩展研究,解决其加工后表面质量差的问题。However, in order to realize high-efficiency, low-cost, and high-precision machining of various conductive materials in one device, and to further expand the application field and scope of high-speed arc discharge machining, it is necessary to optimize and further expand the existing arc discharge machining methods. Research to solve the problem of poor surface quality after processing.
发明内容SUMMARY OF THE INVENTION
针对上述现有加工方法的不足,本发明提供一种高速电弧放电磨削复合加工方法,该方法通过采用电极侧面能形成放电,且电极底部有磨削层的工具电极,将高速电弧放电加工和磨削加工进行复合,既能实现难切削材料的高效、低成本加工,又能有效解决电弧放电加工中加工后表面质量差的问题。In view of the deficiencies of the above-mentioned existing processing methods, the present invention provides a high-speed arc discharge grinding composite processing method. The method uses a tool electrode that can form discharge on the side of the electrode and has a grinding layer at the bottom of the electrode. The composite grinding process can not only realize efficient and low-cost machining of difficult-to-cut materials, but also effectively solve the problem of poor surface quality after machining in arc discharge machining.
本发明解决技术问题所采取的技术方案如下:The technical scheme adopted by the present invention to solve the technical problem is as follows:
一种高速电弧放电磨削复合加工方法,其特点在于,该方法包括如下步骤:A high-speed arc discharge grinding compound machining method is characterized in that the method comprises the following steps:
1)将工件安装于机床工作台上,工具电极安装与机床主轴上,工具电极的安装轴线与机床主轴的轴线重合;工作介质容器中的工作介质通过工具电极上的冲液入口进入工具电极,经过工具电极内部通道经工具电极侧壁及底部出口到达加工区域,实现加工中的电极内冲液,最终经机床工作台回流至工作介质容器,形成工作介质回路;1) Install the workpiece on the machine tool table, the tool electrode is installed on the machine tool spindle, and the installation axis of the tool electrode is coincident with the axis of the machine tool spindle; the working medium in the working medium container enters the tool electrode through the flushing inlet on the tool electrode, Through the inner channel of the tool electrode, it reaches the processing area through the side wall and bottom outlet of the tool electrode to realize the internal flushing of the electrode during processing, and finally returns to the working medium container through the machine tool table to form a working medium circuit;
2)将工件和工具电极分别接加工电源的两极,在电源作用下加工时工具电极的侧面与工件形成放电,所述的工具电极在机床主轴带动下进行旋转,同时沿工件表面的垂直方向进给至指定深度,沿工件表面切线方向进给运动,所述的工具电极的侧面始终与工件的表面保持一定间隙以实施放电和形成放电加工区域,同时工具电极的底面切入电弧放电加工后的工件表面一定深度以进一步实施磨削加工;2) The workpiece and the tool electrode are respectively connected to the two poles of the machining power supply, and the side surface of the tool electrode and the workpiece form a discharge during processing under the action of the power supply. Feed to the specified depth, and move along the tangential direction of the workpiece surface. The side surface of the tool electrode always maintains a certain gap with the surface of the workpiece to implement electrical discharge and form an electrical discharge machining area, and the bottom surface of the tool electrode cuts into the workpiece after arc discharge machining. The surface has a certain depth for further grinding;
3)根据待加工的工件的形状和轮廓,所述的工具电极在机床主轴带动下沿机床X、Y或Z轴运动,同时工件安装在机床工作台上,工作台可沿机床A轴或B轴转动可实现工件的运动,工具电极和工件的联动实现工具电极沿工件表面切向运动;在完成一层加工后,工具电极沿轴向进给一个深度,开始新层加工,重复该过程直至完成加工。3) According to the shape and contour of the workpiece to be processed, the tool electrode is driven by the machine tool spindle to move along the X, Y or Z axis of the machine tool, and the workpiece is installed on the machine tool table, and the table can be along the machine tool A axis or B. Rotation of the shaft can realize the movement of the workpiece, and the linkage between the tool electrode and the workpiece realizes the tangential movement of the tool electrode along the surface of the workpiece; after finishing one layer of processing, the tool electrode feeds a depth in the axial direction to start the new layer processing, and the process is repeated until Finish processing.
所述的加工电源是峰值电流为1A~1000A、脉冲宽度为1μs~10ms、脉冲间隔为0~10ms的直流电源。The processing power supply is a DC power supply with a peak current of 1A-1000A, a pulse width of 1μs-10ms, and a pulse interval of 0-10ms.
所述的工作介质是在工具电极和工件之间的以0.1MPa以上压力流动的工作介质,包括水基工作液、雾气或气体。The working medium is a working medium flowing between the tool electrode and the workpiece at a pressure of more than 0.1 MPa, including water-based working fluid, mist or gas.
所述的工具电极旋转速度为100RPM~400,000RPM。The rotation speed of the tool electrode is 100RPM~400,000RPM.
所述的工具电极沿轴线方向进给层深为0.1μm~3000μm。The feed layer depth of the tool electrode along the axis direction is 0.1 μm˜3000 μm.
所述的工具电极的底部端面有电极磨削层,它与电极固定连接,能够实现待磨削区域的磨削加工。The bottom end face of the tool electrode is provided with an electrode grinding layer, which is fixedly connected with the electrode and can realize the grinding process of the area to be ground.
与现有技术相比,本发明有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
本发明高速电弧放电磨削复合加工方法,并且解决了如下问题:The high-speed arc discharge grinding composite machining method of the present invention solves the following problems:
1)有效的将高速放电加工与磨削加工进行复合,实现在一台设备完成各种导电材料的高效、低成本、高精度加工;1) Effectively combine high-speed electrical discharge machining and grinding to achieve high-efficiency, low-cost, and high-precision machining of various conductive materials in one device;
2)本发明方法可以实现在电弧放电结束后的短期时间内就对放电形成的表面进行磨削加工;此时,由于电弧放电蚀除工件的过程刚刚结束,工件表面温度还保留着放电时的部分高温,从而工件表面得到了软化效果,易于磨削加工的进行。2) The method of the present invention can realize the grinding process on the surface formed by the discharge in a short period of time after the end of the arc discharge; at this time, because the process of removing the workpiece by the arc discharge has just ended, the surface temperature of the workpiece still remains at the time of the discharge. Part of the high temperature, so that the surface of the workpiece has a softening effect, which is easy to carry out grinding.
3)本发明有效的改善了电弧放电加工表面质量,并且进一步扩展高速电弧放电加工的应用领域和范围。3) The present invention effectively improves the surface quality of arc discharge machining, and further expands the application field and scope of high-speed arc discharge machining.
附图说明Description of drawings
图1为本发明高速电弧放电磨削复合加工装置示意图;Fig. 1 is the schematic diagram of the high-speed arc discharge grinding compound processing device of the present invention;
图2为本发明高速电弧放电磨削复合加工方法原理图及其加工区域放大图;Fig. 2 is the principle diagram of the high-speed arc discharge grinding compound machining method of the present invention and an enlarged view of its machining area;
图中:1:放电电源,2:机床本体,3:工件,4:工具电极,5:工作台,6:工作介质储存箱,7:加工区域,8:电极磨削层,9:等离子体,10:放电蚀坑,11:待磨削区域,12:工作介质。In the figure: 1: Discharge power supply, 2: Machine tool body, 3: Work piece, 4: Tool electrode, 5: Workbench, 6: Working medium storage box, 7: Processing area, 8: Electrode grinding layer, 9: Plasma , 10: discharge pit, 11: area to be ground, 12: working medium.
具体实施方式Detailed ways
以下结合附图对本发明作进一步说明,但不应以此限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings, but the protection scope of the present invention should not be limited by this.
先请参阅图1,图1为本发明高速电弧放电磨削复合加工装置示意图,本发明高速电弧放电磨削复合加工方法,包括下列步骤:Please refer to FIG. 1 first. FIG. 1 is a schematic diagram of a high-speed arc discharge grinding compound machining device of the present invention. The high-speed arc discharge grinding compound machining method of the present invention includes the following steps:
1)将工件3安装于机床工作台5上,工具电极4安装在机床主轴上,工具电极的安装轴线与机床主轴的轴线重合;工作介质容器6中的工作介质通过工具电极4上的冲液入口进入工具电极,经过工具电极内部通道经工具电极侧壁及底部出口到达加工区域7,实现加工中的电极内冲液,最终经机床工作台5回流至工作介质容器6,形成工作介质回路;1) The
2)将工件3和工具电极4分别接加工电源1的两极,通电加工时工具电极4的侧面与工件3形成放电,所述的工具电极4在机床主轴带动下进行旋转,同时沿工件3表面的垂直方向进给至指定深度,沿工件表面切线方向进给运动,所述的工具电极4的侧面始终与工件3的表面保持一定间隙以实施放电并形成放电加工区域,同时工具电极4的底面切入电弧放电加工后的工件表面一定深度以进一步实施磨削加工;2) The
3)根据待加工的工件3的形状和轮廓,所述的工具电极4在机床主轴带动下沿机床X、Y或Z轴运动,同时工作台5可沿机床A轴或B轴转动可实现工件3的运动,工具电极4和工件3的联动实现工具电极沿工件表面切向运动;在完成一层加工后,工具电极4沿轴向进给一个深度,开始新层加工,重复该过程直至完成加工。3) According to the shape and contour of the
进一步地,所述的加工电源是指峰值电流为1A-1000A的直流电源,其脉冲宽度为1μs-10ms,脉冲间隔为0-10ms;所述的工作介质是指在工具电极和工件之间的以0.1MPa以上压力流动的工作介质,可以是水基工作液、雾气或气体;进一步地,所述的工具电极旋转速度为100RPM-400,000RPM;进一步地,所述的工具电极沿轴线方向进给层深为0.1μm-3000μm,工具电极4的底部端面有电极磨削层8,它与工具电极4固定连接,能够实现待磨削区域11的磨削加工。Further, the processing power supply refers to a DC power supply with a peak current of 1A-1000A, the pulse width is 1μs-10ms, and the pulse interval is 0-10ms; the working medium refers to the power supply between the tool electrode and the workpiece. The working medium flowing at a pressure of more than 0.1 MPa can be water-based working fluid, mist or gas; further, the rotational speed of the tool electrode is 100RPM-400,000RPM; further, the tool electrode is fed along the axis direction The layer depth is 0.1 μm-3000 μm, and the bottom end face of the
进一步的结合附图2所示,本发明高速电弧放电磨削复合加工方法是通过采用特殊的工具电极4(电极侧面能形成放电,且电极底部有磨削层),将高速电弧放电加工和磨削加工进行复合。该技术需要工具电极旋转,并且辅助加工区域高速冲液。该技术实施时,首先工具电极侧面与工件形成电弧放电,在放点区域内7电弧放电形成的高温等离子体9热蚀除工件3的材料,同时电弧放电加工后形成了较大的放电蚀坑10,其表面很粗糙需要进行进一步磨削光整,因此称为待磨削区域11;而后,工具电极4底部的磨削层8对电弧加工后待磨削区域11磨削加工,光整工件表面,实现高表面质量加工。在此加工过程中,工具电极4的外圆面与工件3之间发生电弧放电,并且工具旋转和内冲液综合作用使得电弧等离子体9滑移偏弧,在去除材料的同时避免了烧伤表面;电极磨削层8也有冲液效果能对加工表面进行高效冷却,避免表面升温过大而烧伤,并且可以有助于磨削蚀除的碎屑经过磨削层中的排屑槽排出加工区域。Further in conjunction with accompanying drawing 2, the high-speed arc discharge grinding composite machining method of the present invention is to use special tool electrodes 4 (the side of the electrode can form discharge, and the bottom of the electrode has a grinding layer), and the high-speed arc discharge machining and grinding are used. Compounding by machining. This technique requires the tool electrode to rotate and assist the high-speed flushing of the machining area. When this technology is implemented, firstly, arc discharge is formed between the side of the tool electrode and the workpiece, and the high-temperature plasma 9 formed by the arc discharge in the
最佳实施例best practice
本发明高速电弧放电磨削复合加工方法,根据图1和图2描述:选择具有5轴联动的数控机床,选择不锈钢方料作为工件材料3,选用特制的工具电极4(电极侧面能形成放电,且电极底部有磨削层),将工件3固定在机床工作台5和工具电极4连接到机床主轴上,并且工具电极以3000r/min的转速旋转。将工件3和工具电极4分别连接到放电电源1正、负两端,设定电源参数为:峰值电压90V,峰值电流500A,脉冲宽度5000μs以及脉冲间隔3000μs。选择工作液介质12为水基乳化液,工作液介质冲刷出口的压力为1.6MPa。在上述工艺条件下,进行高速电弧放电磨削复合加工。首先,将工具电极4移动到工件3轮廓外侧,靠近工件材料边缘,工具电极4下降到工件3上边面以下2mm位置。当工具电极4沿工件3表面切向进给时,工具电极4的侧面首先与工件3放电,电弧放电产生高温等离子体9将蚀除工件3材料,形成放电蚀坑10的表面,该表面较为粗糙,粗糙度Ra初步估计测量值高达16μm以上,由于这一粗糙的加工表面需要进一步进行磨削加工,因此在此发明中该表面区域称为待磨削区域11。而后,随着工具电极4的横向进给,工具电极4底部的磨削层8将运动到待磨削区域11,进行磨削加工,对加工表面进行光整,以提高表面质量。此方法在加工不锈钢材料时,前期实验结果初步显示:其加工效率可达2000mm3/min以上,且加工后表面粗糙度预计可达Ra3.2以下,相比于传统的电弧加工后的表面具有很大的提升。The high-speed arc discharge grinding composite machining method of the present invention is described according to Fig. 1 and Fig. 2: select a CNC machine tool with 5-axis linkage, select a stainless steel square material as the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711060060.2A CN107649755B (en) | 2017-11-01 | 2017-11-01 | High-speed arc discharge grinding composite processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711060060.2A CN107649755B (en) | 2017-11-01 | 2017-11-01 | High-speed arc discharge grinding composite processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107649755A CN107649755A (en) | 2018-02-02 |
CN107649755B true CN107649755B (en) | 2020-06-30 |
Family
ID=61096226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711060060.2A Active CN107649755B (en) | 2017-11-01 | 2017-11-01 | High-speed arc discharge grinding composite processing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107649755B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108284320B (en) * | 2018-03-07 | 2020-07-17 | 新疆短电弧科技开发有限公司 | Cradle type double-rotary workbench special for short-arc combined machining center |
CN109759659B (en) * | 2019-01-30 | 2021-06-01 | 上海交通大学 | Efficient coarsening processing system and method for contour surface |
CN109746534B (en) * | 2019-02-18 | 2021-04-30 | 上海交通大学 | Blade disc part machining system and method based on combination of arc discharge and milling |
CN110744155B (en) * | 2019-10-23 | 2022-02-22 | 扬州大学 | Efficient electrolytic grinding device and machining method for honeycomb sector |
CN112475496B (en) * | 2020-11-19 | 2022-10-21 | 首都航天机械有限公司 | Water-based working solution for electric spark machining and electric arc machining and preparation method and application thereof |
CN114871518A (en) * | 2021-12-15 | 2022-08-09 | 长沙理工大学 | Electric arc additive and electrochemical discharge additive reduction composite manufacturing device and method |
CN114770231A (en) * | 2022-04-29 | 2022-07-22 | 上海交通大学 | In-situ composite grinding and high-speed electrical discharge machining device, machine tool and method |
CN115213503B (en) * | 2022-09-20 | 2023-03-17 | 扬州市职业大学(扬州开放大学) | A kind of wire cutting equipment with grinding process |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200934600A (en) * | 2008-02-01 | 2009-08-16 | Contrel Technology Co Ltd | Composite processing machine |
CN101670519B (en) * | 2009-09-16 | 2010-12-29 | 中国石油大学(华东) | Combined processing of tool electrode by EDM face milling and mechanical grinding |
CN103008802A (en) * | 2012-12-11 | 2013-04-03 | 中国石油大学(华东) | High-instantaneous-energy-density electric spark high-speed milling method |
CN105215488B (en) * | 2015-10-15 | 2018-06-05 | 南京航空航天大学 | It is electrolysed milling Compound Machining cathode grinding head device |
CN106077854A (en) * | 2016-07-11 | 2016-11-09 | 南京航空航天大学 | Interior hydrojet electrolytic mill Milling Machining system and method |
-
2017
- 2017-11-01 CN CN201711060060.2A patent/CN107649755B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107649755A (en) | 2018-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107649755B (en) | High-speed arc discharge grinding composite processing method | |
CN102091839B (en) | Bunched electrode high-speed discharge processing method | |
CN103008802A (en) | High-instantaneous-energy-density electric spark high-speed milling method | |
CN103395002B (en) | A kind of electric discharge machining in gas dressing of bulky diamond emery wheel repaiies neat method | |
CN102234832B (en) | Precise controllable electrolysis removal technology for burrs on inner bore intersecting line of mechanical metal part | |
CN104772535B (en) | Open three dimensional runner high speed arc spraying discharge layer sweeps processing method | |
CN110153515A (en) | EDM-Electrolysis Composite Machining Device and Processing Method Using Microabrasive Internal Spray | |
CN105215488A (en) | Electrolysis milling Compound Machining negative electrode grinding head device | |
CA2768260A1 (en) | Electroerosion machining systems and methods | |
WO2021190530A1 (en) | Processing method for tool having complex cutting edge using combined laser | |
CN107999905B (en) | Device and method for multi-slot electrolytic cutting assisted by tube electrode abrasive particles | |
CN108213735A (en) | It is a kind of without graphitization complex outline PCD molding cutter cutting edge laser processings | |
CN109759659B (en) | Efficient coarsening processing system and method for contour surface | |
WO2021190529A1 (en) | Pcd cutter for realizing machining by means of milling instead of grinding, and preparation method therefor and use thereof | |
CN108620699B (en) | Anti-short-circuit porous high-efficiency flushing electrode for arc discharge machining | |
CN102172833B (en) | Controllable and ablated non-conductive engineering ceramic grinding method based on discharge induction | |
CN104551277A (en) | Wire saw winding tool electrode for electrochemical-mechanical combined processing | |
CN111496333A (en) | Portable short arc rivet cutting equipment | |
CN204366212U (en) | A kind of scroll saw coiling tool-electrode for electrochemical-mechanical Compound Machining | |
CN109702281B (en) | Electric arc grinding composite tool electrode | |
CN114986106B (en) | Processing method of tantalum sputtering target end face seal groove | |
CN115007958B (en) | Electrode system of liquid-guided laser-electrolytic combined machining tool and milling method | |
CN116100098A (en) | Composite processing system and method for electrolytic spark grinding with liquid-filled diamond electrode | |
Guo et al. | Improving energy utilization efficiency of electrical discharge milling in titanium alloys machining | |
CN115106790A (en) | Electric arc milling composite tool electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |