CN107644878A - Phase inverter and preparation method thereof - Google Patents
Phase inverter and preparation method thereof Download PDFInfo
- Publication number
- CN107644878A CN107644878A CN201610591444.6A CN201610591444A CN107644878A CN 107644878 A CN107644878 A CN 107644878A CN 201610591444 A CN201610591444 A CN 201610591444A CN 107644878 A CN107644878 A CN 107644878A
- Authority
- CN
- China
- Prior art keywords
- drain
- channel
- inverter
- electric double
- double layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title description 3
- 238000004519 manufacturing process Methods 0.000 claims abstract description 27
- 239000010409 thin film Substances 0.000 claims description 74
- 239000010408 film Substances 0.000 claims description 54
- 239000000758 substrate Substances 0.000 claims description 38
- 230000001105 regulatory effect Effects 0.000 claims description 32
- 239000007784 solid electrolyte Substances 0.000 claims description 32
- 230000000694 effects Effects 0.000 claims description 24
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 12
- 229920001661 Chitosan Polymers 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052738 indium Inorganic materials 0.000 claims description 7
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 6
- ATFCOADKYSRZES-UHFFFAOYSA-N indium;oxotungsten Chemical compound [In].[W]=O ATFCOADKYSRZES-UHFFFAOYSA-N 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical group [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 claims description 6
- 239000011787 zinc oxide Substances 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims 1
- 239000000783 alginic acid Substances 0.000 claims 1
- 229920000615 alginic acid Polymers 0.000 claims 1
- 229960001126 alginic acid Drugs 0.000 claims 1
- 235000010443 alginic acid Nutrition 0.000 claims 1
- 150000004781 alginic acids Chemical class 0.000 claims 1
- 229910052708 sodium Inorganic materials 0.000 claims 1
- 239000011734 sodium Substances 0.000 claims 1
- 108091006146 Channels Proteins 0.000 description 75
- 238000000034 method Methods 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 239000010931 gold Substances 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 7
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 239000000661 sodium alginate Substances 0.000 description 6
- 235000010413 sodium alginate Nutrition 0.000 description 6
- 229940005550 sodium alginate Drugs 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000001755 magnetron sputter deposition Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011664 nicotinic acid Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000002207 thermal evaporation Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 1
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 1
- 108010075750 P-Type Calcium Channels Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
Abstract
本发明公开了一种反相器,包含晶体管与电阻,其中,晶体管包含:双电层栅介质层、位于双电层栅介质层的一侧的栅电极,以及位于双电层栅介质层的另一侧的至少一个侧向调控端、沟道、源极与漏极,其中,沟道分别与源极、漏极接触;并且,侧向调控端均不与沟道、源极与漏极电联通;并且电阻的一端与漏极电联通,另一端用于施加电源电压VDD;晶体管的栅电极作为输入端,漏极作为输出端,源极接地,至少一个侧向调控端用于施加固定偏压Vm,固定偏压Vm用于调整晶体管的阈值电压。本发明能够极大降低反相器的工作电压,降低制造成本,并能够实现反相器的平衡噪音容限,改善反相器的电学特性。
The invention discloses an inverter, which includes a transistor and a resistor, wherein the transistor includes: an electric double layer gate dielectric layer, a gate electrode located on one side of the electric double layer gate dielectric layer, and a gate electrode located on the electric double layer gate dielectric layer At least one lateral control terminal, channel, source and drain on the other side, wherein the channel is in contact with the source and drain respectively; and none of the lateral control terminals is in contact with the channel, source and drain and one end of the resistor is electrically connected to the drain, and the other end is used to apply the power supply voltage V DD ; the gate electrode of the transistor is used as the input end, the drain is used as the output end, the source is grounded, and at least one side regulation end is used to apply The fixed bias voltage V m is used to adjust the threshold voltage of the transistor. The invention can greatly reduce the operating voltage of the inverter, reduce the manufacturing cost, realize the balanced noise tolerance of the inverter, and improve the electrical characteristics of the inverter.
Description
技术领域technical field
本发明涉及微电子技术领域,具体涉及一种具有改良结构的低工作电压反相器及其制作方法。The invention relates to the technical field of microelectronics, in particular to a low working voltage inverter with an improved structure and a manufacturing method thereof.
背景技术Background technique
近年来,逻辑电路被广泛应用于各种半导体集成电路中,例如,动态随机存取存储器(Dynamic Random Access Memory,DRAM),静态随机存取存储器(Static Random AccessMemory,SRAM),和液晶显示器(Liquid Crystal Display,LCD)等。其中,反相器是逻辑电路的基础。In recent years, logic circuits have been widely used in various semiconductor integrated circuits, for example, Dynamic Random Access Memory (Dynamic Random Access Memory, DRAM), Static Random Access Memory (Static Random Access Memory, SRAM), and Liquid Crystal Display (Liquid Crystal Display, LCD), etc. Among them, the inverter is the basis of the logic circuit.
传统互补型金属-氧化物-半导体(Complementary metal-oxide-semiconductor,CMOS)反相器,通常采用硅沟道实现,通过在硅中掺杂III族元素(如硼)形成p型沟道,或者通过在硅中掺杂五族元素(如磷)形成n型沟道。由于成熟的硅基集成电路技术,这类反相器已经被普遍应用于大量电子产品。进一步的说,鉴于氧化物半导体材料的综合优势,以其作为有源沟道层的氧化物薄膜晶体管正成为电子信息产业的明星,在新一代透明柔性平板显示或可穿戴、便携式电子产品等领域具有极强的应用前景。Traditional complementary metal-oxide-semiconductor (Complementary metal-oxide-semiconductor, CMOS) inverters are usually implemented with silicon channels, which are formed by doping group III elements (such as boron) in silicon to form p-type channels, or An n-type channel is formed by doping silicon with a Group V element such as phosphorus. Due to the mature silicon-based integrated circuit technology, this type of inverter has been commonly used in a large number of electronic products. Furthermore, in view of the comprehensive advantages of oxide semiconductor materials, oxide thin film transistors using it as the active channel layer are becoming the star of the electronic information industry, and are used in the fields of new generation transparent and flexible flat panel displays or wearable and portable electronic products. It has a strong application prospect.
虽然氧化物薄膜晶体管的性能较好,其场效应电子迁移率高达10~100cm2/Vs,然而尚缺乏与之相匹配的具有p型导电特性的氧化物薄膜晶体管。具体地说,目前报道的p型氧化物薄膜晶体管不仅器件性能较差(空穴迁移率<1cm2/Vs),稳定性有待提高,而且工艺也相对复杂。因此基于全氧化物的CMOS反相器电路的电学性能受到极大影响。虽然人们采用p型有机晶体管与n型氧化晶体管结合制作了一些CMOS反相器电路,但是p型有机晶体管的问题是迁移率也较小(<1cm2/Vs),稳定性也较差。有鉴于此,人们也采用两种具有不同阈值电压的n型氧化物薄膜晶体管来设计反相器电路。Although the performance of the oxide thin film transistor is good, and its field-effect electron mobility is as high as 10-100 cm 2 /Vs, there is still a lack of an oxide thin film transistor with p-type conductivity matching it. Specifically, the p-type oxide thin film transistors reported so far not only have poor device performance (hole mobility<1cm 2 /Vs), but also need to improve the stability, and the process is relatively complicated. Therefore, the electrical performance of the all-oxide based CMOS inverter circuit is greatly affected. Although some CMOS inverter circuits have been made by combining p-type organic transistors and n-type oxide transistors, the problem of p-type organic transistors is that their mobility is also small (<1cm 2 /Vs) and their stability is poor. In view of this, people also use two kinds of n-type oxide thin film transistors with different threshold voltages to design inverter circuits.
但是,上述反相器采用的晶体管通常采用传统的栅介质薄膜,其单位面积电容较小,通常小于几十nF/cm2,器件的工作电压较大(通常>5V),因此设计的反相器电路存在工作电压相对较大的缺点。此外,这种反相器的制作工艺需要多个光刻掩膜步骤,存在复杂度高、工艺成本较高的缺点。上述缺点限制了上述反相器在低功耗和便携式电子产品中的应用。However, the transistors used in the above-mentioned inverters usually use traditional gate dielectric films, and their capacitance per unit area is small, usually less than tens of nF/cm 2 . The converter circuit has the disadvantage of relatively large operating voltage. In addition, the manufacturing process of this inverter requires multiple photolithography mask steps, which has the disadvantages of high complexity and high process cost. The above disadvantages limit the application of the above inverters in low power consumption and portable electronic products.
例如,传统双栅型薄膜晶体管通常采用上下结构,即结合底栅晶体管和顶栅晶体管于一体,关键部位需要采用“底栅/栅介质/沟道/栅介质/顶栅”这一至少5层结构,沟道层两侧需要另外采用导电层获得电接触。这一结构需要多步光刻掩膜工艺,工艺流程复杂,每步均需要严格的对准工艺,成本高昂。For example, the traditional double-gate thin film transistor usually adopts a top-down structure, that is, a bottom-gate transistor and a top-gate transistor are combined, and at least 5 layers of "bottom gate/gate dielectric/channel/gate dielectric/top gate" need to be used in key parts. structure, the two sides of the channel layer need to use additional conductive layers to obtain electrical contact. This structure requires a multi-step photolithography mask process, the process flow is complex, each step requires a strict alignment process, and the cost is high.
发明内容Contents of the invention
本发明的目的是针对上述反相器技术现状的不足,提出一种低工作电压反相器及其制作新工艺,反相器对作为驱动单元的晶体管的性能要求低,通过侧向电极的调控效应,有效实现反相器电学性能的改善。该制作工艺简单易行,能够极大地降低反相器的制作成本,适于大面积连续生产。The purpose of the present invention is to address the deficiencies of the current state of the art of the above-mentioned inverter, and propose a low-voltage inverter and a new manufacturing process thereof. effect, effectively improving the electrical performance of the inverter. The manufacturing process is simple and easy, can greatly reduce the manufacturing cost of the inverter, and is suitable for large-area continuous production.
在本发明的一个方面,提供了一种反相器,包含:晶体管与电阻,其中,In one aspect of the present invention, an inverter is provided, including: a transistor and a resistor, wherein,
晶体管包含:双电层栅介质层、位于双电层栅介质层的一侧的栅电极,以及位于双电层栅介质层的另一侧的至少一个侧向调控端、沟道、源极与漏极,其中,沟道分别与源极、漏极接触;并且,侧向调控端均不与沟道、源极与漏极电联通;并且The transistor includes: an electric double layer gate dielectric layer, a gate electrode located on one side of the electric double layer gate dielectric layer, and at least one lateral regulation terminal located on the other side of the electric double layer gate dielectric layer, a channel, a source and a drain, wherein the channel is in contact with the source and the drain respectively; and none of the lateral control terminals is in electrical communication with the channel, the source and the drain; and
电阻的一端与漏极电联通,另一端用于施加电源电压VDD;One end of the resistor is electrically connected to the drain, and the other end is used to apply the power supply voltage VDD;
晶体管的栅电极作为输入端,漏极作为输出端,源极接地,至少一个侧向调控端用于施加固定偏压Vm,固定偏压Vm用于调整晶体管的阈值电压。The gate electrode of the transistor is used as an input terminal, the drain is used as an output terminal, and the source is grounded. At least one lateral regulating terminal is used for applying a fixed bias voltage V m , and the fixed bias voltage Vm is used for adjusting the threshold voltage of the transistor.
在本发明的一个优选例中,晶体管为底栅型晶体管,其中,绝缘衬底上的导电层作为位于双电层栅介质层一侧的底栅电极。In a preferred embodiment of the present invention, the transistor is a bottom-gate transistor, wherein the conductive layer on the insulating substrate serves as a bottom-gate electrode on one side of the electric double layer gate dielectric layer.
在本发明的一个优选例中,侧向调控端用于通过调节固定偏压Vm,以及底栅电极上施加的输入电压,通过双电层栅介质层的双电层效应,实现对沟道的导电性的控制。In a preferred example of the present invention, the lateral control terminal is used to adjust the fixed bias voltage Vm and the input voltage applied on the bottom gate electrode, and realize the control of the channel through the electric double layer effect of the electric double layer gate dielectric layer. Conductivity control.
在本发明的一个优选例中,沟道层独立地选自下组:氧化铟锌、铟镓锌氧、铟钨氧化物,并且,沟道层厚度为10nm~100nm。In a preferred example of the present invention, the channel layer is independently selected from the group consisting of indium zinc oxide, indium gallium zinc oxide, and indium tungsten oxide, and the thickness of the channel layer is 10 nm˜100 nm.
在本发明的一个优选例中,源极、漏极、侧向调控端或底栅电极独立地选自下组:InZnO薄膜、Ag薄膜、Au薄膜、Cu薄膜、InSnO薄膜。In a preferred embodiment of the present invention, the source electrode, the drain electrode, the lateral regulation terminal or the bottom gate electrode are independently selected from the following group: InZnO thin film, Ag thin film, Au thin film, Cu thin film, InSnO thin film.
在本发明的一个优选例中,栅介质层采用具有双电层调控效应的固态电解质,且独立地选自下组:疏松的氧化物介质膜、海藻酸钠膜、壳聚糖膜。In a preferred embodiment of the present invention, the gate dielectric layer adopts a solid electrolyte with an electric double layer regulation effect, and is independently selected from the following group: loose oxide dielectric film, sodium alginate film, and chitosan film.
在本发明的一个优选例中,具有双电层调控效应的固态电解质独立地选自下组:疏松氧化硅薄膜和疏松氧化铝薄膜。In a preferred embodiment of the present invention, the solid electrolyte having the effect of regulating the electric double layer is independently selected from the group consisting of loose silicon oxide film and loose aluminum oxide film.
在本发明的一个优选例中,具有双电层调控效应的固态电解质的单位面积电容为0.1~100μF/cm2。In a preferred example of the present invention, the capacitance per unit area of the solid electrolyte with electric double layer regulation effect is 0.1-100 μF/cm2.
在本发明的一个优选例中,所述晶体管包含的侧向调控端的数量为1-4个。In a preferred example of the present invention, the number of lateral control terminals included in the transistor is 1-4.
在本发明的一个优选例中,所述侧向调控端的面积是所述沟道面积的0.1倍~10倍。In a preferred example of the present invention, the area of the lateral regulating end is 0.1 to 10 times the area of the channel.
在本发明的一个优选例中,所述侧向调控端与所述沟道的间距为沟道尺寸的0.5倍~10倍。In a preferred example of the present invention, the distance between the lateral regulating end and the channel is 0.5 to 10 times the size of the channel.
在本发明的另一个方面,提供了一种反相器的制作方法,包含以下步骤:In another aspect of the present invention, a method for manufacturing an inverter is provided, comprising the following steps:
步骤1:提供绝缘衬底,Step 1: Provide an insulating substrate,
步骤2:在绝缘衬底的表面上形成底栅电极;Step 2: forming a bottom gate electrode on the surface of the insulating substrate;
步骤3:在底栅电极的表面上形成双电层栅介质层;Step 3: forming an electric double layer gate dielectric layer on the surface of the bottom gate electrode;
步骤4:在双电层栅介质层上形成图形化的沟道层、图形化的源极和漏极,以及至少一个图形化的侧向调控端,其中,沟道分别与源极、漏极接触,侧向调控端不与沟道、源极与漏极电联通;Step 4: Forming a patterned channel layer, patterned source and drain, and at least one patterned lateral control terminal on the electric double layer gate dielectric layer, wherein the channel is connected to the source and drain respectively Contact, the lateral control terminal is not electrically connected with the channel, source and drain;
步骤5:将一个电阻的一端与漏极连接。Step 5: Connect one end of a resistor to the drain.
在本发明的另一个方面,还提供了一种电子产品,该电子产品包含上述反相器。In another aspect of the present invention, an electronic product is also provided, which includes the above-mentioned inverter.
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。It should be understood that within the scope of the present invention, the above-mentioned technical features of the present invention and the technical features specifically described in the following (such as embodiments) can be combined with each other to form new or preferred technical solutions. Due to space limitations, we will not repeat them here.
附图说明Description of drawings
图1是根据本发明的一个实施例的反相器结构示意图;FIG. 1 is a schematic structural diagram of an inverter according to an embodiment of the present invention;
图2a-2c是根据本发明制作得到的反相器的电学特性测试结果;Fig. 2a-2c is the electrical characteristic test result of the inverter that obtains according to the present invention;
图3是根据本发明的一个实施例的反相器制作方法的流程示意图;3 is a schematic flow diagram of a method for manufacturing an inverter according to an embodiment of the present invention;
图4是根据本发明的反相器的电路示意图。FIG. 4 is a schematic circuit diagram of an inverter according to the present invention.
在各附图中,1:绝缘衬底;2:底栅电极;3:双电层栅介质层;4a和4b:第一和第二侧向调控端;5a:漏极;5b:源极;6:电阻;7:沟道。VDD:施加的电源电压;VIn:输入端施加的电压;VOut:输出端检测的电压;Vm:调控端施加的偏压。In each drawing, 1: insulating substrate; 2: bottom gate electrode; 3: electric double layer gate dielectric layer; 4a and 4b: first and second lateral control terminals; 5a: drain; 5b: source ;6: resistance; 7: channel. V DD : applied power supply voltage; V In : applied voltage at the input terminal; V Out : detected voltage at the output terminal; V m : applied bias voltage at the control terminal.
具体实施方式detailed description
本发明人经过广泛而深入的研究,发现在反相器的晶体管的栅介质层采用双电层固态电解质,能够显著地降低反相器的工作电压并具有高电压增益性,与此同时,在晶体管上设置侧向调控端,通过调控端偏压的施加,可以有效调控晶体管的电学性能,从而调控反相器的电学性能。因此本发明提出的低工作电压反相器及其制备方法,在获得低工作电压、高电压增益性同时,还进一步降低了制作成本,在生物化学传感、低功耗便携式电子产品和仿生电子产品领域具有广阔的应用前景。After extensive and in-depth research, the inventors have found that the use of an electric double layer solid electrolyte in the gate dielectric layer of the transistor of the inverter can significantly reduce the operating voltage of the inverter and have high voltage gain. At the same time, in A lateral regulating terminal is arranged on the transistor, and by applying a bias voltage at the regulating terminal, the electrical performance of the transistor can be effectively regulated, thereby regulating the electrical performance of the inverter. Therefore, the low working voltage inverter and the preparation method thereof proposed by the present invention can further reduce the production cost while obtaining low working voltage and high voltage gain, and can be used in biochemical sensing, low-power portable electronic products and bionic electronics. The product field has broad application prospects.
本发明典型的技术方案包括:Typical technical solutions of the present invention include:
在绝缘衬底上沉积导电层作为底栅电极,在该底栅电极上沉积的具有双电层调控效应的固态电解质作为栅介质,在该栅介质上沉积的图形化的半导体薄膜作为薄膜晶体管沟道层;在沟道层上合适位置沉积的源、漏电极,同时同步沉积互不联通的图形化导电层作为侧向调控端。将薄膜晶体管的源极接地,将晶体管的漏极与电阻器串联,在电阻器的另一端上施加电源电压VDD,将晶体管的栅电极作为输入端,将晶体管的漏极作为输出端,同时在晶体管上设置的一个或多个侧向调控端上施加固定偏压,用于调控反相器的电学性能,从而获得一个拥有改良结构的低工作电压反相器。A conductive layer is deposited on an insulating substrate as a bottom gate electrode, a solid electrolyte with an electric double layer control effect deposited on the bottom gate electrode serves as a gate dielectric, and a patterned semiconductor film deposited on the gate dielectric serves as a thin film transistor channel. The channel layer; the source and drain electrodes are deposited at appropriate positions on the channel layer, and at the same time, a patterned conductive layer that is not connected to each other is deposited synchronously as a lateral control terminal. The source of the thin film transistor is grounded, the drain of the transistor is connected in series with the resistor, the power supply voltage V DD is applied to the other end of the resistor, the gate electrode of the transistor is used as the input terminal, the drain of the transistor is used as the output terminal, and at the same time A fixed bias voltage is applied to one or more lateral regulation terminals provided on the transistor to regulate the electrical performance of the inverter, so as to obtain a low operating voltage inverter with an improved structure.
反相器inverter
本发明提供了一种反相器,包含:晶体管与电阻,其中,The present invention provides an inverter, including: a transistor and a resistor, wherein,
晶体管包含:双电层栅介质层、位于双电层栅介质层的一侧的栅电极,以及位于双电层栅介质层的另一侧的至少一个侧向调控端、沟道、源极与漏极,其中,沟道分别与源极、漏极接触;并且,侧向调控端均不与沟道、源极与漏极电联通;并且,The transistor includes: an electric double layer gate dielectric layer, a gate electrode located on one side of the electric double layer gate dielectric layer, and at least one lateral regulation terminal located on the other side of the electric double layer gate dielectric layer, a channel, a source and The drain, wherein the channel is in contact with the source and the drain respectively; and none of the lateral control terminals is electrically connected to the channel, the source and the drain; and,
电阻的一端与漏极电联通,另一端用于施加电源电压VDD;One end of the resistor is electrically connected to the drain, and the other end is used to apply the power supply voltage V DD ;
晶体管的栅电极作为输入端,漏极作为输出端,源极接地,至少一个侧向调控端用于施加固定偏压Vm,固定偏压Vm用于调整晶体管的阈值电压。The gate electrode of the transistor is used as an input terminal, the drain is used as an output terminal, the source is grounded, and at least one lateral regulation terminal is used to apply a fixed bias voltage V m , and the fixed bias voltage V m is used to adjust the threshold voltage of the transistor.
在本发明中,固定偏压Vm用于调控晶体管的电学性能,更具体的是调控晶体管的阈值电压,从而进一步实现反相器的平衡噪音容限。或者说,侧向调控端用于通过调节固定偏压Vm,以及底栅电极上施加的输入电压,通过双电层栅介质层的双电层效应,实现对沟道的导电性的控制。In the present invention, the fixed bias voltage V m is used to regulate the electrical performance of the transistor, more specifically to regulate the threshold voltage of the transistor, so as to further realize the balanced noise margin of the inverter. In other words, the lateral control terminal is used to control the conductivity of the channel through the electric double layer effect of the electric double layer gate dielectric layer by adjusting the fixed bias voltage V m and the input voltage applied to the bottom gate electrode.
为了便于理解,下面进一步说明本发明反相器的结构原理。图4是本发明一种反相器实例的电路示意图。应理解,本发明的保护范围并不受所述原理的限制。For ease of understanding, the structural principle of the inverter of the present invention will be further described below. Fig. 4 is a schematic circuit diagram of an example of an inverter of the present invention. It should be understood that the protection scope of the present invention is not limited by the principles described.
在本发明中,沟道层的厚度没有特别限制,通常为10nm~100nm。In the present invention, the thickness of the channel layer is not particularly limited, and is generally 10 nm to 100 nm.
栅介质层采用具有双电层调控效应的固态电解质,且可以独立地选自下组:疏松的氧化物介质膜、海藻酸钠膜、壳聚糖膜。更具体的说,具有双电层调控效应的固态电解质可以独立地选自下组:疏松氧化硅薄膜和疏松氧化铝薄膜。The gate dielectric layer adopts a solid electrolyte with an electric double layer regulating effect, and can be independently selected from the following group: loose oxide dielectric film, sodium alginate film, and chitosan film. More specifically, the solid electrolyte with the electric double layer regulation effect can be independently selected from the group consisting of loose silicon oxide films and loose aluminum oxide films.
在本发明中,上述具有双电层调控效应的固态电解质的单位面积电容为0.1~100μF/cm2。In the present invention, the capacitance per unit area of the above-mentioned solid electrolyte having the effect of regulating the electric double layer is 0.1-100 μF/cm 2 .
在本发明中,输入电压VIn的范围可以是-1V~3V,电源电压VDD的范围可以是0V~3V。In the present invention, the input voltage V In may range from -1V to 3V, and the power supply voltage V DD may range from 0V to 3V.
在本发明中,涉及的双电层固态电解质具有以下属性,在外电场的作用下,固态电解质中存在的离子向电解质/电极界面或电解质/沟道界面迁移,进而在电极一侧或沟道一侧诱导一层与离子电性相反、电荷量相同的载流子聚集层,从而在界面处诱导产生界面双电荷层,这一界面双电荷层的厚度极小(~1nm),其单位面积电容极大(0.1~100μF/cm2),因此这种固态电解质具有极强的静电调控能力,采用这种固态电解质作为栅介质的氧化物薄膜晶体管的工作电压极小(<2V)。In the present invention, the electric double-layer solid electrolyte involved has the following properties. Under the action of an external electric field, the ions present in the solid electrolyte migrate to the electrolyte/electrode interface or the electrolyte/channel interface, and then on one side of the electrode or in the channel. A layer of carrier accumulation layer with the opposite charge to the ion and the same charge is induced on the side, thereby inducing an interface double layer at the interface. The thickness of this interface double layer is extremely small (~1nm), and its capacitance per unit area Extremely large (0.1-100μF/cm 2 ), so this solid-state electrolyte has a strong electrostatic regulation ability, and the working voltage of an oxide thin film transistor using this solid-state electrolyte as a gate dielectric is extremely small (<2V).
进一步地,在底栅型氧化物薄膜晶体管上设置了侧向调控端,通过侧向调控端偏压的设置,有效调控薄膜晶体管的器件性能,从而方便实现反相器的平衡噪音容限。Furthermore, a lateral control terminal is provided on the bottom-gate oxide thin film transistor, and the device performance of the thin film transistor can be effectively controlled by setting the bias voltage of the lateral control terminal, so as to facilitate the realization of the balanced noise tolerance of the inverter.
在本发明中,侧向调控端数量没有特别限定,从实际应用角度出发,数量可以为1~10个,优选1-4个;侧向调控端的面积没有特别限定,从实际应用角度出发,面积应为沟道面积的0.1倍~50倍,作为优选面积应为沟道面积的0.5倍~10倍;侧向调控端与沟道的间距也没有特别限定,这是基于双电层栅介质的双电层调控效应,从实际应用角度出发,间距应该为沟道尺寸的0.1倍~1000倍,优选为0.5倍~10倍。In the present invention, the number of lateral control ends is not particularly limited. From the perspective of practical application, the number can be 1 to 10, preferably 1-4; the area of the lateral control terminal is not particularly limited. From the perspective of practical application, the area It should be 0.1 to 50 times the channel area, and the preferred area should be 0.5 to 10 times the channel area; the distance between the lateral control end and the channel is not particularly limited, which is based on the electric double layer gate dielectric For the control effect of the electric double layer, from the perspective of practical application, the spacing should be 0.1 to 1000 times the channel size, preferably 0.5 to 10 times.
需要指出的是,在本发明的其他优选例中,在设置有多个侧向调控端的条件下,可以选择其中一个或若干个侧向调控端施加固定偏压。It should be pointed out that, in other preferred embodiments of the present invention, under the condition that multiple lateral regulation terminals are provided, one or several lateral regulation terminals can be selected to apply a fixed bias voltage.
在本发明中,绝缘衬底没有特别限制。优选的绝缘衬底包括(但并不限于):沉积有热氧化SiO2的单晶硅衬底、玻璃衬底、塑料衬底、纸张衬底、陶瓷衬底。In the present invention, the insulating substrate is not particularly limited. Preferred insulating substrates include (but are not limited to): single crystal silicon substrates deposited with thermally oxidized SiO 2 , glass substrates, plastic substrates, paper substrates, ceramic substrates.
在本发明中,固态电解质没有特别限制。优选的具有双电层调控效应的固态电解质可以是疏松的氧化物介质膜、海藻酸钠膜、壳聚糖膜、或其组合,优选为疏松SiO2薄膜和疏松Al2O3薄膜。In the present invention, the solid electrolyte is not particularly limited. The preferred solid electrolyte with electric double layer regulating effect can be loose oxide dielectric film, sodium alginate film, chitosan film, or a combination thereof, preferably loose SiO 2 film and loose Al 2 O 3 film.
在本发明中,优选的沟道层包括(但并不限于):铟锌氧化物复合薄膜(InZnO)、铟镓锌氧化物复合薄膜(InGaZnO)、铟钨氧化物薄膜(IWO)、或其组合。In the present invention, preferred channel layers include (but are not limited to): indium zinc oxide composite film (InZnO), indium gallium zinc oxide composite film (InGaZnO), indium tungsten oxide film (IWO), or combination.
在优选例中,源极、漏极、侧向调控端或底栅电极可以独立地选自下组:InZnO薄膜、Ag薄膜、Au薄膜、Cu薄膜、InSnO薄膜。In a preferred example, the source electrode, the drain electrode, the lateral regulation terminal or the bottom gate electrode can be independently selected from the following group: InZnO thin film, Ag thin film, Au thin film, Cu thin film, InSnO thin film.
在本发明中,采用电子导电氧化物半导体薄膜作为薄膜晶体管(TFTs)沟道,采用具有双电层调控效应的固态电解质作为栅介质,制作n型氧化物TFTs。In the present invention, an electronically conductive oxide semiconductor thin film is used as the channel of thin film transistors (TFTs), and a solid electrolyte with electric double layer control effect is used as a gate dielectric to manufacture n-type oxide TFTs.
根据本发明,通过沟道导电性的改变(或者电阻的电阻值的改变),实现电源电压VDD在电阻和沟道上的分配方式的改变。因此沟道的电阻随栅电极偏压(或输入电压)发生变化的区域直接影响反相器的电压转移曲线,反相器电压转移曲线上存在电压转变阈值电压(VInv),如果VInv=VDD/2,即可达到平衡噪音容限条件。但是,如果沟道电阻随栅电极偏压(或输入电压)发生变化的区域不佳,则无法实现平衡噪音容限条件。因此结合本发明的侧向调控端技术,可以实现沟道电阻随栅电极偏压(或输入电压)发生变化区域的有效调控,从而实现平衡噪音容限条件。According to the present invention, by changing the conductivity of the channel (or changing the resistance value of the resistor), the distribution mode of the power supply voltage V DD on the resistor and the channel can be changed. Therefore, the area where the resistance of the channel changes with the bias voltage of the gate electrode (or input voltage) directly affects the voltage transfer curve of the inverter. There is a voltage transfer threshold voltage (V Inv ) on the voltage transfer curve of the inverter. If V Inv = V DD /2, the balanced noise margin condition can be achieved. However, if the region where the channel resistance varies with gate electrode bias (or input voltage) is poor, the balanced noise margin condition cannot be achieved. Therefore, in combination with the lateral control terminal technology of the present invention, the effective control of the area where the channel resistance changes with the gate electrode bias (or input voltage) can be realized, thereby achieving a balanced noise margin condition.
制作方法Production Method
本发明还提供了反相器的制作方法,它包含以下步骤:The present invention also provides a manufacturing method of the inverter, which comprises the following steps:
步骤1:提供绝缘衬底,Step 1: Provide an insulating substrate,
步骤2:在绝缘衬底的表面上形成底栅电极;Step 2: forming a bottom gate electrode on the surface of the insulating substrate;
步骤3:在所述底栅电极的表面上形成双电层栅介质层;Step 3: forming an electric double layer gate dielectric layer on the surface of the bottom gate electrode;
步骤4:在所述双电层栅介质层上形成图形化的沟道层、图形化的源极和漏极,以及至少一个图形化的侧向调控端,其中,所述沟道分别与所述源极、所述漏极接触,所述侧向调控端不与所述沟道、所述源极与漏极电联通;Step 4: Forming a patterned channel layer, a patterned source and drain, and at least one patterned lateral control terminal on the electric double layer gate dielectric layer, wherein the channel is respectively connected to the The source and the drain are in contact, and the lateral control terminal is not electrically connected to the channel, the source and the drain;
步骤5:将一个电阻的一端与所述漏极连接。Step 5: Connect one end of a resistor to the drain.
在本发明中,可以选用本领域常规的制造设备,选用上述合适的材料,通过现有的方法,制备本发明的所述的反相器。代表性的制备方法包括(但并不限于):沉积法、溅射法、热蒸发法、或其组合。In the present invention, the conventional manufacturing equipment in the field can be selected, the above-mentioned suitable materials can be selected, and the inverter of the present invention can be prepared by existing methods. Representative preparation methods include, but are not limited to: deposition, sputtering, thermal evaporation, or combinations thereof.
应用application
本发明的反相器可应用于各种不同场合。The inverter of the present invention can be applied to various occasions.
本发明提供了一种电子产品,所述电子产品包含本发明所述的反相器。The present invention provides an electronic product, which includes the inverter described in the present invention.
典型地,所述的电子产品包括:各类传感器(如生物化学传感器)、低功耗或便携式电子产品和仿生电子产品。Typically, the electronic products include: various sensors (such as biochemical sensors), low-power or portable electronic products and bionic electronic products.
本发明的主要优点包括:The main advantages of the present invention include:
1)本发明采用具有双电层调控效应的固态电解质作为栅介质,其单位面积电容极大,因此具有极强的静电调控特性,可以极大地降低氧化物薄膜晶体管的工作电压,从而可以获得低工作电压的反相器。1) The present invention uses a solid electrolyte with an electric double layer control effect as the gate medium, and its capacitance per unit area is extremely large, so it has a strong electrostatic control characteristic, which can greatly reduce the operating voltage of the oxide thin film transistor, thereby obtaining a low working voltage inverter.
2)由于固态电解质的超强电容耦合效应,器件制作的对准要求低,同时源、漏电极和侧向调控端均可以同步获得,可以极大地降低器件制作的工艺成本,适于大面积连续生产。2) Due to the super-capacitive coupling effect of the solid electrolyte, the alignment requirements for device manufacturing are low, and the source, drain electrodes, and lateral control terminals can be obtained simultaneously, which can greatly reduce the process cost of device manufacturing, and is suitable for large-area continuous Production.
3)在底栅型氧化物薄膜晶体管上设置了侧向调控端,通过侧向调控端偏压的设置,有效调控薄膜晶体管的器件性能,因此反相器的电学性能可以通过侧向调控端偏压的设置来调控,从而方便实现反相器的平衡噪音容限。3) A lateral control terminal is set on the bottom gate oxide thin film transistor, and the device performance of the thin film transistor can be effectively regulated by setting the bias voltage of the lateral control terminal. Therefore, the electrical performance of the inverter can be biased by the lateral control terminal. It is regulated by the voltage setting, so as to facilitate the balanced noise margin of the inverter.
4)由于反相器电路的工作电压低,可以在较低工作电压下获得较大的反相器电压增益,且电压传输曲线特性的电压转变区域窄,利于改善反相器动态电学特性。4) Due to the low operating voltage of the inverter circuit, a larger inverter voltage gain can be obtained at a lower operating voltage, and the voltage transition region of the voltage transfer curve characteristic is narrow, which is conducive to improving the dynamic electrical characteristics of the inverter.
5)在本发明中,晶体管采用底栅结构结合侧栅结构,侧向调控端可以与源极同步沉积,减少了对准工艺的要求,而且侧向调控端能够有效调控底栅型晶体管的电学性能,而采用传统栅介质的薄膜晶体管无法实现这一功能。5) In the present invention, the transistor adopts a bottom-gate structure combined with a side-gate structure, and the lateral control terminal can be deposited synchronously with the source, which reduces the requirements for the alignment process, and the lateral control terminal can effectively control the electrical properties of the bottom-gate transistor. performance, which cannot be achieved by thin-film transistors using traditional gate dielectrics.
因此,本发明提供的低工作电压反相器制作方法极大地降低了反相器电路的工作电压,改善了反相器的电学特性,且制作工艺简单、成本低廉,在生物化学传感、低功耗便携式电子产品和仿生电子产品等领域具有十分广阔的应用前景。Therefore, the manufacturing method of the low operating voltage inverter provided by the present invention greatly reduces the operating voltage of the inverter circuit, improves the electrical characteristics of the inverter, and has a simple manufacturing process and low cost. Power consumption portable electronic products and bionic electronic products have very broad application prospects.
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. For the experimental methods without specific conditions indicated in the following examples, usually follow the conventional conditions or the conditions suggested by the manufacturer. Percentages and parts are by weight unless otherwise indicated.
实施例:反相器1Example: Inverter 1
根据本实施例的反相器,包含:晶体管与电阻,其中,The inverter according to this embodiment includes: a transistor and a resistor, wherein,
晶体管包含:双电层栅介质层、位于双电层栅介质层的一侧的栅电极,以及位于双电层栅介质层的另一侧的至少一个侧向调控端、沟道、源极与漏极,其中,沟道分别与源极、漏极接触;并且,侧向调控端均不与沟道、源极与漏极电联通;并且,The transistor includes: an electric double layer gate dielectric layer, a gate electrode located on one side of the electric double layer gate dielectric layer, and at least one lateral regulation terminal located on the other side of the electric double layer gate dielectric layer, a channel, a source and The drain, wherein the channel is in contact with the source and the drain respectively; and none of the lateral control terminals is electrically connected to the channel, the source and the drain; and,
电阻的一端与漏极电联通,另一端用于施加电源电压VDD;One end of the resistor is electrically connected to the drain, and the other end is used to apply the power supply voltage V DD ;
晶体管的栅电极作为输入端,漏极作为输出端,源极接地,侧向调控端之一用于施加固定偏压Vm,固定偏压Vm用于调整晶体管的阈值电压。The gate electrode of the transistor is used as an input terminal, the drain is used as an output terminal, and the source is grounded. One of the lateral control terminals is used to apply a fixed bias voltage V m , and the fixed bias voltage V m is used to adjust the threshold voltage of the transistor.
具体地说,固定偏压Vm用于调控晶体管的电学性能,更具体的是调控晶体管的阈值电压,从而进一步实现反相器的平衡噪音容限。或者说,侧向调控端用于通过调节固定偏压Vm,以及底栅电极上施加的输入电压,通过双电层栅介质层的双电层效应,实现对沟道的导电性的控制。Specifically, the fixed bias voltage V m is used to regulate the electrical performance of the transistor, more specifically, to regulate the threshold voltage of the transistor, so as to further realize the balanced noise margin of the inverter. In other words, the lateral control terminal is used to control the conductivity of the channel through the electric double layer effect of the electric double layer gate dielectric layer by adjusting the fixed bias voltage V m and the input voltage applied to the bottom gate electrode.
在本实施例中,沟道层可以独立地选自下组:氧化铟锌、铟镓锌氧、铟钨氧化物,并且,沟道层厚度为10nm~100nm。In this embodiment, the channel layer may be independently selected from the group consisting of indium zinc oxide, indium gallium zinc oxide, and indium tungsten oxide, and the thickness of the channel layer is 10 nm˜100 nm.
源极、漏极、侧向调控端或底栅电极可以独立地选自下组:InZnO薄膜、Ag薄膜、Au薄膜、Cu薄膜、InSnO薄膜。The source electrode, the drain electrode, the lateral regulating terminal or the bottom gate electrode can be independently selected from the following group: InZnO thin film, Ag thin film, Au thin film, Cu thin film, InSnO thin film.
栅介质层采用具有双电层调控效应的固态电解质,且可以独立地选自下组:疏松的氧化物介质膜、海藻酸钠膜、壳聚糖膜。更具体的说,具有双电层调控效应的固态电解质可以独立地选自下组:疏松氧化硅薄膜和疏松氧化铝薄膜。The gate dielectric layer adopts a solid electrolyte with an electric double layer regulating effect, and can be independently selected from the following group: loose oxide dielectric film, sodium alginate film, and chitosan film. More specifically, the solid electrolyte with the electric double layer regulation effect can be independently selected from the group consisting of loose silicon oxide films and loose aluminum oxide films.
上述具有双电层调控效应的固态电解质的单位面积电容为0.1~100μF/cm2。The capacitance per unit area of the above-mentioned solid electrolyte with electric double layer regulating effect is 0.1-100 μF/cm 2 .
输入电压VIn的范围可以是-1V~3V,电源电压VDD的范围可以是0V~3V。The input voltage V In may range from -1V to 3V, and the power supply voltage V DD may range from 0V to 3V.
在本实施例中,涉及的双电层固态电解质具有以下属性,在外电场的作用下,固态电解质中存在的离子向电解质/电极界面或电解质/沟道界面迁移,进而在电极一侧或沟道一侧诱导一层与离子电性相反、电荷量相同的载流子聚集层,从而在界面处诱导产生界面双电荷层,这一界面双电荷层的厚度极小(~1nm),其单位面积电容极大(0.1~100μF/cm2),因此这种固态电解质具有极强的静电调控能力,采用这种固态电解质作为栅介质的氧化物薄膜晶体管的工作电压极小(<2V)。In this embodiment, the electric double layer solid electrolyte involved has the following properties. Under the action of an external electric field, the ions present in the solid electrolyte migrate to the electrolyte/electrode interface or the electrolyte/channel interface, and then on one side of the electrode or in the channel One side induces a layer of carrier accumulation layer that is opposite to the ionic charge and has the same charge, thereby inducing an interface double layer at the interface. The thickness of this interface double layer is extremely small (~1nm), and its unit area The capacitance is extremely large (0.1-100μF/cm 2 ), so this solid electrolyte has a strong electrostatic regulation ability, and the working voltage of an oxide thin film transistor using this solid electrolyte as a gate dielectric is extremely small (<2V).
在本实施例中,在底栅型氧化物薄膜晶体管上设置了侧向调控端。In this embodiment, a lateral regulating terminal is provided on the bottom-gate oxide thin film transistor.
以沟道长度和沟道宽度分别为80μm和1mm为例,可以选择侧向调控端的数量为1个,侧向调控端的尺寸为150μm×1mm,侧向调控端距离漏极的间距为300μm。Taking the channel length and channel width as 80 μm and 1 mm respectively as an example, the number of lateral control terminals can be selected as one, the size of the lateral control terminals is 150 μm×1 mm, and the distance between the lateral control terminals and the drain is 300 μm.
实施例:反相器2Example: Inverter 2
本实施例的反相器与上述实施例基本相同,不再赘述,它们之间的区别在于,本实施例的反相器采用的是底栅型晶体管。The inverter in this embodiment is basically the same as the above-mentioned embodiments, and will not be described again. The difference between them is that the inverter in this embodiment uses a bottom-gate transistor.
更具体的说,如图1所示,本实施例的反相器包含晶体管与电阻6,其中,More specifically, as shown in FIG. 1, the inverter of this embodiment includes a transistor and a resistor 6, wherein,
晶体管包含:双电层栅介质层3、位于双电层栅介质层的一侧的底栅电极2,以及位于双电层栅介质层3的另一侧的第一侧向调控端4a和第二侧向调控端4b、沟道层7、源极5b与漏极5a,其中,沟道层7分别与源极5b、漏极5a接触;并且,第一和第二侧向调控端4a、4b均不与沟道层7、源极5b与漏极5a电联通;并且,The transistor includes: an electric double layer gate dielectric layer 3, a bottom gate electrode 2 located on one side of the electric double layer gate dielectric layer, and a first lateral regulating terminal 4a and a second lateral control terminal 4a located on the other side of the electric double layer gate dielectric layer 3 Two lateral control terminals 4b, channel layer 7, source 5b and drain 5a, wherein the channel layer 7 is in contact with source 5b and drain 5a respectively; and the first and second lateral control terminals 4a, 4b are not in electrical communication with the channel layer 7, the source 5b and the drain 5a; and,
电阻6的一端与漏极5a电联通,另一端用于施加电源电压VDD;One end of the resistor 6 is electrically connected to the drain 5a, and the other end is used to apply the power supply voltage V DD ;
晶体管的底栅电极2作为输入端,漏极5a作为输出端,源极5b接地,第一侧向调控端4a用于施加固定偏压Vm,固定偏压Vm用于调整晶体管的阈值电压。在本发明的其他有优选例中,也可以将第二侧向调控端4b用于施加内固定偏压Vm。The bottom gate electrode 2 of the transistor is used as an input terminal, the drain 5a is used as an output terminal, the source 5b is grounded, and the first lateral regulation terminal 4a is used to apply a fixed bias voltage V m , and the fixed bias voltage V m is used to adjust the threshold voltage of the transistor . In other preferred embodiments of the present invention, the second lateral regulating end 4b can also be used to apply the internal fixed bias voltage V m .
在本实施例中,固定偏压Vm用于调控晶体管的电学性能,具体地说,是调控晶体管的阈值电压,从而进一步实现反相器的平衡噪音容限。换句话说,第一和第二侧向调控端4a、4b用于通过调节固定偏压Vm,以及底栅电极2上施加的输入电压,通过双电层栅介质层3的双电层效应,实现对沟道层7的导电性的控制。In this embodiment, the fixed bias voltage V m is used to regulate the electrical performance of the transistor, specifically, to regulate the threshold voltage of the transistor, so as to further realize the balanced noise margin of the inverter. In other words, the first and second lateral regulating terminals 4a, 4b are used to adjust the fixed bias voltage V m and the input voltage applied to the bottom gate electrode 2, through the electric double layer effect of the electric double layer gate dielectric layer 3 , to control the conductivity of the channel layer 7 .
在本实施例中,沟道层7可以独立地选自下组:氧化铟锌、铟镓锌氧、铟钨氧化物,并且,沟道层厚度为10nm~100nm。源极5b、漏极5a、第一和第二侧向调控端4a、4b或底栅电极2可以独立地选自下组:InZnO薄膜、Ag薄膜、Au薄膜、Cu薄膜、InSnO薄膜。双电层栅介质层3采用具有双电层调控效应的固态电解质,且可以独立地选自下组:疏松的氧化物介质膜、海藻酸钠膜、壳聚糖膜。更具体的说,可以独立地选自下组:疏松氧化硅薄膜和疏松氧化铝薄膜。上述具有双电层调控效应的固态电解质的单位面积电容为0.1~100μF/cm2。输入电压VIn的范围可以是-1V~3V,电源电压VDD的范围可以是0V~3V。In this embodiment, the channel layer 7 may be independently selected from the group consisting of indium zinc oxide, indium gallium zinc oxide, and indium tungsten oxide, and the thickness of the channel layer is 10 nm˜100 nm. The source electrode 5b, the drain electrode 5a, the first and second lateral regulating terminals 4a, 4b or the bottom gate electrode 2 can be independently selected from the following group: InZnO thin film, Ag thin film, Au thin film, Cu thin film, InSnO thin film. The electric double layer gate dielectric layer 3 adopts a solid electrolyte with an electric double layer regulating effect, and can be independently selected from the following group: loose oxide dielectric film, sodium alginate film, and chitosan film. More specifically, it may be independently selected from the group consisting of loose silicon oxide films and loose aluminum oxide films. The capacitance per unit area of the above-mentioned solid electrolyte with electric double layer regulating effect is 0.1-100 μF/cm 2 . The input voltage V In may range from -1V to 3V, and the power supply voltage V DD may range from 0V to 3V.
在本实施例中,固定偏压Vm施加在第一侧向调控端4a。底栅型晶体管中,底栅电极2上施加的偏压实现对沟道层7导电性的控制是通过双电层栅介质3的双电层效应实现,当在第一侧向调控端4a上施加固定偏压Vm时,这一双电层效应的强度被有效改变,因此底栅薄膜晶体管的性能发生漂移。In this embodiment, a fixed bias voltage V m is applied to the first lateral regulating terminal 4a. In a bottom-gate transistor, the bias voltage applied on the bottom gate electrode 2 realizes the control of the conductivity of the channel layer 7 through the electric double layer effect of the electric double layer gate dielectric 3. When the first lateral control terminal 4a When a fixed bias voltage V m is applied, the strength of this electric double layer effect is effectively changed, and thus the performance of the bottom-gate thin film transistor drifts.
在本实施例中,通过将底栅型氧化物薄膜晶体管与电阻6相连,获得一个电阻负载型反相器,并且底栅型氧化物薄膜晶体管采用具有双电层调控效应的固态电解质作为双电层栅介质层3。其中,晶体管的源极5b接地,漏极5a与电阻6的一端串联,电阻6的另一端上施加电源电压VDD,将晶体管的底栅电极2作为输入端,将晶体管的漏极5a作为输出端,同时,在晶体管上设置了第一和第二侧向调控端4a、4b,用于调控反相器的电学性能。In this embodiment, a resistance-loaded inverter is obtained by connecting the bottom-gate oxide thin film transistor to the resistor 6, and the bottom-gate oxide thin film transistor uses a solid electrolyte with an electric double layer control effect as a double electric Layer gate dielectric layer 3. Wherein, the source 5b of the transistor is grounded, the drain 5a is connected in series with one end of the resistor 6, the other end of the resistor 6 is applied with a power supply voltage V DD , the bottom gate electrode 2 of the transistor is used as the input terminal, and the drain 5a of the transistor is used as the output At the same time, the first and second lateral regulation terminals 4a, 4b are set on the transistor to regulate the electrical performance of the inverter.
本实施例的底栅型氧化物薄膜晶体管的结构,可以通过以下方式形成:The structure of the bottom-gate oxide thin film transistor of this embodiment can be formed in the following manner:
在绝缘衬底1上沉积导电层,作为底栅电极2。此后,在绝缘衬底1上沉积具有双电层调控效应的固态电解质作为双电层栅介质层3。然后,在该双电层栅介质层3上沉积图形化的半导体薄膜,作为薄膜晶体管沟道层7。此后,在沟道层7的合适位置沉积源极5b和漏极5a,同时,沉积互不连通的导电层作为第一和第二侧向调控端4a、4b。A conductive layer is deposited on an insulating substrate 1 as a bottom gate electrode 2 . Thereafter, a solid electrolyte having an electric double layer control effect is deposited on the insulating substrate 1 as the electric double layer gate dielectric layer 3 . Then, a patterned semiconductor thin film is deposited on the electric double layer gate dielectric layer 3 as the channel layer 7 of the thin film transistor. Thereafter, the source electrode 5b and the drain electrode 5a are deposited on appropriate positions of the channel layer 7, and at the same time, a conductive layer that is not connected to each other is deposited as the first and second lateral regulation terminals 4a, 4b.
实施例:反相器的制作方法1Embodiment: the manufacture method 1 of inverter
如图3所示,本实施例的反相器制作方法包含以下步骤:As shown in Figure 3, the manufacturing method of the inverter of this embodiment includes the following steps:
步骤101:提供绝缘衬底,Step 101: providing an insulating substrate,
步骤102:在绝缘衬底的表面上形成底栅电极;Step 102: forming a bottom gate electrode on the surface of the insulating substrate;
步骤103:在底栅电极的表面上形成双电层栅介质层;Step 103: forming an electric double layer gate dielectric layer on the surface of the bottom gate electrode;
步骤104:在双电层栅介质层上形成图形化的沟道层、图形化的源极和漏极,以及至少一个图形化的侧向调控端,其中,沟道分别与源极、漏极接触,侧向调控端不与沟道、源极与漏极电联通;Step 104: Form a patterned channel layer, a patterned source and drain, and at least one patterned lateral regulation terminal on the electric double layer gate dielectric layer, wherein the channel is connected to the source and drain respectively Contact, the lateral control terminal is not electrically connected with the channel, source and drain;
步骤105:将一个电阻的一端与漏极连接。Step 105: Connect one end of a resistor to the drain.
在上述步骤中,沟道层可以独立地选自下组:氧化铟锌、铟镓锌氧、铟钨氧化物,并且,沟道层厚度为10nm~100nm。源极、漏极、侧向调控端或底栅电极独立地选自下组:InZnO薄膜、Ag薄膜、Au薄膜、Cu薄膜、InSnO薄膜。栅介质层采用具有双电层调控效应的固态电解质,且独立地选自下组:疏松的氧化物介质膜、海藻酸钠膜、壳聚糖膜,更具体的说,可以独立地选自下组:疏松氧化硅薄膜和疏松氧化铝薄膜。上述具有双电层调控效应的固态电解质的单位面积电容为0.1~100μF/cm2。In the above steps, the channel layer may be independently selected from the group consisting of indium zinc oxide, indium gallium zinc oxide, and indium tungsten oxide, and the thickness of the channel layer is 10 nm˜100 nm. The source electrode, the drain electrode, the lateral regulating terminal or the bottom gate electrode are independently selected from the following group: InZnO thin film, Ag thin film, Au thin film, Cu thin film, InSnO thin film. The gate dielectric layer adopts a solid electrolyte with an electric double layer regulation effect, and is independently selected from the following group: loose oxide dielectric film, sodium alginate film, chitosan film, more specifically, can be independently selected from the following Group: loose silicon oxide film and loose aluminum oxide film. The capacitance per unit area of the above-mentioned solid electrolyte with electric double layer regulating effect is 0.1-100 μF/cm 2 .
实施例:反相器的制作方法2Embodiment: the manufacturing method 2 of inverter
参见图1,本实施例中,绝缘衬底1采用玻璃衬底,用作底栅电极2的导电层采用铟锡氧化物(InSnO),双电层栅介质层3选择壳聚糖薄膜,源漏电极5a和5b及第一和第二侧向调控端4a、4b采用InZnO薄膜,沟道层7采用InZnO薄膜,电阻6的阻值为4MΩ。Referring to Fig. 1, in the present embodiment, the insulating substrate 1 adopts a glass substrate, the conductive layer used as the bottom gate electrode 2 adopts indium tin oxide (InSnO), the electric double layer gate dielectric layer 3 selects chitosan film, and the source The drain electrodes 5a and 5b and the first and second lateral regulating terminals 4a and 4b are made of InZnO thin film, the channel layer 7 is made of InZnO thin film, and the resistance value of the resistor 6 is 4MΩ.
反相器的制作方法包括如下步骤:The manufacturing method of the inverter comprises the following steps:
步骤1:对绝缘衬底1进行严格清洗,依次将绝缘衬底1浸入酒精、去离子水超声清洗10分钟,然后采用去离子水反复冲洗,最后用氮气枪吹干待用。Step 1: Strictly clean the insulating substrate 1, immerse the insulating substrate 1 in alcohol and deionized water for 10 minutes, then rinse it repeatedly with deionized water, and finally dry it with a nitrogen gun for use.
步骤2:采用磁控溅射技术在绝缘衬底1表面沉积InSnO导电薄膜层,作为薄膜晶体管的底栅电极2;Step 2: using magnetron sputtering technology to deposit an InSnO conductive thin film layer on the surface of the insulating substrate 1 as the bottom gate electrode 2 of the thin film transistor;
步骤3:采用溶液法,将壳聚糖溶液旋涂于沉积有作为底栅电极2的InSnO导电薄膜的绝缘衬底1上,烘干后即得壳聚糖薄膜,作为薄膜晶体管的双电层栅介质层3。Step 3: Using the solution method, spin-coat the chitosan solution on the insulating substrate 1 deposited with the InSnO conductive film as the bottom gate electrode 2, and dry it to obtain the chitosan film as the electric double layer of the thin film transistor Gate dielectric layer 3.
步骤4:采用磁控溅射技术,在沉积有作为双电层栅介质层3壳聚糖薄膜的衬底上沉积图形化的InZnO沟道层7、图形化的源漏电极5a和5b、图形化的第一和第二侧向调控端4a和4b。Step 4: Using magnetron sputtering technology, deposit a patterned InZnO channel layer 7, patterned source and drain electrodes 5a and 5b, patterned The first and second lateral control ends 4a and 4b of BL.
步骤5:在漏极5a上通过导线连接一个阻值为4MΩ的电阻。Step 5: Connect a resistor with a resistance value of 4MΩ to the drain 5a through a wire.
步骤6:在底栅电极2上施加输入电压VIn,在电阻6上施加固定偏压作为电源电压VDD,在侧向调控端4a上施加固定偏压Vm,在漏极5a上检测输出电压VOut,从而获得一个具有侧向调控端的反相器电路,反相器的性能可以通过Vm偏压进行调控。Step 6: Apply an input voltage V In on the bottom gate electrode 2, apply a fixed bias voltage on the resistor 6 as the power supply voltage V DD , apply a fixed bias voltage V m on the lateral regulation terminal 4a, and detect the output on the drain 5a Voltage V Out , so as to obtain an inverter circuit with a side regulation terminal, and the performance of the inverter can be adjusted by V m bias voltage.
实施例:反相器的制作方法3Embodiment: the manufacturing method 3 of inverter
参见图1,本实施例中,绝缘衬底1采用纸张衬底,用作底栅电极2的导电层采用铟锡氧化物(InSnO),双电层栅介质层3采用疏松SiO2薄膜,源漏电极(5a和5b)及第一和第二侧向调控端4a、4b采用InZnO薄膜,沟道层7采用InZnO薄膜,电阻6的阻值为10MΩ。Referring to Fig. 1, in the present embodiment, the insulating substrate 1 adopts a paper substrate, the conductive layer used as the bottom gate electrode 2 adopts indium tin oxide (InSnO), the electric double layer gate dielectric layer 3 adopts a loose SiO2 film, and the source The drain electrodes (5a and 5b) and the first and second lateral control terminals 4a and 4b are made of InZnO thin film, the channel layer 7 is made of InZnO thin film, and the resistance value of the resistor 6 is 10MΩ.
反相器的制作方法包括如下步骤:The manufacturing method of the inverter comprises the following steps:
步骤1:在纸张上沉积SiO2薄膜进行平摊化处理,获得的沉积有SiO2薄膜的纸张,作为绝缘衬底1。Step 1: Deposit SiO 2 thin film on paper for flattening treatment, and the obtained paper deposited with SiO 2 thin film is used as insulating substrate 1 .
步骤2:采用磁控溅射技术,在绝缘衬底1表面沉积InSnO导电薄膜层,作为薄膜晶体管的底栅电极2;Step 2: using magnetron sputtering technology, depositing an InSnO conductive thin film layer on the surface of the insulating substrate 1 as the bottom gate electrode 2 of the thin film transistor;
步骤3:采用等离子增强化学气相沉积技术,采用硅烷和氧气为反应气,在作为底栅电极2的InSnO导电层上沉积一层疏松SiO2膜3,作为双电层栅介质层3。Step 3: Deposit a layer of loose SiO 2 film 3 on the InSnO conductive layer as the bottom gate electrode 2 by using plasma enhanced chemical vapor deposition technology, using silane and oxygen as the reaction gas, as the electric double layer gate dielectric layer 3 .
步骤4:采用磁控溅射技术,在沉积有作为双电层栅介质层3的疏松SiO2膜3的绝缘衬底1上沉积图形化的InZnO沟道层7、图形化的源漏电极5a和5b、图形化的第一和第二侧向调控端4a、4b。Step 4: Using magnetron sputtering technology, deposit a patterned InZnO channel layer 7 and a patterned source-drain electrode 5a on the insulating substrate 1 deposited with a loose SiO2 film 3 as an electric double layer gate dielectric layer 3 and 5b, patterned first and second lateral regulation ends 4a, 4b.
步骤5:在漏极5a上通过导线连接一个阻值为10MΩ的电阻。Step 5: Connect a resistor with a resistance value of 10MΩ to the drain 5a through a wire.
步骤6:在底栅电极2上施加输入电压VIn,在电阻6上施加固定偏压作为电源电压VDD,在侧向调控端4a上施加固定偏压Vm,在漏极5a上检测输出电压VOut,从而获得一个具有侧向调控端的反相器电路,反相器的性能可以通过Vm偏压进行调控。Step 6: Apply an input voltage V In on the bottom gate electrode 2, apply a fixed bias voltage on the resistor 6 as the power supply voltage V DD , apply a fixed bias voltage V m on the lateral regulation terminal 4a, and detect the output on the drain 5a Voltage V Out , so as to obtain an inverter circuit with a side regulation terminal, and the performance of the inverter can be adjusted by V m bias voltage.
实施例:反相器的制作方法4Embodiment: the manufacturing method 4 of inverter
参见图1,本实施例中,绝缘衬底1采用塑料衬底,用作底栅电极2的导电层采用金,双电层栅介质层3采用疏松Al2O3薄膜,源漏电极5a和5b及第一和第二侧向调控端4a、4b采用Ag薄膜,沟道层7采用InGaZnO薄膜,电阻6的阻值为6MΩ。Referring to Fig. 1, in the present embodiment, the insulating substrate 1 adopts a plastic substrate, the conductive layer used as the bottom gate electrode 2 adopts gold, the electric double layer gate dielectric layer 3 adopts a loose Al2O3 thin film, the source drain electrode 5a and 5b and the first and second lateral control terminals 4a and 4b are made of Ag thin film, the channel layer 7 is made of InGaZnO thin film, and the resistance value of the resistor 6 is 6MΩ.
反相器的制作方法包括如下步骤:The manufacturing method of the inverter comprises the following steps:
步骤1:对绝缘衬底1进行严格清洗,依次将衬底浸入酒精、去离子水超声清洗10分钟,然后采用去离子水反复冲洗,最后用氮气枪吹干待用。Step 1: Strictly clean the insulating substrate 1, immerse the substrate in alcohol and deionized water and ultrasonically clean it for 10 minutes, then rinse it repeatedly with deionized water, and finally dry it with a nitrogen gun for use.
步骤2:采用热蒸发技术,在绝缘衬底1表面沉积Au薄膜层,作为薄膜晶体管的底栅电极2;Step 2: using thermal evaporation technology, depositing an Au thin film layer on the surface of the insulating substrate 1 as the bottom gate electrode 2 of the thin film transistor;
步骤3:采用等离子增强化学气相沉积技术,采用三甲基铝和氧气作为反应气,所述三甲基铝气体采用Ar作为载气带入反应腔体,在作为底栅电极2的Au导电薄膜层上沉积一层疏松的氧化铝薄膜,作为双电层栅介质层3;Step 3: Using plasma-enhanced chemical vapor deposition technology, using trimethylaluminum and oxygen as the reaction gas, the trimethylaluminum gas is brought into the reaction chamber using Ar as the carrier gas, and the Au conductive film used as the bottom gate electrode 2 A layer of loose aluminum oxide film is deposited on the layer as the electric double layer gate dielectric layer 3;
步骤4:采用磁控溅射技术,在沉积有作为双电层栅介质层3的疏松的氧化铝(Al2O3)膜的绝缘衬底1上沉积图形化的InGaZnO沟道层7;Step 4: Deposit a patterned InGaZnO channel layer 7 on the insulating substrate 1 deposited with a loose aluminum oxide (Al 2 O 3 ) film as the electric double layer gate dielectric layer 3 by using magnetron sputtering technology;
步骤5:采用热蒸发技术,在沟道层7上沉积图形化的Ag薄膜作为源、漏电极5a和5b,同时在疏松的氧化铝(Al2O3)膜上同步获得孤立的互不电联通的图形化Ag薄膜,作为第一和第二侧向调控端4a和4b;Step 5: Using thermal evaporation technology, deposit a patterned Ag thin film on the channel layer 7 as the source and drain electrodes 5a and 5b, and at the same time obtain an isolated mutual isolation on the loose aluminum oxide (Al 2 O 3 ) film Unicom patterned Ag thin films, as the first and second lateral control terminals 4a and 4b;
步骤6:在漏极5a上通过导线连接一个阻值为6MΩ的电阻。Step 6: Connect a resistor with a resistance value of 6MΩ to the drain 5a through a wire.
步骤7:在底栅电极2上施加输入电压VIn,在电阻6上施加固定偏压作为电源电压VDD,在侧向调控端4a上施加固定偏压Vm,在漏极5a上检测输出电压VOut,从而获得一个具有侧向调控端的反相器电路,反相器的性能可以通过Vm偏压进行调控。Step 7: Apply an input voltage V In on the bottom gate electrode 2, apply a fixed bias voltage on the resistor 6 as the power supply voltage V DD , apply a fixed bias voltage V m on the lateral regulation terminal 4a, and detect the output on the drain 5a Voltage V Out , so as to obtain an inverter circuit with a side regulation terminal, and the performance of the inverter can be adjusted by V m bias voltage.
测试例test case
下面以图2a-2c为例,说明本发明的反相器的测试结果。The test results of the inverter of the present invention will be described below by taking FIGS. 2a-2c as examples.
图2a-2c示出本发明的反相器的电学特性测试结果,其中双电层栅介质层3为壳聚糖薄膜,具有极强的双电层调控效应,因此制备的底栅型氧化物晶体管可以在较低的电压范围下工作(<2V),同时通过在第一或第二侧向调控端4a、4b施加适当固定偏压时,晶体管的阈值电压可以被有效调控,因此反相器的电学性能也可以通过设置这个侧向调控端得到有效调控。通过侧向调控端偏压的施加,获得了具有平衡噪音容限的反相器。Figures 2a-2c show the test results of the electrical characteristics of the inverter of the present invention, wherein the electric double layer gate dielectric layer 3 is a chitosan film, which has a very strong electric double layer regulation effect, so the prepared bottom gate oxide The transistor can work in a lower voltage range (<2V), and at the same time, when an appropriate fixed bias voltage is applied to the regulation terminal 4a, 4b on the first or second side, the threshold voltage of the transistor can be effectively regulated, so the inverter The electrical properties of can also be effectively regulated by setting this side regulation terminal. An inverter with balanced noise margin is obtained by applying the bias voltage to the control terminal sideways.
图2a-2c中,电源电压VDD设置为1V,负载电阻为4MΩ,输入电压Vin的扫描范围-0.6V~1V。当侧向调控端电压Vm设置为1V时,反相器电压传输曲线的转变阈值电压VInv为~-0.1V,此时反相器还没有达到平衡噪音容限的要求。当侧向调控端电压Vm设置为-2V时,反相器电压传输曲线的转变阈值电压VInv为~0.5V(=VDD/2),此时反相器达到了平衡噪音容限的要求。图2c给出了当Vm设置为-2V时,VOut随VIn的变化关系图和VIn随VOut的变化关系图,同样可以看到,当Vm设置为-2V时,反相器达到了平衡噪音容限的要求。图2b给出了电压增益结果,电压增益由Vout对Vin求导得到,即为|dVout/dVin|。当Vm设置为1V时,电压增益约为8.3;当Vm设置为-2V时,电压增益约为9.5。由此可见,通过本发明的反相器,可以有效达到平衡噪音容限,由此也显示了本发明中的侧向调控端偏压Vm施加的有益效果。In Fig. 2a-2c, the power supply voltage V DD is set to 1V, the load resistance is 4MΩ, and the scanning range of the input voltage V in is -0.6V~1V. When the side regulation terminal voltage V m is set to 1V, the transition threshold voltage V Inv of the voltage transfer curve of the inverter is -0.1V, and the inverter has not yet reached the requirement of balanced noise margin. When the side regulation terminal voltage V m is set to -2V, the transition threshold voltage V Inv of the inverter voltage transfer curve is ~ 0.5V (= V DD /2), and the inverter has reached the balance noise margin at this time Require. Figure 2c shows the relationship between V Out and V In when V m is set to -2V, and the relationship between V In and V Out . It can also be seen that when V m is set to -2V, the reverse phase The device meets the requirement of balanced noise margin. Figure 2b shows the result of the voltage gain. The voltage gain is obtained by deriving V out to V in , which is |dV out /dV in |. When V m is set to 1V, the voltage gain is about 8.3; when V m is set to -2V, the voltage gain is about 9.5. It can be seen that, through the inverter of the present invention, the balanced noise margin can be effectively achieved, which also shows the beneficial effect of the application of the bias voltage V m at the lateral regulation terminal in the present invention.
对比例comparative example
当双电层栅介质层3变更为高致密度的栅介质薄膜(即非具有离子导电特性的固态电解质,如:热氧化SiO2或致密Al2O3薄膜等)时,薄膜晶体管在较低的电压范围下(<3V)无法实现有效的晶体管电学性能,栅极电压对沟道层导电能力的调控失效,即,在固定沟道源、漏电极偏压条件下,沟道电流不随栅极电压的改变而发生改变。同时在现有工艺及技术条件下,在致密栅介质薄膜上制作的薄膜晶体管的侧面引入侧向调控电极4,当在侧向调控电极4上施加不同固定偏压时,无法实现对底栅型薄膜晶体管性能的有效调控。When the electric double-layer gate dielectric layer 3 is changed to a high-density gate dielectric film (that is, a solid electrolyte that does not have ion-conducting properties, such as: thermally oxidized SiO 2 or dense Al 2 O 3 film, etc.), the thin film transistor operates at a lower In the voltage range (<3V), effective transistor electrical performance cannot be achieved, and the control of the gate voltage on the conductivity of the channel layer is invalid, that is, under the condition of fixed channel source and drain electrode bias, the channel current does not follow the gate changes with changes in voltage. At the same time, under the existing process and technical conditions, the lateral control electrode 4 is introduced on the side of the thin film transistor fabricated on the dense gate dielectric film. When different fixed bias voltages are applied to the lateral control electrode 4, it is impossible to realize the bottom gate type Effective regulation of thin film transistor performance.
应用前景Application prospects
本发明的反相器在获得低工作电压、高电压增益值的同时,还显著降低了生产成本,在生物化学传感、低功耗便携式电子产品和仿生电子产品等领域有重要的应用前景。The inverter of the invention not only obtains low operating voltage and high voltage gain value, but also significantly reduces production cost, and has important application prospects in the fields of biochemical sensing, low-power portable electronic products, bionic electronic products and the like.
在本专利的权利要求书和说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。本专利的权利要求书和说明书中,如果提到根据某要素执行某行为,则是指至少根据该要素执行该行为的意思,其中包括了两种情况:仅根据该要素执行该行为、和根据该要素和其它要素执行该行为。In the claims and specification of this patent, relative terms such as first and second, etc. are used only to distinguish one entity or operation from another, and do not necessarily require or imply that these entities or operations There is no such actual relationship or order between the operations. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or apparatus. Without further limitations, an element defined by the statement "comprising a" does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element. In the claims and description of this patent, if it is mentioned that an action is performed according to a certain element, it means that the action is performed according to the element at least, which includes two situations: performing the action only based on the element, and performing the action based on the element. This element and other elements perform the behavior.
虽然通过参照本发明的某些优选实施例,已经对本发明进行了图示和描述,但本领域的普通技术人员应该明白,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。Although the present invention has been illustrated and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the present invention. The spirit and scope of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610591444.6A CN107644878B (en) | 2016-07-22 | 2016-07-22 | Phase inverter and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610591444.6A CN107644878B (en) | 2016-07-22 | 2016-07-22 | Phase inverter and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107644878A true CN107644878A (en) | 2018-01-30 |
CN107644878B CN107644878B (en) | 2019-09-03 |
Family
ID=61109866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610591444.6A Active CN107644878B (en) | 2016-07-22 | 2016-07-22 | Phase inverter and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107644878B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109360857A (en) * | 2018-08-15 | 2019-02-19 | 南昌工程学院 | Degradable self-supporting thin film transistor device and preparation method thereof |
CN109950321A (en) * | 2019-03-25 | 2019-06-28 | 暨南大学 | A kind of P-type field effect transistor based on tungsten oxide and preparation method thereof |
WO2019149004A1 (en) * | 2018-01-31 | 2019-08-08 | 京东方科技集团股份有限公司 | Thin-film transistor and preparation method therefor, display apparatus, and method for detecting ion concentration |
CN113013253A (en) * | 2021-02-24 | 2021-06-22 | 中国科学院宁波材料技术与工程研究所 | P-type thin film transistor, preparation method thereof and phase inverter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101681927A (en) * | 2007-05-18 | 2010-03-24 | 佳能株式会社 | Inverter manufacturing method and inverter |
CN203826387U (en) * | 2014-03-28 | 2014-09-10 | 长安大学 | GaN-based ultrathin barrier enhancement/depletion-mode inverter and ring oscillation |
CN104835835A (en) * | 2015-03-18 | 2015-08-12 | 南京华印半导体有限公司 | Solid electrolyte film transistor and manufacturing method thereof |
-
2016
- 2016-07-22 CN CN201610591444.6A patent/CN107644878B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101681927A (en) * | 2007-05-18 | 2010-03-24 | 佳能株式会社 | Inverter manufacturing method and inverter |
CN203826387U (en) * | 2014-03-28 | 2014-09-10 | 长安大学 | GaN-based ultrathin barrier enhancement/depletion-mode inverter and ring oscillation |
CN104835835A (en) * | 2015-03-18 | 2015-08-12 | 南京华印半导体有限公司 | Solid electrolyte film transistor and manufacturing method thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019149004A1 (en) * | 2018-01-31 | 2019-08-08 | 京东方科技集团股份有限公司 | Thin-film transistor and preparation method therefor, display apparatus, and method for detecting ion concentration |
CN109360857A (en) * | 2018-08-15 | 2019-02-19 | 南昌工程学院 | Degradable self-supporting thin film transistor device and preparation method thereof |
CN109950321A (en) * | 2019-03-25 | 2019-06-28 | 暨南大学 | A kind of P-type field effect transistor based on tungsten oxide and preparation method thereof |
CN113013253A (en) * | 2021-02-24 | 2021-06-22 | 中国科学院宁波材料技术与工程研究所 | P-type thin film transistor, preparation method thereof and phase inverter |
CN113013253B (en) * | 2021-02-24 | 2022-06-28 | 中国科学院宁波材料技术与工程研究所 | A kind of P-type thin film transistor and its preparation method and inverter |
Also Published As
Publication number | Publication date |
---|---|
CN107644878B (en) | 2019-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108807546B (en) | Oxide thin film transistor and method for manufacturing the same | |
Wang et al. | New opportunities for high‐performance source‐gated transistors using unconventional materials | |
CN107644878B (en) | Phase inverter and preparation method thereof | |
US9070775B2 (en) | Thin film transistor | |
CN104078508B (en) | A kind of grid-control PN junction based on two-dimensional semiconductor crystal | |
CN104078501A (en) | Low-voltage field effect transistor based on two-dimensional semiconductor material | |
CN106158978A (en) | Thin film transistor (TFT), array base palte and preparation method thereof | |
Zhang et al. | Enhanced performances of ZnO-TFT by improving surface properties of channel layer | |
CN107170812A (en) | A kind of ferroelectrical thin film transistor and preparation method thereof | |
CN105405893B (en) | A kind of planar split dual gate thin film transistor (TFT) and preparation method thereof | |
WO2015058688A1 (en) | Carbon nano tube thin film transistor, amoled pixel flexible drive circuit and manufacturing method | |
WO2011143887A1 (en) | Metal oxide thin film transistor and manufacturing method thereof | |
CN107611180A (en) | A kind of vertical channel structure electric double layer thin film transistor (TFT) and preparation method thereof | |
CN104124281B (en) | Bipolar thin film transistor and preparation method thereof | |
CN108767015B (en) | Field effect transistor and application thereof | |
CN107393965A (en) | Planar double-gated oxide thin film transistor and preparation method thereof | |
Zhang et al. | Flexible oxide-based thin-film transistors on plastic substrates for logic applications | |
CN207303111U (en) | Planar double-gated oxide thin film transistor | |
CN102623398B (en) | Method for manufacturing junction-free thin film transistor | |
CN106981486A (en) | Low-work voltage phase inverter and preparation method thereof | |
CN107611032A (en) | Thin film transistor (TFT) comprising light shield layer and preparation method thereof | |
CN103545377A (en) | A kind of oxide thin film transistor and its manufacturing method | |
CN102544369A (en) | Organic thin film transistor with composite structure | |
CN107452810B (en) | Metal oxide thin film transistor and preparation method thereof | |
CN108122991A (en) | Thin film transistor (TFT) and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |