CN107644806A - The graphical preparation method of the orderly self assembly of metal oxide and metal-oxide film - Google Patents
The graphical preparation method of the orderly self assembly of metal oxide and metal-oxide film Download PDFInfo
- Publication number
- CN107644806A CN107644806A CN201710763547.0A CN201710763547A CN107644806A CN 107644806 A CN107644806 A CN 107644806A CN 201710763547 A CN201710763547 A CN 201710763547A CN 107644806 A CN107644806 A CN 107644806A
- Authority
- CN
- China
- Prior art keywords
- metal oxide
- substrate
- micro
- self assembly
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 76
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 76
- 238000001338 self-assembly Methods 0.000 title claims abstract description 32
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 68
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 48
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 43
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 30
- 239000010703 silicon Substances 0.000 claims abstract description 30
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 22
- 239000012702 metal oxide precursor Substances 0.000 claims abstract description 21
- 239000011521 glass Substances 0.000 claims abstract description 13
- 238000009736 wetting Methods 0.000 claims abstract description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 5
- 238000004528 spin coating Methods 0.000 claims description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 4
- -1 Octadecyl trichlorosilane alkane Chemical class 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- 229910001867 inorganic solvent Inorganic materials 0.000 claims description 4
- 239000003049 inorganic solvent Substances 0.000 claims description 4
- 230000003068 static effect Effects 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 238000001548 drop coating Methods 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 241000252506 Characiformes Species 0.000 claims description 2
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 230000001788 irregular Effects 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 230000002269 spontaneous effect Effects 0.000 claims 3
- 230000010148 water-pollination Effects 0.000 claims 3
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 claims 1
- 150000001335 aliphatic alkanes Chemical class 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 235000011114 ammonium hydroxide Nutrition 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229920005573 silicon-containing polymer Polymers 0.000 claims 1
- 239000010409 thin film Substances 0.000 abstract description 40
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 20
- 238000000059 patterning Methods 0.000 abstract description 19
- 239000010408 film Substances 0.000 abstract description 16
- 230000009286 beneficial effect Effects 0.000 abstract description 5
- 239000004205 dimethyl polysiloxane Substances 0.000 abstract description 5
- 235000013870 dimethyl polysiloxane Nutrition 0.000 abstract description 5
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 abstract description 5
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 abstract description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 abstract description 5
- 239000011159 matrix material Substances 0.000 description 38
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 28
- 230000008569 process Effects 0.000 description 17
- 239000000243 solution Substances 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 8
- 230000005669 field effect Effects 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- YZZFBYAKINKKFM-UHFFFAOYSA-N dinitrooxyindiganyl nitrate;hydrate Chemical compound O.[In+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YZZFBYAKINKKFM-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- NJWNEWQMQCGRDO-UHFFFAOYSA-N indium zinc Chemical compound [Zn].[In] NJWNEWQMQCGRDO-UHFFFAOYSA-N 0.000 description 2
- 229910001960 metal nitrate Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- IPCXNCATNBAPKW-UHFFFAOYSA-N zinc;hydrate Chemical compound O.[Zn] IPCXNCATNBAPKW-UHFFFAOYSA-N 0.000 description 2
- ABFQGXBZQWZNKI-UHFFFAOYSA-N 1,1-dimethoxyethanol Chemical compound COC(C)(O)OC ABFQGXBZQWZNKI-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- YVFORYDECCQDAW-UHFFFAOYSA-N gallium;trinitrate;hydrate Chemical compound O.[Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YVFORYDECCQDAW-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229920000555 poly(dimethylsilanediyl) polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- PYJJCSYBSYXGQQ-UHFFFAOYSA-N trichloro(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](Cl)(Cl)Cl PYJJCSYBSYXGQQ-UHFFFAOYSA-N 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
Abstract
本发明实施例提供金属氧化物有序自组装图形化制备方法及金属氧化物薄膜,所述方法包括:在亲水衬底表面上,进行疏水处理,或在疏水衬底表面上,进行亲水处理,形成表面能不同的亲疏水两种界面,且两种界面间形成特定形状的微纳图形排列结构;将金属氧化物前驱体涂覆在形成的具有所述微纳图形排列结构的衬底上,自发发生润湿和去润湿的自组装行为,获得图形化的有序金属氧化物薄膜。另一方面,本发明实施例提供了一种上述金属氧化物有序自组装图形化制备方法制备得到的金属氧化物薄膜。上述技术方案具有如下有益效果:该方法具备无损伤、低耗材、一次性图形化的优点,而且同时适用于硬性衬底(玻璃、二氧化硅、硅等)和柔性衬底(PET、PDMS、PI等)。
An embodiment of the present invention provides a method for preparing metal oxide ordered self-assembly patterning and a metal oxide thin film. The method includes: performing hydrophobic treatment on the surface of a hydrophilic substrate, or performing hydrophilic treatment on the surface of a hydrophobic substrate. treatment to form two hydrophilic and hydrophobic interfaces with different surface energies, and a micro-nano pattern arrangement structure of a specific shape is formed between the two interfaces; the metal oxide precursor is coated on the formed substrate with the micro-nano pattern arrangement structure On the surface, the self-assembly behavior of wetting and dewetting occurs spontaneously, and a patterned ordered metal oxide film is obtained. On the other hand, an embodiment of the present invention provides a metal oxide thin film prepared by the above-mentioned metal oxide ordered self-assembly patterning preparation method. The above technical solution has the following beneficial effects: the method has the advantages of no damage, low consumption materials, and one-time patterning, and is applicable to both hard substrates (glass, silicon dioxide, silicon, etc.) and flexible substrates (PET, PDMS, PI, etc.).
Description
技术领域technical field
本发明涉及金属氧化物半导体技术领域,尤其涉及金属氧化物有序自组装图形化制备方法及金属氧化物薄膜。The invention relates to the technical field of metal oxide semiconductors, in particular to a method for preparing a metal oxide ordered self-assembly pattern and a metal oxide thin film.
背景技术Background technique
与硅和有机半导体材料相比,金属氧化物半导体具有高电子迁移率(超过10cm2/伏·秒)、高透明度、大面积均匀性好的优势。由于金属氧化物薄膜具有相当大的潜力,在传感器、太阳能电池、非易失性存储器设备以及超高分辨率的平板显示器上有广泛的应用。Compared with silicon and organic semiconductor materials, metal oxide semiconductors have the advantages of high electron mobility (over 10 cm 2 /volt·s), high transparency, and good uniformity over a large area. Due to the considerable potential of metal oxide thin films, there are a wide range of applications in sensors, solar cells, non-volatile memory devices, and ultra-high-resolution flat panel displays.
传统的金属氧化物半导体,通常采用真空辅助技术,如溅射(PVD\PECVD)或脉冲激光烧蚀(PLA)。但由于靶材中不同的金属材料具备不同的蒸发速率,靶材在多次使用后,金属元素的化学计量比会发生变化,进而影响金属氧化物半导体的性能。而溶液法制备金属氧化物半导体技术,能严格控制金属元素的化学计量比。而且溶液法工艺具备低温制备的优点,与柔性衬底兼容,具备制备柔性电子电路的潜力。Traditional metal oxide semiconductors usually use vacuum-assisted technology, such as sputtering (PVD\PECVD) or pulsed laser ablation (PLA). However, since different metal materials in the target have different evaporation rates, the stoichiometric ratio of metal elements will change after the target is used many times, which will affect the performance of metal oxide semiconductors. The solution method to prepare metal oxide semiconductor technology can strictly control the stoichiometric ratio of metal elements. Moreover, the solution method has the advantages of low-temperature preparation, is compatible with flexible substrates, and has the potential to prepare flexible electronic circuits.
为了实现高的集成度,低的漏电流以及低的寄生电阻及寄生电容等,高性能的集成电子电路需要精确的图形化工艺。而为了实现金属氧化物半导体在集成电子电路中的应用,实现金属氧化物半导体的高精度图形化非常重要。目前,金属氧化物半导体的图形化工艺主要是减法式工艺,如光刻刻蚀,但光刻刻蚀图形化会损伤金属氧化物半导体,而且浪费原材料。刻蚀液也会污染环境。无损伤低耗材的一次性图形化工艺尤为重要。In order to achieve high integration, low leakage current, and low parasitic resistance and capacitance, high-performance integrated electronic circuits require precise patterning processes. In order to realize the application of metal oxide semiconductors in integrated electronic circuits, it is very important to realize high-precision patterning of metal oxide semiconductors. At present, the patterning process of metal oxide semiconductors is mainly a subtractive process, such as photolithography and etching, but photolithography and etching patterning will damage metal oxide semiconductors and waste raw materials. The etchant also pollutes the environment. A one-time patterning process with no damage and low consumables is particularly important.
发明内容Contents of the invention
本发明实施例提供一种金属氧化物有序自组装图形化制备方法及金属氧化物薄膜,以无损伤、低耗材、一次性图形化制备金属氧化物薄膜,而且同时适用于硬性衬底(玻璃、二氧化硅、硅等)和柔性衬底(PET、PDMS、PI等)。The embodiment of the present invention provides a metal oxide ordered self-assembly patterning preparation method and a metal oxide thin film. The metal oxide thin film is prepared with no damage, low material consumption, and one-time patterning, and is also suitable for rigid substrates (glass , silicon dioxide, silicon, etc.) and flexible substrates (PET, PDMS, PI, etc.).
一方面,本发明实施例提供了一种金属氧化物有序自组装图形化制备方法,所述方法包括:On the one hand, an embodiment of the present invention provides a method for preparing metal oxide ordered self-assembly patterning, the method comprising:
在亲水衬底表面上,进行疏水处理,或在疏水衬底表面上,进行亲水处理,形成表面能不同的亲疏水两种界面,且两种界面间形成特定形状的微纳图形排列结构;Hydrophobic treatment is performed on the surface of the hydrophilic substrate, or hydrophilic treatment is performed on the surface of the hydrophobic substrate to form two hydrophilic and hydrophobic interfaces with different surface energies, and a micro-nano pattern arrangement structure of a specific shape is formed between the two interfaces ;
将金属氧化物前驱体涂覆在形成的具有所述微纳图形排列结构的衬底上,自发发生润湿和去润湿的自组装行为,获得图形化的有序金属氧化物薄膜。The metal oxide precursor is coated on the formed substrate with the micro-nano pattern arrangement structure, the self-assembly behavior of wetting and dewetting occurs spontaneously, and a patterned ordered metal oxide film is obtained.
另一方面,本发明实施例提供了一种上述金属氧化物有序自组装图形化制备方法制备得到的金属氧化物薄膜。On the other hand, an embodiment of the present invention provides a metal oxide thin film prepared by the above-mentioned metal oxide ordered self-assembly patterning preparation method.
上述技术方案具有如下有益效果:该方法具备无损伤、低耗材、一次性特定位置图形化的优点,而且同时适用于硬性衬底(玻璃、二氧化硅、硅等)和柔性衬底(PET、PDMS、PI等)。本发明实施例所述图形化方法利用亲疏水两种界面的表面能差异,实现金属氧化物半导体前驱体在亲水图案区域的沉降,且本发明实施例获得的图形化金属氧化物薄膜可应用于高效益,大规模制备场效应晶体管器件、传感器件制备及太阳能电池器件。The above technical solution has the following beneficial effects: the method has the advantages of no damage, low consumption materials, one-time specific position patterning, and is applicable to both hard substrates (glass, silicon dioxide, silicon, etc.) and flexible substrates (PET, PDMS, PI, etc.). The patterning method described in the embodiment of the present invention utilizes the surface energy difference between the hydrophilic and hydrophobic interfaces to realize the precipitation of the metal oxide semiconductor precursor in the hydrophilic pattern area, and the patterned metal oxide thin film obtained in the embodiment of the present invention can be applied For high efficiency, large-scale preparation of field effect transistor devices, sensor devices and solar cell devices.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明实施例一种金属氧化物有序自组装图形化制备方法流程图。Fig. 1 is a flowchart of a patterned preparation method of ordered self-assembly of metal oxides according to an embodiment of the present invention.
图2是本发明实施例所述在干净二氧化硅表面(不做亲/疏水处理)的接触角。Fig. 2 is the contact angle on a clean silica surface (without hydrophilic/hydrophobic treatment) described in the embodiment of the present invention.
图3是本发明实施例所述经过疏水性材料HMDS处理后的二氧化硅表面的接触角。Fig. 3 is the contact angle of the silicon dioxide surface treated with the hydrophobic material HMDS according to the embodiment of the present invention.
图4是本发明实施例所述经过UV臭氧做亲水处理后的HMDS涂覆二氧化硅表面的接触角。Fig. 4 is the contact angle of the HMDS-coated silicon dioxide surface after UV ozone is used for hydrophilic treatment according to the embodiment of the present invention.
图5是本发明实施例利用疏水性材料HMDS和UV臭氧做亲水性处理所得亲疏水图形矩阵制备金属氧化物薄膜矩阵的示意图。Fig. 5 is a schematic diagram of the preparation of a metal oxide thin film matrix by using the hydrophobic material HMDS and UV ozone for hydrophilic treatment to obtain a hydrophilic and hydrophobic graphic matrix according to an embodiment of the present invention.
图6是本发明实施例利用疏水性材料HMDS和UV臭氧做亲水性处理所得的图形化矩阵制备的金属氧化物薄膜矩阵。Fig. 6 is a metal oxide thin film matrix prepared from a patterned matrix obtained by hydrophilic treatment of the hydrophobic material HMDS and UV ozone in an embodiment of the present invention.
图7是本发明实施例所述经过疏水性材料CYTOP处理后的二氧化硅表面的接触角。Fig. 7 is the contact angle of the silicon dioxide surface treated with the hydrophobic material CYTOP according to the embodiment of the present invention.
图8是本发明实施例经过疏水性材料CYTOP和等离子刻蚀做亲水性处理后的二氧化硅表面的接触角。Fig. 8 is the contact angle of the silicon dioxide surface after hydrophilic treatment by hydrophobic material CYTOP and plasma etching according to the embodiment of the present invention.
图9是本发明实施例利用疏水性材料CYTOP和等离子刻蚀做亲水性处理所得亲疏水图形矩阵制备的金属氧化物薄膜矩阵的示意图。9 is a schematic diagram of a metal oxide thin film matrix prepared by using hydrophobic material CYTOP and plasma etching to perform hydrophilic treatment to obtain a hydrophilic and hydrophobic pattern matrix according to an embodiment of the present invention.
图10是本发明实施例利用疏水性材料CYTOP和等离子刻蚀做亲水性处理所得的图形化矩阵制备的金属氧化物薄膜矩阵。FIG. 10 is a metal oxide thin film matrix prepared from a patterned matrix obtained by using hydrophobic material CYTOP and plasma etching for hydrophilic treatment according to an embodiment of the present invention.
图11是本发明实施例利用疏水性材料CYTOP和光刻lift-off工艺处理后所得亲疏水图形矩阵制备的金属氧化物薄膜矩阵的示意图。Fig. 11 is a schematic diagram of a metal oxide thin film matrix prepared by using hydrophobic material CYTOP and a photolithographic lift-off process to obtain a matrix of hydrophilic and hydrophobic patterns according to an embodiment of the present invention.
图12是本发明实施例利用疏水性材料CYTOP和光刻lift-off工艺所得的亲疏水图形矩阵制备的金属氧化物薄膜矩阵。Fig. 12 is a metal oxide film matrix prepared by using the hydrophobic material CYTOP and the hydrophilic-hydrophobic pattern matrix obtained by the photolithography lift-off process according to the embodiment of the present invention.
图13是利用本发明实施例在柔性衬底——PI上所得的亲疏水图形化矩阵制备的金属氧化物薄膜矩阵。Fig. 13 is a metal oxide film matrix prepared by using the hydrophilic-hydrophobic patterned matrix obtained on the flexible substrate-PI according to the embodiment of the present invention.
图14是本发明实施例氧化物晶体管的器件结构。FIG. 14 is a device structure of an oxide transistor according to an embodiment of the present invention.
图15是本发明实施例利用InGaZnO的薄膜矩阵制备金属氧化物晶体管矩阵。FIG. 15 is an embodiment of the present invention using an InGaZnO thin film matrix to prepare a metal oxide transistor matrix.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
如图1所示,为本发明实施例一种金属氧化物有序自组装图形化制备方法流程图,所述方法包括:As shown in Figure 1, it is a flow chart of a method for preparing a metal oxide ordered self-assembly pattern according to an embodiment of the present invention, and the method includes:
101、在亲水衬底表面上,进行疏水处理,或在疏水衬底表面上,进行亲水处理,形成表面能不同的亲疏水两种界面,且两种界面间形成特定形状的微纳图形排列结构;101. Perform hydrophobic treatment on the surface of the hydrophilic substrate, or perform hydrophilic treatment on the surface of the hydrophobic substrate to form two hydrophilic and hydrophobic interfaces with different surface energies, and form micro-nano patterns of specific shapes between the two interfaces arrangement structure;
102、将金属氧化物前驱体涂覆在形成的具有所述微纳图形排列结构的衬底上,自发发生润湿和去润湿的自组装行为,获得图形化的有序金属氧化物薄膜。102. Coating the metal oxide precursor on the formed substrate having the micro-nano pattern arrangement structure, spontaneously occur the self-assembly behavior of wetting and dewetting, and obtain a patterned ordered metal oxide film.
优选地,所述亲水衬底包括:玻璃、石英、二氧化硅、硅或经过亲水性处理的其它硬质或柔性衬底;所述亲水性处理方法包括:紫外臭氧辐照或等离子体轰击;所述亲水性处理材料包括:氨丙基三乙氧基硅烷APTES,piranha溶液;Preferably, the hydrophilic substrate comprises: glass, quartz, silicon dioxide, silicon or other hard or flexible substrates through hydrophilic treatment; the hydrophilic treatment method comprises: ultraviolet ozone irradiation or plasma body bombardment; the hydrophilic treatment material includes: aminopropyltriethoxysilane APTES, piranha solution;
所述疏水衬底包括:未经处理的或经过疏水处理的所有硬质或柔性衬底;所述疏水性处理材料包括:十八烷基三氯硅烷、六甲基二硅胺、聚二甲基硅氧烷、聚四氟乙烯或全氟树脂CYTOP。The hydrophobic substrate includes: untreated or all hard or flexible substrates through hydrophobic treatment; the hydrophobic treatment material includes: octadecyltrichlorosilane, hexamethyldisilamine, polydimethylsilane base silicone, polytetrafluoroethylene or perfluororesin CYTOP.
优选地,所述微纳图形的厚度范围为0.01μm~100μm,微纳图形结构的特征尺寸范围为1μm~5000μm。Preferably, the thickness of the micro-nano pattern is in the range of 0.01 μm to 100 μm, and the characteristic size of the micro-nano pattern structure is in the range of 1 μm to 5000 μm.
优选地,所述特定形状的微纳图形排列结构包含:规则微纳图形以及不规则微纳图形;所述规则微纳图形包括:圆形、方形、三角形。Preferably, the micro-nano-pattern arrangement structure of a specific shape includes: regular micro-nano-patterns and irregular micro-nano-patterns; the regular micro-nano-patterns include: circles, squares, and triangles.
优选地,所述微纳图形结构的耐受温度范围为-10℃~600℃。Preferably, the withstand temperature range of the micro-nano pattern structure is -10°C to 600°C.
优选地,实现所述将金属氧化物前驱体涂覆在形成的具有所述微纳图形排列结构的衬底上,自发发生润湿和去润湿的自组装行为,获得图形化的有序金属氧化物薄膜的工艺,包括旋涂、刮涂、滴涂、提拉、喷涂。Preferably, the metal oxide precursor is coated on the formed substrate with the micro-nano pattern arrangement structure, the self-assembly behavior of wetting and dewetting occurs spontaneously, and a patterned ordered metal is obtained. Oxide thin film process, including spin coating, scraping coating, drop coating, pulling, spray coating.
优选地,所述方法还包括:Preferably, the method also includes:
将一种或多种的金属盐作为所述金属氧化物前驱体的溶质,溶解在溶剂中,以配置金属氧化物前驱体,该金属氧化物前驱体的浓度小于1mol/L;其中:Dissolving one or more metal salts as the solute of the metal oxide precursor in a solvent to configure the metal oxide precursor, the concentration of the metal oxide precursor is less than 1mol/L; wherein:
所述金属氧化物前驱体的溶质,包含如下金属元素中的一种或多种:铟In、镓Ga、锌Zn、锡Sn、铝Al、锆Zr、铱Ir;The solute of the metal oxide precursor contains one or more of the following metal elements: indium In, gallium Ga, zinc Zn, tin Sn, aluminum Al, zirconium Zr, iridium Ir;
所述金属氧化物前驱体的溶剂,包含:有机溶剂或无机溶剂;所述有机溶剂包括:二甲氧基乙醇、DMF、乙酰丙酮、乙二醇、乙醇;所述无机溶剂包括:去离子水、氨水、双氧水。The solvent of the metal oxide precursor includes: an organic solvent or an inorganic solvent; the organic solvent includes: dimethoxyethanol, DMF, acetylacetone, ethylene glycol, ethanol; the inorganic solvent includes: deionized water , ammonia, hydrogen peroxide.
优选地,所述将金属氧化物前驱体涂覆在形成的具有所述微纳图形排列结构的衬底上,自发发生润湿和去润湿的自组装行为后,经过一次或多次退火获得图形化的有序金属氧化物薄膜,所述退火的温度范围为80℃~500℃。Preferably, the metal oxide precursor is coated on the formed substrate with the micro-nano pattern arrangement structure, and after the self-assembly behavior of wetting and dewetting occurs spontaneously, it is obtained by annealing one or more times. In the patterned ordered metal oxide thin film, the annealing temperature range is 80°C to 500°C.
优选地,亲疏水是个相对概念,当形成表面能不同的亲疏水两种界面时,所述金属氧化物在衬底基板疏水区域的静态纯水接触角与在亲水区域的静态纯水接触角差异大于30°。Preferably, hydrophilicity and hydrophobicity are relative concepts. When forming two hydrophilic-hydrophobic interfaces with different surface energies, the static pure water contact angle of the metal oxide in the hydrophobic region of the substrate is different from the static pure water contact angle in the hydrophilic region. The difference is greater than 30°.
本发明实施例还提供了一种上述金属氧化物有序自组装图形化制备方法制备得到的金属氧化物薄膜。The embodiment of the present invention also provides a metal oxide thin film prepared by the above-mentioned metal oxide ordered self-assembly patterning preparation method.
上述技术方案具有如下有益效果:该方法具备无损伤、低耗材、一次性特定位置图形化的优点,而且同时适用于硬性衬底(玻璃、二氧化硅、硅等)和柔性衬底(PET、PDMS、PI等)。本发明实施例所述图形化方法利用亲疏水两种界面的表面能差异,实现金属氧化物半导体前驱体在亲水图案区域的沉降,且本发明实施例获得的图形化金属氧化物薄膜可应用于高效益,大规模制备场效应晶体管器件、传感器件制备及太阳能电池器件。The above technical solution has the following beneficial effects: the method has the advantages of no damage, low consumption materials, one-time specific position patterning, and is applicable to both hard substrates (glass, silicon dioxide, silicon, etc.) and flexible substrates (PET, PDMS, PI, etc.). The patterning method described in the embodiment of the present invention utilizes the surface energy difference between the hydrophilic and hydrophobic interfaces to realize the precipitation of the metal oxide semiconductor precursor in the hydrophilic pattern area, and the patterned metal oxide thin film obtained in the embodiment of the present invention can be applied For high efficiency, large-scale preparation of field effect transistor devices, sensor devices and solar cell devices.
本发明实施例所得到的图形化有序金属氧化物薄膜可应用于在制备场效应晶体管器件、传感器件或太阳能电池器件中的应用。本发明实施例所得到的图形化有序金属氧化物薄膜可应用于在制备刚性电子器件制备。本发明实施例所得到的图形化有序金属氧化物薄膜可应用于在制备柔性电子器件制备。The patterned ordered metal oxide thin film obtained in the embodiment of the present invention can be applied in the preparation of field effect transistor devices, sensor devices or solar cell devices. The patterned and ordered metal oxide thin film obtained in the embodiment of the present invention can be applied in the preparation of rigid electronic devices. The patterned ordered metal oxide thin film obtained in the embodiment of the present invention can be applied in the preparation of flexible electronic devices.
如图2所示,是本发明实施例所述在干净二氧化硅表面(不做亲/疏水处理)的接触角。以下通过应用实例对本发明实施例上述技术方案进行详细说明:As shown in FIG. 2 , it is the contact angle on a clean silica surface (without hydrophilic/hydrophobic treatment) described in the embodiment of the present invention. The above-mentioned technical solutions of the embodiments of the present invention are described in detail below through application examples:
应用实例1:Application example 1:
如图3所示,本发明所述经过疏水性材料HMDS处理后的二氧化硅表面的接触角为81.2°。如图4所示,是本发明所述经过UV臭氧处理后的HMDS涂覆二氧化硅表面的接触角为4.8°。而根据图5所示工艺流程,在同一衬底上,可同时产生两种表面自由能不同的区域,其接触角的差异为76.4°。利用该差异,可实现在衬底上自组装制备金属氧化物薄膜矩阵。具体实施如下。As shown in FIG. 3 , the contact angle of the silicon dioxide surface treated with the hydrophobic material HMDS according to the present invention is 81.2°. As shown in FIG. 4 , the contact angle of the HMDS-coated silica surface after UV ozone treatment according to the present invention is 4.8°. However, according to the process flow shown in Figure 5, two regions with different surface free energies can be produced simultaneously on the same substrate, and the difference in contact angle is 76.4°. Utilizing this difference, the metal oxide thin film matrix can be prepared by self-assembly on the substrate. The specific implementation is as follows.
首先是配制金属氧化物前驱体。将从西格玛奥德里奇购买的铟(III)硝酸盐的水合物(Grade 99.9%),按照0.1mol/L的浓度,溶于有机溶剂2-甲氧基乙醇(无水,99.8%)。最后将其放在磁振搅拌器上,以800rpm转速搅拌3小时,即可得到氧化铟的前驱体。The first is to formulate the metal oxide precursor. Indium(III) nitrate hydrate (Grade 99.9%) purchased from Sigma-Aldrich was dissolved in organic solvent 2-methoxyethanol (anhydrous, 99.8%) at a concentration of 0.1 mol/L. Finally, it was placed on a magnetic vibration stirrer and stirred at 800 rpm for 3 hours to obtain the precursor of indium oxide.
接着根据图5所示工艺流程,对衬底41进行亲疏水处理。我们在本次实施例中选用的衬底41为有100nm二氧化硅的硅片,首先是切割、清洗硅片,将4英寸的硅片切割成1.5cm×1.5cm大小,然后将硅片41依次浸没在纯度为99.99%丙酮、纯度为99.99%乙醇和去离子水中超声清洗各30分钟,再用氮气吹走硅片41残留水分,并将硅片41放置在110℃的热板上,热烘10分钟,去掉在硅片41上残留的水汽。将烘干的硅片41放置在台式匀胶机上,旋涂HMDS薄膜42(转速为2000rpm,时间为60s)。接着在涂覆有HMDS薄膜42的硅片上放置有图形的金属掩膜版43。接着将其放入UV臭氧机中,用UV光(hυ)44处理3分钟。即可得到两种表面自由能不同的区域。Next, according to the process flow shown in FIG. 5 , the substrate 41 is subjected to hydrophilic and hydrophobic treatment. The substrate 41 we choose in this embodiment is a silicon wafer with 100nm silicon dioxide. First, cut and clean the silicon wafer, cut a 4-inch silicon wafer into a size of 1.5cm×1.5cm, and then cut the silicon wafer 41 Submerged in acetone with a purity of 99.99%, ethanol with a purity of 99.99%, and deionized water for 30 minutes, and then ultrasonically cleaned the silicon wafer 41 for 30 minutes. Bake for 10 minutes to remove residual water vapor on the silicon wafer 41 . The dried silicon wafer 41 was placed on a desktop coating machine, and the HMDS film 42 was spin-coated (the rotation speed was 2000 rpm, and the time was 60 s). Next, a patterned metal mask 43 is placed on the silicon wafer coated with the HMDS film 42 . It was then placed in a UV ozone machine and treated with UV light (hυ) 44 for 3 minutes. Two regions with different surface free energies can be obtained.
最后是在图形化的亲疏水衬底制备氧化铟薄膜矩阵。本次实施例中选用的涂膜方法为旋涂。旋涂的转速为3000rpm,时间为30s。即可得到氧化铟的前驱体矩阵45。最后在热板上,350摄氏度退火一个小时,即可得到氧化铟的薄膜矩阵45,见图6。Finally, an indium oxide thin film matrix is prepared on a patterned hydrophilic and hydrophobic substrate. The coating method selected in this embodiment is spin coating. The rotating speed of spin coating is 3000rpm, and the time is 30s. The precursor matrix 45 of indium oxide can be obtained. Finally, anneal at 350 degrees Celsius for one hour on a hot plate to obtain a thin film matrix 45 of indium oxide, as shown in FIG. 6 .
应用实例2:Application example 2:
如图7所示,本发明所述经过疏水性材料CYTOP处理后的二氧化硅表面的接触角为116.4°。如图8所示,是本发明所述经过等离子刻蚀处理后的CYTOP涂覆二氧化硅表面的接触角为18.6。而根据图9所示工艺流程,在同一衬底上,可同时产生两种表面自由能不同的区域,其接触角的差异为97.8°。利用该差异,可实现在衬底上自组装制备金属氧化物薄膜矩阵。具体实施如下。As shown in FIG. 7 , the contact angle of the silicon dioxide surface treated with the hydrophobic material CYTOP according to the present invention is 116.4°. As shown in FIG. 8 , the contact angle of the CYTOP coated silicon dioxide surface after the plasma etching treatment according to the present invention is 18.6. However, according to the process flow shown in FIG. 9 , two regions with different surface free energies can be simultaneously produced on the same substrate, and the difference in contact angle is 97.8°. Utilizing this difference, the metal oxide thin film matrix can be prepared by self-assembly on the substrate. The specific implementation is as follows.
首先是配制金属氧化物前驱体。将从西格玛奥德里奇购买的二氯化锡的水合物(Grade99.9%),按照0.15mol/L的浓度,溶于有机溶剂2-甲氧基乙醇(无水,99.8%),再加上等摩尔浓度的乙酰丙酮。最后将其放在磁振搅拌器上,以800rpm的转速搅拌3小时,即可得到氧化锡的前驱体。The first is to formulate the metal oxide precursor. The hydrate (Grade99.9%) of tin dichloride purchased from Sigma Aldrich is dissolved in organic solvent 2-methoxyethanol (anhydrous, 99.8%) according to the concentration of 0.15mol/L, and then The upper equimolar concentration of acetylacetone. Finally, it was placed on a magnetic vibration stirrer and stirred at a speed of 800 rpm for 3 hours to obtain the precursor of tin oxide.
接着是根据图9所示工艺流程,对衬底进行亲疏水处理。我们在本次实施例中选用的衬底为有100nm二氧化硅的硅片81。首先是切割、清洗硅片,将4英寸的硅片切割成1.5cm×1.5cm大小,然后将硅片81依次浸没在纯度为99.99%丙酮、纯度为99.99%乙醇和去离子水中超声清洗各30分钟,再用氮气吹走残留水分,并将硅片81放置在110℃的热板上,热烘10分钟,去掉残留水汽。将烘干的硅片81放置在台式匀胶机上,旋涂CYTOP薄膜82,先以500r/m的速度旋转10s,再以5000r/m的速度旋转40s。CYTOP溶液是将CYTOP与CYTOP溶剂按照质量比为1:6的浓度配制所得。接着把旋涂有CYTOP薄膜82的硅片放在120℃的热板上烘烤30min。烘烤完毕后,取出样品。待样品冷却至室温,将金属掩膜版83放置在样品上后,再放进plasma机器中,O2plasma 84处理90s。即可形成图形化,得到两种表面自由能不同的区域。Next, according to the process flow shown in FIG. 9 , the substrate is subjected to hydrophilic and hydrophobic treatment. The substrate we choose in this embodiment is a silicon wafer 81 with 100nm silicon dioxide. The first is to cut and clean the silicon wafer. A 4-inch silicon wafer is cut into a size of 1.5cm×1.5cm, and then the silicon wafer 81 is sequentially immersed in acetone with a purity of 99.99%, ethanol with a purity of 99.99%, and ultrasonically cleaned in deionized water for 30 minutes each. Minutes, and then use nitrogen to blow away the residual moisture, place the silicon wafer 81 on a hot plate at 110° C., and bake for 10 minutes to remove the residual moisture. The dried silicon wafer 81 is placed on a desktop coater, and the CYTOP film 82 is spin-coated, first at a speed of 500r/m for 10s, and then at a speed of 5000r/m for 40s. CYTOP solution is obtained by preparing CYTOP and CYTOP solvent at a mass ratio of 1:6. Next, place the silicon wafer spin-coated with CYTOP film 82 on a hot plate at 120° C. and bake for 30 minutes. After baking, remove the sample. After the sample is cooled to room temperature, the metal mask plate 83 is placed on the sample, and then put into the plasma machine, and treated with O2plasma 84 for 90s. It can be patterned, and two regions with different surface free energies can be obtained.
最后是在图形化的亲疏水衬底制备氧化锡薄膜矩阵。在本次实施例中选用的涂膜方法为倾斜滴涂,即可得到氧化锡的前驱体图形85。最后经过400摄氏度的退火即可得到氧化锡的薄膜图形85,见图10。Finally, a tin oxide film matrix is prepared on a patterned hydrophilic and hydrophobic substrate. The coating method selected in this embodiment is oblique drop coating, and the precursor pattern 85 of tin oxide can be obtained. Finally, after annealing at 400 degrees Celsius, a thin film pattern 85 of tin oxide can be obtained, as shown in FIG. 10 .
应用实例3:Application example 3:
如图7所示,本发明所述经过疏水性材料CYTOP处理后的二氧化硅表面的接触角为116.4°。如图8所示,是本发明所述经过等离子刻蚀处理后的CYTOP涂覆二氧化硅表面的接触角为18.6。而根据图9所示工艺流程,在同一衬底上,可同时产生两种表面自由能不同的区域,其接触角的差异为97.8°。利用该差异,可实现在衬底上自组装制备金属氧化物薄膜矩阵。具体实施如下。As shown in FIG. 7 , the contact angle of the silicon dioxide surface treated with the hydrophobic material CYTOP according to the present invention is 116.4°. As shown in FIG. 8 , the contact angle of the CYTOP coated silicon dioxide surface after the plasma etching treatment according to the present invention is 18.6. However, according to the process flow shown in FIG. 9 , two regions with different surface free energies can be simultaneously produced on the same substrate, and the difference in contact angle is 97.8°. Utilizing this difference, the metal oxide thin film matrix can be prepared by self-assembly on the substrate. The specific implementation is as follows.
首先是配制金属氧化物前驱体。将从西格玛奥德里奇购买的将从西格玛奥德里奇购买的铟(III)硝酸盐的水合物(Grade 99.9%)和锌盐水合物(Grade 99.999%),按照0.15mol/L的浓度,分别溶于有机溶剂2-甲氧基乙醇(无水,99.8%),然后将各自的金属硝酸盐溶液,放在磁振搅拌器上,以800rpm的转速搅拌2小时。再按照铟:锌=1:1的体积比,混合,得到铟-锌混合溶液。接着将铟-锌混合溶液,放在磁振搅拌器上,以800rpm的转速搅拌2小时,即可得到InZnO的前驱体。The first is to formulate the metal oxide precursor. Indium (III) nitrate hydrate (Grade 99.9%) and zinc salt hydrate (Grade 99.999%) purchased from Sigma Aldrich, according to the concentration of 0.15mol/L, respectively Dissolve in the organic solvent 2-methoxyethanol (anhydrous, 99.8%), and then put the respective metal nitrate solutions on a magnetic stirrer and stir at 800 rpm for 2 hours. Then mix according to the volume ratio of indium:zinc=1:1 to obtain an indium-zinc mixed solution. Next, the indium-zinc mixed solution was placed on a magnetic vibration stirrer and stirred at a speed of 800 rpm for 2 hours to obtain the precursor of InZnO.
接着是根据图9所示工艺流程,对衬底进行亲疏水处理。我们在本次实施例中选用的衬底为5μm厚的PI衬底81。首先是切割、清洗PI衬底,将4A大小的PI衬底切割成4cm×4cm大小,然后将PI衬底81依次浸没在纯度为99.99%丙酮、纯度为99.99%乙醇和去离子水中超声清洗各30分钟,再用氮气残留水分,并将PI衬底81放置在110℃的热板上,热烘10分钟,去掉残留的水汽。将烘干的PI衬底81,放置在台式匀胶机上,旋涂CYTOP薄膜82,先以500r/m的速度旋转10s,再以5000r/m的速度旋转40s。CYTOP溶液是将CYTOP与CYTOP溶剂按照质量比为1:6的浓度配制所得。接着把旋涂有CYTOP薄膜82的PI衬底81放在120℃的热板上烘烤30min。烘烤完毕后,取出样品。待样品冷却至室温,将金属掩膜版83放置在样品上后,再放进plasma机器中,O2plasma 84处理90s。即可形成图形化矩阵,得到两种表面自由能不同的区域。Next, according to the process flow shown in FIG. 9 , the substrate is subjected to hydrophilic and hydrophobic treatment. The substrate we choose in this embodiment is a PI substrate 81 with a thickness of 5 μm. First, cut and clean the PI substrate, cut the PI substrate 4A into 4cm×4cm, then immerse the PI substrate 81 in acetone with a purity of 99.99%, ethanol with a purity of 99.99%, and deionized water for ultrasonic cleaning. After 30 minutes, nitrogen gas is used to retain moisture, and the PI substrate 81 is placed on a hot plate at 110° C., and baked for 10 minutes to remove residual moisture. The dried PI substrate 81 was placed on a desktop coater, and the CYTOP film 82 was spin-coated, first at a speed of 500r/m for 10s, and then at a speed of 5000r/m for 40s. CYTOP solution is obtained by preparing CYTOP and CYTOP solvent at a mass ratio of 1:6. Next, put the PI substrate 81 spin-coated with the CYTOP thin film 82 on a hot plate at 120° C. and bake for 30 minutes. After baking, remove the sample. After the sample is cooled to room temperature, the metal mask plate 83 is placed on the sample, and then put into the plasma machine, and treated with O2plasma 84 for 90s. A graphical matrix can be formed, and two regions with different surface free energies can be obtained.
最后是在图形化的亲疏水衬底制备InZnO薄膜矩阵。本次实施例中选用的涂膜方法为刮涂。将InZnO前驱体滴在图形化的PI衬底81边沿,然后将玻璃棒放置在溶液上方,利用毛细作用,形成毛细管桥,最后往一固定方向拖动玻璃棒(毛细管桥),即可形成InZnO前驱体矩阵85。最后经过300摄氏度的退火即可得到InZnO的薄膜矩阵85,见图13。Finally, an InZnO thin film matrix is prepared on a patterned hydrophilic and hydrophobic substrate. The coating method selected in this embodiment is scrape coating. Drop the InZnO precursor on the edge of the patterned PI substrate 81, then place the glass rod above the solution, use capillary action to form a capillary bridge, and finally drag the glass rod (capillary bridge) in a fixed direction to form InZnO Precursor Matrix 85 . Finally, after annealing at 300 degrees Celsius, the InZnO film matrix 85 can be obtained, as shown in FIG. 13 .
应用实例4:Application example 4:
如图2所示,在干净玻璃表面(不做亲/疏水处理)的接触角为48.7°。如图7所示,是本发明所述经过疏水性材料CYTOP处理后的玻璃表面的接触角为116.4°。而根据图11所示工艺流程,在同一衬底上,可同时产生两种表面自由能不同的区域,其接触角的差异为67.7°。利用该差异,可实现在衬底上自组装制备金属氧化物薄膜矩阵。并利用该金属氧化物薄膜矩阵制备金属氧化物晶体管矩阵。具体实施如下。As shown in Figure 2, the contact angle on a clean glass surface (without hydrophilic/hydrophobic treatment) is 48.7°. As shown in FIG. 7 , the contact angle of the glass surface treated with the hydrophobic material CYTOP according to the present invention is 116.4°. However, according to the process flow shown in FIG. 11 , two regions with different surface free energies can be simultaneously produced on the same substrate, and the difference in contact angle is 67.7°. Utilizing this difference, the metal oxide thin film matrix can be prepared by self-assembly on the substrate. And the metal oxide transistor matrix is prepared by using the metal oxide thin film matrix. The specific implementation is as follows.
首先是配制金属氧化物前驱体。将从西格玛奥德里奇购买的铟(III)硝酸盐的水合物(Grade 99.9%),锌盐水合物(Grade 99.999%)和镓(III)硝酸盐的水合物(结晶,Grade 99.9%),分别按照0.05mol/L的浓度,溶于有机溶剂2-甲氧基乙醇(无水,99.8%)。然后将各自的金属硝酸盐溶液,放在磁振搅拌器上,以800rpm的转速搅拌2小时。再按照铟:锌:镓=6:3:1的体积比,混合,得到铟-锌-镓混合溶液。接着将铟-锌-镓混合溶液,放在磁振搅拌器上,以800rpm的转速搅拌2小时,即可得到InGaZnO的前驱体。The first is to formulate the metal oxide precursor. Indium (III) nitrate hydrate (Grade 99.9%), zinc salt hydrate (Grade 99.999%) and gallium (III) nitrate hydrate (crystalline, Grade 99.9%) purchased from Sigma-Aldrich, According to the concentration of 0.05mol/L, dissolve in the organic solvent 2-methoxyethanol (anhydrous, 99.8%). Then the respective metal nitrate solutions were placed on a magnetic stirrer and stirred at a speed of 800 rpm for 2 hours. Then mix according to the volume ratio of indium:zinc:gallium=6:3:1 to obtain an indium-zinc-gallium mixed solution. Next, the indium-zinc-gallium mixed solution was placed on a magnetic vibration stirrer and stirred at a speed of 800 rpm for 2 hours to obtain the precursor of InGaZnO.
接着是根据图11所示工艺流程,对衬底进行亲疏水处理。我们在本次实施例中选用的衬底为有100nm二氧化硅的硅片101。首先是清洗硅片101,将硅片101依次浸泡在纯度为99.99%丙酮、纯度为99.99%乙醇和去离子水中超声清洗各30分钟,再用氮气吹走残留水分,并将硅片101放置在110℃的热板上,热烘10分钟,去掉残留的水汽。Next, according to the process flow shown in FIG. 11 , the substrate is subjected to hydrophilic and hydrophobic treatment. The substrate we choose in this embodiment is a silicon wafer 101 with 100nm silicon dioxide. Firstly, the silicon wafer 101 is cleaned, and the silicon wafer 101 is sequentially soaked in acetone with a purity of 99.99%, ethanol with a purity of 99.99%, and deionized water for 30 minutes, and then the residual moisture is blown away with nitrogen gas, and the silicon wafer 101 is placed on the Bake on a hot plate at 110°C for 10 minutes to remove residual water vapor.
将烘干的硅片101放置在台式匀胶机(KW-4A型,中国科学院微电子研究所)上,旋涂光刻胶102(黏度为30MPa),先以500r/m的速度旋转9s,再以2000r/m的速度旋转40s。接着把旋涂有光刻胶102的硅片放在120℃的热板上烘烤2min。烘烤完毕后,取出样品,待样品冷却至室温,将样品放在曝光机中,UV曝光处理21s。再将样品浸入与光刻胶配对的显影液中内显影1min,最后用去离子水冲洗并吹干。The dried silicon wafer 101 is placed on a table-top coating machine (KW-4A type, Institute of Microelectronics, Chinese Academy of Sciences), and the photoresist 102 (viscosity is 30MPa) is spin-coated, and first rotated at a speed of 500r/m for 9s, Then rotate at a speed of 2000r/m for 40s. Next, place the silicon wafer spin-coated with the photoresist 102 on a hot plate at 120° C. and bake for 2 minutes. After the baking is completed, take out the sample, wait for the sample to cool to room temperature, put the sample in the exposure machine, and UV exposure treatment for 21s. Then immerse the sample in the developer solution paired with the photoresist for 1 min, and finally rinse with deionized water and blow dry.
然后在光刻胶图形化的衬底上,使用台式匀胶机,旋涂CYTOP薄膜103,旋涂转速5000rpm,时间为60s。接着把样品放在100℃的热板上,热烘6min,固化CYTOP薄膜103。最后把样品浸泡在纯度为99.99%丙酮中10min,去掉光刻胶102。最后留下CYTOP薄膜103图像化的衬底。Then, the CYTOP film 103 was spin-coated on the photoresist-patterned substrate using a desktop coater at a spin-coating speed of 5000 rpm for 60 s. Next, put the sample on a hot plate at 100° C. and bake it for 6 minutes to cure the CYTOP film 103 . Finally, soak the sample in acetone with a purity of 99.99% for 10 minutes, and remove the photoresist 102 . Finally, the substrate on which the CYTOP thin film 103 is imaged remains.
最后是在图形化的亲疏水衬底制备InGaZnO薄膜矩阵104。本次实施例中选用的涂膜方法为刮涂。将InGaZnO的前驱体滴在图形化的衬底边沿,然后将玻璃棒放置在溶液上方,利用毛细作用,形成毛细管桥,最后往一固定方向拖动玻璃棒(毛细管桥),即可形成InGaZnO的前驱体矩阵104。最后经过350摄氏度的退火即可得到InGaZnO的薄膜矩阵104,见图12。Finally, the InGaZnO thin film matrix 104 is prepared on the patterned hydrophilic and hydrophobic substrate. The coating method selected in this embodiment is scrape coating. Drop the precursor of InGaZnO on the edge of the patterned substrate, then place the glass rod above the solution, use capillary action to form a capillary bridge, and finally drag the glass rod (capillary bridge) in a fixed direction to form InGaZnO Precursor Matrix 104 . Finally, after annealing at 350 degrees Celsius, the InGaZnO film matrix 104 can be obtained, as shown in FIG. 12 .
接着是利用InGaZnO的薄膜矩104阵制备金属氧化物晶体管矩阵。氧化物晶体管的器件结构见图14.该氧化物晶体管包括栅极电极131、绝缘层132、有源沟道层133、源漏电极134、135、CYTOP薄膜136.该氧化物晶体管的结构为底栅顶接触,栅极电极是N型重掺杂硅131,绝缘层是100nm的二氧化硅132,有源沟道层是本实施案例所制备的InGaZnO的薄膜矩阵133,源漏电极是用金属掩膜版通过热蒸镀制备的铝电极134、135。利用InGaZnO的薄膜矩阵制备金属氧化物晶体管矩阵见图15。Next, the matrix of metal oxide transistors is prepared by using the matrix of InGaZnO films 104 . The device structure of the oxide transistor is shown in Figure 14. The oxide transistor includes a gate electrode 131, an insulating layer 132, an active channel layer 133, source and drain electrodes 134, 135, and a CYTOP thin film 136. The structure of the oxide transistor is a bottom Gate top contact, the gate electrode is N-type heavily doped silicon 131, the insulating layer is 100nm silicon dioxide 132, the active channel layer is the thin film matrix 133 of InGaZnO prepared in this embodiment, and the source and drain electrodes are made of metal The aluminum electrodes 134 and 135 are prepared by thermal evaporation on the mask plate. The matrix of metal oxide transistors prepared by using the thin film matrix of InGaZnO is shown in FIG. 15 .
本发明应用实例上述技术方案具有如下有益效果:该方法具备无损伤、低耗材、一次性特定位置图形化的优点,而且同时适用于硬性衬底(玻璃、二氧化硅、硅等)和柔性衬底(PET、PDMS、PI等)。本发明实施例所述图形化方法利用亲疏水两种界面的表面能差异,实现金属氧化物半导体前驱体在亲水图案区域的沉降,且本发明实施例获得的图形化金属氧化物薄膜可应用于高效益,大规模制备场效应晶体管器件、传感器件制备及太阳能电池器件。Application examples of the present invention The above-mentioned technical scheme has the following beneficial effects: the method has the advantages of no damage, low consumables, and one-time specific position patterning, and is applicable to both hard substrates (glass, silicon dioxide, silicon, etc.) and flexible substrates. Substrate (PET, PDMS, PI, etc.). The patterning method described in the embodiment of the present invention utilizes the surface energy difference between the hydrophilic and hydrophobic interfaces to realize the precipitation of the metal oxide semiconductor precursor in the hydrophilic pattern area, and the patterned metal oxide thin film obtained in the embodiment of the present invention can be applied For high efficiency, large-scale preparation of field effect transistor devices, sensor devices and solar cell devices.
本发明应用实例所得到的图形化有序金属氧化物薄膜可应用于在制备场效应晶体管器件、传感器件或太阳能电池器件中的应用。本发明应用实例所得到的图形化有序金属氧化物薄膜可应用于在制备刚性电子器件制备。本发明应用实例所得到的图形化有序金属氧化物薄膜可应用于在制备柔性电子器件制备。The patterned ordered metal oxide thin film obtained in the application examples of the present invention can be applied in the preparation of field effect transistor devices, sensor devices or solar cell devices. The patterned and ordered metal oxide thin film obtained in the application example of the present invention can be applied in the preparation of rigid electronic devices. The patterned and ordered metal oxide thin film obtained in the application example of the present invention can be applied in the preparation of flexible electronic devices.
应该明白,公开的过程中的步骤的特定顺序或层次是示例性方法的实例。基于设计偏好,应该理解,过程中的步骤的特定顺序或层次可以在不脱离本公开的保护范围的情况下得到重新安排。所附的方法权利要求以示例性的顺序给出了各种步骤的要素,并且不是要限于所述的特定顺序或层次。It is understood that the specific order or hierarchy of steps in the processes disclosed is an example of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged without departing from the scope of the present disclosure. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy described.
在上述的详细描述中,各种特征一起组合在单个的实施方案中,以简化本公开。不应该将这种公开方法解释为反映了这样的意图,即,所要求保护的主题的实施方案需要比清楚地在每个权利要求中所陈述的特征更多的特征。相反,如所附的权利要求书所反映的那样,本发明处于比所公开的单个实施方案的全部特征少的状态。因此,所附的权利要求书特此清楚地被并入详细描述中,其中每项权利要求独自作为本发明单独的优选实施方案。In the foregoing Detailed Description, various features are grouped together in a single embodiment to simplify the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments of the subject matter require more features than are expressly recited in each claim. Rather, as the following claims reflect, the invention lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby expressly incorporated into the Detailed Description, with each claim standing on its own as a separate preferred embodiment of this invention.
为使本领域内的任何技术人员能够实现或者使用本发明,上面对所公开实施例进行了描述。对于本领域技术人员来说;这些实施例的各种修改方式都是显而易见的,并且本文定义的一般原理也可以在不脱离本公开的精神和保护范围的基础上适用于其它实施例。因此,本公开并不限于本文给出的实施例,而是与本申请公开的原理和新颖性特征的最广范围相一致。The foregoing description of the disclosed embodiments was provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may also be applied to other embodiments without departing from the spirit and scope of the disclosure. Thus, the present disclosure is not intended to be limited to the embodiments presented herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
上文的描述包括一个或多个实施例的举例。当然,为了描述上述实施例而描述部件或方法的所有可能的结合是不可能的,但是本领域普通技术人员应该认识到,各个实施例可以做进一步的组合和排列。因此,本文中描述的实施例旨在涵盖落入所附权利要求书的保护范围内的所有这样的改变、修改和变型。此外,就说明书或权利要求书中使用的术语“包含”,该词的涵盖方式类似于术语“包括”,就如同“包括,”在权利要求中用作衔接词所解释的那样。此外,使用在权利要求书的说明书中的任何一个术语“或者”是要表示“非排它性的或者”。The foregoing description includes illustrations of one or more embodiments. Of course, it is impossible to describe all possible combinations of components or methods to describe the above-mentioned embodiments, but those skilled in the art should recognize that various embodiments can be further combined and permuted. Accordingly, the embodiments described herein are intended to embrace all such alterations, modifications and variations that fall within the scope of the appended claims. Furthermore, to the extent that the term "comprises" is used in the specification or claims, the word is encompassed in a manner similar to the term "comprises" as interpreted when "comprises" is used as a link in the claims. Furthermore, any use of the term "or" in the specification of the claims is intended to mean a "non-exclusive or".
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710763547.0A CN107644806A (en) | 2017-08-30 | 2017-08-30 | The graphical preparation method of the orderly self assembly of metal oxide and metal-oxide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710763547.0A CN107644806A (en) | 2017-08-30 | 2017-08-30 | The graphical preparation method of the orderly self assembly of metal oxide and metal-oxide film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107644806A true CN107644806A (en) | 2018-01-30 |
Family
ID=61110131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710763547.0A Pending CN107644806A (en) | 2017-08-30 | 2017-08-30 | The graphical preparation method of the orderly self assembly of metal oxide and metal-oxide film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107644806A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108428495A (en) * | 2018-03-22 | 2018-08-21 | 中山大学 | A kind of touch screen transparent electrode print process preparation method of no etching technics |
CN109916292A (en) * | 2019-02-25 | 2019-06-21 | 武汉工程大学 | A kind of preparation method of multilayer capacitive flexible smart wearable sensor device |
CN110310964A (en) * | 2018-03-27 | 2019-10-08 | 北京赛特超润界面科技有限公司 | A method of fabricating a controllable patterned electrical device |
CN110752296A (en) * | 2019-11-22 | 2020-02-04 | 中国科学院化学研究所 | Method for preparing top contact source and drain electrodes in OFET (organic field effect transistor) by solution method |
CN111180310A (en) * | 2019-03-11 | 2020-05-19 | 广东聚华印刷显示技术有限公司 | Method for patterning metal oxide film and application |
CN111571880A (en) * | 2020-04-17 | 2020-08-25 | 北京电子工程总体研究所 | PDMS film substrate, film and preparation method thereof |
CN113264498A (en) * | 2021-04-08 | 2021-08-17 | 哈尔滨工业大学(深圳) | Metal oxide interface device and preparation method and application thereof |
CN113340481A (en) * | 2021-04-20 | 2021-09-03 | 中山大学 | Pressure sensor and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1802727A (en) * | 2003-03-21 | 2006-07-12 | 北卡罗来纳-查佩尔山大学 | Methods and apparatus for patterned deposition of nanostructure-containing materials by self-assembly and related articles |
CN101783393A (en) * | 2009-01-21 | 2010-07-21 | 中国科学院微电子研究所 | Preparation method of active layer of graphical organic field effect transistor |
CN102502485A (en) * | 2011-11-10 | 2012-06-20 | 中山大学 | Technical process for imaging nano materials |
CN105161621A (en) * | 2015-09-01 | 2015-12-16 | 华南理工大学 | Film patterning preparation method |
CN105152125A (en) * | 2015-08-10 | 2015-12-16 | 中山大学 | Micro-nano material ordered self-assembly graphical method based on micro-channel structure |
-
2017
- 2017-08-30 CN CN201710763547.0A patent/CN107644806A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1802727A (en) * | 2003-03-21 | 2006-07-12 | 北卡罗来纳-查佩尔山大学 | Methods and apparatus for patterned deposition of nanostructure-containing materials by self-assembly and related articles |
CN101783393A (en) * | 2009-01-21 | 2010-07-21 | 中国科学院微电子研究所 | Preparation method of active layer of graphical organic field effect transistor |
CN102502485A (en) * | 2011-11-10 | 2012-06-20 | 中山大学 | Technical process for imaging nano materials |
CN105152125A (en) * | 2015-08-10 | 2015-12-16 | 中山大学 | Micro-nano material ordered self-assembly graphical method based on micro-channel structure |
CN105161621A (en) * | 2015-09-01 | 2015-12-16 | 华南理工大学 | Film patterning preparation method |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108428495A (en) * | 2018-03-22 | 2018-08-21 | 中山大学 | A kind of touch screen transparent electrode print process preparation method of no etching technics |
CN110310964A (en) * | 2018-03-27 | 2019-10-08 | 北京赛特超润界面科技有限公司 | A method of fabricating a controllable patterned electrical device |
CN110310964B (en) * | 2018-03-27 | 2021-11-16 | 北京赛特超润界面科技有限公司 | Preparation method of controllable patterned electrical device |
CN109916292A (en) * | 2019-02-25 | 2019-06-21 | 武汉工程大学 | A kind of preparation method of multilayer capacitive flexible smart wearable sensor device |
CN111180310A (en) * | 2019-03-11 | 2020-05-19 | 广东聚华印刷显示技术有限公司 | Method for patterning metal oxide film and application |
CN111180310B (en) * | 2019-03-11 | 2023-01-24 | 广东聚华印刷显示技术有限公司 | Method and Application of Metal Oxide Thin Film Patterning |
CN110752296A (en) * | 2019-11-22 | 2020-02-04 | 中国科学院化学研究所 | Method for preparing top contact source and drain electrodes in OFET (organic field effect transistor) by solution method |
CN110752296B (en) * | 2019-11-22 | 2022-02-25 | 中国科学院化学研究所 | Method for preparing top contact source and drain electrodes in OFET (organic field effect transistor) by solution method |
CN111571880A (en) * | 2020-04-17 | 2020-08-25 | 北京电子工程总体研究所 | PDMS film substrate, film and preparation method thereof |
CN113264498A (en) * | 2021-04-08 | 2021-08-17 | 哈尔滨工业大学(深圳) | Metal oxide interface device and preparation method and application thereof |
CN113340481A (en) * | 2021-04-20 | 2021-09-03 | 中山大学 | Pressure sensor and preparation method thereof |
CN113340481B (en) * | 2021-04-20 | 2023-05-30 | 中山大学 | A kind of pressure sensor and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107644806A (en) | The graphical preparation method of the orderly self assembly of metal oxide and metal-oxide film | |
CN103413833B (en) | A kind of flexible zno-based thin-film transistor and preparation method thereof | |
CN104362252A (en) | Production method of PVDF (polyvinylidene fluoride) ferroelectric field effect transistor based on molybdenum disulfide film | |
Li et al. | Precise Patterning of Large‐Scale TFT Arrays Based on Solution‐Processed Oxide Semiconductors: A Comparative Study of Additive and Subtractive Approaches | |
CN110400837B (en) | Thin film transistor prepared by plasma enhanced solution combustion method and method | |
CN108831930A (en) | A flexible thin film transistor based on laser technology and its preparation method | |
CN104538453B (en) | Thin film transistor (TFT), array substrate and its manufacturing method and display device | |
CN110137262A (en) | A kind of two layer metal oxide heterojunction semiconductor thin film transistor (TFT) and preparation method | |
CN107240544B (en) | A method for preparing patterned thin film, thin film transistor and memristor | |
CN108987283A (en) | A kind of gallium tin oxide semiconductor thin film transistor (TFT) and its preparation method and application | |
CN105185910A (en) | Method for fabricating monocrystal micro-nano line array of organic semiconductor by using writing brush | |
CN102637591A (en) | Method for etching electrode layer on oxide semiconductor | |
CN107527956A (en) | Thin film transistor (TFT) and the method for preparing thin film transistor (TFT) | |
CN113540254B (en) | A neodymium-doped zirconia thin film transistor and its preparation method and application | |
CN111129160B (en) | Transparent thin film transistor device based on zirconium oxide and lanthanum oxide and preparation method thereof | |
CN101339959A (en) | Thin film transistor and its semiconductor thin film preparation method | |
CN105244283A (en) | Preparation method for UV micro graphical oxide film and film transistor | |
US20200006662A1 (en) | Organic tansistor and manufacturing method thereof, array substrate, display device | |
Kim et al. | Expeditious and eco-friendly solution-free self-patterning of sol–gel oxide semiconductor thin films | |
KR20150069788A (en) | Micro copper wire manufacturing method and manufacturing method using the same transistor | |
CN103646871A (en) | Method for improving uniformity of oxide layer on surface of amorphous silicon | |
CN108933079A (en) | A kind of gallium tin oxide semiconductor film and its preparation method and application | |
CN108598005A (en) | A kind of preparation method of the indium oxide film transistor of low subthreshold swing | |
CN111180310B (en) | Method and Application of Metal Oxide Thin Film Patterning | |
CN107903712A (en) | Metal oxide semiconductor ink and application method in a kind of inkjet printing technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180130 |
|
RJ01 | Rejection of invention patent application after publication |