[go: up one dir, main page]

CN107630679B - Prediction method of initial maximum productivity of shale gas horizontal well based on exponential model - Google Patents

Prediction method of initial maximum productivity of shale gas horizontal well based on exponential model Download PDF

Info

Publication number
CN107630679B
CN107630679B CN201710886718.9A CN201710886718A CN107630679B CN 107630679 B CN107630679 B CN 107630679B CN 201710886718 A CN201710886718 A CN 201710886718A CN 107630679 B CN107630679 B CN 107630679B
Authority
CN
China
Prior art keywords
well
shale gas
tested
predicted
qgmax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710886718.9A
Other languages
Chinese (zh)
Other versions
CN107630679A (en
Inventor
张建平
廖勇
魏炜
石文睿
叶应贵
王兴志
冯爱国
赵红燕
焦恩翠
石元会
彭超
刘施思
李光华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jianghan Logging Branch Of Sinopec Jingwei Co ltd
China Petrochemical Corp
Sinopec Oilfield Service Corp
Sinopec Jianghan Petroleum Engineering Co Ltd
Sinopec Jingwei Co Ltd
Original Assignee
Sinopec Oilfield Service Corp
Sinopec Jianghan Petroleum Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Oilfield Service Corp, Sinopec Jianghan Petroleum Engineering Co Ltd filed Critical Sinopec Oilfield Service Corp
Priority to CN201710886718.9A priority Critical patent/CN107630679B/en
Publication of CN107630679A publication Critical patent/CN107630679A/en
Application granted granted Critical
Publication of CN107630679B publication Critical patent/CN107630679B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention relates to a prediction method of shale gas horizontal well initial highest productivity based on an index model, which comprises the steps of obtaining the porosity and length of each class I and II shale gas layer section of a tested horizontal section of a work area and the corresponding single well initial highest stable productivity data, establishing a linear regression model according to the least square method for the porosity and length of each class I and II shale gas layer section of the horizontal section of a well to be predicted, calculating the highest stable productivity Qgmax of the shale gas horizontal well to be predicted, and outputting a prediction result, wherein the average error of the prediction and the average error obtained by actual field production are not more than 20% when a 173-mouth well is applied to an F L shale gas field, and the prediction method accords with the requirement of rapidly predicting the highest stable productivity of the single well horizontal section shale gas layer on the field.

Description

基于指数模型的页岩气水平井初期最高产能的预测方法Prediction method of initial maximum productivity of shale gas horizontal well based on exponential model

技术领域technical field

本发明属于页岩气勘探开发领域,涉及页岩气水平井单井产能预测方法,具体涉及一种基于指数模型的页岩气水平井初期最高产能的预测方法。The invention belongs to the field of shale gas exploration and development, and relates to a single well productivity prediction method of a shale gas horizontal well, in particular to a method for predicting the initial maximum productivity of a shale gas horizontal well based on an exponential model.

背景技术Background technique

页岩气的勘探开发已成为现阶段能源界热点。页岩气主要存在于暗色页岩中,以吸附或游离状态为主要存在方式。页岩气藏具有超低孔隙度、渗透率特点,需要通过水平井钻孔和大型水利压裂改造,才能获得具有一定经济价值的有效开发。由于其开发的特殊性,从而导致页岩气藏产能预测比常规气藏更为复杂。The exploration and development of shale gas has become a hot spot in the energy industry at this stage. Shale gas mainly exists in dark shale, and mainly exists in adsorption or free state. Shale gas reservoirs have the characteristics of ultra-low porosity and permeability. Only through horizontal well drilling and large-scale hydraulic fracturing can they be effectively developed with certain economic value. Due to the particularity of its development, the productivity prediction of shale gas reservoirs is more complicated than that of conventional gas reservoirs.

随着页岩气田的商业化开发,逐步揭开了页岩气藏的神秘面纱,同时为页岩气工作者提供了许多详实的研究资料和一些实践经验。众多研究也发现,北美页岩气开发模式,特别是初期完全返排、短期高产、长期中低产,依靠多打井、多次压裂模式并非科学。With the commercial development of shale gas fields, the mystery of shale gas reservoirs has been gradually revealed, and at the same time, many detailed research materials and practical experience have been provided for shale gas workers. Numerous studies have also found that the North American shale gas development model, especially the initial complete flowback, short-term high production, and long-term medium and low production, relying on multiple wells and multiple fracturing models is not scientific.

如何简单、快速、低成本的预测页岩气水平井单井初期最高稳定产能,是国内众多页岩气勘探开发现场工作者一直关心的一项关键技术。当前,生产现场上,在对同一区块多口页岩气水平井进行大规模水力压裂后,多采用页岩气水平井水平段长度单一参数类比方法快速估算单井初期最高稳定产能,方法虽然简便、快速、成本低,但相对误差平均超过30%,预测误差大、适用范围小,仍有较大改进与提高空间。How to easily, quickly and cost-effectively predict the initial maximum stable productivity of a shale gas horizontal well is a key technology that many domestic shale gas exploration and development field workers have been concerned about. At present, in the production field, after large-scale hydraulic fracturing of multiple shale gas horizontal wells in the same block, the single-parameter analogy method of horizontal section length of shale gas horizontal wells is often used to quickly estimate the initial maximum stable productivity of a single well. Although it is simple, fast and low in cost, the average relative error exceeds 30%, the prediction error is large, and the scope of application is small, and there is still much room for improvement and improvement.

现场实例研究发现,页岩气水平井实施分段压裂,分段长度接近页岩层垂厚,即“等厚分段”,采取多辆3000水马力压裂车饱和式压裂作业,砂液比不低于4%,页岩气层压裂改造充分,能够充分增强页岩气层的渗流特性,页岩气水平井能够获得较好的工业气流,页岩气水平井水平段Ⅰ、Ⅱ类(高产、中等产量)气层孔隙度POR、长度L是影响气井产能的主控要素。The field case study found that the shale gas horizontal wells were subjected to staged fracturing, and the length of the stage was close to the vertical thickness of the shale layer, that is, "equal thickness stage". The ratio is not less than 4%, the shale gas layer is sufficiently fractured and the seepage characteristics of the shale gas layer can be fully enhanced, the shale gas horizontal well can obtain good industrial gas flow, and the horizontal sections I and II of the shale gas horizontal well The porosity POR and length L of the gas layer (high production, medium production) are the main controlling factors affecting the productivity of gas wells.

发明内容SUMMARY OF THE INVENTION

本发明的目的是针对上述技术现状,旨在提供一种方法简便、快速高效、成本低、具有一定普适性的预测页岩气水平井单井初期最高产能的预测方法。The purpose of the present invention is to provide a method for predicting the initial maximum productivity of a single well of a shale gas horizontal well, which is simple, fast, efficient, low-cost, and has certain universality.

本发明目的的实现方式为,基于指数模型的页岩气水平井初期最高产能的预测方法,具体步骤为:The realization method of the object of the present invention is, the prediction method of the initial maximum productivity of shale gas horizontal wells based on the exponential model, and the specific steps are:

1)获取工区已试井与待预测井资料1) Obtain the well-tested and to-be-predicted well data in the work area

(1)已试井资料包括已完成页岩气试井任务的井位报告书、录井地质完井总结报告、测井解释报告、测录井解释数据表和完井试气报告;具体包括已试井水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度POR n-1、已试井的气层段长度L n-1,与待预测井对应的已试井的单井初期最高稳定产能Qgmax m-1,(1) The well-tested data includes the well position report, the logging geological completion summary report, the logging interpretation report, the logging interpretation data table and the completion and gas test report for the completed shale gas well testing task; the details include The porosity POR n-1 of each type I and II shale gas interval in the horizontal section of the well-tested well, and the length of the well-tested gas interval L n-1, are the highest in the initial stage of the tested well corresponding to the well-tested well Stable production capacity Qgmax m-1,

其中m-1表示已试井的序号,n-1表示第m-1井Ⅰ、Ⅱ类页岩气层段序号;Among them, m-1 represents the serial number of the well tested well, and n-1 represents the serial number of the shale gas interval of type I and II in well m-1;

POR n-1计量单位为%、长度Ln-1计量单位为100m,单井初期最高稳定产能Qgmaxm-1计量单位为104m3/d;The unit of measurement of POR n-1 is %, the unit of measurement of length Ln-1 is 100m, and the unit of measurement of Qgmaxm-1 is 10 4 m 3 /d at the initial stage of a single well;

(2)待预测井资料包括待预测页岩气井的井位报告书、录井地质完井总结报告、测井解释报告、测录井解释成果数据表和完井试气报告;具体包括待预测井水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度POR n、预测井的气层段长度L n,(2) The well data to be predicted includes the well position report of the shale gas well to be predicted, the logging geological well completion summary report, the logging interpretation report, the logging interpretation result data table and the well completion and gas test report; it specifically includes the pending prediction report. The porosity POR n of each I and II shale gas interval in the horizontal section of the well, and the gas interval length L n of the predicted well,

其中n表示待预测井的Ⅰ、Ⅱ类页岩气层段序号;where n represents the sequence number of the I and II shale gas intervals of the well to be predicted;

POR n计量单位为%、长度Ln计量单位为100m;The measurement unit of POR n is %, and the measurement unit of length Ln is 100m;

2)利用已试井资料验证和优选模型2) Verify and optimize the model using the well-tested data

将步骤1)(1)获取的各页岩气已试井的单井初期最高稳定产量Qgmax m-1及与已试井水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度POR n-1、已试井的气层段长度L n-1数据之和∑(POR n-1·L n-1),根据最小二乘法回归,建立指数模型,模型的回归曲线过原点,回归分析相关系数为R;The initial maximum stable production Qgmax m-1 of each well tested shale gas obtained in step 1)(1) and the porosity POR n- 1. The sum of the data of the gas interval length L n-1 of the well-tested well ∑(POR n-1 · L n-1), according to the least squares regression, establish an exponential model, the regression curve of the model passes through the origin, and the regression analysis is related to The coefficient is R;

所述指数模型公式Qgmax=CeB(POR·L),C和B为指数模型系数,已试井存在n-1段页岩气层段时(POR·L)=∑(POR n-1·L n-1),把步骤1)(1)中Qgmax m-1数据带入指数模型公式中求取指数模型系数C和B;The exponential model formula Qgmax=Ce B(POR·L) , C and B are exponential model coefficients, when there is n-1 shale gas interval in the well tested (POR·L)=∑(POR n-1· L n-1), the Qgmax m-1 data in step 1) (1) is brought into the exponential model formula to obtain the exponential model coefficients C and B;

回归分析相关系数R2大于0.7,认为指数模型Qgmax=CeB(POR·L)适用;The regression analysis correlation coefficient R 2 is greater than 0.7, and the exponential model Qgmax=Ce B(POR·L) is considered suitable;

3)求取待预测井水平段Ⅰ、Ⅱ类页岩气层段的∑(POR n·L n);3) Obtain the ∑(POR n·L n) of the shale gas interval of type I and II in the horizontal section of the well to be predicted;

4)利用步骤2)中的计算模型Qgmax=CeB∑(POR n·L n),利用步骤3)中的(POR n·Ln)和步骤2)所取得的模型系数B、C,计算出待预测页岩气水平井的最高稳定产能Qgmax m;4) Using the calculation model Qgmax=Ce B∑(PORn · Ln ) in step 2 ) , using (PORn·Ln) in step 3) and the model coefficients B and C obtained in step 2), calculate The maximum stable productivity Qgmax m of the shale gas horizontal well to be predicted;

所述初期最高稳定产能Qgmax是指完成页岩气试井任务后3个月内单井最高稳定产能;数据来源于完井试气报告;待预测井水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度POR n、预测井的气层段长度L n数据来源于测录井解释成果数据表;The initial maximum stable production capacity Qgmax refers to the highest stable production capacity of a single well within 3 months after the completion of the shale gas well test task; the data comes from the completion gas test report; the shale gas layers I and II in the horizontal section of the well to be predicted The porosity POR n of the interval and the gas interval length L n of the predicted well come from the data table of logging interpretation results;

5)输出预测结果。5) Output the prediction result.

本发明解决了现场上采用页岩气水平井水平段长度单一参数类比方法快速估算单井初期最高稳定产能精度不高的问题,适用范围更广。The invention solves the problem that the single-parameter analogy method of the horizontal section length of the shale gas horizontal well is used in the field to quickly estimate the initial maximum stable production capacity of the single well and the accuracy is not high, and the scope of application is wider.

本发明已在FL页岩气田应用173口井,预测的页岩气水平井单井初期最高稳定产能与现场实际生产获得的最高稳定产量接近,平均误差为18%,不超过20%,符合现场快速预测单井水平段页岩气层最高稳定产量需要,有助于气田高效开发,提升了国内页岩气水平井单井产能预测水平。The present invention has been applied to 173 wells in the FL shale gas field, and the predicted maximum initial stable production capacity of a single well of shale gas horizontal wells is close to the highest stable production obtained by field actual production, with an average error of 18% and no more than 20%, which is in line with the field Rapidly predicting the maximum and stable production requirements of shale gas layers in the horizontal section of a single well is conducive to the efficient development of gas fields and improves the single-well productivity prediction level of domestic shale gas horizontal wells.

附图说明Description of drawings

图1为本发明工作流程框图;Fig. 1 is the work flow block diagram of the present invention;

图2为本发明J工区指数模型页岩气水平井产能预测图版。Fig. 2 is a chart showing the productivity prediction chart of the shale gas horizontal well in the J working area of the present invention.

具体实施方式Detailed ways

参照图1,本发明是,获取工区已试井的水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度、长度和与其对应的已试井的单井初期最高稳定产能Qgmax m-1资料,待预测井的水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度、长度,将获取的已试井的各页岩气已试井的初期最高稳定产量Qgmax m-1及与其对应井的水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度PORn-1、长度Ln-1数据之和∑(POR n-1·L n-1),根据最小二乘法,建立线性回归模型,模型的回归曲线过原点;求取模型系数B、C;利用计算模型Qgmax=CeB∑(POR n·L n)、模型系数B与C计算出待预测页岩气水平井的最高稳定产能Qgmax m;输出预测结果。Referring to Fig. 1, the present invention is to obtain the porosity and length of each type I and II shale gas interval in the well-tested horizontal section of the work area and the corresponding initial maximum stable productivity Qgmax m-1 of the well-tested single well. , the porosity and length of each type I and II shale gas interval in the horizontal section of the well to be predicted, the initial maximum stable production Qgmax m-1 of the tested shale gas wells that have been tested and the corresponding wells The sum of the data of porosity PORn-1 and length Ln-1 of each type I and II shale gas interval in the horizontal section of the The regression curve of the model passes through the origin; the model coefficients B and C are obtained; the highest stable productivity Qgmax of the horizontal shale gas well to be predicted is calculated by using the calculation model Qgmax=Ce B∑(POR n·L n) and the model coefficients B and C m; output the prediction result.

Ⅰ、Ⅱ类页岩气层段是具备高产、能达到商业开发价值的页岩气层段。Type I and II shale gas intervals are shale gas intervals with high production and commercial development value.

下面用具体实施例详述本发明。The present invention will be described in detail below with specific examples.

实例1:某页岩气田J工区R6-bHF井Example 1: Well R6-bHF in J work area of a shale gas field

1)获取工区已试井与待预测井资料1) Obtain the well-tested and to-be-predicted well data in the work area

(1)根据录井地质完井总结报告、测井解释报告、测录井解释数据表、完井试气报告等资料获取J工区12口已试井的水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度PORn-1、长度Ln-1和已试井的单井初期最高稳定产能Qgmax m-1,12口已试井中的其中某一口井为工程事故井,不参与建立模型,因此,已测试井数为W1H井、W1-2H井、W1-3HF井、W2H井、W4H井、W7-2HF井、W8-2HF井、W9-2HF井、W10-2HF井、W11-2HF井、W12-3HF共11口井,m取值从1到11;(1) Obtain each type I and II shale gas in the horizontal section of the 12 tested wells in the J work area according to the logging geological completion summary report, logging interpretation report, logging interpretation data table, and completion gas test report. The interval porosity PORn-1, length Ln-1 and the initial maximum stable productivity of a single well tested Qgmax m-1, one of the 12 tested wells is an engineering accident well and does not participate in the establishment of the model, so , The number of wells tested are W1H well, W1-2H well, W1-3HF well, W2H well, W4H well, W7-2HF well, W8-2HF well, W9-2HF well, W10-2HF well, W11-2HF well, W12-3HF has a total of 11 wells, and the value of m ranges from 1 to 11;

(2)根据待预测R6-bHF页岩气井的井位报告书、录井地质完井总结报告、测井解释报告、测录井解释成果数据表、完井试气报告等获取待预测井水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度POR n、长度L n;(2) Obtain the level of the well to be predicted according to the well position report of the to-be-predicted R6-bHF shale gas well, the logging geological completion summary report, the logging interpretation report, the logging interpretation result data table, and the completion gas test report, etc. Porosity POR n and length L n of each type I and II shale gas interval;

2)利用已试井资料验证和优选模型2) Verify and optimize the model using the well-tested data

(1)将以上11口已试井获取的页岩气的初期最高稳定产量Qgmax m-1及与其对应井的水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度POR n-1、长度L n-1数据之和∑(POR n-1·L n-1)(表1),根据最小二乘法,建立线性回归模型(见图2),模型的回归曲线过原点。(1) Calculate the initial maximum stable production Qgmax m-1 of shale gas obtained from the above 11 well-tested wells and the porosity POR n-1, length of the horizontal sections of the corresponding wells of each type I and II shale gas intervals The sum of L n-1 data ∑ (POR n-1 · L n-1) (Table 1), according to the least squares method, establish a linear regression model (see Figure 2), the regression curve of the model passes through the origin.

已测试各页岩气水平井水平段Ⅰ、Ⅱ类页岩气层段的∑(POR n-1·L n-1)和Qgmaxm-1值见表1。Table 1 shows the tested values of ∑(POR n-1·L n-1) and Qgmaxm-1 in the horizontal sections of each shale gas horizontal well I and II shale gas intervals.

表1Table 1

井号Hashtag ∑(POR n-1·L n-1)∑(POR n-1·L n-1) Qgmax m-1Qgmax m-1 W1HW1H 42.04242.042 17.217.2 W1-2HW1-2H 68.98568.985 33.033.0 W1-3HFW1-3HF 48.38448.384 20.220.2 W2HW2H 86.02286.022 34.034.0 W4HW4H 69.48469.484 26.026.0 W7-2HFW7-2HF 30.830.8 13.313.3 W8-2HFW8-2HF 86.94286.942 54.754.7 W9-2HFW9-2HF 8.968.96 5.95.9 W10-2HFW10-2HF 77.7777.77 37.737.7 W11-2HFW11-2HF 76.57276.572 41.541.5 W12-3HFW12-3HF 91.7791.77 41.141.1

(2)根据指数模型为Qgmax m-1=CeB∑(POR n-1·L n-1),已测试各页岩气水平井存在n-1段页岩气层段时(POR·L)=∑(POR n-1·L n-1),把表1中数据带入指数模型Qgmax m-1=CeB∑(POR n-1·L n-1)中回归,求出指数模型系数B为0.023、C为5.866;(2) According to the exponential model as Qgmax m-1=Ce B∑(POR n-1·L n-1) , it has been tested that each shale gas horizontal well has n-1 shale gas interval (POR·L )=∑(POR n-1·L n-1), bring the data in Table 1 into the exponential model Qgmax m-1=Ce B∑(POR n-1·L n-1) and regress to obtain the exponential model The coefficient B is 0.023 and C is 5.866;

(3)回归分析相关系数R2为0.93,大于0.7,认为指数模型Qgmax=CeB∑(POR n·L n)适用。(3) The correlation coefficient R 2 of regression analysis is 0.93, which is greater than 0.7, and the exponential model Qgmax=Ce B∑(POR n·L n) is considered suitable.

3)求取待预测R6-bHF页岩气水平井水平段Ⅰ、Ⅱ类页岩气层段的∑(POR n·L n)为75.327hm·%。3) The ∑(POR n·L n) of the horizontal section I and II shale gas intervals of the horizontal section of the R6-bHF shale gas horizontal well to be predicted is 75.327hm·%.

表2 R6-bHF页岩气水平井水平段各Ⅰ、Ⅱ类页岩气层段的POR和L值Table 2. POR and L values of each type I and II shale gas interval in the horizontal section of the R6-bHF shale gas horizontal well

Figure GDA0002469029770000041
Figure GDA0002469029770000041

Figure GDA0002469029770000051
Figure GDA0002469029770000051

4)利用步骤2)中的计算指数模型Qgmax=CeB∑(POR n·L n),利用步骤3)中的∑(PORn·L n)和步骤2)所取得的模型系数B、C,计算出待预测页岩气水平井的最高稳定产能Qgmax m为33.17×104m3/d。4) Using the calculated exponential model Qgmax=Ce B∑( PORn · Ln ) in step 2), using ∑(PORn·Ln) in step 3) and the model coefficients B and C obtained in step 2), It is calculated that the maximum stable productivity Qgmax m of the shale gas horizontal well to be predicted is 33.17×10 4 m 3 /d.

5)输出预测结果,预测的R6-bHF页岩气水平井计算最高稳定产量Qgmax m为33.17×104m3/d,该井页岩气开发实际测试最高稳定产量为36.3×104m3/d,误差为8.6%,小于15.0%,符合现场最高稳定产能预测需要。5) Output the prediction results. The predicted maximum stable production Qgmax m of the predicted R6-bHF shale gas horizontal well is 33.17×10 4 m 3 /d, and the actual maximum stable production of shale gas development in this well is 36.3×10 4 m 3 /d, the error is 8.6%, which is less than 15.0%, which is in line with the demand for the highest stable production capacity prediction on site.

实例2:某页岩气田J工区R90-bHF井Example 2: Well R90-bHF in J work area of a shale gas field

1)获取工区已试井与待预测井资料1) Obtain the well-tested and to-be-predicted well data in the work area

(1)根据录井地质完井总结报告、测井解释报告、测录井解释数据表、完井试气报告等资料获取J工区12口已试井的水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度PORn-1、长度Ln-1和已试井的单井初期最高稳定产能Qgmax m-1,计量单位分别为%、hm(100m)、104m3/d,m、n为1、2、3……等自然数,m表示井序号,n表示第m井Ⅰ、Ⅱ类页岩气层段序号,12口已试井中的其中某一口井为工程事故井,不参与建立模型,因此,已测试井数为W1H井、W1-2H井、W1-3HF井、W2H井、W4H井、W7-2HF井、W8-2HF井、W9-2HF井、W10-2HF井、W11-2HF井、W12-3HF共11口井,m取值从1到11;(1) Obtain each type I and II shale gas in the horizontal section of the 12 tested wells in the J work area according to the logging geological completion summary report, logging interpretation report, logging interpretation data table, and completion gas test report. Interval porosity PORn-1, length Ln-1 and the initial maximum stable productivity Qgmax m- 1 of a single well tested It is a natural number such as 1, 2, 3, etc., m represents the well serial number, n represents the serial number of the class I and II shale gas intervals in the m-th well, and one of the 12 well-tested wells is an engineering accident well and does not participate in the establishment of The model, therefore, has tested wells W1H, W1-2H, W1-3HF, W2H, W4H, W7-2HF, W8-2HF, W9-2HF, W10-2HF, W11- There are 11 wells in 2HF well and W12-3HF, and the value of m ranges from 1 to 11;

(2)根据待预测R90-bHF页岩气井的井位报告书、录井地质完井总结报告、测井解释报告、测录井解释成果数据表、完井试气报告等获取待预测井水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度POR n、长度L n,计量单位分别为%、hm(100m),n为1、2、3……等自然数,表示第n页岩气层段;(2) Obtain the level of the well to be predicted according to the well position report of the to-be-predicted R90-bHF shale gas well, the logging geological completion summary report, the logging interpretation report, the logging interpretation result data table, and the completion gas test report, etc. The porosity POR n and length L n of each class I and II shale gas interval, the unit of measurement is %, hm (100m), n is a natural number such as 1, 2, 3, etc., representing the nth shale gas layer;

(3)初期最高稳定产能Qgmax是指完成页岩气试井任务后3个月内单井最高稳定产量,数据来源于完井试气报告;水平段Ⅰ、Ⅱ类页岩气层段的孔隙度POR、长度L数据来源于测录井解释成果数据表;(3) The initial maximum stable production Qgmax refers to the highest stable production of a single well within 3 months after the completion of the shale gas well test task. The data comes from the completion gas test report; The data of degree POR and length L come from the data table of logging interpretation results;

2)利用已试井资料验证和优选模型2) Verify and optimize the model using the well-tested data

(1)将以上11口已试井获取的页岩气的初期最高稳定产量Qgmax m-1及与其对应井的水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度POR n-1、长度L n-1数据之和∑(POR n-1·L n-1)(表1),根据最小二乘法,建立线性回归模型(图2),模型的回归曲线过原点;(1) Calculate the initial maximum stable production Qgmax m-1 of shale gas obtained from the above 11 well-tested wells and the porosity POR n-1, length of the horizontal sections of the corresponding wells of each type I and II shale gas intervals The sum of L n-1 data ∑(POR n-1 · L n-1) (Table 1), according to the least squares method, establish a linear regression model (Figure 2), the regression curve of the model passes through the origin;

(2)指数模型为Qgmax=CeB∑(POR n·L n),式中B、C为指数模型系数,存在n-1段页岩气层段时(POR·L)=∑(POR n-1·L n-1),把(1)中数据带入模型中求取模型系数B为0.023、C为5.866;(2) The exponential model is Qgmax=Ce B∑(POR n·L n) , where B and C are exponential model coefficients, when there is n-1 shale gas interval (POR·L)=∑(POR n -1·L n-1), bring the data in (1) into the model to obtain the model coefficient B of 0.023 and C of 5.866;

(3)回归分析相关系数R2为0.93,大于0.7,认为此指数模型适用;(3) The correlation coefficient R 2 of regression analysis is 0.93, which is greater than 0.7, and this index model is considered suitable;

3)求取待预测R90-bHF页岩气水平井水平段Ⅰ、Ⅱ类页岩气层段的∑(POR n·L n)为50.13hm·%(表3);3) The ∑(POR n·L n) of the horizontal section of the horizontal section of the R90-bHF shale gas well to be predicted is 50.13hm·% (Table 3);

表3 R90-bHF页岩气水平井水平段各Ⅰ、Ⅱ类页岩气层段的POR和L值Table 3 POR and L values of each shale gas interval of type I and II in the horizontal section of R90-bHF shale gas horizontal well

Figure GDA0002469029770000061
Figure GDA0002469029770000061

4)利用步骤2)中计算的指数模型Qgmax=CeB∑(POR n·L n),利用步骤3)中的∑(PORn·L n)和步骤2)所取得的模型系数B、C,计算出待预测页岩气水平井的最高稳定产能Qgmax m为18.58×104m3/d。4) Using the exponential model Qgmax=Ce B∑(PORn · Ln ) calculated in step 2), using ∑(PORn·Ln) in step 3) and the model coefficients B and C obtained in step 2), The maximum stable productivity Qgmax m of the shale gas horizontal well to be predicted is calculated to be 18.58×10 4 m 3 /d.

5)输出预测结果,待预测井R90-bHF页岩气水平井计算最高稳定产量Qgmax m为18.58×104m3/d,该井页岩气开发实际测试最高稳定产量为20.65×104m3/d,误差为10%,小于15.0%,符合现场最高稳定产能预测需要。5) Output the prediction results. The calculated maximum stable production Qgmax m of the horizontal well R90-bHF shale gas well to be predicted is 18.58×10 4 m 3 /d, and the actual maximum stable production of shale gas development in this well is 20.65×10 4 m 3 /d, the error is 10%, less than 15.0%, which meets the needs of the highest stable production capacity prediction on site.

Claims (2)

1.基于指数模型的页岩气水平井初期最高产能的预测方法,其特征在于:具体步骤为:1. The method for predicting the initial maximum productivity of a shale gas horizontal well based on an exponential model is characterized in that: the specific steps are: 1)获取工区已试井与待预测井资料1) Obtain the well-tested and to-be-predicted well data in the work area (1)已试井资料包括已完成页岩气试井任务的井位报告书、录井地质完井总结报告、测井解释报告、测录井解释数据表和完井试气报告;具体包括已试井水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度PORn-1、已试井的气层段长度L n-1,与待预测井对应的已试井的单井初期最高稳定产能Qgmax m-1,(1) The well-tested data includes the well position report, the logging geological completion summary report, the logging interpretation report, the logging interpretation data table and the completion and gas test report for the completed shale gas well testing task; the details include The porosity PORn-1 of each type I and II shale gas interval in the horizontal section of the well-tested well, the length of the well-tested gas interval Ln-1, and the well-tested single well corresponding to the well-tested well has the highest stability in the initial stage Capacity Qgmax m-1, 其中m-1表示已试井的序号,n-1表示第m-1井Ⅰ、Ⅱ类页岩气层段序号;Among them, m-1 represents the serial number of the well tested well, and n-1 represents the serial number of the shale gas interval of type I and II in well m-1; PORn-1计量单位为%、长度Ln-1计量单位为100m,单井初期最高稳定产能Qgmax m-1计量单位为104m3/d;The unit of measurement for PORn-1 is %, the unit of measurement for length Ln-1 is 100m, and the unit of measurement for Qgmax m-1 is 10 4 m 3 /d at the initial stage of a single well; (2)待预测井资料包括待预测页岩气井的井位报告书、录井地质完井总结报告、测井解释报告、测录井解释成果数据表和完井试气报告;具体包括待预测井水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度PORn、预测井的气层段长度L n,(2) The data of the wells to be predicted include the well position report of the shale gas wells to be predicted, the logging geological well completion summary report, the logging interpretation report, the logging interpretation result data table and the well completion and gas test report; The porosity PORn of each I and II shale gas interval in the horizontal section of the well, and the gas interval length Ln of the predicted well, 其中n表示待预测井的Ⅰ、Ⅱ类页岩气层段序号;where n represents the sequence number of the I and II shale gas intervals of the well to be predicted; PORn计量单位为%、长度Ln计量单位为100m;The measurement unit of PORn is %, and the measurement unit of length Ln is 100m; 2)利用已试井资料验证和优选模型2) Verify and optimize the model using the well-tested data 将步骤1)(1)获取的各页岩气已试井的单井初期最高稳定产量Qgmax m-1及与已试井水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度PORn-1、已试井的气层段长度L n-1数据之和∑(PORn-1·L n-1),根据最小二乘法回归,建立指数模型,模型的回归曲线过原点,回归分析相关系数为R;The initial maximum stable production Qgmax m-1 of each well-tested shale gas obtained in step 1)(1) and the porosity PORn-1 of each type I and II shale gas interval in the horizontal section of the well-tested well , the sum of the data of the gas interval length L n-1 of the well-tested well ∑(PORn-1·L n-1), according to the least square regression, an exponential model is established, the regression curve of the model passes through the origin, and the regression analysis correlation coefficient is R; 所述指数模型公式Qgmax=CeB(POR·L),C和B为指数模型系数,已试井存在n-1段页岩气层段时(POR·L)=∑(PORn-1·L n-1),把步骤1)(1)中Qgmax m-1数据带入指数模型公式中求取指数模型系数C和B;The exponential model formula Qgmax=Ce B(POR·L) , C and B are exponential model coefficients, when there is n-1 shale gas interval in the well tested (POR·L)=∑(PORn-1·L n-1), the Qgmax m-1 data in step 1) (1) is brought into the exponential model formula to obtain the exponential model coefficients C and B; 回归分析相关系数R2大于0.7,认为指数模型Qgmax=CeB(POR·L)适用;The regression analysis correlation coefficient R 2 is greater than 0.7, and the exponential model Qgmax=Ce B(POR·L) is considered suitable; 3)求取待预测井水平段Ⅰ、Ⅱ类页岩气层段的∑(PORn·L n);3) Obtain the ∑(PORn·L n) of the shale gas interval of type I and II in the horizontal section of the well to be predicted; 4)利用步骤2)中的计算模型Qgmax=CeB∑(PORn·Ln),利用步骤3)中的(PORn·L n)和步骤2)所取得的模型系数B、C,计算出待预测页岩气水平井的最高稳定产能Qgmax m;4) Using the calculation model Qgmax=Ce B∑(PORn·Ln) in step 2), using (PORn·Ln) in step 3) and the model coefficients B and C obtained in step 2), calculate the to-be-predicted The highest stable productivity Qgmax m of shale gas horizontal wells; 所述初期最高稳定产能Qgmax是指完成页岩气试井任务后3个月内单井最高稳定产能;数据来源于完井试气报告;待预测井水平段各Ⅰ、Ⅱ类页岩气层段的孔隙度PORn、预测井的气层段长度L n数据来源于测录井解释成果数据表;The initial maximum stable production capacity Qgmax refers to the highest stable production capacity of a single well within 3 months after the completion of the shale gas well test task; the data comes from the completion gas test report; the shale gas layers I and II in the horizontal section of the well to be predicted The porosity PORn of the interval and the gas interval length Ln of the predicted well come from the data table of logging interpretation results; 5)输出预测结果。5) Output the prediction result. 2.根据权利要求1所述的基于指数模型的页岩气水平井初期最高产能的预测方法,其特征在于:Ⅰ、Ⅱ类页岩气层段是具备高产、能达到商业开发价值的页岩气层段。2. The method for predicting the initial maximum productivity of a shale gas horizontal well based on an exponential model according to claim 1, wherein the shale gas intervals of class I and II are shale with high production and commercial development value. gas layer.
CN201710886718.9A 2017-09-22 2017-09-22 Prediction method of initial maximum productivity of shale gas horizontal well based on exponential model Active CN107630679B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710886718.9A CN107630679B (en) 2017-09-22 2017-09-22 Prediction method of initial maximum productivity of shale gas horizontal well based on exponential model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710886718.9A CN107630679B (en) 2017-09-22 2017-09-22 Prediction method of initial maximum productivity of shale gas horizontal well based on exponential model

Publications (2)

Publication Number Publication Date
CN107630679A CN107630679A (en) 2018-01-26
CN107630679B true CN107630679B (en) 2020-07-31

Family

ID=61102833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710886718.9A Active CN107630679B (en) 2017-09-22 2017-09-22 Prediction method of initial maximum productivity of shale gas horizontal well based on exponential model

Country Status (1)

Country Link
CN (1) CN107630679B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110472372B (en) * 2019-09-10 2020-12-11 中国石油大学(北京) Dual-medium-based permeability prediction method and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104832166A (en) * 2015-03-20 2015-08-12 中国石油化工股份有限公司江汉油田分公司勘探开发研究院 Initial productivity prediction method of shale gas horizontal well
CN105822298A (en) * 2016-04-25 2016-08-03 中石化石油工程技术服务有限公司 Method for acquiring absolute open flow of shale gas layer based on gas productivity index
CN105930932A (en) * 2016-04-25 2016-09-07 中石化石油工程技术服务有限公司 Gas index-based shale-gas-layer standardized open-flow capacity obtaining method
CN106869911A (en) * 2017-02-24 2017-06-20 中石化重庆涪陵页岩气勘探开发有限公司 A kind of evaluation method for describing shale reservoir compressibility
CN106988740A (en) * 2017-06-12 2017-07-28 重庆科技学院 Method based on early yield data prediction shale gas well recoverable reserves
CN107143330A (en) * 2017-05-25 2017-09-08 中石化石油工程技术服务有限公司 Shale gas reservoir quality surveys mud logging evaluation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104832166A (en) * 2015-03-20 2015-08-12 中国石油化工股份有限公司江汉油田分公司勘探开发研究院 Initial productivity prediction method of shale gas horizontal well
CN105822298A (en) * 2016-04-25 2016-08-03 中石化石油工程技术服务有限公司 Method for acquiring absolute open flow of shale gas layer based on gas productivity index
CN105930932A (en) * 2016-04-25 2016-09-07 中石化石油工程技术服务有限公司 Gas index-based shale-gas-layer standardized open-flow capacity obtaining method
CN106869911A (en) * 2017-02-24 2017-06-20 中石化重庆涪陵页岩气勘探开发有限公司 A kind of evaluation method for describing shale reservoir compressibility
CN107143330A (en) * 2017-05-25 2017-09-08 中石化石油工程技术服务有限公司 Shale gas reservoir quality surveys mud logging evaluation method
CN106988740A (en) * 2017-06-12 2017-07-28 重庆科技学院 Method based on early yield data prediction shale gas well recoverable reserves

Also Published As

Publication number Publication date
CN107630679A (en) 2018-01-26

Similar Documents

Publication Publication Date Title
CN113076676B (en) Unconventional oil and gas reservoir horizontal well fracture network expansion and production dynamic coupling method
CN107301306B (en) Dynamic non-resistance flow prediction method for tight sandstone gas reservoir fractured horizontal well
RU2732868C1 (en) Method of calculating productivity of horizontal wells in deposits of shale gas during hydraulic fracturing in conditions of non-stationary diffusion
CN107701172B (en) Prediction method of initial maximum productivity of shale gas horizontal well based on linear model
CN109522634B (en) Numerical analysis method for compact gas multistage volume fracturing horizontal well
CN107577831B (en) Method for calculating scale of karst cave of fracture-cavity carbonate oil-gas reservoir
CN109033541B (en) A EUR-based evaluation method for heterogeneity of shale gas reservoirs after fracturing
CN113034003B (en) Shale gas well productivity rapid evaluation method
CN105178939B (en) A kind of prediction technique for channel pressure break flow conductivity
CN108240214A (en) PRODUCTION FORECASTING METHODS after a kind of shale gas reservoir horizontal well fracturing pressure
CN105484741A (en) Prediction method for yield of low-permeability, heterogeneous and stress-sensitive reservoir fractured horizontal well
CN103912269B (en) Method for determining formation fracture pressure gradient logging of shale gas reservoir
CN111104766A (en) Numerical simulation method of oil-water two-phase non-Darcy seepage based on discrete fracture model
CN105525909A (en) Method for analyzing heterogeneous property of oil reservoir
CN108319738A (en) A kind of shale gas well yield prediction technique
CN103912248A (en) Method for predicting water content of water-flooding oil field
CN106611081A (en) Comprehensive method and system for automatically judging connectivity between fractured-vuggy reservoir production wells
CN112257349B (en) Method for judging whether tight sandstone movable water-gas reservoir gas well has development value
CN112392478B (en) A method for rapid prediction of economically recoverable reserves in low-permeability tight oil reservoirs
CN106934075B (en) Drilling fluid density determination method and static equivalent density determination method
CN107630679B (en) Prediction method of initial maximum productivity of shale gas horizontal well based on exponential model
Li et al. Production performance model based on quadruple-porosity medium in shale gas reservoirs considering multi-transport mechanisms
CN117930384A (en) Oil and gas reservoir fracture parameter inversion method based on fracturing flowback fluid ion analysis
CN110529088A (en) A kind of rock compressibility section method for building up based on thin section identification
CN108664678B (en) Yield prediction method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220130

Address after: 100027 Chaoyangmen North Street, Chaoyang District, Chaoyang District, Beijing

Patentee after: SINOPEC Group

Patentee after: SINOPEC OILFIELD SERVICE Corp.

Patentee after: SINOPEC OILFIELD SERVICE JIANGHAN Corp.

Patentee after: Sinopec Jingwei Co.,Ltd.

Patentee after: Jianghan logging branch of Sinopec Jingwei Co.,Ltd.

Address before: 100028 Chaoyang District, Beijing Hui Xin Street 6, Twelfth level.

Patentee before: SINOPEC OILFIELD SERVICE Corp.

Patentee before: SINOPEC OILFIELD SERVICE JIANGHAN Corp.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20250617

Address after: 100728 Beijing, Chaoyangmen, North Street, No. 22, No.

Patentee after: SINOPEC Group

Country or region after: China

Patentee after: Sinopec Petroleum Engineering Technology Service Co.,Ltd.

Patentee after: SINOPEC OILFIELD SERVICE JIANGHAN Corp.

Patentee after: Sinopec Jingwei Co.,Ltd.

Patentee after: Jianghan logging branch of Sinopec Jingwei Co.,Ltd.

Address before: 100027 Beijing, Chaoyangmen, North Street, No. 22, No.

Patentee before: SINOPEC Group

Country or region before: China

Patentee before: SINOPEC OILFIELD SERVICE Corp.

Patentee before: SINOPEC OILFIELD SERVICE JIANGHAN Corp.

Patentee before: Sinopec Jingwei Co.,Ltd.

Patentee before: Jianghan logging branch of Sinopec Jingwei Co.,Ltd.

TR01 Transfer of patent right