CN107623842A - A video surveillance image processing system and method - Google Patents
A video surveillance image processing system and method Download PDFInfo
- Publication number
- CN107623842A CN107623842A CN201710872730.4A CN201710872730A CN107623842A CN 107623842 A CN107623842 A CN 107623842A CN 201710872730 A CN201710872730 A CN 201710872730A CN 107623842 A CN107623842 A CN 107623842A
- Authority
- CN
- China
- Prior art keywords
- unit
- moving object
- data
- area
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 8
- 238000001514 detection method Methods 0.000 claims abstract description 63
- 238000012544 monitoring process Methods 0.000 claims abstract description 31
- 230000002159 abnormal effect Effects 0.000 claims abstract description 29
- 238000007781 pre-processing Methods 0.000 claims abstract description 16
- 230000005856 abnormality Effects 0.000 claims abstract 2
- 238000001914 filtration Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 230000003068 static effect Effects 0.000 claims description 7
- 241001270131 Agaricus moelleri Species 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims description 3
- 230000007774 longterm Effects 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Closed-Circuit Television Systems (AREA)
- Burglar Alarm Systems (AREA)
Abstract
本发明公开了一种视频监控图像处理系统,包括:图像预处理单元、运动目标检测单元、获取运动区域单元、数据处理单元和异常预警单元;图像预处理单元用于将处理后的多帧图像数据传递给运动目标检测单元;运动目标检测单元用于将检测结果发送给获取运动区域单元;获取运动区域单元用于将运动物体区域信息数据发送给数据处理单元;数据处理单元用于检测运动入侵目标,并向异常预警单元发出报警指令;该系统可以实时、主动分析监控功能的、基于视频图像的智能监控系统,把人从长时间的、枯燥繁重的监视作业中解放出来。
The invention discloses a video surveillance image processing system, comprising: an image preprocessing unit, a moving object detection unit, a moving area acquisition unit, a data processing unit, and an abnormality early warning unit; the image preprocessing unit is used to process multi-frame images The data is transmitted to the moving object detection unit; the moving object detection unit is used to send the detection result to the acquisition movement area unit; the acquisition movement area unit is used to send the moving object area information data to the data processing unit; the data processing unit is used to detect movement intrusion target, and send an alarm command to the abnormal early warning unit; the system can actively analyze the monitoring function in real time, an intelligent monitoring system based on video images, and liberate people from long-term, boring and heavy monitoring tasks.
Description
技术领域technical field
本发明涉及安防监控技术领域,特别涉及一种视频监控图像处理系统及方法。The invention relates to the technical field of security monitoring, in particular to a video monitoring image processing system and method.
背景技术Background technique
钕随着科学技术的发展,人类的活动范围变得越来越大,越加复杂的社会环境使得各种突然事件和异常事件越来越多,监控变得越加重要而难度也随之增大。在一些重要的场合如变电站、仓库、停车场、银行等都已经安装了各种视频监控设备,从而阻止盗窃、破坏、人员伤害等行为的发生,并未事后检测提供依据。Neodymium With the development of science and technology, the scope of human activities has become larger and larger, and the more complex social environment has led to more and more sudden and abnormal events, monitoring has become more important and more difficult big. In some important occasions such as substations, warehouses, parking lots, banks, etc., various video surveillance equipment have been installed to prevent theft, destruction, personnel injury and other behaviors, and provide basis for post-event detection.
然而,目前使用的这些监控系统大多数只是将摄像机连接到电视监视器以及录像机上,在远处进行监视并进行录像,虽然使工作人员的工作环境得到了改善并可得到相关录像,但若无人员对监视场景进行不间断的监视分析,则无法实时地对当时的异常情况进行预警,难以保证安全。即要提高安全性就必需要有工作人员不分昼夜地注视监视器,不仅工作量繁重,当监控点较多时,监控人员也难以做到完整的监控。因此,急需一种能代替人脑发挥实时、主动分析监控功能的、基于视频图像的智能监控系统,以把人从长时间的、枯燥繁重的监视作业中解放出来。However, most of these monitoring systems that are currently used just connect the camera to the TV monitor and the video recorder, monitor and record at a distance, although the working environment of the staff has been improved and relevant videos can be obtained, if there is If personnel conduct uninterrupted monitoring and analysis of the monitoring scene, it is impossible to give early warning of the abnormal situation at that time in real time, and it is difficult to ensure safety. That is to say, to improve safety, it is necessary to have staff watching the monitor day and night. Not only is the workload heavy, but when there are many monitoring points, it is difficult for the monitoring personnel to complete the monitoring. Therefore, there is an urgent need for an intelligent monitoring system based on video images that can replace the human brain to perform real-time, active analysis and monitoring functions, so as to liberate people from long-term, boring and heavy monitoring operations.
发明内容Contents of the invention
本发明的目的是提供一种视频监控图像处理系统及方法,以解决上述背景技术中提出的问题。The purpose of the present invention is to provide a video surveillance image processing system and method to solve the problems raised in the background technology above.
本发明提供了一种视频监控图像处理系统,包括:图像预处理单元、运动目标检测单元、获取运动区域单元、数据处理单元和异常预警单元;所述图像预处理单元用于对视频采集的图像进行图像灰度化处理和E值滤波处理,并将处理后的多帧图像数据传递给所述运动目标检测单元;所述运动目标检测单元用于接收所述图像预处理单元所发送的多帧图像数据并对其进行运动检测,判断所述多帧图像数据中是否有运动的物体,并将检测结果发送给所述获取运动区域单元;所述获取运动区域单元用于接收所述运动目标检测单元所发送的检测结果并确定当前帧图像数据中运动物体的区域,同时将运动物体区域信息数据发送给所述数据处理单元;所述数据处理单元用于接收所述获取运动区域单元所发送的运动物体区域数据信息并对其先进行小分辨率检测,检测运动入侵目标,利用粒子滤波算法对目标进行跟踪,保存入侵目标的运动轨迹,并向异常预警单元发出报警指令;所述数据处理单元同时会对接收到的运动物体区域数据进行大分辨率检测,检测静置入侵目标,保存入侵目标帧图像数据,并向异常预警单元发出报警指令;所述异常预警单元用于接收所述数据处理单元所发送的报警指令并发出报警声。The present invention provides a video surveillance image processing system, including: an image preprocessing unit, a moving object detection unit, a moving area acquisition unit, a data processing unit, and an abnormal early warning unit; Perform image grayscale processing and E value filtering processing, and pass the processed multi-frame image data to the moving object detection unit; the moving object detection unit is used to receive the multi-frames sent by the image preprocessing unit and performing motion detection on the image data, judging whether there is a moving object in the multi-frame image data, and sending the detection result to the acquiring motion area unit; the acquiring motion area unit is used to receive the moving object detection The detection result sent by the unit determines the area of the moving object in the current frame image data, and at the same time sends the area information data of the moving object to the data processing unit; the data processing unit is used to receive the information sent by the acquisition moving area unit The data information of the moving object area is firstly detected with a small resolution to detect the moving intrusion target, and the particle filter algorithm is used to track the target, save the movement track of the intrusion target, and send an alarm command to the abnormal early warning unit; the data processing unit At the same time, large-resolution detection will be performed on the received moving object area data, the static intrusion target will be detected, the frame image data of the intrusion target will be saved, and an alarm command will be sent to the abnormal early warning unit; the abnormal early warning unit is used to receive the data for processing The alarm command sent by the unit and an alarm sound.
较佳地,所述图像预处理单元通过加权平均法对图像灰度化处理。Preferably, the image preprocessing unit grayscales the image through a weighted average method.
较佳地,所述运动目标检测单元包括帧间差分检测和背景差分检测。Preferably, the moving object detection unit includes inter-frame difference detection and background difference detection.
较佳地,所述数据处理单元采用TMS320C5502芯片。Preferably, the data processing unit adopts TMS320C5502 chip.
较佳地,所述TMS320C5502芯片信号连接有内部存储器,所述内部存储器采用CY7C1011CV33高速CMOS静态存储器。Preferably, the TMS320C5502 chip is signal-connected with an internal memory, and the internal memory adopts CY7C1011CV33 high-speed CMOS static memory.
一种视频监控图像处理方法,包括以下步骤:A video monitoring image processing method, comprising the following steps:
步骤1:实时获取摄像头所提供的视频监控数据,所述视频监控数据由多帧图像数据组成,同时对获取的帧图像数据进行图像灰度化处理和E值滤波处理;Step 1: Obtain video monitoring data provided by the camera in real time, the video monitoring data is composed of multiple frames of image data, and simultaneously perform image grayscale processing and E value filtering processing on the acquired frame image data;
步骤2:检测步骤1中处理后的帧图像数据,判断所述当前帧图像数据中是否有运动的物体;Step 2: Detect the frame image data processed in step 1, and judge whether there is a moving object in the current frame image data;
步骤3:当所述当前帧图像数据中有运动的物体时,确定当前帧图像数据中运动物体的区域;Step 3: When there is a moving object in the current frame image data, determine the area of the moving object in the current frame image data;
步骤4:对所述运动物体区域数据分别先进行小分辨率检测,检测运动入侵目标,利用粒子滤波算法对目标进行跟踪,保存入侵目标的运动轨迹,并向异常预警单元发出报警指令;再对运动物体区域数据进行大分辨率检测,检测静置入侵目标,保存入侵目标帧图像数据,并向异常预警单元发出报警指令;Step 4: Carry out small-resolution detection on the data of the moving object area first, detect the moving intrusion target, use the particle filter algorithm to track the target, save the movement track of the intrusion target, and send an alarm command to the abnormal warning unit; Large-resolution detection of moving object area data, detection of stationary intrusion targets, saving frame image data of intrusion targets, and sending an alarm command to the abnormal warning unit;
步骤5:异常预警单元根据步骤4发出的指令发出警报声。Step 5: The abnormal warning unit sends out an alarm sound according to the instruction issued in step 4.
本发明和现有技术相比,其优点在于:Compared with the prior art, the present invention has the advantages of:
本发明提供的一种视频监控图像处理系统,通过图像预处理单元用于对视频采集的图像进行图像灰度化处理和E值滤波处理,并将处理后的多帧图像数据传递给运动目标检测单元;运动目标检测单元用于接收图像预处理单元所发送的多帧图像数据并对其进行运动检测,判断多帧图像数据中是否有运动的物体,并将检测结果发送给获取运动区域单元;获取运动区域单元用于接收运动目标检测单元所发送的检测结果并确定当前帧图像数据中运动物体的区域,同时将运动物体区域信息数据发送给数据处理单元;数据处理单元用于接收获取运动区域单元所发送的运动物体区域数据信息并对其先进行小分辨率检测,检测运动入侵目标,利用粒子滤波算法对目标进行跟踪,保存入侵目标的运动轨迹,并向异常预警单元发出报警指令;数据处理单元同时会对接收到的运动物体区域数据进行大分辨率检测,检测静置入侵目标,保存入侵目标帧图像数据,并向异常预警单元发出报警指令;异常预警单元用于接收数据处理单元所发送的报警指令并发出报警声。该系统可以实时、主动分析监控功能的、基于视频图像的智能监控系统,把人从长时间的、枯燥繁重的监视作业中解放出来。A video monitoring image processing system provided by the present invention is used to perform image grayscale processing and E-value filtering processing on images collected by video through an image preprocessing unit, and transfer the processed multi-frame image data to moving target detection unit; the moving target detection unit is used to receive the multi-frame image data sent by the image preprocessing unit and perform motion detection to it, judge whether there is a moving object in the multi-frame image data, and send the detection result to the acquisition motion area unit; The moving area acquisition unit is used to receive the detection result sent by the moving object detection unit and determine the area of the moving object in the current frame image data, and at the same time send the area information data of the moving object to the data processing unit; the data processing unit is used to receive and acquire the moving area The data information of the moving object area sent by the unit is firstly detected with a small resolution to detect the moving intrusion target, and the particle filter algorithm is used to track the target, save the movement track of the intrusion target, and send an alarm command to the abnormal early warning unit; the data At the same time, the processing unit will perform high-resolution detection on the received moving object area data, detect static intrusion targets, save the intrusion target frame image data, and send an alarm command to the abnormal warning unit; the abnormal warning unit is used to receive Send an alarm command and send out an alarm sound. The system can actively analyze the monitoring function in real time and is an intelligent monitoring system based on video images, which can liberate people from long-term, boring and heavy monitoring tasks.
附图说明Description of drawings
图1为本发明提供的系统原理图。Fig. 1 is a schematic diagram of the system provided by the present invention.
具体实施方式detailed description
下面结合附图,对本发明的一个具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。A specific embodiment of the present invention will be described in detail below in conjunction with the accompanying drawings, but it should be understood that the protection scope of the present invention is not limited by the specific embodiment.
如图1所示,本发明实施例提供了一种视频监控图像处理系统,包括:图像预处理单元、运动目标检测单元、获取运动区域单元、数据处理单元和异常预警单元;图像预处理单元用于对视频采集的图像进行图像灰度化处理和E值滤波处理,并将处理后的多帧图像数据传递给运动目标检测单元;运动目标检测单元用于接收图像预处理单元所发送的多帧图像数据并对其进行运动检测,判断多帧图像数据中是否有运动的物体,并将检测结果发送给获取运动区域单元;获取运动区域单元用于接收运动目标检测单元所发送的检测结果并确定当前帧图像数据中运动物体的区域,同时将运动物体区域信息数据发送给数据处理单元;数据处理单元用于接收获取运动区域单元所发送的运动物体区域数据信息并对其先进行小分辨率检测,检测运动入侵目标,利用粒子滤波算法对目标进行跟踪,保存入侵目标的运动轨迹,并向异常预警单元发出报警指令;数据处理单元同时会对接收到的运动物体区域数据进行大分辨率检测,检测静置入侵目标,保存入侵目标帧图像数据,并向异常预警单元发出报警指令;异常预警单元用于接收数据处理单元所发送的报警指令并发出报警声。As shown in Figure 1, an embodiment of the present invention provides a video surveillance image processing system, including: an image preprocessing unit, a moving object detection unit, a moving area acquisition unit, a data processing unit, and an abnormal warning unit; It is used to perform image grayscale processing and E value filtering processing on the image collected by the video, and transfer the processed multi-frame image data to the moving object detection unit; the moving object detection unit is used to receive the multi-frame sent by the image preprocessing unit Image data and its motion detection, judging whether there is a moving object in the multi-frame image data, and sending the detection result to the acquisition motion area unit; the acquisition motion area unit is used to receive the detection result sent by the moving object detection unit and determine The area of the moving object in the current frame image data, and at the same time send the area information data of the moving object to the data processing unit; the data processing unit is used to receive and acquire the area data information of the moving object sent by the moving area unit and perform small-resolution detection on it first , detect the moving intrusion target, use the particle filter algorithm to track the target, save the movement trajectory of the intrusion target, and send an alarm command to the abnormal early warning unit; the data processing unit will also perform high-resolution detection on the received moving object area data, Detect the stationary intrusion target, save the intrusion target frame image data, and send an alarm command to the abnormal early warning unit; the abnormal early warning unit is used to receive the alarm command sent by the data processing unit and send out an alarm sound.
在本发明实施例中,图像预处理单元通过加权平均法对图像灰度化处理。运动目标检测单元包括帧间差分检测和背景差分检测。数据处理单元采用TMS320C5502芯片。TMS320C5502芯片信号连接有内部存储器,内部存储器采用CY7C1011CV33高速CMOS静态存储器。In the embodiment of the present invention, the image preprocessing unit grayscales the image through a weighted average method. The moving target detection unit includes frame difference detection and background difference detection. The data processing unit adopts TMS320C5502 chip. TMS320C5502 chip signal is connected with internal memory, and the internal memory adopts CY7C1011CV33 high-speed CMOS static memory.
一种视频监控图像处理方法,包括以下步骤:A video monitoring image processing method, comprising the following steps:
步骤1:实时获取摄像头所提供的视频监控数据,所述视频监控数据由多帧图像数据组成,同时对获取的帧图像数据进行图像灰度化处理和E值滤波处理;Step 1: Obtain video monitoring data provided by the camera in real time, the video monitoring data is composed of multiple frames of image data, and simultaneously perform image grayscale processing and E value filtering processing on the acquired frame image data;
步骤2:检测步骤1中处理后的帧图像数据,判断所述当前帧图像数据中是否有运动的物体;Step 2: Detect the frame image data processed in step 1, and judge whether there is a moving object in the current frame image data;
步骤3:当所述当前帧图像数据中有运动的物体时,确定当前帧图像数据中运动物体的区域;Step 3: When there is a moving object in the current frame image data, determine the area of the moving object in the current frame image data;
步骤4:对所述运动物体区域数据分别先进行小分辨率检测,检测运动入侵目标,利用粒子滤波算法对目标进行跟踪,保存入侵目标的运动轨迹,并向异常预警单元发出报警指令;再对运动物体区域数据进行大分辨率检测,检测静置入侵目标,保存入侵目标帧图像数据,并向异常预警单元发出报警指令;Step 4: Carry out small-resolution detection on the data of the moving object area first, detect the moving intrusion target, use the particle filter algorithm to track the target, save the movement track of the intrusion target, and send an alarm command to the abnormal warning unit; Large-resolution detection of moving object area data, detection of stationary intrusion targets, saving frame image data of intrusion targets, and sending an alarm command to the abnormal warning unit;
步骤5:异常预警单元根据步骤4发出的指令发出警报声。Step 5: The abnormal warning unit sends out an alarm sound according to the instruction issued in step 4.
综上所述,本发明实施例提供的一种视频监控图像处理系统,通过图像预处理单元用于对视频采集的图像进行图像灰度化处理和E值滤波处理,并将处理后的多帧图像数据传递给运动目标检测单元;运动目标检测单元用于接收图像预处理单元所发送的多帧图像数据并对其进行运动检测,判断多帧图像数据中是否有运动的物体,并将检测结果发送给获取运动区域单元;获取运动区域单元用于接收运动目标检测单元所发送的检测结果并确定当前帧图像数据中运动物体的区域,同时将运动物体区域信息数据发送给数据处理单元;数据处理单元用于接收获取运动区域单元所发送的运动物体区域数据信息并对其先进行小分辨率检测,检测运动入侵目标,利用粒子滤波算法对目标进行跟踪,保存入侵目标的运动轨迹,并向异常预警单元发出报警指令;数据处理单元同时会对接收到的运动物体区域数据进行大分辨率检测,检测静置入侵目标,保存入侵目标帧图像数据,并向异常预警单元发出报警指令;异常预警单元用于接收数据处理单元所发送的报警指令并发出报警声。该系统可以实时、主动分析监控功能的、基于视频图像的智能监控系统,把人从长时间的、枯燥繁重的监视作业中解放出来。To sum up, the video monitoring image processing system provided by the embodiment of the present invention uses the image preprocessing unit to perform image grayscale processing and E-value filtering processing on the image collected by the video, and converts the processed multi-frame The image data is passed to the moving object detection unit; the moving object detection unit is used to receive the multi-frame image data sent by the image preprocessing unit and perform motion detection on it, judge whether there is a moving object in the multi-frame image data, and send the detection result Send to the unit for obtaining the moving area; the unit for obtaining the moving area is used to receive the detection result sent by the moving object detection unit and determine the area of the moving object in the current frame image data, and at the same time send the moving object area information data to the data processing unit; data processing The unit is used to receive the data information of the moving object area sent by the moving area unit and perform small-resolution detection on it first, detect the moving intrusion target, use the particle filter algorithm to track the target, save the movement track of the intrusion target, and report to the abnormal The early warning unit issues an alarm command; the data processing unit simultaneously performs large-resolution detection on the received moving object area data, detects the static intrusion target, saves the frame image data of the intrusion target, and sends an alarm command to the abnormal early warning unit; the abnormal early warning unit It is used to receive the alarm command sent by the data processing unit and send out an alarm sound. The system can actively analyze the monitoring function in real time, and is an intelligent monitoring system based on video images, which liberates people from long-term, boring and heavy monitoring tasks.
以上公开的仅为本发明的几个具体实施例,但是,本发明实施例并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。The above disclosures are only a few specific embodiments of the present invention, however, the embodiments of the present invention are not limited thereto, and any changes conceivable by those skilled in the art shall fall within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710872730.4A CN107623842A (en) | 2017-09-25 | 2017-09-25 | A video surveillance image processing system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710872730.4A CN107623842A (en) | 2017-09-25 | 2017-09-25 | A video surveillance image processing system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107623842A true CN107623842A (en) | 2018-01-23 |
Family
ID=61090478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710872730.4A Pending CN107623842A (en) | 2017-09-25 | 2017-09-25 | A video surveillance image processing system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107623842A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112532917A (en) * | 2020-10-21 | 2021-03-19 | 深圳供电局有限公司 | Integrated intelligent monitoring platform based on streaming media |
CN112770090A (en) * | 2020-12-28 | 2021-05-07 | 杭州电子科技大学 | Monitoring method based on transaction detection and target tracking |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1233336A (en) * | 1996-08-22 | 1999-10-27 | 富特福尔有限公司 | Video imaging systems |
CN101295405A (en) * | 2008-06-13 | 2008-10-29 | 西北工业大学 | Portrait and Vehicle Recognition Alarm Tracking Method |
CN101699862A (en) * | 2009-11-16 | 2010-04-28 | 上海交通大学 | High-resolution region-of-interest image acquisition method of PTZ camera |
CN101971620A (en) * | 2008-02-29 | 2011-02-09 | 慧视科技有限公司 | A method of recording quality images |
CN201773466U (en) * | 2009-09-09 | 2011-03-23 | 深圳辉锐天眼科技有限公司 | Video monitoring and pre-warning device for detecting, tracking and identifying object detention/stealing event |
CN101996410A (en) * | 2010-12-07 | 2011-03-30 | 北京交通大学 | Method and system of detecting moving object under dynamic background |
CN202435528U (en) * | 2012-01-17 | 2012-09-12 | 深圳辉锐天眼科技有限公司 | Video monitoring system |
CN103826109A (en) * | 2014-03-25 | 2014-05-28 | 龙迅半导体科技(合肥)有限公司 | Video monitoring image data processing method and system |
CN106128032A (en) * | 2016-07-05 | 2016-11-16 | 北京理工大学珠海学院 | A kind of fatigue state monitoring and method for early warning and system thereof |
-
2017
- 2017-09-25 CN CN201710872730.4A patent/CN107623842A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1233336A (en) * | 1996-08-22 | 1999-10-27 | 富特福尔有限公司 | Video imaging systems |
CN101971620A (en) * | 2008-02-29 | 2011-02-09 | 慧视科技有限公司 | A method of recording quality images |
CN101295405A (en) * | 2008-06-13 | 2008-10-29 | 西北工业大学 | Portrait and Vehicle Recognition Alarm Tracking Method |
CN201773466U (en) * | 2009-09-09 | 2011-03-23 | 深圳辉锐天眼科技有限公司 | Video monitoring and pre-warning device for detecting, tracking and identifying object detention/stealing event |
CN101699862A (en) * | 2009-11-16 | 2010-04-28 | 上海交通大学 | High-resolution region-of-interest image acquisition method of PTZ camera |
CN101996410A (en) * | 2010-12-07 | 2011-03-30 | 北京交通大学 | Method and system of detecting moving object under dynamic background |
CN202435528U (en) * | 2012-01-17 | 2012-09-12 | 深圳辉锐天眼科技有限公司 | Video monitoring system |
CN103826109A (en) * | 2014-03-25 | 2014-05-28 | 龙迅半导体科技(合肥)有限公司 | Video monitoring image data processing method and system |
CN106128032A (en) * | 2016-07-05 | 2016-11-16 | 北京理工大学珠海学院 | A kind of fatigue state monitoring and method for early warning and system thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112532917A (en) * | 2020-10-21 | 2021-03-19 | 深圳供电局有限公司 | Integrated intelligent monitoring platform based on streaming media |
CN112770090A (en) * | 2020-12-28 | 2021-05-07 | 杭州电子科技大学 | Monitoring method based on transaction detection and target tracking |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104079874B (en) | A kind of security protection integral system and method based on technology of Internet of things | |
CN107911653B (en) | Intelligent video monitoring module, system, method and storage medium for residence | |
CN103268680B (en) | A kind of family intelligent monitoring burglary-resisting system | |
CN103108159B (en) | Electric power intelligent video analyzing and monitoring system and method | |
CN110675586A (en) | Airport enclosure intrusion monitoring method based on video analysis and deep learning | |
CN106781165A (en) | A kind of indoor multi-cam intelligent linkage supervising device based on depth sensing | |
CN102164270A (en) | Intelligent video monitoring method and system capable of exploring abnormal events | |
CN102811343A (en) | An Intelligent Video Surveillance System Based on Behavior Recognition | |
CN107818312A (en) | A kind of embedded system based on abnormal behaviour identification | |
CN105208343A (en) | Intelligent monitoring system and method capable of being used for video monitoring device | |
CN103929592A (en) | All-dimensional intelligent monitoring equipment and method | |
CN110867046A (en) | Intelligent car washer video monitoring and early warning system based on cloud computing | |
CN107426533A (en) | A kind of video monitoring image recognition system based on video-encryption compression and image identification | |
KR20220113631A (en) | Dangerous situation detection device and dangerous situation detection method | |
KR20140122779A (en) | location based integrated control system | |
CN111246179A (en) | A visual radar intelligent protection system and method | |
KR101075550B1 (en) | Image sensing agent and security system of USN complex type | |
CN107623842A (en) | A video surveillance image processing system and method | |
Long et al. | An image-based fall detection system using you only look once (yolo) algorithm to monitor elders’ fall events | |
CN118823940A (en) | A regional intrusion warning system based on edge computing and fusion perception | |
CN117994734A (en) | Target risk level assessment method based on robot | |
JP2021087031A (en) | Information processing device, information processing method, monitoring system, and program | |
Poornima et al. | A Real-Time IoT-based Model to Detect and Alert Security Guards’ Drowsiness | |
Singh et al. | Motion detection method to compensate camera flicker using an algorithm | |
CN206712964U (en) | The potential emotional intelligence analysis system taken precautions against applied to public safety prewarning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180123 |