CN107623189B - A kind of manufacturing method of hemispheric Lumberg lens antenna - Google Patents
A kind of manufacturing method of hemispheric Lumberg lens antenna Download PDFInfo
- Publication number
- CN107623189B CN107623189B CN201710786549.1A CN201710786549A CN107623189B CN 107623189 B CN107623189 B CN 107623189B CN 201710786549 A CN201710786549 A CN 201710786549A CN 107623189 B CN107623189 B CN 107623189B
- Authority
- CN
- China
- Prior art keywords
- lens antenna
- layer
- concentric
- hemispherical
- luneberg lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 155
- 239000000463 material Substances 0.000 claims abstract description 81
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 239000011888 foil Substances 0.000 claims abstract description 23
- 239000000654 additive Substances 0.000 claims abstract description 17
- 230000000996 additive effect Effects 0.000 claims abstract description 17
- 238000009826 distribution Methods 0.000 claims abstract description 15
- 239000010410 layer Substances 0.000 claims description 222
- 239000004626 polylactic acid Substances 0.000 claims description 13
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 12
- 229920001169 thermoplastic Polymers 0.000 claims description 12
- 239000004416 thermosoftening plastic Substances 0.000 claims description 12
- 238000000465 moulding Methods 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- 239000011347 resin Substances 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims description 7
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 6
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 claims description 6
- 229920002313 fluoropolymer Polymers 0.000 claims description 6
- 229920006260 polyaryletherketone Polymers 0.000 claims description 6
- 239000011229 interlayer Substances 0.000 claims description 5
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 5
- 239000007921 spray Substances 0.000 claims description 5
- 239000012815 thermoplastic material Substances 0.000 claims description 5
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 230000001788 irregular Effects 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims description 3
- 229920001897 terpolymer Polymers 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000000155 melt Substances 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 8
- 238000004891 communication Methods 0.000 description 10
- 238000005187 foaming Methods 0.000 description 9
- 239000006260 foam Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 239000011324 bead Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 238000000110 selective laser sintering Methods 0.000 description 3
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
本发明公开了一种半球龙伯透镜天线的制作方法,其中半球龙伯透镜天线分布有空腔,具有半球面和过球心平面的底部平面;其中,所述方法包括如下步骤:选择用于制造半球龙伯透镜天线的材料;确定半球龙伯透镜天线的结构参数;制作具有所述结构参数的半球龙伯透镜天线的三维数字模型;采用增材制造方法根据所述三维数字模型制作所述半球龙伯透镜天线;在所述底部平面贴敷金属箔层。本发明所制作的半球龙伯透镜天线中的空腔结构的形状、尺寸和分布可调可控,实现了对同心层平均介电常数的精确控制,能够满足不同的设计要求;并且制作材料广泛,生产工艺简单,成品率高,不存在层间间隙,使产品质量更加稳定、可靠。
The invention discloses a manufacturing method of a hemispherical Luneberg lens antenna, wherein the hemispherical Luneberg lens antenna is distributed with a cavity, and has a hemispherical surface and a bottom plane passing through the center plane of the sphere; wherein, the method comprises the steps of: selecting an antenna for materials for manufacturing the hemispherical Luneberg lens antenna; determining the structural parameters of the hemispherical Luneberg lens antenna; making a three-dimensional digital model of the hemispherical Luneberg lens antenna with the structural parameters; using an additive manufacturing method to manufacture the said three-dimensional digital model A hemispherical Lumberg lens antenna; a metal foil layer is applied to the bottom plane. The shape, size and distribution of the cavity structure in the hemispherical Lumberg lens antenna made by the invention can be adjusted and controllable, the precise control of the average dielectric constant of the concentric layers can be realized, and different design requirements can be met; and the manufacturing materials are widely used. , The production process is simple, the yield is high, and there is no gap between layers, so that the product quality is more stable and reliable.
Description
本申请是申请日为“2015年2月16日”、申请号为“201510084764.8”、发明名称为“一种半球龙伯透镜天线的制作方法”的发明专利申请的分案申请。This application is a divisional application for an invention patent application with an application date of "February 16, 2015", an application number of "201510084764.8", and an invention title of "A method for manufacturing a hemispherical Lumberg lens antenna".
技术领域technical field
本发明涉及通信领域,更具体地说,涉及一种半球龙伯透镜天线的制作方法。The present invention relates to the field of communications, and more particularly, to a manufacturing method of a hemispherical Lumberg lens antenna.
背景技术Background technique
龙伯透镜天线以球形为基本形状(在本文中有时也称为龙伯球),是由R.K.龙伯于1944年基于几何光学法提出的概念。龙伯透镜天线是一种透过电介质将电磁波聚焦至焦点的透镜天线。它是一个由介电材料制成的球体,能够将各个方向传来的电磁波汇聚到透镜表面相应的一点。在无限接近球体表面的部分,其材质的介电常数=1(即与空气的介电常数相同),其球心处的介电常数=2。球体从表面到中心材质的介电常数是渐变的,其变化规律为εr(r)=2-(r/R)2(0≤r≤R),其中,r为当前位置到球体中心的距离,R为龙伯透镜天线的半径。The Lumber lens antenna takes a sphere as its basic shape (sometimes also called Lumber sphere in this article), which is a concept proposed by RK Lumber in 1944 based on the geometrical optics method. A Lumberg lens antenna is a lens antenna that focuses electromagnetic waves to a focal point through a dielectric. It is a sphere made of dielectric material that can focus electromagnetic waves from all directions to a corresponding point on the surface of the lens. In the part that is infinitely close to the surface of the sphere, the dielectric constant of the material is 1 (that is, the same as that of air), and the dielectric constant at the center of the sphere is 2. The dielectric constant of the sphere from the surface to the center of the material is gradual, and its change rule is ε r (r)=2-(r/R) 2 (0≤r≤R), where r is the distance from the current position to the center of the sphere. distance, R is the radius of the Lumberg lens antenna.
龙伯透镜天线一般都是针对特定目标入射电磁波进行设计的。目标入射电磁波穿透球体表面,然后折射聚焦到球体另一面的焦点上,不同电磁波信号的入射方向不同,在球面上汇聚的焦点位置也不同。因此在龙伯透镜天线为完全球体的情况下,接收信号角度方位广,只需沿着透镜表面简单地移动馈源位置,或放置多个馈源,就可以同时接收多个信号而不需改变透镜天线的位置。此外不像其他天线具有有限的适用频带,龙伯透镜天线可用于例如波长为从1米到0.1厘米的微波以及波长大于微波的全部电磁波段,包括波长从3000米到10-3米的无线电波,因此适用于大容量的带宽通信系统。Lumberg lens antennas are generally designed for specific target incident electromagnetic waves. The incident electromagnetic wave of the target penetrates the surface of the sphere, and is then refracted and focused on the focal point on the other side of the sphere. Different electromagnetic wave signals have different incident directions and different focal positions on the spherical surface. Therefore, when the Lunberg lens antenna is a complete sphere, the received signal has a wide angle and azimuth. Simply move the feed position along the surface of the lens, or place multiple feeds to receive multiple signals at the same time without changing Location of the lens antenna. Furthermore, unlike other antennas which have a limited applicable frequency band, Lumberg lens antennas can be used, for example, for microwaves with wavelengths from 1 meter to 0.1 cm and all electromagnetic bands with wavelengths greater than microwaves, including radio waves with wavelengths from 3000 meters to 10-3 meters , so it is suitable for large-capacity bandwidth communication systems.
另外,由于龙伯透镜天线具有将电磁波聚焦的特性,使其雷达反射截面积(即RCS值,也是衡量龙伯透镜天线性能的关键技术指标)远大于其物理截面积,因此可用于设置防雷达假目标、干扰伪装、靶的标定、救援等方面。In addition, because the Luneberg lens antenna has the characteristics of focusing electromagnetic waves, its radar reflection cross-sectional area (that is, the RCS value, which is also a key technical indicator to measure the performance of Luneberg lens antennas) is much larger than its physical cross-sectional area, so it can be used to set lightning protection. Reach false targets, interfere with camouflage, target calibration, rescue, etc.
作为完整球体的龙伯透镜天线的球对称结构和聚焦电磁波的功能使其广泛应用在卫星通信、雷达天线、电子对抗等领域,做为卫星地面站、卫星新闻转播车、射电天文望远镜、军用假目标、靶机、靶弹、汽车防撞雷达等的天线部件。The spherical symmetry structure and the function of focusing electromagnetic waves of the Lumberg lens antenna as a complete sphere make it widely used in satellite communications, radar antennas, electronic countermeasures and other fields, as satellite ground stations, satellite news broadcast vehicles, radio astronomical telescopes, military fake Antenna components for targets, target drones, target bombs, automotive anti-collision radars, etc.
理论上,用于龙伯透镜天线的材料的介电常数从球心到最外层应该是从2到1连续变化。然而实际上是无法制作出这样理想的龙伯透镜天线的,一般常用分层设计的离散球壳来代替。Theoretically, the dielectric constant of the material used for Lumberg lens antennas should vary continuously from 2 to 1 from the center of the sphere to the outermost layer. However, it is actually impossible to make such an ideal Lunberg lens antenna, and a discrete spherical shell with a layered design is generally used instead.
最初,制作龙伯透镜天线是利用具有不同介电常数的材料来进行,然而能满足要求的材料非常有限,而且材料之间介电常数梯度太大,因此通过材料选择来制作的龙伯球质量大,透镜的辐射特性也不是最佳,一直没有得到广泛应用。Initially, materials with different dielectric constants were used to make Lumberg lens antennas. However, the materials that can meet the requirements are very limited, and the gradient of dielectric constant between materials is too large. Therefore, the quality of Lunberg spheres made by material selection is The radiation characteristics of the lens are not optimal, and it has not been widely used.
2003年,Sébastien R ondineau等(Sébastien R ondineau等.Aslicedspherical luneburg lens.IEEE Antennas Wireless Propagat.lett.2003,2:163-166)将龙伯透镜天线沿球径方向分层,按照一定打孔规则在介质层上打孔,以期达到所需的介电常数。这种打孔设计的龙伯透镜在孔定位和加工上操作难度非常大,而且由于孔的数目多,存在形变和机械强度不足等问题,各部分间的牢固性低。这种设计方法只是实现了宏观上的介电常数等效,透镜天线的效率很低,在26.5GHz,效率只有30%,在32GHz,效率只有15%。In 2003, Sébastien R ondineau et al. (Sébastien R ondineau et al. Aslicedspherical luneburg lens. IEEE Antennas Wireless Propagat.lett. 2003, 2: 163-166) layered the Luneburg lens antenna along the spherical radial direction, according to certain punching rules. Holes are drilled in the dielectric layer to achieve the desired dielectric constant. The Lunberg lens with this punching design is very difficult to operate in hole positioning and processing, and due to the large number of holes, there are problems such as deformation and insufficient mechanical strength, and the firmness of each part is low. This design method only achieves the macroscopic dielectric constant equivalent, and the efficiency of the lens antenna is very low, at 26.5GHz, the efficiency is only 30%, and at 32GHz, the efficiency is only 15%.
发泡法是目前最常用的制作龙伯透镜天线的方法。该方法一般是先将用树脂制作的珠料适当发泡,然后按粒度大小进行筛选分组。然后根据所设计的介电常数将不同组的发泡材料混合而使混合材料的介电常数等于预定的介电常数。再将粘合剂和泡沫珠料混在一起,灌在尺寸合适的球型模具中,待粘合剂中的可挥发成分挥发后,使珠料硬化、粘合而获得具有预定介电常数的球壳。The foaming method is currently the most commonly used method for making Lumberg lens antennas. In this method, the beads made of resin are generally foamed appropriately, and then screened and grouped according to particle size. Then different groups of foamed materials are mixed according to the designed dielectric constant so that the dielectric constant of the mixed material is equal to the predetermined dielectric constant. Then the adhesive and foam beads are mixed together, and poured into a spherical mold of suitable size. After the volatile components in the adhesive are volatilized, the beads are hardened and bonded to obtain a ball with a predetermined dielectric constant. shell.
目前制作的龙伯透镜天线通常是由多层具有不同介电常数的材料包裹而成的,其介电常数的变化是离散的,近似模拟理想状态下的介电常数连续平滑变化。一般而言,包裹的材料层数越多,透镜天线越接近理想状态,然而这也相应的增加了层与层之间存在空气的概率,理论上,空气层的径向厚度大于入射波长的5%即可显著地使龙伯透镜天线性能下降。The Lunberg lens antennas produced at present are usually wrapped by multiple layers of materials with different dielectric constants, and the change of the dielectric constant is discrete, which approximately simulates the continuous and smooth change of the dielectric constant in the ideal state. Generally speaking, the more layers of material wrapped, the closer the lens antenna is to the ideal state. However, this also increases the probability of the existence of air between layers. In theory, the radial thickness of the air layer is greater than 5% of the incident wavelength. % can significantly degrade Lumberg lens antenna performance.
另外,增加层数还会相应加大制造难度和材料成本、模具成本以及制造周期。因此,现有技术通常把球体的层数限制在10层左右,少见多于10层的结构,因此模拟理想的介电常数连续平滑变化的程度有限,尤其是对于大尺寸的龙伯透镜天线。In addition, increasing the number of layers will correspondingly increase the manufacturing difficulty and material cost, mold cost and manufacturing cycle. Therefore, in the prior art, the number of layers of the sphere is usually limited to about 10 layers, and structures with more than 10 layers are rare, so the degree of simulating the ideal continuous and smooth change of the dielectric constant is limited, especially for large-sized Lumberg lens antennas.
现有技术中通过发泡法制造龙伯透镜天线所使用的材料通常为聚苯乙烯泡沫。可通过控制泡沫密度来控制其内的空气体积分数,从而控制其宏观平均介电常数为预期值。但发泡时泡沫密度达到预期值只能说明整块泡沫的宏观平均介电常数达到预期值,由于发泡工艺的特点,在微观上很难保证材料处处均匀一致,因此在微观上泡沫内一定大量存在体积过大或过小的气泡,从而使介电常数在微观上出现波动,造成产品性能与预期出现偏差,而且不同批次产品的性能偏差程度也不同,此外,根据散射效应,当泡沫内气泡的直径大于三分之一的入射波长时,也会造成龙伯透镜性能显著下降。同时,发泡法在模制过程中珠料可能发生二次发泡,使得介电常数不易控制,均匀性降低。另外,发泡材料在模具冷却后发生收缩,从而导致在拼装时相邻的球壳之间会出现空气间隙,进而对透镜的性能产生较大影响。因此,发泡法存在介电常数公差难以控制、内部不易均匀等难以克服的问题。In the prior art, the material used to manufacture the Lunberg lens antenna by the foaming method is usually polystyrene foam. The volume fraction of air within the foam can be controlled by controlling the density of the foam, thereby controlling its macroscopic average dielectric constant to a desired value. However, when the foam density reaches the expected value during foaming, it only means that the macroscopic average dielectric constant of the entire foam reaches the expected value. Due to the characteristics of the foaming process, it is difficult to ensure the uniformity of the material everywhere on the microscopic level. There are a lot of bubbles that are too large or too small, so that the dielectric constant fluctuates on the microscopic level, causing the product performance to deviate from expectations, and the performance deviation of different batches of products is also different. In addition, according to the scattering effect, when the foam is When the diameter of the inner bubble is greater than one-third of the incident wavelength, the performance of the Lunberg lens can also be significantly reduced. At the same time, in the foaming method, the beads may undergo secondary foaming during the molding process, making it difficult to control the dielectric constant and reducing the uniformity. In addition, the foamed material shrinks after the mold is cooled, resulting in an air gap between adjacent spherical shells during assembly, which has a great impact on the performance of the lens. Therefore, the foaming method has problems such as difficulty in controlling the dielectric constant tolerance, and difficulty in uniformity in the interior.
龙伯透镜天线作为一种电介质无源器件,具有体积小、重量轻、雷达截面积大、方向图和频谱宽度大的优点,但其制作工艺难度高、过程繁琐耗时、成本高、产品一致性差,限制了其推广和应用。As a dielectric passive device, the Lumberg lens antenna has the advantages of small size, light weight, large radar cross-sectional area, large pattern and spectrum width, but its manufacturing process is difficult, tedious and time-consuming, high cost, and consistent products. Poor performance limits its promotion and application.
为了减小龙伯透镜天线体积和节约成本,有时候可以制作非完整球体的龙伯透镜天线。半球龙伯透镜天线具有半球面和底部平面。所述底部平面为过球心平面。所述底部平面通常贴敷有金属箔层。基于几何光学的原理,半球龙伯透镜天线可以在很大程度上模拟完整球体的龙伯透镜天线。In order to reduce the volume of the Luneberg lens antenna and save the cost, sometimes a Lunberg lens antenna with a non-holonomic sphere can be fabricated. A hemispherical Lumberg lens antenna has a hemispherical surface and a bottom plane. The bottom plane is a plane passing through the center of the sphere. The bottom plane is usually covered with a metal foil layer. Based on the principle of geometrical optics, the hemispheric Lumberg lens antenna can simulate the Lumberg lens antenna of a complete sphere to a large extent.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明的目的是提供一种工艺简单、成本低、使用效果好的半球龙伯透镜天线的制作方法。In view of the above problems, the purpose of the present invention is to provide a manufacturing method of a hemispherical Lumberg lens antenna with simple process, low cost and good use effect.
本发明的目的是通过如下技术方案来实现的。The purpose of the present invention is achieved through the following technical solutions.
1、一种半球龙伯透镜天线的制作方法,所述半球龙伯透镜天线分布有空腔,具有半球面和底部平面,并且所述底部平面为过球心平面;其中,所述方法包括如下步骤:1. A method for making a hemispherical Luneberg lens antenna, the hemispherical Luneberg lens antenna is distributed with a cavity, has a hemispherical surface and a bottom plane, and the bottom plane is a plane passing through the center of the sphere; wherein, the method includes the following step:
(1)选择用于制造半球龙伯透镜天线的材料;(1) Select the material used to manufacture the hemispherical Lumberg lens antenna;
(2)确定半球龙伯透镜天线的结构参数;(2) Determine the structural parameters of the hemispherical Lumberg lens antenna;
(3)制作具有所述结构参数的半球龙伯透镜天线的三维数字模型;和(3) making a three-dimensional digital model of the hemispherical Lumberg lens antenna with the structural parameters; and
(4)采用增材制造方法根据所述三维数字模型制作所述半球龙伯透镜天线;和(4) manufacturing the hemispherical Lumberg lens antenna from the three-dimensional digital model using an additive manufacturing method; and
(5)在所述半球龙伯透镜天线的底部平面贴敷金属箔层。(5) A metal foil layer is applied on the bottom plane of the hemispherical Lumberg lens antenna.
2、根据技术方案1所述的方法,其中,先制作完整球体的龙伯透镜天线,然后根据需要将该完整球体的龙伯透镜天线等份剖分为半球龙伯透镜天线,然后在半球龙伯透镜天线的底部平面上贴敷金属箔层。2. The method according to technical solution 1, wherein a complete spherical Luenberger lens antenna is firstly fabricated, and then the complete spherical Luenberger lens antenna is divided into hemispheric Luenberger lens antennas in equal parts as required, and then the hemispheric Luenberger lens antenna is divided into equal parts. A metal foil layer is attached to the bottom plane of the primary lens antenna.
3、根据技术方案1或2所述的方法,其中,所述结构参数选自由如下参数组成的组:半球龙伯透镜天线的直径、半径、层数、以及所述空腔的形状、尺寸和分布。3. The method according to technical solution 1 or 2, wherein the structural parameters are selected from the group consisting of the following parameters: the diameter, radius, number of layers of the hemispherical Lumberg lens antenna, and the shape, size and distributed.
4、根据技术方案1至3中任一项所述的方法,其中:4. The method according to any one of technical solutions 1 to 3, wherein:
在步骤(1)中,根据所述半球龙伯透镜天线的目标性能和/或目标尺寸来确定所述材料。In step (1), the material is determined according to the target performance and/or target size of the hemispherical Lumberg lens antenna.
5、根据技术方案4所述的方法,其中,所述目标性能采用雷达散射截面积来度量,所述目标尺寸采用半球龙伯透镜天线的直径、半径和/或层数来度量。5. The method according to technical solution 4, wherein the target performance is measured by radar scattering cross-sectional area, and the target size is measured by the diameter, radius and/or number of layers of a hemispherical Lumberg lens antenna.
6、根据技术方案4或5所述的方法,其中,在所述步骤(2)中,根据所述目标性能和/或目标尺寸和/或所述材料的介电常数来确定所述结构参数。6. The method according to technical solution 4 or 5, wherein, in the step (2), the structural parameter is determined according to the target performance and/or target size and/or the dielectric constant of the material .
7、根据技术方案4至6中任一项所述的方法,其中,在所述步骤(3)中,还包括通过仿真技术采用试错法调整所述结构参数来达到所述半球龙伯透镜天线的目标性能。7. The method according to any one of technical solutions 4 to 6, wherein, in the step (3), it also includes adjusting the structural parameters by a trial-and-error method through simulation technology to achieve the hemispherical Lumberg lens The target performance of the antenna.
8、根据技术方案7所述的方法,其中,调整所述半球龙伯透镜天线的层数、所述空腔的形状、尺寸和/或分布来达到所述半球龙伯透镜天线的目标性能。8. The method according to technical solution 7, wherein the number of layers of the hemispherical Lumberg lens antenna, the shape, size and/or distribution of the cavity are adjusted to achieve the target performance of the hemispherical Lunberg lens antenna.
9、根据技术方案4至8中任一项所述的方法,其中,在所述步骤(5)之后,进一步包括检验制作得到的所述半球龙伯透镜天线是否具有所述目标性能和/或目标尺寸。9. The method according to any one of technical solutions 4 to 8, wherein, after the step (5), it further comprises checking whether the manufactured hemispherical Lunberg lens antenna has the target performance and/or target size.
10、根据技术方案1至9中任一项所述的方法,其中,所述增材制造方法选自由熔融堆积成型、选择性激光烧结成型和激光光固化成型组成的组。10. The method according to any one of technical solutions 1 to 9, wherein the additive manufacturing method is selected from the group consisting of fusion build-up molding, selective laser sintering molding, and laser light curing molding.
11、根据技术方案10所述的方法,其中,所述增材制造的方法为熔融堆积成型。11. The method according to technical solution 10, wherein the additive manufacturing method is melt deposition molding.
12、根据技术方案11所述的方法,其中,在所述熔融堆积成型中,喷头温度为所述材料的熔点+20℃至30℃;和/或喷头速度为60至80毫米/分钟;和/或喷头定位精度在z方向为±0.1毫米;和/或喷头定位精度x方向为±0.2毫米;和/或喷头定位精度在y方向为±0.2毫米。12. The method according to technical solution 11, wherein, in the melt deposition molding, the temperature of the showerhead is the melting point of the material + 20°C to 30°C; and/or the speed of the showerhead is 60 to 80 mm/min; and / or the sprinkler positioning accuracy is ± 0.1 mm in the z direction; and/or the sprinkler positioning accuracy is ± 0.2 mm in the x direction; and/or the sprinkler positioning accuracy is ± 0.2 mm in the y direction.
13、根据技术方案1至12中任一项所述的方法,其中:13. The method according to any one of technical solutions 1 to 12, wherein:
所述半球龙伯透镜天线是半径为R的半球体,并且被设计为包括介电常数彼此不同的n个同心层,球心层表示为第1层,第2个至第n个同心层按照半径由小到大的顺序依次表示为第2个同心层至第n个同心层,其中,n为不小于3的整数,r1为球心层半径;rn=R;ri为第i个同心层的半径;1≤i≤n;The hemispherical Lumberg lens antenna is a hemisphere with a radius of R, and is designed to include n concentric layers with different dielectric constants from each other, the spherical center layer is denoted as the first layer, and the second to nth concentric layers are in accordance with The radius from small to large is expressed as the second concentric layer to the nth concentric layer, where n is an integer not less than 3, r 1 is the radius of the spherical center layer; rn =R; ri is the i - th layer The radius of the concentric layers; 1≤i≤n;
所述n个同心层中的第i个同心层的平均介电常数εi=2-(ri/R)2;the average dielectric constant ε i =2-(r i /R) 2 of the i-th concentric layer in the n concentric layers;
所述空腔分布在所述n个同心层中的至少一个同心层;the cavities are distributed in at least one of the n concentric layers;
所述n个同心层中具有空腔的每一个同心层中的空腔体积分数被设计成使得该同心层的平均介电常数=该同心层材料的介电常数×(1-该同心层中全部空腔的体积分数)+该同心层空腔中介质的介电常数×该同心层中全部空腔的体积分数。The volume fraction of cavities in each of the n concentric layers having cavities is designed such that the average permittivity of the concentric layer = the permittivity of the material of the concentric layer×(1-in the concentric layer The volume fraction of all cavities) + the dielectric constant of the medium in the concentric layer cavities × the volume fraction of all cavities in the concentric layer.
14、根据技术方案13所述的方法,其中,ri为第i个同心层的外表面半径rOi和内表面半径rIi的平均值rAi;14. The method according to technical solution 13, wherein ri is the average value r Ai of the outer surface radius r Oi and the inner surface radius r Ii of the i-th concentric layer;
15、根据技术方案13或14所述的方法,其中,所述空腔的任意一个截面的周边上的任意两个点之间的距离都不大于目标入射电磁波波长的三分之一。15. The method according to technical solution 13 or 14, wherein the distance between any two points on the periphery of any section of the cavity is not greater than one third of the wavelength of the target incident electromagnetic wave.
16、根据技术方案15所述的方法,其中,所述空腔的任意一个截面的周边上的任意两个点之间的距离都不大于目标入射电磁波波长的四分之一。16. The method according to technical solution 15, wherein the distance between any two points on the periphery of any section of the cavity is not greater than one quarter of the wavelength of the target incident electromagnetic wave.
17、根据技术方案16所述的方法,其中,所述空腔的任意一个截面的周边上的任意两个点之间的距离都不大于目标入射电磁波波长的五分之一。17. The method according to technical solution 16, wherein the distance between any two points on the periphery of any section of the cavity is no greater than one-fifth of the wavelength of the target incident electromagnetic wave.
18、根据技术方案13至17中任一项所述的方法,其中,同心层的层数n为2至100或者100以上;18. The method according to any one of technical solutions 13 to 17, wherein the number n of the concentric layers is 2 to 100 or more;
19、根据技术方案13至17中任一项所述的方法,其中,所述n为3至100之间的整数。19. The method according to any one of technical solutions 13 to 17, wherein the n is an integer between 3 and 100.
20、根据技术方案19所述的方法,其中,所述n为5至40之间的整数。20. The method according to technical solution 19, wherein the n is an integer between 5 and 40.
21、根据技术方案19所述的方法,其中,所述n为6至20之间的整数。21. The method according to technical solution 19, wherein the n is an integer between 6 and 20.
22、根据技术方案19所述的半球龙伯透镜天线,所述n为8至12之间的整数。22. The hemispherical Lumberg lens antenna according to technical solution 19, wherein the n is an integer between 8 and 12.
23、根据技术方案13至17中任一项所述的方法,其中,所述n为不小于15的整数。23. The method according to any one of technical solutions 13 to 17, wherein the n is an integer not less than 15.
24、根据技术方案23所述的方法,其中,所述n为15至100之间的整数。24. The method according to technical solution 23, wherein the n is an integer between 15 and 100.
25、根据技术方案24所述的方法,其中,所述n为20至100之间的整数。25. The method according to technical solution 24, wherein the n is an integer between 20 and 100.
26、根据技术方案25所述的方法,其中,所述n为40至100之间的整数。26. The method according to technical solution 25, wherein the n is an integer between 40 and 100.
27、根据技术方案13至26中任一项所述的方法,其中,所述空腔中的至少一部分空腔独立地具有设计的立体结构。27. The method according to any one of technical solutions 13 to 26, wherein at least a part of the cavities independently have a designed three-dimensional structure.
28、根据技术方案27所述的方法,其中,所述设计的立体结构为规则立体结构或者不规则立体结构。28. The method according to technical solution 27, wherein the designed three-dimensional structure is a regular three-dimensional structure or an irregular three-dimensional structure.
29、根据技术方案28所述的方法,其中,所述规则立体结构为点对称立体结构、轴对称立体结构或面对称立体结构。29. The method according to technical solution 28, wherein the regular three-dimensional structure is a point-symmetric three-dimensional structure, an axis-symmetric three-dimensional structure or a plane-symmetric three-dimensional structure.
30、根据技术方案27所述的方法,其中,所述设计的立体结构为选自由下面立体结构组成的组的任意一种或多种:多面体、球体、椭球体、圆柱体、圆锥体、圆台体。30. The method according to technical solution 27, wherein the designed three-dimensional structure is any one or more selected from the group consisting of the following three-dimensional structures: polyhedron, sphere, ellipsoid, cylinder, cone, truncated cone body.
31、根据技术方案30所述的方法,其中,所述多面体为具有4至20个面的多面体。31. The method according to technical solution 30, wherein the polyhedron is a polyhedron having 4 to 20 faces.
32、根据技术方案30所述的方法,其中,所述多面体为正多面体。32. The method according to technical solution 30, wherein the polyhedron is a regular polyhedron.
33、根据技术方案30所述的方法,其中,所述设计的立体结构为多面体。33. The method according to technical solution 30, wherein the designed three-dimensional structure is a polyhedron.
34、根据技术方案33所述的方法,其中,所述多面体为具有四个面以上的多面体。34. The method according to technical solution 33, wherein the polyhedron is a polyhedron having four or more faces.
35、根据技术方案34所述的方法,其中,所述多面体为正多面体。35. The method according to technical solution 34, wherein the polyhedron is a regular polyhedron.
36、根据技术方案35所述的方法,其中,所述正多面体为正四面体或正六面体。36. The method according to technical solution 35, wherein the regular polyhedron is a regular tetrahedron or a regular hexahedron.
37、根据技术方案30至36中任一项所述的方法,其中,所述多面体的顶角中至少一部分顶角的位置独立地呈倒角设计。37. The method according to any one of technical solutions 30 to 36, wherein the positions of at least a part of the vertex angles of the polyhedron are independently chamfered.
38、根据技术方案30至36中任一项所述的方法,其中,其中,所述多面体的棱中的至少一部分棱的位置独立地呈倒角设计。38. The method according to any one of technical solutions 30 to 36, wherein the positions of at least a part of the edges of the polyhedron are independently chamfered.
39、根据技术方案13至38中任一项所述的方法,其中,所述同心层材料的介电常数小于5。39. The method according to any one of technical solutions 13 to 38, wherein the dielectric constant of the concentric layer material is less than 5.
40、根据技术方案39所述的方法,其中,所述同心层材料的介电常数小于3。40. The method according to technical solution 39, wherein the dielectric constant of the concentric layer material is less than 3.
41、根据技术方案40所述的方法,其中,所述同心层材料的介电常数小于2.5。41. The method according to technical solution 40, wherein the dielectric constant of the concentric layer material is less than 2.5.
42、根据技术方案13至41中任一项所述的方法,其中,所述同心层材料选自由热塑性材料、光敏树脂和陶瓷组成的组中的至少一种。42. The method according to any one of technical solutions 13 to 41, wherein the concentric layer material is at least one selected from the group consisting of thermoplastic materials, photosensitive resins and ceramics.
43、根据技术方案42所述的方法,其中,所述热塑性材料包含选自由聚乳酸、聚丙烯腈、丙烯腈-丁二烯-苯乙烯三元共聚物、聚芳基醚酮、热塑性氟塑料和热塑性苯并环丁烯、DSM Somos GP Plus 14122光敏树脂组成的组中的一种或几种;43. The method according to technical solution 42, wherein the thermoplastic material is selected from the group consisting of polylactic acid, polyacrylonitrile, acrylonitrile-butadiene-styrene terpolymer, polyaryl ether ketone, thermoplastic fluoroplastic One or more of the group consisting of thermoplastic benzocyclobutene and DSM Somos GP Plus 14122 photosensitive resin;
44、根据技术方案42所述的方法,其中,所述同心层材料选自由聚乳酸、聚丙烯腈、丁二烯和苯乙烯的三元共聚物、聚芳基醚酮、热塑性氟塑料、热塑性苯并环丁烯、DSM SomosGP Plus 14122光敏树脂组成的组。44. The method according to technical solution 42, wherein the concentric layer material is selected from the group consisting of polylactic acid, polyacrylonitrile, terpolymer of butadiene and styrene, polyaryl ether ketone, thermoplastic fluoroplastic, thermoplastic A group consisting of benzocyclobutene, DSM SomosGP Plus 14122 photosensitive resin.
45、根据技术方案42所述的方法,其中,所述同心层材料为聚乳酸。45. The method according to technical solution 42, wherein the material of the concentric layer is polylactic acid.
46、根据技术方案45所述的方法,其中,同心层的层数n为7。46. The method according to technical solution 45, wherein the layer number n of the concentric layers is seven.
47、根据技术方案13至46中任一项所述的方法,其中,各个同心层的材料彼此相同。47. The method according to any one of technical solutions 13 to 46, wherein the materials of the respective concentric layers are the same as each other.
48、根据技术方案13至46中任一项所述的方法,其中,各个同心层的材料彼此不同。48. The method according to any one of technical solutions 13 to 46, wherein the materials of the respective concentric layers are different from each other.
49、根据技术方案13至46中任一项所述的方法,其中,各个同心层中有部分同心层由相同的材料制得。49. The method according to any one of technical solutions 13 to 46, wherein some of the concentric layers in each concentric layer are made of the same material.
50、根据技术方案13至46中任一项所述的方法,其中,各同心层的材料的介电常数沿径向由球心层向最外侧的第n层递减。50. The method according to any one of technical solutions 13 to 46, wherein the dielectric constant of the material of each concentric layer decreases along the radial direction from the spherical center layer to the outermost nth layer.
51、根据技术方案13至50中任一项所述的方法,其中,对于直径120mm的半球龙伯透镜天线,该半球龙伯透镜天线在9.4GHz下,RCS值等于或者大于-2dBsm。51. The method according to any one of technical solutions 13 to 50, wherein, for a hemispherical Luneberg lens antenna with a diameter of 120 mm, the RCS value of the hemispherical Luneberg lens antenna at 9.4 GHz is equal to or greater than -2 dBsm.
52、根据技术方案51所述的方法,其中,对于直径120mm的半球龙伯透镜天线,该半球龙伯透镜天线在9.4GHz下,RCS值大于0dBsm。52. The method according to technical solution 51, wherein, for a hemispherical Lumberg lens antenna with a diameter of 120 mm, the RCS value of the hemispherical Lumberg lens antenna at 9.4 GHz is greater than 0 dBsm.
53、根据技术方案13至52中任一项所述的方法,其中,所述金属箔层的金属选自由铜、铝、银和金组成的组。53. The method according to any one of technical solutions 13 to 52, wherein the metal of the metal foil layer is selected from the group consisting of copper, aluminum, silver and gold.
54、根据技术方案13至53中任一项所述的方法,其中,所述金属箔层的厚度为0.1mm至1mm。54. The method according to any one of technical solutions 13 to 53, wherein the thickness of the metal foil layer is 0.1 mm to 1 mm.
55、根据技术方案13至54中任一项所述的方法,其中,各同心层的厚度是不同的。55. The method according to any one of technical solutions 13 to 54, wherein the thicknesses of the concentric layers are different.
56、根据技术方案13至54中任一项所述的方法,其中,各同心层的厚度是部分相同的。56. The method according to any one of technical solutions 13 to 54, wherein the thicknesses of the concentric layers are partially the same.
57、根据技术方案13至54中任一项所述的方法,其中,各同心层的厚度是全部相同的。57. The method according to any one of technical solutions 13 to 54, wherein the thicknesses of the concentric layers are all the same.
58、根据技术方案13至54中任一项所述的方法,其中,各同心层的厚度径向地由球心层向最外侧的第n层递减或者递增。58. The method according to any one of technical solutions 13 to 54, wherein the thickness of each concentric layer decreases or increases radially from the spherical core layer to the outermost nth layer.
59、根据技术方案13至58中任一项所述的方法,其中,n个同心层中位于外侧的同心层分布有空腔。59. The method according to any one of technical solutions 13 to 58, wherein cavities are distributed in the outer concentric layers among the n concentric layers.
60、根据技术方案13至58中任一项所述的方法,其中,n个同心层中的最外层分布有空腔。60. The method according to any one of technical solutions 13 to 58, wherein an outermost layer of the n concentric layers is distributed with cavities.
61、根据技术方案13至60中任一项所述的方法,其中,n个同心层中靠近球心层的同心层不具有空腔。61. The method according to any one of technical solutions 13 to 60, wherein, among the n concentric layers, a concentric layer close to the spherical core layer does not have a cavity.
62、根据技术方案13至60中任一项所述的方法,其中,空腔在同心层中的分布为均匀分布或者基本均匀分布。62. The method according to any one of technical solutions 13 to 60, wherein the distribution of the cavities in the concentric layers is uniform or substantially uniform.
63、根据技术方案13至62中任一项所述的方法,其中,所述空腔中的至少一些空腔具有介质。63. The method of any one of claims 13 to 62, wherein at least some of the cavities have a medium.
64、根据技术方案13至62中任一项所述的方法,其中,所述空腔中的至少一些空腔没有介质。64. The method of any one of claims 13 to 62, wherein at least some of the cavities are free of media.
65、根据技术方案63项所述的方法,其中,所述空腔中的介质为空气。65. The method according to item 63, wherein the medium in the cavity is air.
本发明还提供了一种半球龙伯透镜天线,所述半球龙伯透镜天线是半径为R的半球体,并且被设计为包括介电常数彼此不同的n个同心层,球心层表示为第1层,第2个至第n个同心层按照半径由小到大的顺序依次表示为第2个同心层至第n个同心层,其中,n为不小于3的整数,r1为球心层半径;rn等于R;ri为第i个同心层的半径;优选的是,ri为第i个同心层的外表面半径rOi和内表面半径rIi的平均值rAi;1≤i≤n;所述半球龙伯透镜天线具有半球面和底部平面,所述底部平面为过球心平面并且贴敷有金属箔层;其中:The present invention also provides a hemispherical Luneberg lens antenna, which is a hemisphere with a radius R and is designed to include n concentric layers with different dielectric constants from each other, and the spherical center layer is denoted as the th 1 layer, the second to nth concentric layers are expressed as the second to nth concentric layers in order of radius from small to large, where n is an integer not less than 3, and r 1 is the center of the sphere layer radius; rn equals R; ri is the radius of the i - th concentric layer; preferably, ri is the average value r Ai of the outer surface radius r Oi and the inner surface radius r Ii of the i-th concentric layer; 1 ≤i≤n; the hemispherical Lumberg lens antenna has a hemispherical surface and a bottom plane, and the bottom plane is a plane passing through the center of the sphere and is covered with a metal foil layer; wherein:
所述n个同心层中的第i个同心层的平均介电常数εi=2-(ri/R)2,所述n个同心层中的至少一个同心层分布有空腔;The average dielectric constant of the i-th concentric layer in the n concentric layers is ε i =2-(r i /R) 2 , and at least one of the n concentric layers is distributed with cavities;
所述n个同心层中具有空腔的每一个同心层中的空腔体积分数被设计成使得该同心层的平均介电常数=该同心层材料的介电常数×(1-该同心层中全部空腔的体积分数)+该同心层空腔中介质的介电常数×该同心层中全部空腔的体积分数;The volume fraction of cavities in each of the n concentric layers having cavities is designed such that the average permittivity of the concentric layer = the permittivity of the material of the concentric layer×(1-in the concentric layer volume fraction of all cavities) + the dielectric constant of the medium in the concentric layer cavities × the volume fraction of all cavities in the concentric layer;
更优选的是,所述半球龙伯透镜天线由上述技术方案1至65中任一项所述的方法制作。More preferably, the hemispherical Lunberg lens antenna is manufactured by the method described in any one of the above technical solutions 1 to 65.
本发明还提供了所述半球龙伯透镜天线或者由技术方案1至65中任一项所述的半球龙伯透镜天线在卫星通信、雷达天线、射电天文望远镜、军用假目标、靶机、靶弹、汽车防撞雷达上的应用;优选的是,在所述卫星通信中的应用为选自由在卫星地面站、卫星新闻转播车、传播卫星通信、移动式卫星地面站、近地卫星定位中的应用组成的组中的至少一种。The present invention also provides the hemispherical Lumberg lens antenna or the hemispheric Lumberg lens antenna described in any one of technical solutions 1 to 65 in satellite communications, radar antennas, radio astronomical telescopes, military false targets, target drones, targets The application on the anti-collision radar of bombs and automobiles; preferably, the application in the satellite communication is selected from the satellite ground station, the satellite news relay vehicle, the communication satellite communication, the mobile satellite ground station, and the near-Earth satellite positioning. at least one of the group consisting of applications.
本发明具有如下效果:The present invention has the following effects:
(1)本发明的半球龙伯透镜天线中,空腔结构的形状、尺寸和分布可基于性能需求而精确控制,因此能够对每层球壳中空腔所占的体积分数进行有效的调节,进而实现了介电常数在宏观和微观层面上的精确控制。克服了传统制造工艺中,因发泡具有随机性,造成泡沫内气泡的尺寸和分布存在波动,从而产生传统龙伯球材料均匀度差、调节成本高、批次间产品性能不稳定、成品率低的缺点。(1) In the hemispherical Lumberg lens antenna of the present invention, the shape, size and distribution of the cavity structure can be precisely controlled based on performance requirements, so the volume fraction occupied by the cavity in each spherical shell can be effectively adjusted, and then Accurate control of the dielectric constant at the macroscopic and microscopic levels is achieved. In the traditional manufacturing process, due to the randomness of foaming, the size and distribution of bubbles in the foam fluctuate, resulting in poor material uniformity, high adjustment cost, unstable product performance between batches, and yield of traditional Longberg balls. low disadvantage.
(2)传统工艺中,半球龙伯透镜天线多由拼装工艺制造,造成各层之间存在间隙,当层间间隙大于5%个入射波长时,产品的性能将明显下降。本发明的半球龙伯透镜天线为整体结构,不同形状尺寸和分布的空腔结构弥散于其中,在使用例如增材制造方法制造的情况下,不存在层间间隙,使产品质量更加稳定、可靠。(2) In the traditional process, the hemispherical Lumberg lens antenna is mostly manufactured by the assembly process, resulting in a gap between the layers. When the gap between the layers is greater than 5% of the incident wavelength, the performance of the product will be significantly reduced. The hemispherical Lumberg lens antenna of the present invention is an integral structure in which cavity structures of different shapes, sizes and distributions are dispersed. When manufactured by, for example, an additive manufacturing method, there is no interlayer gap, so that the product quality is more stable and reliable. .
(3)本发明的半球龙伯透镜天线能够通过改变球壳的层数、半径、制作材料以及空腔结构的形状、尺寸和分布等来满足不同的性能需求。(3) The hemispherical Lumberg lens antenna of the present invention can meet different performance requirements by changing the number of layers, the radius, the material for making the spherical shell, and the shape, size and distribution of the cavity structure.
(4)本发明的半球龙伯透镜天线制作材料广泛,生产工艺简单,成本低,周期短,成品率高,产品质量稳定,具有良好的社会和经济效益。传统工艺制造的龙伯球订货周期约在一个月左右,大尺寸的龙伯球订货周期更长,本发明的半球龙伯透镜天线在使用恰当的成型工艺时(如实施例所用到的增材制造工艺),生产周期为一周至两周左右。(4) The hemispherical Lumberg lens antenna of the present invention has a wide range of materials, simple production process, low cost, short cycle, high yield, stable product quality, and good social and economic benefits. The order period of Luneberg balls manufactured by traditional process is about one month, and the order period of large-sized Luneberg balls is longer. manufacturing process), the production cycle is about one week to two weeks.
附图说明Description of drawings
图1为本发明的半球龙伯透镜天线的剖面示意图,其中1为材料本体(黑色区域),2为空腔结构(白色区域,本示意图以立方体空腔为例),3为半球龙伯透镜天线的底部平面的金属箔层。1 is a schematic cross-sectional view of a hemispherical Lumberg lens antenna of the present invention, wherein 1 is a material body (black area), 2 is a cavity structure (white area, this schematic diagram takes a cube cavity as an example), and 3 is a hemispherical Lumberg lens The metal foil layer on the bottom plane of the antenna.
具体实施方式Detailed ways
在第一方面,本发明提供了一种半球龙伯透镜天线,所述半球龙伯透镜天线可以为半径为R的半球体,并且可以被设计为包括介电常数不同的n个同心层,球心层可以表示为第1层,第2个至第n个同心层可以按照半径由小到大的顺序依次表示为第2同心层至第n同心层。其中,n可以为不小于3的整数,r1为球心层半径;rn等于R;ri为第i个同心层的半径;所述n个同心层中的第i个同心层的平均介电常数εi=2-(ri/R)2。优选的是,ri为第i个同心层的外表面半径rOi和内表面半径rIi的平均值rAi;1≤i≤n;所述半球龙伯透镜天线具有半球面和底部平面,所述底部平面为过球心平面并且贴敷有金属箔层;所述n个同心层中的至少一个同心层分布有空腔;所述n个同心层中具有空腔的每一个同心层中的空腔体积分数被设计成使得该同心层的平均介电常数等于该同心层材料的介电常数×(1-该同心层中全部空腔的体积分数)+该同心层空腔中介质的介电常数×该同心层中全部空腔的体积分数。In a first aspect, the present invention provides a hemispherical Luneburg lens antenna, which can be a hemisphere with a radius R, and can be designed to include n concentric layers with different dielectric constants, the spherical The central layer may be represented as the first layer, and the second to nth concentric layers may be sequentially represented as the second to nth concentric layers in order of radius from small to large. Wherein, n can be an integer not less than 3, r 1 is the radius of the spherical center layer; rn is equal to R; ri is the radius of the ith concentric layer; the average value of the ith concentric layer in the n concentric layers Dielectric constant ε i =2-( ri /R) 2 . Preferably, ri is the average value r Ai of the outer surface radius r Oi and the inner surface radius r Ii of the i-th concentric layer; 1≤i≤n; the hemispherical Lumberg lens antenna has a hemispherical surface and a bottom plane, The bottom plane is a plane passing through the center of the sphere and is covered with a metal foil layer; at least one concentric layer in the n concentric layers is distributed with a cavity; in each of the n concentric layers with a cavity in each concentric layer The cavity volume fraction is designed such that the average dielectric constant of the concentric layer is equal to the dielectric constant of the material of the concentric layer × (1-volume fraction of all cavities in the concentric layer)+the dielectric constant in the cavity of the concentric layer Dielectric constant × volume fraction of total cavities in this concentric layer.
半球龙伯透镜天线可以是将制作好的呈完整球体的龙伯透镜天线沿球心平分为两半球。半球龙伯透镜天线具有半球面和底部平面。所述底部平面为过球心平面。所述底部平面通常全部贴敷有金属箔层。本发明对上述金属箔层的金属没有特别的限制。不过在一些优选的实施方式中,所述金属箔层的金属选自由铜、铝、银和金组成的组。The hemispherical Lumberg lens antenna may be formed by dividing the fabricated Lunberg lens antenna in the form of a complete sphere into two hemispheres along the center of the sphere. A hemispherical Lumberg lens antenna has a hemispherical surface and a bottom plane. The bottom plane is a plane passing through the center of the sphere. The bottom plane is usually all covered with a metal foil layer. In the present invention, the metal of the above-mentioned metal foil layer is not particularly limited. In some preferred embodiments, however, the metal of the metal foil layer is selected from the group consisting of copper, aluminum, silver and gold.
在一些实施方式中,半球龙伯透镜天线是将制作好的龙伯透镜天线通过过球心的平面等份剖分为两半球。作为可选的实施方式,可以直接形成半球龙伯透镜天线而无需剖分操作。In some embodiments, the hemispherical Luneburg lens antenna is divided into two hemispheres through a plane passing through the center of the sphere. As an alternative embodiment, a hemispherical Lumberg lens antenna can be directly formed without a splitting operation.
金属箔层厚度不受特别限制,例如可以为0.1、0.2、0.5、1mm等。The thickness of the metal foil layer is not particularly limited, and may be, for example, 0.1, 0.2, 0.5, 1 mm, or the like.
在本发明中,同心层的层数n不受特别限制,本领域技术人员可以根据本申请所公开的内容根据具体需要例如根据所要制作的半球龙伯透镜天线的目标性能的需要来设置,例如为2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、60、70、80、90、100或以上。一般来说,同心层的层数n越大,半球龙伯透镜天线的性能越好,但是随着层数n的增加,半球龙伯透镜天线的设计和制作成本会增加并且层数增加所带来的益处会逐渐下降。因此,在一些实施方式中,所述n为3至100之间的整数。优选的是,所述n为5至40之间的整数;更优选的是,所述n为6至20之间的整数;最优选的是所述n为8至12之间的整数,例如为8、9、10、11或12。In the present invention, the number of layers n of the concentric layers is not particularly limited, and those skilled in the art can set according to specific needs according to the content disclosed in this application, for example, according to the needs of the target performance of the hemispherical Lunberg lens antenna to be fabricated, such as for 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50 , 60, 70, 80, 90, 100 or more. Generally speaking, the larger the number of layers n of the concentric layers, the better the performance of the hemispherical Lumberg lens antenna, but with the increase of the number of layers n, the design and production costs of the hemispherical Lumberg lens antenna will increase, and the increase in the number of layers will bring The benefits will gradually decrease. Thus, in some embodiments, the n is an integer between 3 and 100. Preferably, the n is an integer between 5 and 40; more preferably, the n is an integer between 6 and 20; most preferably, the n is an integer between 8 and 12, for example 8, 9, 10, 11 or 12.
在一些替代的实施方式中,同心层的层数n根据需要例如性能需要可以为20至100之间的整数;进一步优选的是,所述n为40至100之间的整数。In some alternative embodiments, the number n of the concentric layers may be an integer between 20 and 100 according to requirements, such as performance requirements; further preferably, the n is an integer between 40 and 100.
各个同心层的径向厚度与半球龙伯透镜天线的半径R和层数n有关,并且各同心层的厚度可以相同也可以不同。例如,各同心层的厚度可以是不同的,部分相同的或者全部相同的。在一些实施方式中,各同心层的厚度可以径向地由球心层向最外侧的第n层递减或者递增。The radial thickness of each concentric layer is related to the radius R of the hemispheric Lumberg lens antenna and the number of layers n, and the thickness of each concentric layer may be the same or different. For example, the thicknesses of the concentric layers may be different, partially the same, or all the same. In some embodiments, the thickness of each concentric layer may decrease or increase radially from the spherical center layer to the outermost nth layer.
由于制作半球龙伯透镜天线的材料的介电常数一般都大于1,因此,本发明的半球龙伯透镜天线的n个同心层中的至少一个同心层尤其是位于外侧的同心层特别是最外层一般可以分布有空腔。只要同心层的材料允许,即,只要能够制作出满足介电常数要求的同心层,靠近球心层的同心层可以不具有空腔。Since the dielectric constant of the material for making the hemispherical Lumberg lens antenna is generally greater than 1, at least one concentric layer among the n concentric layers of the hemispherical Luneberg lens antenna of the present invention, especially the concentric layer located on the outer side, especially the outermost layer The layers can generally be distributed with cavities. As long as the materials of the concentric layers allow, that is, as long as the concentric layers meeting the dielectric constant requirements can be fabricated, the concentric layers near the spherical center layer may not have cavities.
对于具有空腔的同心层,所述空腔中的至少一部分空腔可以被设计成独立地具有设计的立体结构。可选的是,所述设计的截立体结构为规则立体结构例如点对称立体结构、轴对称立体结构或面对称立体结构。另外可选的是,所述设计的立体结构为不规则立体结构。例如,所述设计的立体结构可以为选自由下面立体结构组成的组的任一立体结构:多面体、球体、椭球体、圆柱体、圆锥体、圆台体;所述多面体可以为具有四个面以上的多面体,例如为具有4至20个面的多面体,例如具有4、5、6、7、8、9、10、15或20个面的多面体;优选的是,所述多面体为正多面体,例如正四面体或正六面体(参见图1,其中1表示材料本体(黑色区域),2表示空腔结构(白色区域),3为半球龙伯透镜天线的底部平面的金属箔层)等。For concentric layers with cavities, at least a portion of the cavities may be designed to independently have a designed three-dimensional structure. Optionally, the designed truncated three-dimensional structure is a regular three-dimensional structure, such as a point-symmetric three-dimensional structure, an axis-symmetric three-dimensional structure or a plane-symmetric three-dimensional structure. Alternatively, the designed three-dimensional structure is an irregular three-dimensional structure. For example, the designed three-dimensional structure may be any three-dimensional structure selected from the group consisting of the following three-dimensional structures: polyhedron, sphere, ellipsoid, cylinder, cone, truncated truncated body; the polyhedron may have more than four faces The polyhedron, such as a polyhedron having 4 to 20 faces, such as a polyhedron having 4, 5, 6, 7, 8, 9, 10, 15 or 20 faces; preferably, the polyhedron is a regular polyhedron, such as Regular tetrahedron or regular hexahedron (see Figure 1, where 1 represents the material body (black area), 2 represents the cavity structure (white area), 3 is the metal foil layer of the bottom plane of the hemispherical Lunberg lens antenna) and so on.
在空腔立体结构为多面体的情况下,从半球龙伯透镜天线的物理强度的角度考虑,在多面体的顶角中至少一部分顶角的位置独立地呈倒角设计,尤其是在空腔尺寸较大的情况下。基于同样的考虑,在多面体的棱中的至少一部分棱的位置独立地呈倒角设计。When the three-dimensional structure of the cavity is a polyhedron, from the perspective of the physical strength of the hemispherical Lumberg lens antenna, the positions of at least a part of the vertex angles of the polyhedron are independently chamfered, especially when the size of the cavity is relatively small. in large cases. Based on the same consideration, at least a part of the edges of the polyhedron are independently chamfered in position.
从性能上考虑,空腔在同心层中的分布应尽可能地均匀,例如根据需要可以为均匀分布或者基本均匀分布。另外,在满足介电常数设计(例如目标性能要求)要求和制作条件允许(例如制作设备的精度条件)的情况下,所述空腔的尺寸应尽可能地小。In terms of performance, the distribution of the cavities in the concentric layers should be as uniform as possible, for example, the distribution may be uniform or substantially uniform as required. In addition, the size of the cavity should be as small as possible under the condition that the requirements of the dielectric constant design (such as target performance requirements) and the manufacturing conditions (such as the precision conditions of the manufacturing equipment) are satisfied.
在一些优选的实施方式中,本发明的半球龙伯透镜天线可以通过增材制造的方法形成。例如,所述的增材制造方法可以是熔融堆积成型(FDM)、选择性激光烧结成型(SLS)、激光光固化成型(SLA)等。In some preferred embodiments, the hemispherical Lumberg lens antenna of the present invention can be formed by an additive manufacturing method. For example, the additive manufacturing method may be fused deposition modeling (FDM), selective laser sintering (SLS), laser light curing (SLA), and the like.
例如,在采用熔融堆积成型的情况下,所述增材制造方法可以包括以下步骤:(1)选择用于制造半球龙伯透镜天线的材料,设计半球龙伯透镜天线的结构;(2)确定半球龙伯透镜天线的结构参数,所述参数包括同心层的层数n、各层球壳内空腔结构的形状、尺寸和分布;(3)利用3D软件将设计好的半球龙伯透镜天线结构制作成三维数字模型;(4)利用FDM方法,将选定的材料制造成半球龙伯透镜天线并在底部平面贴敷上金属箔层。For example, in the case of adopting fused deposition molding, the additive manufacturing method may include the following steps: (1) selecting materials for manufacturing the hemispherical Luneberg lens antenna, and designing the structure of the hemispherical Luneberg lens antenna; (2) determining Structural parameters of the hemispherical Lumberg lens antenna, the parameters include the number of concentric layers n, the shape, size and distribution of the cavity structure in each layer of the spherical shell; (3) Using 3D software to design the hemispherical Lumberg lens antenna The structure is made into a three-dimensional digital model; (4) Using the FDM method, the selected material is made into a hemispherical Lumberg lens antenna and a metal foil layer is applied to the bottom plane.
关于增材制造方法,在采用FDM方式时,优选喷头温度为热塑性材料的熔点+20℃至30℃。本发明人发现,采用这样的喷头温度使得产品的精度和质量最好。另外,在一些优选的实施方式中,喷头速度为60至80mm/min。本发明人发现,过快或者过慢都会造成打印尺寸变大,间接造成空腔体积变小,使介电常数偏离预定值,影响产品性能。另外,喷头定位精度在z方向优选设定为±0.1mm和/或xy方向为±0.2mm。本发明人发现,精度过粗容易造成产品变形,精度过细会显著延长打印时间,从而增加了制作成本。Regarding the additive manufacturing method, when using the FDM method, the temperature of the nozzle is preferably the melting point of the thermoplastic material + 20°C to 30°C. The inventors have found that the use of such a nozzle temperature results in the best accuracy and quality of the product. Additionally, in some preferred embodiments, the spray head speed is 60 to 80 mm/min. The inventors found that too fast or too slow will cause the printing size to become larger, indirectly cause the cavity volume to become smaller, make the dielectric constant deviate from the predetermined value, and affect the product performance. In addition, the nozzle positioning accuracy is preferably set to ±0.1 mm in the z direction and/or ±0.2 mm in the xy direction. The inventors of the present invention have found that excessively coarse precision will easily cause product deformation, while too fine precision will significantly prolong the printing time, thereby increasing the manufacturing cost.
在一些实施方式中,步骤(1)包括确定半球龙伯透镜天线的结构参数,所述参数包括半球龙伯透镜天线的半径、同心层的层数n、各同心层的平均介电常数、各同心层的空腔体积分数、和/或空腔的形状、尺寸和分布。In some embodiments, step (1) includes determining the structural parameters of the hemispherical Lumberg lens antenna, the parameters including the radius of the hemispherical Lumberg lens antenna, the number of layers n of the concentric layers, the average dielectric constant of each concentric layer, the The cavity volume fraction of the concentric layers, and/or the shape, size and distribution of the cavities.
由于采用增材制造技术制造半球龙伯透镜天线可以使得半球龙伯透镜天线不存在采用其他拼接方法如发泡拼接法或打孔拼接法而导致的层间间隙从而导致半球龙伯透镜天线性能下降的问题。据认为,当层间间隙大于5%的目标入射波长时,天线的性能将明显下降。如果本发明的半球龙伯透镜天线采用增材制造的方法制造,虽然在设计上仍沿用层的概念,但是在物理结构上并不存在层间间隙,使得采用增材制造方法制得的产品的质量更加稳定、可靠。Due to the use of additive manufacturing technology to manufacture the hemispherical Lumberg lens antenna, the hemispherical Lumberg lens antenna does not have the interlayer gap caused by other splicing methods such as foaming splicing method or punching splicing method, resulting in the performance degradation of the hemispherical Luneberg lens antenna. The problem. It is believed that when the interlayer gap is larger than 5% of the target incident wavelength, the performance of the antenna will degrade significantly. If the hemispherical Lumberg lens antenna of the present invention is manufactured by the additive manufacturing method, although the concept of layers is still used in the design, there is no interlayer gap in the physical structure, so that the products prepared by the additive manufacturing method have a The quality is more stable and reliable.
在本发明中,具有空腔的同心层通过其中的空腔的体积分数来调节其介电常数以获得目标的介电常数。从半球龙伯透镜天线的性能角度考虑,空腔的尺寸优选尽可能地小,如此可以使得半球龙伯透镜天线的径向介电常数变化更加平缓。In the present invention, the dielectric constant of a concentric layer with cavities is adjusted by the volume fraction of the cavities therein to obtain a target dielectric constant. From the perspective of the performance of the hemispherical Lumberg lens antenna, the size of the cavity is preferably as small as possible, so that the radial dielectric constant of the hemispherical Lumberg lens antenna changes more gently.
在一些优选的实施方式中,所述空腔截面最大直径不大于目标入射电磁波波长的三分之一,优选不大于目标入射电磁波波长的四分之一,更优选不大于目标入射电磁波的波长的五分之一,以避免半球龙伯透镜天线的性能下降。所述空腔截面最大直径具有本领域技术人员所理解的含义,其表示在空腔的所有截面中,最小外接圆的最大直径。这意味着,所述空腔的任意一个截面的周边上的任意两个点之间的距离可以都不大于目标入射电磁波波长的三分之一,优选不大于目标入射电磁波波长的四分之一,更优选不大于目标入射电磁波的波长的五分之一,以避免半球龙伯透镜天线的性能下降。In some preferred embodiments, the maximum diameter of the cavity section is not greater than one third of the wavelength of the target incident electromagnetic wave, preferably not greater than one quarter of the wavelength of the target incident electromagnetic wave, more preferably not greater than the wavelength of the target incident electromagnetic wave one-fifth to avoid performance degradation of the hemispherical Lumberg lens antenna. The maximum diameter of the cavity section has the meaning understood by those skilled in the art, which represents the maximum diameter of the smallest circumscribed circle in all sections of the cavity. This means that the distance between any two points on the periphery of any section of the cavity may not be greater than one third of the wavelength of the target incident electromagnetic wave, preferably not greater than one quarter of the wavelength of the target incident electromagnetic wave , more preferably not greater than one-fifth of the wavelength of the target incident electromagnetic wave, in order to avoid performance degradation of the hemispherical Lumberg lens antenna.
半球龙伯透镜天线一般都是针对准备使用该半球龙伯透镜天线来接收的电磁波的波长进行设计的,因此半球龙伯透镜天线都会存在相应的目标电磁波波长。以避免半球龙伯透镜天线的性能下降。The hemispherical Luneberg lens antenna is generally designed for the wavelength of the electromagnetic wave to be received by the hemispherical Luneberg lens antenna, so the hemispherical Luneberg lens antenna will have a corresponding target electromagnetic wave wavelength. To avoid performance degradation of the hemispherical Lumberg lens antenna.
本发明对用以制作半球龙伯透镜天线的同心层材料的介电常数没有特别的限制。但是,从减少空腔的体积分数的角度考虑,优选所述材料的介电常数为小于5,例如为5、4、3、2.5、2。优选的是,所述材料的介电常数为小于2.5。The present invention has no particular limitation on the dielectric constant of the concentric layer material used to manufacture the hemispherical Lumberg lens antenna. However, from the viewpoint of reducing the volume fraction of the cavity, the dielectric constant of the material is preferably less than 5, for example, 5, 4, 3, 2.5, 2. Preferably, the dielectric constant of the material is less than 2.5.
本发明对用以制作半球龙伯透镜天线的材料没有特别限制,可以使用本领域中用于制作半球龙伯透镜天线常用的材料。在一些优选的实施方式中,制作半球龙伯透镜天线的材料选自由聚乳酸(PLA)、聚丙烯腈、丁二烯和苯乙烯的三元共聚物(ABS)、聚芳基醚酮、热塑性氟塑料、热塑性苯并环丁烯、DSM Somos GP Plus 14122光敏树脂组成的组。更优选的是,制作半球龙伯透镜天线的材料选自由PLA、ABS、聚芳基醚酮、热塑性氟塑料、热塑性苯并环丁烯、DSM Somos GP Plus 14122光敏树脂组成的组中。更优选的是,所述材料为PLA。最优选的是,所述材料为PLA,并且同心层的层数n为7。上述材料都是已知的材料,都可以商购获得,例如可以购买美国NatureWorks公司生产的牌号为4060D的PLA材料。In the present invention, there is no particular limitation on the material used for making the hemispherical Luneberg lens antenna, and materials commonly used in the art for making the hemispherical Luneberg lens antenna can be used. In some preferred embodiments, the material for making the hemispherical Lumberg lens antenna is selected from the group consisting of polylactic acid (PLA), polyacrylonitrile, terpolymer of butadiene and styrene (ABS), polyaryletherketone, thermoplastic Group consisting of fluoroplastics, thermoplastic benzocyclobutene, DSM Somos GP Plus 14122 photosensitive resin. More preferably, the material for making the hemispheric Lumberg lens antenna is selected from the group consisting of PLA, ABS, polyaryl ether ketone, thermoplastic fluoroplastic, thermoplastic benzocyclobutene, DSM Somos GP Plus 14122 photosensitive resin. More preferably, the material is PLA. Most preferably, the material is PLA and the number n of concentric layers is seven. The above-mentioned materials are all known materials and can be obtained commercially, for example, PLA material with the grade of 4060D produced by NatureWorks in the United States can be purchased.
另外,各个同心层的材料可以彼此相同也可以彼此不同。例如,各同心层可以由同一材料制得,也可以部分由相同的材料制得。在一些优选的实施方式中,各同心层的材料的介电常数可以沿径向由球心层向最外侧的第n层递减。In addition, the materials of the respective concentric layers may be the same or different from each other. For example, the concentric layers may be made of the same material or may be partially made of the same material. In some preferred embodiments, the dielectric constants of the materials of each concentric layer may decrease in the radial direction from the spherical center layer to the outermost nth layer.
在本发明的一些实施方式中,所述空腔中的至少一些空腔可以有或者没有介质。从方便制作的角度考虑,所述空腔中的介质可以为空气。例如在半球龙伯透镜天线应用于无人机的情况中,所述半球龙伯透镜天线的空腔中的介质为空气。In some embodiments of the invention, at least some of the cavities may or may not have a medium. From the viewpoint of convenient manufacture, the medium in the cavity may be air. For example, in the case where the hemispherical Lumberg lens antenna is applied to an unmanned aerial vehicle, the medium in the cavity of the hemispherical Lumberg lens antenna is air.
在一些实施方式中,本发明的半径为60mm的半球龙伯透镜天线在9.4GHz下,RCS值等于或者大于-2dBsm;更优选的是,RCS值等于或者大于0dBsm。In some embodiments, the hemispherical Lumberg lens antenna with a radius of 60mm of the present invention has an RCS value equal to or greater than -2dBsm at 9.4GHz; more preferably, the RCS value is equal to or greater than 0dBsm.
在本发明的另外一个方面,本发明提供了一种其中分布有空腔的半球龙伯透镜天线的制作方法,所述方法包括如下步骤:In another aspect of the present invention, the present invention provides a method for fabricating a hemispherical Lumberg lens antenna with cavities distributed therein, the method comprising the following steps:
(1)选择用于制造半球龙伯透镜天线的材料;(1) Select the material used to manufacture the hemispherical Lumberg lens antenna;
(2)确定半球龙伯透镜天线的结构参数;(2) Determine the structural parameters of the hemispherical Lumberg lens antenna;
(3)制作具有所述结构参数的半球龙伯透镜天线的三维数字模型;和(3) making a three-dimensional digital model of the hemispherical Lumberg lens antenna with the structural parameters; and
(4)采用增材制造方法根据所述三维数字模型制作所述半球龙伯透镜天线;和(4) manufacturing the hemispherical Lumberg lens antenna from the three-dimensional digital model using an additive manufacturing method; and
(5)在所述半球龙伯透镜天线的底部平面贴敷金属箔层。(5) A metal foil layer is applied on the bottom plane of the hemispherical Lumberg lens antenna.
在本发明的用于制作半球龙伯透镜天线的所述方法中,用于制作半球龙伯透镜天线的材料如上所述。In the method for fabricating a hemispherical Lumberg lens antenna of the present invention, the materials used for fabricating a hemispherical Lumberg lens antenna are as described above.
在一些实施方式中,所述结构参数选自由所述半球龙伯透镜天线的直径、半径和层数,以及所述空腔的形状、尺寸和分布组成的组。In some embodiments, the structural parameters are selected from the group consisting of the diameter, radius and number of layers of the hemispherical Lumberg lens antenna, and the shape, size and distribution of the cavity.
在一些实施方式中,所述三维数字模型采用3D软件来制作。In some embodiments, the three-dimensional digital model is created using 3D software.
在本发明的用于制作半球龙伯透镜天线的所述方法中,所述增材制造方法如上所述。In the method for fabricating a hemispherical Lumberg lens antenna of the present invention, the additive manufacturing method is as described above.
在对半球龙伯透镜天线的性能和尺寸有特定要求的情况下,要制作的半球龙伯透镜天线可能存在性能例如RCS或尺寸例如半球龙伯透镜天线的直径或者半径上的要求。换言之,要制作的半球龙伯透镜天线具有目标性能和目标尺寸。在这种情况下,在一些实施方式中,在上述步骤(1)和/或(2)中,根据所述目标性能例如RCS和/或目标尺寸例如半球龙伯透镜天线的直径或者半径来选择材料和/或确定半球龙伯透镜天线的所述结构参数。另外,所述制作方法还可选地在所述步骤(3)中包括通过仿真技术采用试错法通过调整所述结构参数来达到上述目标性能。作为另外的或者替代的实施方式,在所述步骤(5)之后,所述制作方法还包括检验所制作得到的半球龙伯透镜天线的是否具有所述目标性能和/或所述目标尺寸的步骤。Where there are specific requirements for the performance and size of the hemispherical Luneberg antenna, the hemispherical Luneberg antenna to be fabricated may have requirements on performance such as RCS or dimensions such as the diameter or radius of the hemispherical Luneberg antenna. In other words, the hemispherical Lumberg lens antenna to be fabricated has target performance and target size. In this case, in some embodiments, in the above steps (1) and/or (2), the selection is based on the target performance such as RCS and/or target size such as the diameter or radius of a hemispherical Lumberg lens antenna materials and/or determining said structural parameters of the hemispherical Lumberg lens antenna. In addition, the manufacturing method may optionally include in the step (3) that the above-mentioned target performance can be achieved by adjusting the structural parameters by means of a simulation technique and a trial-and-error method. As an additional or alternative embodiment, after the step (5), the manufacturing method further includes a step of checking whether the manufactured hemispherical Lumberg lens antenna has the target performance and/or the target size .
在一些可选的实施方式中,可以以上述类似的方法制作半球龙伯透镜天线,区别仅在于先制作完整球体的龙伯透镜天线,然后根据需要将该完整球体的龙伯透镜天线等份剖分为半球龙伯透镜天线,然后在半球龙伯透镜天线的底部平面上贴敷金属箔层。In some optional implementations, a hemispherical Luneburg lens antenna can be fabricated in a similar manner to the above, except that a complete spherical Luenberger lens antenna is first fabricated, and then the complete spherical Luenberger lens antenna is cut into equal parts as required. It is divided into a hemispherical Luneberg lens antenna, and then a metal foil layer is applied on the bottom plane of the hemispherical Luneberg lens antenna.
在另一个方面,本发明提供了所述半球龙伯透镜天线的应用,例如在卫星通信、雷达天线、射电天文望远镜、军用假目标、靶机、靶弹、汽车防撞雷达上的应用;在所述卫星通信中的应用的情况下,所述应用可以为选自由在卫星地面站、卫星新闻转播车、传播卫星通信、移动式卫星地面站、近地卫星定位中的应用组成的组中的至少一种。In another aspect, the present invention provides applications of the hemispherical Lumberg lens antenna, such as applications in satellite communications, radar antennas, radio astronomical telescopes, military false targets, target drones, target bombs, and automotive anti-collision radars; In the case of the application in the satellite communication, the application may be selected from the group consisting of applications in satellite ground stations, satellite news relay vehicles, broadcast satellite communications, mobile satellite ground stations, and near-Earth satellite positioning. at least one.
实施例Example
下面结合实施例对本发明作进一步详细说明,其中使用的材料可以从美国NatureWorks公司购买其生产的牌号4060D的PLA材料,并且没有使用专门的设备。The present invention will be further described in detail below in conjunction with the examples, the materials used therein can be purchased from the PLA material of the grade 4060D produced by NatureWorks of the United States, and no special equipment is used.
实施例1Example 1
本实施例制作的半球龙伯透镜天线为一半球体,其中分布着空腔,球的半径R为60mm,目标RCS值为大于或者等于0dBsm,目标入射电磁波为9.4GHz,波长为32mm,空腔是边长为3.5mm的正六面体,金属箔层厚度为0.2mm。The hemispherical Lumberg lens antenna fabricated in this example is a hemisphere with cavities distributed therein. The radius R of the sphere is 60mm, the target RCS value is greater than or equal to 0dBsm, the target incident electromagnetic wave is 9.4GHz, the wavelength is 32mm, and the cavity is A regular hexahedron with a side length of 3.5mm and a metal foil layer thickness of 0.2mm.
本实施例选择PLA作为制作半球龙伯透镜天线的材料,其介电常数为2.5。然后利用公式εi=2-(ri/R)2计算各同心层的介电常数;再根据以下公式计算各同心层的空腔体积分数:各同心层的平均介电常数=[该同心层材料的介电常数×(1-该同心层中全部空腔在该同心层中的体积分数)+空腔介质的介电常数×该同心层中的全部空腔在该同心层中的体积分数],再根据各同心层的体积分数确定各同心层中的空腔体积和数量,本实施例中的空腔形状为正立方体,空腔截面最大直径(即立方体的体对角线)为6mm,并且所述空腔在各同心层中均匀分布。利用3D软件(Unigraphics NX,Siemens PLM Software公司)将设计好的半球龙伯透镜天线结构制作成三维数字模型;通过FDM方法,将PLA制造成半球龙伯透镜天线并且在底部平面贴敷上金属箔层。In this embodiment, PLA is selected as the material for making the hemispherical Lumberg lens antenna, and its dielectric constant is 2.5. Then use the formula ε i =2-(r i /R) 2 to calculate the dielectric constant of each concentric layer; then calculate the cavity volume fraction of each concentric layer according to the following formula: Average dielectric constant of each concentric layer = [the concentric layer The dielectric constant of the layer material × (1 - the volume fraction of all cavities in the concentric layer in the concentric layer) + the dielectric constant of the cavity medium × the volume of all the cavities in the concentric layer in the concentric layer Fraction], and then determine the volume and number of cavities in each concentric layer according to the volume fraction of each concentric layer. In this embodiment, the shape of the cavity is a cube, and the maximum diameter of the cavity section (that is, the body diagonal of the cube) is 6mm, and the cavities are evenly distributed in each concentric layer. Using 3D software (Unigraphics NX, Siemens PLM Software), the designed hemispherical Lumberg lens antenna structure was made into a 3D digital model; by FDM method, PLA was fabricated into a hemispherical Lunberg lens antenna and metal foil was applied to the bottom plane. Floor.
测试结果表明,该半球龙伯透镜天线在9.4GHz下,RCS均值≥0dBsm。满足了性能要求。The test results show that the average RCS value of the hemispherical Lumberg lens antenna is ≥0dBsm at 9.4GHz. The performance requirements are met.
以与实施例1相似的方式制作实施例2-5的半球龙伯透镜天线,不同之处在于如表1所示的参数。The hemispherical Lumberg lens antennas of Examples 2-5 were fabricated in a similar manner to Example 1, except for the parameters shown in Table 1.
表1(续)各实施例制作的半球龙伯透镜天线的各个同心层的直径(mm)/平均介电常数/空腔体积分数(Ri/εi/Vi)Table 1 (continued) Diameter (mm)/average dielectric constant/cavity volume fraction (Ri/εi/Vi) of each concentric layer of the hemispherical Lumberg lens antenna fabricated in each example
以上实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明实际精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的技术方案书确定的保护范围内。The above embodiments are only to describe the preferred embodiments of the present invention, and do not limit the scope of the present invention. On the premise of not departing from the actual spirit of the present invention, various modifications and improvements made by those of ordinary skill in the art to the technical solutions of the present invention , shall fall within the protection scope determined by the technical solution of the present invention.
Claims (55)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710786549.1A CN107623189B (en) | 2015-02-16 | 2015-02-16 | A kind of manufacturing method of hemispheric Lumberg lens antenna |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710786549.1A CN107623189B (en) | 2015-02-16 | 2015-02-16 | A kind of manufacturing method of hemispheric Lumberg lens antenna |
CN201510084764.8A CN104659496B (en) | 2015-02-16 | 2015-02-16 | A method of manufacturing a hemispherical Lunberg lens antenna |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510084764.8A Division CN104659496B (en) | 2015-02-16 | 2015-02-16 | A method of manufacturing a hemispherical Lunberg lens antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107623189A CN107623189A (en) | 2018-01-23 |
CN107623189B true CN107623189B (en) | 2020-12-29 |
Family
ID=53250353
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510084764.8A Active CN104659496B (en) | 2015-02-16 | 2015-02-16 | A method of manufacturing a hemispherical Lunberg lens antenna |
CN201710786658.3A Active CN107623190B (en) | 2015-02-16 | 2015-02-16 | Hemisphere luneberg lens antenna |
CN201710786688.4A Active CN107611619B (en) | 2015-02-16 | 2015-02-16 | A hemispherical Lumberg lens antenna |
CN201710786549.1A Active CN107623189B (en) | 2015-02-16 | 2015-02-16 | A kind of manufacturing method of hemispheric Lumberg lens antenna |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510084764.8A Active CN104659496B (en) | 2015-02-16 | 2015-02-16 | A method of manufacturing a hemispherical Lunberg lens antenna |
CN201710786658.3A Active CN107623190B (en) | 2015-02-16 | 2015-02-16 | Hemisphere luneberg lens antenna |
CN201710786688.4A Active CN107611619B (en) | 2015-02-16 | 2015-02-16 | A hemispherical Lumberg lens antenna |
Country Status (1)
Country | Link |
---|---|
CN (4) | CN104659496B (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106099382A (en) * | 2016-06-02 | 2016-11-09 | 深圳贝斯特网联通讯设备有限公司 | The manufacture method of Luneberg lens antenna |
CN107046180A (en) * | 2017-04-14 | 2017-08-15 | 东南大学 | A kind of primary lens design method of Two Dimensional Acoustic plane dragon based on certainly angular transformation |
AU2018283374B2 (en) * | 2017-06-16 | 2024-03-07 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Novel hollow light weight lens structure |
CN109378585B (en) * | 2018-10-19 | 2019-07-26 | 电子科技大学 | Circularly polarized Lunberg lens antenna covered by half-space beam |
CN112970149B (en) * | 2018-11-07 | 2024-05-24 | 康普技术有限责任公司 | Base station antenna with lens having functional structure providing step approximation of luneberg lens |
CN109638473B (en) * | 2019-01-14 | 2020-08-28 | 北京交通大学 | Lens antenna and manufacturing method thereof |
CN109994837A (en) * | 2019-03-26 | 2019-07-09 | 佛山市粤海信通讯有限公司 | The production method of the primary lens of dragon |
CN110336135A (en) * | 2019-07-09 | 2019-10-15 | 西安电子科技大学 | Low-cost Lumberg lens antenna based on 3D printer design |
CN111244640B (en) * | 2020-01-19 | 2021-07-06 | 佛山市粤海信通讯有限公司 | A kind of preparation method of cylindrical electromagnetic wave lens |
CN111600135A (en) * | 2020-06-23 | 2020-08-28 | 深圳市前海派速科技有限公司 | Hemispherical multilayer dielectric lens, antenna module, high-frequency wireless module and equipment |
CN111915959A (en) * | 2020-08-05 | 2020-11-10 | 中国人民解放军63850部队 | Method and device for simulating RCS (Radar Cross section) of airplane by using RCS of target drone |
CN112117537B (en) * | 2020-08-26 | 2021-12-28 | 深圳捷豹电波科技有限公司 | Antenna system and preparation method of dielectric antenna thereof |
CN111740774B (en) * | 2020-08-27 | 2020-12-08 | 四川九洲电器集团有限责任公司 | Low-orbit satellite communication switching device based on luneberg lens antenna |
TWI736448B (en) * | 2020-10-16 | 2021-08-11 | 國立陽明交通大學 | Spherical gradient-index lens |
WO2022096871A1 (en) * | 2020-11-03 | 2022-05-12 | Isotropic Systems Ltd | Isotropic 3d-printed gradient rf lens |
CN112736485B (en) * | 2020-12-29 | 2022-02-01 | 苏州申赛新材料有限公司 | Foaming Longbo lens and preparation process thereof |
CN113270724B (en) * | 2021-05-18 | 2022-03-29 | 电子科技大学 | High-gain wide-angle scanning multi-beam manhole cover antenna based on Lumberg lens |
CN113594708A (en) * | 2021-08-05 | 2021-11-02 | 吉林大学 | Vehicle-mounted passive electromagnetic wave reflector working at 77Ghz and setting method |
CN114300858B (en) * | 2021-12-09 | 2024-05-28 | 重庆文理学院 | Preparation method of Longber lens working in X wave band |
CN114336078B (en) * | 2021-12-09 | 2024-06-04 | 重庆文理学院 | Special-shaped luneberg lens with high dielectric constant |
CN115542252B (en) * | 2022-09-21 | 2023-07-04 | 扬州宇安电子科技有限公司 | Device for realizing radar main lobe target simulation and interference based on ground-air combination |
CN118920119A (en) * | 2024-08-06 | 2024-11-08 | 长春理工大学中山研究院 | 3D printing Long Bo lens for next generation communication system and design method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101057370A (en) * | 2004-09-10 | 2007-10-17 | 株式会社Jsp | Luneberg dielectric lens and method of producing same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3465362A (en) * | 1965-07-17 | 1969-09-02 | Tokyo Keiki Kk | Shell-type luneberg lens |
AU2789292A (en) * | 1991-11-19 | 1993-06-15 | Thomson Consumer Electronics S.A. | Dielectric material for antennas |
JP3402033B2 (en) * | 1995-12-22 | 2003-04-28 | 株式会社村田製作所 | Luneberg lens |
CN101976755A (en) * | 2010-08-30 | 2011-02-16 | 电子科技大学 | High-efficiency dielectric lens antenna based on novel open-celled structure |
CN102176545B (en) * | 2011-01-12 | 2015-06-17 | 电子科技大学 | Electrically large highly-efficient luneberg lens antenna with the smallest layering number |
CN103036066B (en) * | 2011-09-29 | 2016-07-27 | 深圳光启高等理工研究院 | A kind of Luneberg lens antenna |
-
2015
- 2015-02-16 CN CN201510084764.8A patent/CN104659496B/en active Active
- 2015-02-16 CN CN201710786658.3A patent/CN107623190B/en active Active
- 2015-02-16 CN CN201710786688.4A patent/CN107611619B/en active Active
- 2015-02-16 CN CN201710786549.1A patent/CN107623189B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101057370A (en) * | 2004-09-10 | 2007-10-17 | 株式会社Jsp | Luneberg dielectric lens and method of producing same |
Non-Patent Citations (1)
Title |
---|
龙伯透镜制造工艺研究现状及发展趋势分析;田江晓等;《工艺与材料》;20131231;第84-86页及图3 * |
Also Published As
Publication number | Publication date |
---|---|
CN107623190B (en) | 2020-11-13 |
CN107623190A (en) | 2018-01-23 |
CN107623189A (en) | 2018-01-23 |
CN107611619B (en) | 2020-07-31 |
CN107611619A (en) | 2018-01-19 |
CN104659496A (en) | 2015-05-27 |
CN104659496B (en) | 2017-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107623189B (en) | A kind of manufacturing method of hemispheric Lumberg lens antenna | |
CN205122779U (en) | Luneberg lens antenna | |
CN205122780U (en) | Luneberg lens reflector | |
Liang et al. | A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping | |
CN105470660B (en) | Extremely low section cylinder Luneberg lens antenna based on novel medium filling mode | |
CN111262042B (en) | Method for manufacturing artificial dielectric multilayer cylindrical lens | |
US20190393614A1 (en) | Ultralight artificial medium multilayer cylindrical lens | |
Du et al. | 3-D printing implementation of an X-band Eaton lens for beam deflection | |
McKerricher et al. | A fully inkjet-printed 3-D honeycomb-inspired patch antenna | |
Hoel et al. | 3-D printed monolithic GRIN dielectric-loaded double-ridged horn antennas | |
CN109378585B (en) | Circularly polarized Lunberg lens antenna covered by half-space beam | |
CN106207482A (en) | The vigorous lens of column layering dragon | |
Liang et al. | An X-band Luneburg lens antenna fabricated by rapid prototyping technology | |
WO2020228137A1 (en) | Fabrication method for electromagnetic composite material | |
CN109088173A (en) | Large-angle scanning ellipsoid dielectric lens antenna based on phased array feed | |
WO2020191911A1 (en) | Method for producing luneburg lens | |
CN110401039B (en) | Production method of luneberg lens | |
CN205122778U (en) | Hemisphere luneberg lens antenna | |
CN110336135A (en) | Low-cost Lumberg lens antenna based on 3D printer design | |
CA3067217A1 (en) | Novel hollow light weight lens structure | |
CN102904044B (en) | Feedback radar antenna | |
de Oliveira Neto et al. | Designing and building radio frequency devices with tailored dielectric properties using additive manufacturing | |
Koul et al. | Additive manufacturing in antenna development | |
Wang et al. | Effect and experiment of curvature radius of 3‐D printed conformal load‐bearing antenna array on EM performance | |
Kokkonen et al. | An ultralow-loss and lightweight cellulose-coated silica foam for planar fresnel zone plate lens applications in future 6G devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |