CN107611780A - Si doping InAs/GaAs quantum dot lasers and preparation method thereof - Google Patents
Si doping InAs/GaAs quantum dot lasers and preparation method thereof Download PDFInfo
- Publication number
- CN107611780A CN107611780A CN201710870861.9A CN201710870861A CN107611780A CN 107611780 A CN107611780 A CN 107611780A CN 201710870861 A CN201710870861 A CN 201710870861A CN 107611780 A CN107611780 A CN 107611780A
- Authority
- CN
- China
- Prior art keywords
- layer
- quantum dot
- gaas
- inas
- doping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 115
- 229910001218 Gallium arsenide Inorganic materials 0.000 title claims abstract description 64
- 229910000673 Indium arsenide Inorganic materials 0.000 title claims abstract description 33
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 41
- 239000000758 substrate Substances 0.000 claims description 23
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims description 20
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 9
- 230000000737 periodic effect Effects 0.000 claims description 9
- 239000011435 rock Substances 0.000 claims 5
- 238000005253 cladding Methods 0.000 abstract description 41
- 230000003287 optical effect Effects 0.000 abstract description 15
- 230000006798 recombination Effects 0.000 abstract description 4
- 238000005215 recombination Methods 0.000 abstract description 4
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 178
- 238000000034 method Methods 0.000 description 13
- 239000004065 semiconductor Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
本发明公开了一种Si掺杂InAs/GaAs量子点激光器及其制备方法,其特征在于,所述量子点激光器包括量子点有源区(50),该量子点有源区(50)包括Si掺杂的量子点层(51);所述量子点激光器的制备方法为采用MBE外延生长方法依次在衬底(10)上生长缓冲层(20)、下包层(30)、下波导层(40)、量子点有源区(50)、上波导层(60)、上包层(70)以及欧姆接触层(80)。本发明提供的量子点激光器通过引入Si原子,有效钝化量子点附近的非辐射复合中心,增强了量子点材料的光学性能;同时,Si原子引入的电子可降低激光器件的阈值电流,提高器件性能。
The invention discloses a Si-doped InAs/GaAs quantum dot laser and a preparation method thereof, wherein the quantum dot laser comprises a quantum dot active region (50), and the quantum dot active region (50) comprises Si A doped quantum dot layer (51); the preparation method of the quantum dot laser is to grow a buffer layer (20), a lower cladding layer (30), a lower waveguide layer ( 40), quantum dot active region (50), upper waveguide layer (60), upper cladding layer (70) and ohmic contact layer (80). The quantum dot laser provided by the invention effectively passivates the non-radiative recombination centers near the quantum dots by introducing Si atoms, thereby enhancing the optical properties of the quantum dot materials; at the same time, the electrons introduced by the Si atoms can reduce the threshold current of the laser device and improve the performance of the device. performance.
Description
技术领域technical field
本发明属于半导体技术领域,具体涉及一种Si掺杂InAs/GaAs量子点激光器及其制备方法。The invention belongs to the technical field of semiconductors, and in particular relates to a Si-doped InAs/GaAs quantum dot laser and a preparation method thereof.
背景技术Background technique
信息量的不断攀升对光纤通信的光源提出了更高的要求。半导体激光器作为光纤通讯系统的核心部件,对整个系统的性能起到了至关重要的作用。量子点材料由于在三个维度上的尺寸都接近电子的德布罗意波长,因此具有和原子近似的分立的能级,并且态密度为δ函数的形式。半导体量子点激光器展现出了低阈值电流密度、高微分增益、高温度稳定性、高调制速率以及低的频率啁啾效应等优越特性,有望成为下一代光通信系统的重要光源,在高速局域网通信和高速数据交换系统等领域中有重要的应用前景。The continuous increase in the amount of information puts forward higher requirements for the light source of optical fiber communication. As the core component of the optical fiber communication system, the semiconductor laser plays a vital role in the performance of the whole system. Quantum dot materials have discrete energy levels similar to atoms, and the density of states is in the form of a delta function because the sizes in three dimensions are close to the de Broglie wavelength of electrons. Semiconductor quantum dot lasers exhibit superior characteristics such as low threshold current density, high differential gain, high temperature stability, high modulation rate, and low frequency chirp effect, and are expected to become important light sources for next-generation optical communication systems. And high-speed data exchange systems and other fields have important application prospects.
量子点的制备方法很多,常见的有以下两种:There are many methods for preparing quantum dots, and the following two are common:
(1)微结构材料生长与微细加工技术相结合的方法:即采用分子束外延生长(MBE)或金属有机物化学气相淀积(MOCVD)技术在图形化衬底上进行选择性外延生长或高质量的外延材料生长,结合高空间分辨电子束直写、干法或湿法刻蚀,然后再进行外延生长。这种方法的优点是量子点(QD)的尺寸、形状和密度可控,但由于加工带来的界面损伤和工艺过程引入的杂质污染等,使其器件性能与理论的预言值相差甚远。(1) The method of combining microstructure material growth with microfabrication technology: that is, using molecular beam epitaxy (MBE) or metal organic chemical vapor deposition (MOCVD) technology to perform selective epitaxial growth or high-quality Epitaxial material growth, combined with high spatial resolution electron beam direct writing, dry or wet etching, and then epitaxial growth. The advantage of this method is that the size, shape and density of quantum dots (QD) are controllable, but due to the interface damage caused by processing and the impurity contamination introduced by the process, the device performance is far from the predicted value of the theory.
(2)利用应变自组装模式(SK生长模式)生长量子点材料是目前常用的量子点材料制备方法。SK生长模式适用于晶格失配较大,但表面、界面能不是很大的异质结材料体系。SK外延生长初始阶段是二维层状生长,通常只有几个原子层厚,称之为浸润层;随着层厚的增加,应变能不断积累,当达到某一个临界厚度tc时,外延生长由二维层状生长过渡到三维岛状生长,从而降低系统的能量;三维岛生长初期形成的纳米量级尺寸的小岛周围是无位错的,若用禁带宽度大的材料将其包围起来,小岛中的载流子受到三维限制,称之为量子点;在生长的单层量子点基础上,重复上述生长过程,可获得量子点超晶格结构。通过控制量子点的生长条件,可以获得高质量的量子点材料。这种方法的缺点是其尺寸、形状、分布均匀性和密度较难控制。(2) The use of strained self-assembly mode (SK growth mode) to grow quantum dot materials is a commonly used preparation method for quantum dot materials. The SK growth mode is suitable for heterojunction material systems with large lattice mismatch but low surface and interface energy. The initial stage of SK epitaxial growth is two-dimensional layered growth, usually only a few atomic layers thick, called the wetting layer; as the layer thickness increases, the strain energy continues to accumulate, and when a certain critical thickness t c is reached, the epitaxial growth Transition from two-dimensional layered growth to three-dimensional island growth, thereby reducing the energy of the system; the nanoscale islands formed in the initial stage of three-dimensional island growth are dislocation-free, if surrounded by materials with a large band gap In general, the carriers in the small islands are three-dimensionally confined, which are called quantum dots; on the basis of the grown single-layer quantum dots, the above growth process can be repeated to obtain a quantum dot superlattice structure. By controlling the growth conditions of quantum dots, high-quality quantum dot materials can be obtained. The disadvantage of this method is that its size, shape, distribution uniformity and density are more difficult to control.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
本发明提供了一种Si掺杂InAs/GaAs量子点激光器及其制备方法,通过在InAs/GaAs量子点材料中引入适当的Si原子,提升量子点材料的光学性能,从而改善量子点激光器的性能。The invention provides a Si-doped InAs/GaAs quantum dot laser and a preparation method thereof. By introducing appropriate Si atoms into the InAs/GaAs quantum dot material, the optical performance of the quantum dot material is improved, thereby improving the performance of the quantum dot laser .
(二)技术方案(2) Technical solutions
为实现上述技术目的,作为本发明的一个方面,本发明提供了一种Si掺杂InAs/GaAs量子点激光器,包括衬底以及生长于其上的外延层;In order to achieve the above technical purpose, as an aspect of the present invention, the present invention provides a Si-doped InAs/GaAs quantum dot laser, including a substrate and an epitaxial layer grown thereon;
所述外延层的下部包括缓冲层、缓冲层上部的下包层以及下包层上部的下波导层;The lower part of the epitaxial layer includes a buffer layer, a lower cladding layer above the buffer layer, and a lower waveguide layer above the lower cladding layer;
所述外延层的上部包括上波导层、上波导层上部的上包层以及上包层上部的欧姆接触层;The upper part of the epitaxial layer includes an upper waveguide layer, an upper cladding layer on the upper waveguide layer, and an ohmic contact layer on the upper cladding layer;
所述外延层的中部包括量子点有源区,该量子点有源区包括Si掺杂的量子点层、量子点层上部的第一盖层以及第一盖层上部的第二盖层形成的周期结构。The middle part of the epitaxial layer includes a quantum dot active area, and the quantum dot active area includes a Si-doped quantum dot layer, a first capping layer on the top of the quantum dot layer, and a second capping layer on the top of the first capping layer. cycle structure.
作为进一步实施方案,所述Si掺杂的量子点层的主体材料为InAs。As a further embodiment, the host material of the Si-doped quantum dot layer is InAs.
作为进一步实施方案,所述第一盖层的材料为InGaAs或GaAs,所述第二盖层的材料为GaAs。As a further embodiment, the material of the first capping layer is InGaAs or GaAs, and the material of the second capping layer is GaAs.
作为进一步实施方案,所述衬底、缓冲层、下波导层、上波导层以及欧姆接触层的主体材料为GaAs。As a further embodiment, the main material of the substrate, the buffer layer, the lower waveguide layer, the upper waveguide layer and the ohmic contact layer is GaAs.
作为更进一步实施方案,所述衬底和缓冲层为n型掺杂GaAs;所述下波导层和上波导层为纯的GaAs;所述欧姆接触层为p型掺杂GaAs。As a further embodiment, the substrate and the buffer layer are n-type doped GaAs; the lower waveguide layer and the upper waveguide layer are pure GaAs; the ohmic contact layer is p-type doped GaAs.
作为进一步实施方案,所述下包层和上包层的主体材料为AlGaAs。As a further embodiment, the host material of the lower cladding layer and the upper cladding layer is AlGaAs.
作为更进一步实施方案,所述下包层为n型掺杂AlGaAs;所述上包层为p型掺杂AlGaAs作为进一步实施方案,所述周期结构的周期数为1~20。As a further embodiment, the lower cladding layer is n-type doped AlGaAs; the upper cladding layer is p-type doped AlGaAs. As a further embodiment, the period number of the periodic structure is 1-20.
作为进一步实施方案,所述Si掺杂的量子点层其量子点生长厚度为0~10ML,Si的掺杂浓度为1×103~1×1024cm-3(ML:单原子层厚度,即所生长材料一个原子层的厚度)。As a further embodiment, the quantum dot growth thickness of the Si-doped quantum dot layer is 0 to 10ML, and the doping concentration of Si is 1×10 3 to 1×10 24 cm −3 (ML: monoatomic layer thickness, That is, the thickness of one atomic layer of the grown material).
作为进一步实施方案,所述第一盖层的生长厚度为0~30nm。As a further embodiment, the growth thickness of the first capping layer is 0-30 nm.
作为进一步实施方案,所述第二盖层的生长厚度为0~30nm。As a further embodiment, the growth thickness of the second capping layer is 0-30 nm.
为实现上述技术目的,作为本发明的另一个方面,本发明提供一种Si掺杂InAs/GaAs量子点激光器的制备方法,其特征在于,包括如下步骤:In order to achieve the above technical purpose, as another aspect of the present invention, the present invention provides a method for preparing a Si-doped InAs/GaAs quantum dot laser, which is characterized in that it includes the following steps:
步骤1:选择一衬底;Step 1: Select a substrate;
步骤2:在该衬底上生长一层缓冲层;Step 2: growing a buffer layer on the substrate;
步骤3:在缓冲层上生长下包层;Step 3: growing a lower cladding layer on the buffer layer;
步骤4:在下包层上生长下波导层;Step 4: growing a lower waveguide layer on the lower cladding layer;
步骤5:在下波导层上生长量子点有源区,所述量子点有源区包括Si掺杂的量子点层;Step 5: growing a quantum dot active region on the lower waveguide layer, the quantum dot active region comprising a Si-doped quantum dot layer;
步骤6:在量子点有源区上生长上波导层;Step 6: growing an upper waveguide layer on the quantum dot active region;
步骤7:在上波导层上生长上包层;Step 7: growing an upper cladding layer on the upper waveguide layer;
步骤8:在上包层上生长欧姆接触层。Step 8: growing an ohmic contact layer on the upper cladding layer.
作为进一步实施方案,所述量子点有源区首先生长Si掺杂的量子点层,在Si掺杂的量子点层上生长第一盖层,在第一盖层上生长第二盖层,形成一个周期结构;所述周期结构的周期数为1~20。As a further embodiment, the quantum dot active region first grows a Si-doped quantum dot layer, grows a first capping layer on the Si-doped quantum dot layer, grows a second capping layer on the first capping layer, and forms A periodic structure; the period number of the periodic structure is 1-20.
作为进一步实施方案,所述Si掺杂的量子点层,量子点生长厚度为0~10ML,Si的掺杂浓度为1×103~1×1024cm-3;As a further embodiment, in the Si-doped quantum dot layer, the quantum dot growth thickness is 0-10ML, and the doping concentration of Si is 1×10 3 to 1×10 24 cm -3 ;
作为进一步实施方案,所述Si掺杂的量子点层的主体材料为InAs。As a further embodiment, the host material of the Si-doped quantum dot layer is InAs.
作为进一步实施方案,所述第一盖层的材料为InGaAs或GaAs,生长厚度为0~30nm;所述第二盖层的材料为GaAs,生长厚度为0~30nm。As a further embodiment, the material of the first capping layer is InGaAs or GaAs, and the growth thickness is 0-30 nm; the material of the second capping layer is GaAs, and the growth thickness is 0-30 nm.
作为进一步实施方案,所述衬底、缓冲层、下波导层、上波导层以及欧姆接触层的主体材料为GaAs。As a further embodiment, the main material of the substrate, the buffer layer, the lower waveguide layer, the upper waveguide layer and the ohmic contact layer is GaAs.
作为更进一步实施方案,所述衬底和缓冲层为n型掺杂GaAs;所述下波导层和上波导层为纯的GaAs;所述欧姆接触层为p型掺杂GaAs。As a further embodiment, the substrate and the buffer layer are n-type doped GaAs; the lower waveguide layer and the upper waveguide layer are pure GaAs; the ohmic contact layer is p-type doped GaAs.
作为进一步实施方案,所述下包层和上包层的主体材料为AlGaAs。As a further embodiment, the host material of the lower cladding layer and the upper cladding layer is AlGaAs.
作为更进一步实施方案,所述下包层为n型掺杂AlGaAs;所述上包层为p型掺杂AlGaAs。As a further embodiment, the lower cladding layer is n-type doped AlGaAs; the upper cladding layer is p-type doped AlGaAs.
(三)有益效果(3) Beneficial effects
该方法是基于低维半导体纳米结构量子点材料的量子器件,与现有技术相比,本发明具有以下有益效果:The method is a quantum device based on a low-dimensional semiconductor nanostructure quantum dot material. Compared with the prior art, the present invention has the following beneficial effects:
(1)在InAs/GaAs量子点材料中直接掺入Si原子可以有效钝化量子点附近的非辐射复合中心,非辐射复合过程的减少对于量子点激光器是一个非常有利的过程,可以增强量子点材料的光学性能;(1) Direct doping of Si atoms in InAs/GaAs quantum dot materials can effectively passivate the non-radiative recombination centers near the quantum dots. The reduction of the non-radiative recombination process is a very beneficial process for quantum dot lasers, which can enhance the quantum dots. The optical properties of the material;
(2)Si原子引入的电子可降低激光器件的阈值电流,提高器件性能。(2) The electrons introduced by Si atoms can reduce the threshold current of the laser device and improve the device performance.
(3)通过控制第一盖层的厚度以及第一盖层中第三主族金属元素的比例可以调节量子点激光器的激射波长。(3) The lasing wavelength of the quantum dot laser can be adjusted by controlling the thickness of the first capping layer and the ratio of the third main group metal element in the first capping layer.
附图说明Description of drawings
图1为本发明实施例提供的制备量子点激光器的外延生长结构示意图。Fig. 1 is a schematic diagram of an epitaxial growth structure for preparing a quantum dot laser provided by an embodiment of the present invention.
图2为本发明实施例半导体激光器P-I曲线示意图。Fig. 2 is a schematic diagram of a P-I curve of a semiconductor laser according to an embodiment of the present invention.
图3为未掺杂的InAs/GaAs量子点激光器(undoped)和本发明实施例中Si掺杂的InAs/GaAs量子点激光器(Si-doped)的光功率-电流曲线图。Fig. 3 is an optical power-current curve of an undoped InAs/GaAs quantum dot laser (undoped) and a Si-doped InAs/GaAs quantum dot laser (Si-doped) in an embodiment of the present invention.
附图标号说明:Explanation of reference numbers:
10:衬底10: Substrate
20:缓冲层20: buffer layer
30:下包层30: lower cladding
40:下波导层40: Lower waveguide layer
50:量子点有源区50: Quantum dot active area
51:Si掺杂的量子点层51: Si-doped quantum dot layer
52:第一盖层52: First cover layer
53:第二盖层53: Second cap layer
60:上波导层60: Upper waveguide layer
70:上包层70: upper cladding
80:欧姆接触层80: Ohmic contact layer
具体实施方式detailed description
为了进一步说明本发明的具体技术内容,使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to further illustrate the specific technical content of the present invention and make the purpose, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
根据本发明总体上的发明构思,作为本发明的一个方面,提供一种Si掺杂InAs/GaAs量子点激光器,如图1所示,本发明的量子点激光器包括衬底10以及生长于其上的外延层;所述外延层的下部包括缓冲层20、缓冲层20上部的下包层30以及下包层30上部的下波导层40;所述外延层的上部包括上波导层60、上波导层60上部的上包层70以及上包层70上部的欧姆接触层80;所述外延层的中部包括量子点有源区50,该量子点有源区50包括Si掺杂的量子点层51、Si掺杂的量子点层51上部的第一盖层52以及第一盖层52上部的第二盖层53形成的周期结构;优选地,所述Si掺杂的量子点层51的主体材料为InAs。According to the general inventive concept of the present invention, as an aspect of the present invention, a kind of Si-doped InAs/GaAs quantum dot laser is provided, as shown in Figure 1, quantum dot laser of the present invention comprises substrate 10 and grows on it The epitaxial layer; the bottom of the epitaxial layer includes a buffer layer 20, the lower cladding layer 30 on the top of the buffer layer 20, and the lower waveguide layer 40 on the top of the lower cladding layer 30; the upper part of the epitaxial layer includes an upper waveguide layer 60, an upper waveguide The upper cladding layer 70 on the upper part of the layer 60 and the ohmic contact layer 80 on the upper cladding layer 70; the middle part of the epitaxial layer includes a quantum dot active region 50, and the quantum dot active region 50 includes a Si-doped quantum dot layer 51 , a periodic structure formed by the first cover layer 52 on the top of the Si-doped quantum dot layer 51 and the second cover layer 53 on the top of the first cover layer 52; preferably, the host material of the Si-doped quantum dot layer 51 for InAs.
优选地,所述第一盖层52的材料为InGaAs或GaAs,所述第二盖层53的材料为GaAs。Preferably, the material of the first capping layer 52 is InGaAs or GaAs, and the material of the second capping layer 53 is GaAs.
优选地,所述衬底10、缓冲层20、下波导层40、上波导层60以及欧姆接触层80的主体材料为GaAs。Preferably, the main material of the substrate 10 , the buffer layer 20 , the lower waveguide layer 40 , the upper waveguide layer 60 and the ohmic contact layer 80 is GaAs.
更优选地,所述衬底和缓冲层为n型掺杂GaAs;所述下波导层和上波导层为纯的GaAs;所述欧姆接触层为p型掺杂GaAs。More preferably, the substrate and the buffer layer are n-type doped GaAs; the lower waveguide layer and the upper waveguide layer are pure GaAs; the ohmic contact layer is p-type doped GaAs.
优选地,所述下包层30和上包层70的主体材料为AlGaAs。Preferably, the host material of the lower cladding layer 30 and the upper cladding layer 70 is AlGaAs.
更优选地,所述下包层为n型掺杂AlGaAs;所述上包层为p型掺杂AlGaAs。More preferably, the lower cladding layer is n-type doped AlGaAs; the upper cladding layer is p-type doped AlGaAs.
优选地,所述周期结构的周期数为1~20。Preferably, the period number of the periodic structure is 1-20.
优选地,所述Si掺杂的量子点层51,其量子点生长厚度为0~10ML,Si的掺杂浓度为1×103~1×1024cm-3。优选地,所述第一盖层52的生长厚度为0~30nm。Preferably, the Si-doped quantum dot layer 51 has a quantum dot growth thickness of 0-10ML, and a Si doping concentration of 1×10 3 to 1×10 24 cm −3 . Preferably, the growth thickness of the first capping layer 52 is 0-30 nm.
优选地,所述第二盖层53的生长厚度为0~30nm。Preferably, the growth thickness of the second capping layer 53 is 0-30 nm.
根据本发明总体上的发明构思,作为本发明的另一个方面,提供一种Si掺杂InAs/GaAs量子点激光器的制备方法,具体过程如下:According to the general inventive concept of the present invention, as another aspect of the present invention, a kind of preparation method of Si-doped InAs/GaAs quantum dot laser is provided, and specific process is as follows:
步骤1:取一衬底10;Step 1: Take a substrate 10;
步骤2:在衬底10上生长一层缓冲层20;Step 2: growing a buffer layer 20 on the substrate 10;
步骤3:在缓冲层20上生长下包层30;Step 3: growing a lower cladding layer 30 on the buffer layer 20;
步骤4:在下包层30上生长下波导层40;Step 4: growing a lower waveguide layer 40 on the lower cladding layer 30;
步骤5:在下波导层40上生长量子点有源区50,该量子点有源区包括Si掺杂的量子点层51;Step 5: growing a quantum dot active region 50 on the lower waveguide layer 40, the quantum dot active region including a Si-doped quantum dot layer 51;
步骤6:在量子点有源区50上生长上波导层60;Step 6: growing an upper waveguide layer 60 on the quantum dot active region 50;
步骤7:在上波导层60上生长上包层70;Step 7: growing an upper cladding layer 70 on the upper waveguide layer 60;
步骤8:在上包层70上生长欧姆接触层80。Step 8: growing an ohmic contact layer 80 on the upper cladding layer 70 .
优选地,所述量子点有源区50通过Si掺杂的量子点层51、第一盖层52、第二盖层53依次生长得到周期结构,该周期结构的周期数为1~20。Preferably, the quantum dot active region 50 is sequentially grown by the Si-doped quantum dot layer 51 , the first capping layer 52 , and the second capping layer 53 to obtain a periodic structure, and the period number of the periodic structure is 1-20.
优选地,所述Si掺杂的量子点层51的生长厚度为0~10ML,Si的掺杂浓度为1×103~1×1024cm-3。Preferably, the growth thickness of the Si-doped quantum dot layer 51 is 0-10ML, and the doping concentration of Si is 1×10 3 to 1×10 24 cm −3 .
优选地,所述第一盖层52的生长厚度为0~30nm。Preferably, the growth thickness of the first capping layer 52 is 0-30 nm.
优选地,所述第二盖层53的生长厚度为0~30nm。Preferably, the growth thickness of the second capping layer 53 is 0-30 nm.
优选地,所述Si掺杂的量子点层51的主体材料为InAs。Preferably, the host material of the Si-doped quantum dot layer 51 is InAs.
优选地,所述第一盖层52的材料为InGaAs或GaAs,所述第二盖层53的材料为GaAs。Preferably, the material of the first capping layer 52 is InGaAs or GaAs, and the material of the second capping layer 53 is GaAs.
优选地,所述衬底10、缓冲层20、下波导层40、上波导层60以及欧姆接触层80的主体材料为GaAs。Preferably, the main material of the substrate 10 , the buffer layer 20 , the lower waveguide layer 40 , the upper waveguide layer 60 and the ohmic contact layer 80 is GaAs.
更优选地,所述衬底和缓冲层为n型掺杂GaAs;所述下波导层和上波导层为纯的GaAs;所述欧姆接触层为p型掺杂GaAs。More preferably, the substrate and the buffer layer are n-type doped GaAs; the lower waveguide layer and the upper waveguide layer are pure GaAs; the ohmic contact layer is p-type doped GaAs.
优选地,所述下包层30和上包层70的主体材料为AlGaAs。Preferably, the host material of the lower cladding layer 30 and the upper cladding layer 70 is AlGaAs.
更优选地,所述下包层为n型掺杂AlGaAs;所述上包层为p型掺杂AlGaAs。More preferably, the lower cladding layer is n-type doped AlGaAs; the upper cladding layer is p-type doped AlGaAs.
下面结合具体实施例对本发明的技术方案作进一步的阐述说明。The technical solutions of the present invention will be further described below in conjunction with specific embodiments.
实施例1:Example 1:
(1)取一衬底10,该衬底为n+型GaAs衬底,晶向为(100),其掺杂元素为Si,掺杂浓度为(0.5~5)×1018cm-3;(1) Take a substrate 10, which is an n+-type GaAs substrate with a crystal orientation of (100), a doping element of Si, and a doping concentration of (0.5-5)×10 18 cm -3 ;
(2)在上述GaAs衬底10上外延生长一层GaAs缓冲层20,缓冲层生长厚度为0~800nm,对其进行n型掺杂,掺杂元素为Si元素,掺杂浓度为(0.5~5)×1018cm-3;(2) Epitaxially grow a layer of GaAs buffer layer 20 on the above-mentioned GaAs substrate 10, the buffer layer growth thickness is 0-800nm, it is n-type doped, the doping element is Si element, and the doping concentration is (0.5- 5)×10 18 cm -3 ;
(3)在上述GaAs缓冲层20上外延生长AlGaAs下包层30,生长厚度为500~2000nm,对其进行n型掺杂,掺杂元素为Si元素,掺杂浓度为(0.1~5)×1018cm-3;(3) Epitaxially grow the AlGaAs lower cladding layer 30 on the above-mentioned GaAs buffer layer 20, the growth thickness is 500-2000nm, and perform n-type doping on it, the doping element is Si element, and the doping concentration is (0.1-5)× 10 18 cm -3 ;
(4)在上述AlGaAs下包层30上外延生长GaAs下波导层40,生长厚度为50~200nm;(4) epitaxially growing the GaAs lower waveguide layer 40 on the above-mentioned AlGaAs lower cladding layer 30, with a growth thickness of 50-200 nm;
(5)在上述GaAs下波导层40上外延生长Si掺杂的InAs量子点层51,生长厚度为0~10ML,Si的掺杂浓度为1×103~1×1024cm-3,是提升量子点激光器性能的关键。(5) epitaxially grow a Si-doped InAs quantum dot layer 51 on the GaAs lower waveguide layer 40, the growth thickness is 0-10ML, and the Si doping concentration is 1×10 3 to 1×10 24 cm -3 , which is The key to improving the performance of quantum dot lasers.
(6)在上述Si掺杂的InAs量子点层51上外延生长InGaAs第一盖层52,生长厚度为0~30nm;通过控制InGaAs第一盖层52的厚度以及InGaAs中In、Ga的比例可以调节量子点激光器的激射波长。(6) epitaxially grow the first capping layer 52 of InGaAs on the above-mentioned Si-doped InAs quantum dot layer 51, and the growth thickness is 0-30nm; by controlling the thickness of the first capping layer 52 of InGaAs and the ratio of In and Ga in InGaAs, Tuning the lasing wavelength of the quantum dot laser.
(7)在上述InGaAs第一盖层52上外延生长GaAs第二盖层53,该层的生长厚度为0~30nm。(7) Epitaxially grow the second GaAs capping layer 53 on the above-mentioned InGaAs first capping layer 52, the growth thickness of this layer is 0-30 nm.
(8)通过上述步骤(5)~(7)得到InAs量子点有源区50;将步骤(5)~(7)重复1~20次,形成多周期的InAs量子点有源区50(1~20周期)。(8) Obtain the InAs quantum dot active region 50 by above-mentioned steps (5)~(7); Steps (5)~(7) are repeated 1~20 times, form the multi-period InAs quantum dot active region 50 (1 ~20 cycles).
(9)在上述多周期的InAs量子点有源区50上外延生长GaAs上波导层60,生长厚度为50~200nm。(9) Epitaxially grow the GaAs upper waveguide layer 60 on the above-mentioned multi-period InAs quantum dot active region 50 with a growth thickness of 50-200 nm.
(10)在上述GaAs上波导层60上外延生长AlGaAs上包层70,生长厚度为500~2000nm;对所述AlGaAs上包层70进行p型掺杂,掺杂元素为Be元素,掺杂浓度为(0.1~5)×1018cm-3。(10) Epitaxially grow an AlGaAs upper cladding layer 70 on the above-mentioned GaAs upper waveguide layer 60, with a growth thickness of 500-2000 nm; perform p-type doping on the AlGaAs upper cladding layer 70, the doping element is Be element, and the doping concentration is It is (0.1~5)×10 18 cm -3 .
(11)在上述AlGaAs上包层上外延生长GaAs欧姆接触层80,生长厚度为200nm;对所述GaAs欧姆接触层80进行p型掺杂,掺杂元素为Be元素,掺杂浓度为(0.01~1)×1020cm-3。(11) epitaxially grow GaAs ohmic contact layer 80 on the above-mentioned AlGaAs upper cladding layer, the growth thickness is 200nm; carry out p-type doping to described GaAs ohmic contact layer 80, doping element is Be element, and doping concentration is (0.01 ~1)×10 20 cm −3 .
性能表征Performance Characterization
光功率-电流(P-I)特性测试:P-I特性表示半导体激光器平均输出光功率与注入驱动电流之间的关系,是半导体激光器的最重要的特性,也是选择半导体激光器的重要依据。图2为半导体激光器P-I特性曲线的示意图。Optical power-current (P-I) characteristic test: The P-I characteristic indicates the relationship between the average output optical power of a semiconductor laser and the injection drive current, which is the most important characteristic of a semiconductor laser and an important basis for selecting a semiconductor laser. Fig. 2 is a schematic diagram of a P-I characteristic curve of a semiconductor laser.
测试过程Testing process
使用的P-I特性测试装置包括直流电流源、脉冲电流源、光电探测器、管芯测试平台、计算机等。测试时,将激光器固定在测试平台上,通过电流源提供连续或脉冲电流,由光电探测器对器件的输出光进行收集,再通过程序转化为输出光功率值,由计算机进行数据采集和结果显示。The P-I characteristic testing device used includes a direct current source, a pulse current source, a photodetector, a die test platform, a computer, and the like. During the test, the laser is fixed on the test platform, the current source provides continuous or pulse current, the output light of the device is collected by the photodetector, and then converted into the output optical power value by the program, and the data is collected and the result is displayed by the computer .
测试参数Test parameters
(1)阈值电流Ith (1) Threshold current I th
半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith(图2中两条线段的交点)。当注入电流I增加时,输出光功率P随之增加;在达到之阈值电流Ith前半导体激光器为自发发射,输出荧光;到达Ith之后为受激发射,输出激光。Semiconductor lasers can be regarded as an optical oscillator. To form optical oscillations, an optical amplification mechanism is necessary, that is, the active medium is in a population inversion distribution, and the resulting gain is sufficient to offset all losses. The condition at which a net gain begins to occur is referred to as a threshold condition. Generally, the injection current value is used to calibrate the threshold condition, that is, the threshold current I th (the intersection point of the two line segments in FIG. 2 ). When the injection current I increases, the output optical power P increases accordingly; before the threshold current I th is reached, the semiconductor laser emits spontaneously and outputs fluorescence; after reaching I th , it is stimulated emission and outputs laser light.
(2)斜率效率dP/dI(2) Slope efficiency dP/dI
在阈值电流Ith以上,激光器工作于受激发射,输出激光,功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系相似于正向二极管的特性。Above the threshold current I th , the laser works in stimulated emission and outputs laser light, and the power rises rapidly with the current, basically in a linear relationship. The current-voltage relationship of a laser is similar to that of a forward diode.
在选择时,应选阈值电流Ith尽可能小,Ith对应P值小,而且没有扭折点的半导体激光器。这样的激光器工作电流小,工作稳定性高,消光比大,而且不易产生光信号失真;并且,要求P-I曲线的斜率效率dP/dI适当,斜率太小,则需要的驱动电流过大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声,使自动光功率控制环路调整困难。When selecting, the threshold current I th should be selected as small as possible, the corresponding P value of I th is small, and there is no kink point semiconductor laser. Such a laser has low working current, high working stability, large extinction ratio, and is not easy to generate optical signal distortion; moreover, the slope efficiency dP/dI of the PI curve is required to be appropriate, and if the slope is too small, the required driving current is too large, which will cause problems for the drive. The circuit is troublesome; if the slope is too large, optical reflection noise will appear, making automatic optical power control loop tuning difficult.
图3是未掺杂的量子点激光器和Si掺杂的量子点激光器的P-I曲线图。从图中可以看出,Si掺杂量子点激光器的阈值电流175.6mA,远小于未掺杂量子点激光器的阈值电流217mA。因此,本发明提供的Si掺杂InAs/GaAs量子点激光器,通过Si原子引入的电子可降低激光器件的阈值电流,提高器件性能。并且,通过控制第一盖层的厚度以及第一盖层中第三主族金属元素的比例可以调节量子点激光器的激射波长。Fig. 3 is a P-I curve diagram of an undoped quantum dot laser and a Si-doped quantum dot laser. It can be seen from the figure that the threshold current of the Si-doped quantum dot laser is 175.6mA, which is much smaller than the threshold current of 217mA of the undoped quantum dot laser. Therefore, in the Si-doped InAs/GaAs quantum dot laser provided by the present invention, the electrons introduced by Si atoms can reduce the threshold current of the laser device and improve the performance of the device. Moreover, the lasing wavelength of the quantum dot laser can be adjusted by controlling the thickness of the first capping layer and the ratio of the third main group metal element in the first capping layer.
另一方面,Si掺杂量子点激光器的斜率效率dP/dI约为0.34W/A,未掺杂量子点激光器的斜率效率dP/dI约为0.29W/A。斜率效率的提高是由于Si原子的引入有利于钝化量子点附近的非辐射复合中心,提升了量子点材料的质量。On the other hand, the slope efficiency dP/dI of the Si-doped quantum dot laser is about 0.34W/A, and the slope efficiency dP/dI of the undoped quantum dot laser is about 0.29W/A. The increase in slope efficiency is due to the fact that the introduction of Si atoms is beneficial to the passivation of the non-radiative recombination centers near the quantum dots, which improves the quality of the quantum dot materials.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710870861.9A CN107611780A (en) | 2017-09-22 | 2017-09-22 | Si doping InAs/GaAs quantum dot lasers and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710870861.9A CN107611780A (en) | 2017-09-22 | 2017-09-22 | Si doping InAs/GaAs quantum dot lasers and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107611780A true CN107611780A (en) | 2018-01-19 |
Family
ID=61057921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710870861.9A Pending CN107611780A (en) | 2017-09-22 | 2017-09-22 | Si doping InAs/GaAs quantum dot lasers and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107611780A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112086856A (en) * | 2020-10-13 | 2020-12-15 | 江苏华兴激光科技有限公司 | Semiconductor ultrashort pulse laser and preparation method thereof |
CN114421283A (en) * | 2022-01-19 | 2022-04-29 | 中国科学院半导体研究所 | Double-doped quantum dot active region epitaxial structure, preparation method and application thereof |
CN115085009A (en) * | 2022-07-27 | 2022-09-20 | 湖南汇思光电科技有限公司 | High-performance InAs quantum dot laser and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103199438A (en) * | 2012-01-04 | 2013-07-10 | 北京邮电大学 | GaAs base multi-layer self-organizing quantum dot structure and preparation method thereof |
CN103618037A (en) * | 2013-11-25 | 2014-03-05 | 华中科技大学 | Doped silicon quantum dot light emitting diode device and preparation method thereof |
-
2017
- 2017-09-22 CN CN201710870861.9A patent/CN107611780A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103199438A (en) * | 2012-01-04 | 2013-07-10 | 北京邮电大学 | GaAs base multi-layer self-organizing quantum dot structure and preparation method thereof |
CN103618037A (en) * | 2013-11-25 | 2014-03-05 | 华中科技大学 | Doped silicon quantum dot light emitting diode device and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
DAEHWAN JUNG ET AL.: "High efficiency low threshold current 1.3μm InAs quantum dot lasers on on-axis (001) GaP/Si", 《APPLIED PHYSICS LETTERS》 * |
KE-FAN WANG ET AL.: "Si delta doping inside InAs/GaAs quantum dots with different doping densities", 《JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY B》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112086856A (en) * | 2020-10-13 | 2020-12-15 | 江苏华兴激光科技有限公司 | Semiconductor ultrashort pulse laser and preparation method thereof |
CN112086856B (en) * | 2020-10-13 | 2021-09-21 | 江苏华兴激光科技有限公司 | Semiconductor ultrashort pulse laser and preparation method thereof |
WO2022077698A1 (en) * | 2020-10-13 | 2022-04-21 | 江苏华兴激光科技有限公司 | Semiconductor ultrashort pulse laser and manufacturing method therefor |
CN114421283A (en) * | 2022-01-19 | 2022-04-29 | 中国科学院半导体研究所 | Double-doped quantum dot active region epitaxial structure, preparation method and application thereof |
CN114421283B (en) * | 2022-01-19 | 2024-04-16 | 中国科学院半导体研究所 | Double-doped quantum dot active region epitaxial structure and its preparation method and application |
CN115085009A (en) * | 2022-07-27 | 2022-09-20 | 湖南汇思光电科技有限公司 | High-performance InAs quantum dot laser and preparation method thereof |
CN115085009B (en) * | 2022-07-27 | 2022-11-22 | 湖南汇思光电科技有限公司 | InAs quantum dot laser and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | III-Nitride nanowire optoelectronics | |
CA2487149A1 (en) | Group iii nitride led with undoped cladding layer and multiple quantum well | |
US11043612B2 (en) | Light emitting diodes using ultra-thin quantum heterostructures | |
CN102097564B (en) | Quantum dot molecular light emitting device | |
Hsieh et al. | InGaN–GaN nanorod light emitting arrays fabricated by silica nanomasks | |
JP2010225870A (en) | Semiconductor element | |
CN107611780A (en) | Si doping InAs/GaAs quantum dot lasers and preparation method thereof | |
CN101887936A (en) | A kind of indium arsenic quantum dot active region structure and light-emitting device | |
JP2000012961A (en) | Semiconductor laser | |
JP3304903B2 (en) | Semiconductor quantum dot device and manufacturing method thereof | |
Luo et al. | InAs/InGaAsP/InP quantum dot lasers grown by metalorganic chemical vapor deposition | |
Salhi et al. | High efficiency and high modal gain InAs/InGaAs/GaAs quantum dot lasers emitting at 1300 nm | |
CN101413110A (en) | Preparation of 1.3 micron waveband InAs quantum dot material | |
CN105280763B (en) | A kind of preparation method of super-radiance light emitting diode and obtained light emitting diode | |
JP3768790B2 (en) | Quantum dot structure and semiconductor device apparatus having the same | |
Paranthoen et al. | Room temperature laser emission of 1.5 μm from InAs/InP (311) B quantum dots | |
CN104157759B (en) | High density and high uniformity InGaN quantum dot structure and growth method thereof | |
Li et al. | 1.43 µm InAs bilayer quantum dot lasers on GaAs substrate | |
JP2004146498A (en) | Semiconductor light emitting device | |
CN100364193C (en) | Aluminum-free 1.3μm InAs/GaAs Quantum Dot Laser | |
JP4086465B2 (en) | Quantum dot structure and method for forming the same, and semiconductor device device having the quantum dot structure | |
Chang et al. | The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers | |
JP4284633B2 (en) | Manufacturing method of semiconductor light emitting device | |
Loeber et al. | Dense lying GaSb quantum dots on GaAs by Stranski-Krastanov growth | |
Huang et al. | Influence of spacer thickness on the optical properties of vertically stacked InP/AlGaInP quantum dot lasers at the short wavelength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180119 |
|
RJ01 | Rejection of invention patent application after publication |