CN107611458A - 一种质子交换膜燃料电池双极板及其制备方法 - Google Patents
一种质子交换膜燃料电池双极板及其制备方法 Download PDFInfo
- Publication number
- CN107611458A CN107611458A CN201710797491.0A CN201710797491A CN107611458A CN 107611458 A CN107611458 A CN 107611458A CN 201710797491 A CN201710797491 A CN 201710797491A CN 107611458 A CN107611458 A CN 107611458A
- Authority
- CN
- China
- Prior art keywords
- parts
- fuel cell
- exchange membrane
- proton exchange
- membrane fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 64
- 239000012528 membrane Substances 0.000 title claims abstract description 58
- 230000009977 dual effect Effects 0.000 title claims abstract description 55
- 238000002360 preparation method Methods 0.000 title claims abstract description 36
- 239000000843 powder Substances 0.000 claims abstract description 72
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 32
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 31
- 239000011248 coating agent Substances 0.000 claims abstract description 29
- 238000000576 coating method Methods 0.000 claims abstract description 29
- 239000002270 dispersing agent Substances 0.000 claims abstract description 27
- 150000002148 esters Chemical class 0.000 claims abstract description 24
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims abstract description 22
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 22
- 230000003750 conditioning effect Effects 0.000 claims abstract description 22
- 239000012744 reinforcing agent Substances 0.000 claims abstract description 22
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 20
- 239000002994 raw material Substances 0.000 claims abstract description 18
- FEPBITJSIHRMRT-UHFFFAOYSA-N 4-hydroxybenzenesulfonic acid Chemical compound OC1=CC=C(S(O)(=O)=O)C=C1 FEPBITJSIHRMRT-UHFFFAOYSA-N 0.000 claims abstract description 16
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims description 50
- 229920000767 polyaniline Polymers 0.000 claims description 19
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 17
- 238000000465 moulding Methods 0.000 claims description 17
- 229920000123 polythiophene Polymers 0.000 claims description 17
- 239000002131 composite material Substances 0.000 claims description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 14
- DLINORNFHVEIFE-UHFFFAOYSA-N hydrogen peroxide;zinc Chemical compound [Zn].OO DLINORNFHVEIFE-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 6
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims 1
- 229910000077 silane Inorganic materials 0.000 claims 1
- ZJHHPAUQMCHPRB-UHFFFAOYSA-N urea urea Chemical compound NC(N)=O.NC(N)=O ZJHHPAUQMCHPRB-UHFFFAOYSA-N 0.000 claims 1
- 238000005452 bending Methods 0.000 abstract description 10
- 230000006835 compression Effects 0.000 abstract description 7
- 238000007906 compression Methods 0.000 abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 5
- 239000001257 hydrogen Substances 0.000 abstract description 5
- 238000002156 mixing Methods 0.000 abstract description 2
- 238000000748 compression moulding Methods 0.000 abstract 1
- 238000001035 drying Methods 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 28
- 238000005516 engineering process Methods 0.000 description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 6
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 229940074391 gallic acid Drugs 0.000 description 3
- 235000004515 gallic acid Nutrition 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- AWFYPPSBLUWMFQ-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(1,4,6,7-tetrahydropyrazolo[4,3-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=C2 AWFYPPSBLUWMFQ-UHFFFAOYSA-N 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
本发明公开了一种质子交换膜燃料电池双极板及其制备方法,所述质子交换膜燃料电池双极板,以重量份为单位,包括以下原料:脲醛树脂6‑10份、碳化硅15‑25份、石墨烯0.3‑0.5份、分散剂POLYRON 2‑4份、丙烯酸酯类调节剂1‑2份、701粉增强剂0.6‑0.9份、对羟基苯磺酸2‑6份、环氧丙氧丙基三甲氧基硅烷1.5‑2.5份、导电膜溶液2‑3.5份。所述质子交换膜燃料电池双极板是通过粉碎、混合、干燥、模压成型、脱模、热处理、涂膜等步骤制得的。本发明的质子交换膜燃料电池双极板不仅具有较高的电导率、热传导率、抗弯强度和抗压强度,而且也具有较高的硬度和耐氢腐蚀性性能。
Description
【技术领域】
本发明属于燃料电池双极板技术领域,具体涉及一种质子交换膜燃料电池双极板及其制备方法。
【背景技术】
质子交换膜燃料电池(PEMFC)不仅具有一般燃料电池所具有的高效率、无污染、无噪声、可连续工作的特点,而且还具有功率密度高、工作温度低、启动快、使用寿命长等优点。在固定电站、电动车、军用特种电源、可移动电源等方面都有广阔的应用前景,已引起越来越多国家和企业的重视。目前制约PEMFC产业化发展的关键因素是成本与寿命。
双极板是质子交换膜燃料电池的关键材料之一。石墨双极板电导率、热传导率高但是孔隙率大、机械强度低、重量大、加工性能差、成本高;金属材料双极板的强度高、加工性能好,但是工序繁杂,耐氢腐蚀性性能差,成本高。
石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”。
因此,开发将石墨烯和金属材料双优点结合制备电导率、热传导率高,高强度和耐氢腐蚀性性能好的质子交换膜燃料电池双极板,是当前国内外研究的技术领域。
【发明内容】
本发明要解决的技术问题是提供一种质子交换膜燃料电池双极板及其制备方法,以解决现有质子交换膜燃料电池双极板电导率、热传导率高,高强度和耐氢腐蚀性性能好不能同时并存的技术问题。
为了解决以上技术问题,本发明采用以下技术方案:
一种质子交换膜燃料电池双极板,以重量份为单位,包括以下原料:脲醛树脂6-10份、碳化硅15-25份、石墨烯0.3-0.5份、分散剂POLYRON 2-4份、丙烯酸酯类调节剂1-2份、701粉增强剂0.6-0.9份、对羟基苯磺酸2-6份、环氧丙氧丙基三甲氧基硅烷1.5-2.5份、导电膜溶液2-3.5份。
本发明还提供一种质子交换膜燃料电池双极板的制备方法,包括以下步骤:
S1:将碳化硅、石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉增强剂混合,在磁场强度为6500-7000GS、超声波功率为420-580W、温度为65-75℃、转速为160-310r/min的条件下粉碎1.5-3h,制得基板原料粉末;
S2:向步骤S1制得的基板原料粉末加入脲醛树脂、对羟基苯磺酸、环氧丙氧丙基三甲氧基硅烷,在温度为50-55℃、转速为160-200r/min的条件下超声震荡20-35min至分散均匀,制得基板粘合物;
S3:将步骤S2制得的基板粘合物放入烘箱中,在温度为200-300℃下烘40-65min至含水量≦5%,制得基板模压粉末;
S4:将步骤S3制得的基板模压粉末在温度为35-50℃、压力为55-70MPa、合模时间为10-20s的条件下合模4-7次后脱模,脱模后材料放在丙酮中清洗并在60-75℃下干燥40-65min,制得复合材料基板;
S5:将纳米二氧化锌、纳米银粉末、聚苯胺、聚噻吩按重量比例为8-8.5︰0.3-0.5︰1.4-2︰0.8-1.2,超声波功率为220-280W、温度为35-40℃、时间为40-65min的条件下超声分散到聚苯胺和聚噻吩溶液中,制得导电膜溶液;
S6:将步骤S5制得的导电膜溶液以恒电流方法电涂至步骤S4制得的复合材料基板上形成电涂层,制得质子交换膜燃料电池双极板。
优选地,步骤S1中所述基板原料粉末的粒径为20-100nm。
优选地,步骤S3中所述基板模压粉末的粒径为55-125nm。
优选地,步骤S5中所述导电膜溶液的浓度为11-15g/L。
优选地,步骤S6中所述电涂层的厚度为10-15μm。
本发明具有以下有益效果:
(1)磁场本身具有磁场能,与电场相似,磁场是物质的一种存在形式,它携带着一定的能量,可使物质充斥能力而被活化,更有利于物质发生作用。超声波由于频率高,能量大,被介质吸收时能产生显著的热效应、化学效应,可促使发生或加速某些化学反应。步骤S1中将碳化硅、石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉增强剂混合,在磁场强度为6500-7000GS、超声波功率为420-580W作用下粉碎,一是碳化硅、石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉强剂在磁场作用下,使得碳化硅、石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉强剂微粒子周围充斥着磁场能而被活化,极大提高了组分之间的作用发生率;二是在功率为420-580W的超声波作用下电磁能被碳化硅、石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉强剂吸收,利用超声波巨大的能量使碳化硅、石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉强剂做剧烈的受迫振动而粉碎得到微小粒子,产生显著的热效应,加速反应、分散作用;三是超声波功率设为420-580W,超声波功率太大致使丙烯酸酯类调节剂发生质变,则丙烯酸酯类调节剂起不到调节作用,超声波功率太小,碳化硅、石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉强剂之间发生作用速度相对较慢,大大影响了制备质子交换膜燃料电池双极板周期。步骤S2中超声震荡有利于基板原料粉末、脲醛树脂、对羟基苯磺酸、环氧丙氧丙基三甲氧基硅之间分散均匀,如不增加超声震荡,一是分散不均匀,二是也会影大大响制备质子交换膜燃料电池双极板周期。步骤S5中将纳米二氧化锌、纳米银粉末、聚苯胺、聚噻吩混合并在超声波功率为220-280W下分散,假如设置超声波功率太大,聚苯胺发生质变,聚苯胺起不了作用,那么纳米二氧化锌、纳米银粉末仅分散于聚苯胺聚噻吩中,分散效果大打折扣;假如超声波功率太小,纳米二氧化锌、纳米银粉末、聚苯胺、聚噻吩之间分散速度太慢,也极大影响了制备质子交换膜燃料电池双极板的时间。
(2)由实施例1-4和对比例1、6的数据可见,本发明的质子交换膜燃料电池双极板,电导率、热传导率有所提高,电池双极板由单一的金属变成金属掺杂金属可以使得电池双极板电导率、热传导率有所提高;
(3)由实施例4和对比例1-5的数据可见,本发明的质子交换膜燃料电池双极板,电池双极板电涂层掺杂少量银粉可以使耐氢腐蚀性性能提高;
(4)由实施例3和对比例6-10的数据可见,本发明的质子交换膜燃料电池双极板,相对现有电池双极板的硬度有较大的提高,重量也明显减少,说明池双极板由单一的金属变成金属掺杂金属可以使得硬度有显著的提升;
(5)由实施例1-4和对比例16的数据可知,本发明的质子交换膜燃料电池双极板的抗弯强度和抗压强度均高于现有技术制得的质子交换膜燃料电池双极板的抗弯强度和抗压强度;
(6)由实施例3和对比例11-15的数据可知,石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉增强剂在制备质子交换膜燃料电池双极板中起到了协同作用,提高了抗弯强度和抗压强度,这可能是石墨烯是具有极高强度的材料、分散剂POLYRON具有分散作用、丙烯酸酯类调节剂具有调节性能的作用、701粉增强剂具有增强作用,提高抗弯强度和抗压强度。
【具体实施方式】
为便于更好地理解本发明,通过以下实例加以说明,这些实例属于本发明的保护范围,但不限制本发明的保护范围。
在实施例中,所述质子交换膜燃料电池双极板,以重量份为单位,包括以下原料:脲醛树脂6-10份、碳化硅15-25份、石墨烯0.3-0.5份、分散剂POLYRON2-4份、丙烯酸酯类调节剂1-2份、701粉增强剂0.6-0.9份、对羟基苯磺酸2-6份、环氧丙氧丙基三甲氧基硅烷1.5-2.5份、导电膜溶液2-3.5份;
所述的质子交换膜燃料电池双极板的制备方法,包括以下步骤:
S1:将碳化硅、石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉增强剂混合,在磁场强度为6500-7000GS、超声波功率为420-580W、温度为65-75℃、转速为160-310r/min的条件下粉碎1.5-3h,制得基板原料粉末,所述基板原料粉末的粒径为20-100nm;
S2:向步骤S1制得的基板原料粉末加入脲醛树脂、对羟基苯磺酸、环氧丙氧丙基三甲氧基硅烷,在温度为50-55℃、转速为160-200r/min的条件下超声震荡20-35min至分散均匀,制得基板粘合物;
S3:将步骤S2制得的基板粘合物放入烘箱中,在温度为200-300℃下烘40-65min至含水量≦5%,制得基板模压粉末,所述基板模压粉末的粒径为55-125nm;
S4:将步骤S3制得的基板模压粉末在温度为35-50℃、压力为55-70MPa、合模时间为10-20s的条件下合模4-7次后脱模,脱模后材料放在丙酮中清洗并在60-75℃下干燥40-65min,制得复合材料基板;
S5:将纳米二氧化锌、纳米银粉末、聚苯胺、聚噻吩按重量比例为8-8.5︰0.3-0.5︰1.4-2︰0.8-1.2,超声波功率为220-280W、温度为35-40℃、时间为40-65min的条件下超声分散到聚苯胺和聚噻吩溶液中,制得导电膜溶液,所述导电膜溶液的浓度为11-15g/L;
S6:将步骤S5制得的导电膜溶液以恒电流方法电涂至步骤S4制得的复合材料基板上形成厚度为10-15μm的电涂层,制得质子交换膜燃料电池双极板。
下面通过更具体实施例对本发明进行说明。
实施例1
一种质子交换膜燃料电池双极板,以重量份为单位,包括以下原料:脲醛树脂6.2份、碳化硅15.5份、石墨烯0.3份、分散剂POLYRON 2份、丙烯酸酯类调节剂1份、701粉增强剂0.6份、对羟基苯磺酸2份、环氧丙氧丙基三甲氧基硅烷1.5份、导电膜溶液2份;
所述的质子交换膜燃料电池双极板的制备方法,包括以下步骤:
S1:将碳化硅、石墨烯、分散剂POLYRON、聚丙烯酸丁酯、701粉增强剂混合,在磁场强度为6500GS、超声波功率为420W、温度为65℃、转速为160r/min的条件下粉碎1.5h,制得基板原料粉末;
S2:向步骤S1制得的基板原料粉末加入脲醛树脂、对羟基苯磺酸、环氧丙氧丙基三甲氧基硅烷,在温度为50℃、转速为160r/min的条件下超声震荡20min至分散均匀,制得基板粘合物;
S3:将步骤S2制得的基板粘合物放入烘箱中,在温度为200℃下烘65min至含水量≦5%,制得基板模压粉末;
S4:将步骤S3制得的基板模压粉末在温度为35℃、压力为55MPa、合模时间为10s的条件下合模4次后脱模,脱模后材料放在丙酮中清洗并在60℃下干燥65min,制得复合材料基板;
S5:将纳米二氧化锌、纳米银粉末、聚苯胺、聚噻吩按重量比例为8︰0.3︰1.4︰0.8,超声波功率为220W、温度为35℃、时间为40min的条件下超声分散到聚苯胺和聚噻吩溶液中,制得导电膜溶液,所述导电膜溶液的浓度为11g/L;
S6:将步骤S5制得的导电膜溶液以恒电流方法电涂至步骤S4制得的复合材料基板上形成厚度为10μm得到电涂层,制得质子交换膜燃料电池双极板。
实施例2
一种质子交换膜燃料电池双极板,以重量份为单位,包括以下原料:脲醛树脂8.5份、碳化硅20份、石墨烯0.4份、分散剂POLYRON 3份、丙烯酸酯类调节剂1.6份、701粉增强剂0.8份、对羟基苯磺酸4份、环氧丙氧丙基三甲氧基硅烷2份、导电膜溶液2.8份;
所述的质子交换膜燃料电池双极板的制备方法,包括以下步骤:
S1:将碳化硅、石墨烯、分散剂POLYRON、丙烯酸羟乙酯、701粉增强剂混合,在磁场强度为6700GS、超声波功率为480W、温度为67℃、转速为220r/min的条件下粉碎1.8h,制得基板原料粉末;
S2:向步骤S1制得的基板原料粉末加入脲醛树脂、对羟基苯磺酸、环氧丙氧丙基三甲氧基硅烷,在温度为52℃、转速为177r/min的条件下超声震荡28min至分散均匀,制得基板粘合物;
S3:将步骤S2制得的基板粘合物放入烘箱中,在温度为250℃下烘52min至含水量≦5%,制得基板模压粉末;
S4:将步骤S3制得的基板模压粉末在温度为40℃、压力为60MPa、合模时间为12s的条件下合模5次后脱模,脱模后材料放在丙酮中清洗并在65℃下干燥55min,制得复合材料基板;
S5:将纳米二氧化锌、纳米银粉末、聚苯胺、聚噻吩按重量比例为8.2︰0.3︰1.6︰0.9,超声波功率为240W、温度为37℃、时间为50min的条件下超声分散到聚苯胺和聚噻吩溶液中,制得导电膜溶液,所述导电膜溶液的浓度为12g/L;
S6:将步骤S5制得的导电膜溶液以恒电流方法电涂至步骤S4制得的复合材料基板上形成厚度为12μm得到电涂层,制得质子交换膜燃料电池双极板。
实施例3
一种质子交换膜燃料电池双极板,以重量份为单位,包括以下原料:脲醛树脂9.6份、碳化硅24份、石墨烯0.5份、分散剂POLYRON 4份、丙烯酸酯类调节剂2份、701粉增强剂0.9份、对羟基苯磺酸6份、环氧丙氧丙基三甲氧基硅烷2.5份、导电膜溶液3.5份;
所述的质子交换膜燃料电池双极板的制备方法,包括以下步骤:
S1:将碳化硅、石墨烯、分散剂POLYRON、甲基丙烯酸羟乙酯、701粉增强剂混合,在磁场强度为7000GS、超声波功率为580W、温度为75℃、转速为310r/min的条件下粉碎3h,制得基板原料粉末;
S2:向步骤S1制得的基板原料粉末加入脲醛树脂、对羟基苯磺酸、环氧丙氧丙基三甲氧基硅烷,在温度为55℃、转速为200r/min的条件下超声震荡35min至分散均匀,制得基板粘合物;
S3:将步骤S2制得的基板粘合物放入烘箱中,在温度为300℃下烘40min至含水量≦5%,制得基板模压粉末;
S4:将步骤S3制得的基板模压粉末在温度为50℃、压力为70MPa、合模时间为20s的条件下合模7次后脱模,脱模后材料放在丙酮中清洗并在75℃下干燥40min,制得复合材料基板;
S5:将纳米二氧化锌、纳米银粉末、聚苯胺、聚噻吩按重量比例为8.5︰0.5︰2︰1.2,超声波功率为280W、温度为40℃、时间为65min的条件下超声分散到聚苯胺和聚噻吩溶液中,制得导电膜溶液,所述导电膜溶液的浓度为15g/L;
S6:将步骤S5制得的导电膜溶液以恒电流方法电涂至步骤S4制得的复合材料基板上形成厚度为15μm得到电涂层,制得质子交换膜燃料电池双极板。
实施例4
一种质子交换膜燃料电池双极板,以重量份为单位,包括以下原料:脲醛树脂9份、碳化硅22份、石墨烯0.4份、分散剂POLYRON3.5份、丙烯酸酯类调节剂1.8份、701粉增强剂0.8份、对羟基苯磺酸5份、环氧丙氧丙基三甲氧基硅烷2.3份、导电膜溶液3份;
所述的质子交换膜燃料电池双极板的制备方法,包括以下步骤:
S1:将碳化硅、石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉增强剂混合,在磁场强度为6880GS、超声波功率为550W、温度为70℃、转速为275r/min的条件下粉碎2.7h,制得基板原料粉末;
S2:向步骤S1制得的基板原料粉末加入脲醛树脂、对羟基苯磺酸、环氧丙氧丙基三甲氧基硅烷,在温度为53℃、转速为180r/min的条件下超声震荡33min至分散均匀,制得基板粘合物;
S3:将步骤S2制得的基板粘合物放入烘箱中,在温度为280℃下烘45min至含水量≦5%,制得基板模压粉末;
S4:将步骤S3制得的基板模压粉末在温度为44℃、压力为66MPa、合模时间为18s的条件下合模6次后脱模,脱模后材料放在丙酮中清洗并在70℃下干燥45min,制得复合材料基板;
S5:将纳米二氧化锌、纳米银粉末、聚苯胺、聚噻吩按重量比例为8.4︰0.4︰1.8︰1.1,超声波功率为267W、温度为38℃、时间为58min的条件下超声分散到聚苯胺和聚噻吩溶液中,制得导电膜溶液,所述导电膜溶液的浓度为14g/L;
S6:将步骤S5制得的导电膜溶液以恒电流方法电涂至步骤S4制得的复合材料基板上形成厚度为13μm得到电涂层,制得质子交换膜燃料电池双极板。
对比例1
与实施例3的制备工艺基本相同,唯有不同的是制备电涂层的原料中缺少银粉。
对比例2
与实施例3的制备工艺基本相同,唯有不同的是制备电涂层的原料中银粉的量是实施例3中电涂层的十分之一。
对比例3
与实施例3的制备工艺基本相同,唯有不同的是制备电涂层的原料中银粉的量是实施例3中电涂层的九分之一。
对比例4
与实施例3的制备工艺基本相同,唯有不同的是制备电涂层的原料中银粉的量是实施例3中电涂层的八分之一。
对比例5
与实施例3的制备工艺基本相同,唯有不同的是制备电涂层的原料中银粉的量是实施例3中电涂层的七分之一。
对比例6
与实施例3的制备工艺基本相同,唯有不同的是复合材料基板缺少二氧化锌。
对比例7
与实施例3的制备工艺基本相同,唯有不同的是双极板由单一的金属掺杂二氧化锌的量是实施例3中掺杂量的五分之一。
对比例8
与实施例3的制备工艺基本相同,唯有不同的是双极板由单一的金属掺杂二氧化锌的量是实施例3中掺杂量的七分之一。
对比例9
与实施例3的制备工艺基本相同,唯有不同的是双极板由单一的金属掺杂二氧化锌的量是实施例3中掺杂量的八分之一。
对比例10
与实施例3的制备工艺基本相同,唯有不同的是双极板由单一的金属掺杂二氧化锌的量是实施例3中掺杂量的九分之一。
测量实施例1-4和对比例1-10的质子交换膜燃料电池双极板的硬度、腐蚀性能、电导率、热传导率,结果见下表:
由上表可知:(1)由实施例1-4和对比例1、6的数据可见,本发明的质子交换膜燃料电池双极板,电导率、热传导率有所提高,电池双极板由单一的金属变成金属掺杂金属可以使得电池双极板电导率、热传导率有所提高;
(2)由实施例4和对比例1-5的数据可见,本发明的质子交换膜燃料电池双极板,电池双极板电涂层掺杂少量银粉可以使耐氢腐蚀性性能提高;
(3)由实施例3和对比例6-10的数据可见,本发明的质子交换膜燃料电池双极板,相对现有电池双极板的硬度有较大的提高,重量也明显减少,说明池双极板由单一的金属变成金属掺杂金属可以使得硬度有显著的提升。
对比例11
与实施例3的制备工艺基本相同,唯有不同的是制备质子交换膜燃料电池双极板的原料中缺少石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉增强剂。
对比例12
与实施例3的制备工艺基本相同,唯有不同的是制备质子交换膜燃料电池双极板的原料中缺少石墨烯。
对比例13
与实施例3的制备工艺基本相同,唯有不同的是制备质子交换膜燃料电池双极板的原料中缺少分散剂POLYRON。
对比例14
与实施例3的制备工艺基本相同,唯有不同的是制备质子交换膜燃料电池双极板的原料中缺少丙烯酸酯类调节剂。
对比例15
与实施例3的制备工艺基本相同,唯有不同的是制备质子交换膜燃料电池双极板的原料中缺少701粉增强剂。
对比例16
采用专利文献“质子交换膜燃料电池复合材料双极板及生产方法(专利号:ZL2011101455547)”中的实施例1制备双极板。
测量实施例1-4和对比例11-16的质子交换膜燃料电池双极板的抗弯强度和抗压强度,结果见下表:
由上表可知:(1)由实施例1-4和对比例16的数据可知,本发明的质子交换膜燃料电池双极板的抗弯强度和抗压强度均高于现有技术制得的质子交换膜燃料电池双极板的抗弯强度和抗压强度;
(2)由实施例3和对比例11-15的数据可知,石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉增强剂在制备质子交换膜燃料电池双极板中起到了协同作用,提高了抗弯强度和抗压强度,这可能是石墨烯是具有极高强度的材料、分散剂POLYRON具有分散作用、丙烯酸酯类调节剂具有调节性能的作用、701粉增强剂具有增强作用,提高抗弯强度和抗压强度。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (6)
1.一种质子交换膜燃料电池双极板,其特征在于,以重量份为单位,包括以下原料:脲醛树脂6-10份、碳化硅15-25份、石墨烯0.3-0.5份、分散剂POLYRON2-4份、丙烯酸酯类调节剂1-2份、701粉增强剂0.6-0.9份、对羟基苯磺酸2-6份、环氧丙氧丙基三甲氧基硅烷1.5-2.5份、导电膜溶液2-3.5份。
2.一种根据权利要求1所述的质子交换膜燃料电池双极板的制备方法,其特征在于,包括以下步骤:
S1:将碳化硅、石墨烯、分散剂POLYRON、丙烯酸酯类调节剂、701粉增强剂混合,在磁场强度为6500-7000GS、超声波功率为420-580W、温度为65-75℃、转速为160-310r/min的条件下粉碎1.5-3h,制得基板原料粉末;
S2:向步骤S1制得的基板原料粉末加入脲醛树脂、对羟基苯磺酸、环氧丙氧丙基三甲氧基硅烷,在温度为50-55℃、转速为160-200r/min的条件下超声震荡20-35min至分散均匀,制得基板粘合物;
S3:将步骤S2制得的基板粘合物放入烘箱中,在温度为200-300℃下烘40-65min至含水量≦5%,制得基板模压粉末;
S4:将步骤S3制得的基板模压粉末在温度为35-50℃、压力为55-70MPa、合模时间为10-20s的条件下合模4-7次后脱模,脱模后材料放在丙酮中清洗并在60-75℃下干燥40-65min,制得复合材料基板;
S5:将纳米二氧化锌、纳米银粉末、聚苯胺、聚噻吩按重量比例为8-8.5︰0.3-0.5︰1.4-2︰0.8-1.2,超声波功率为220-280W、温度为35-40℃、时间为40-65min的条件下超声分散到聚苯胺和聚噻吩溶液中,制得导电膜溶液;
S6:将步骤S5制得的导电膜溶液以恒电流方法电涂至步骤S4制得的复合材料基板上形成电涂层,制得质子交换膜燃料电池双极板。
3.根据权利要求2所述的质子交换膜燃料电池双极板的制备方法,其特征在于,步骤S1中所述基板原料粉末的粒径为20-100nm。
4.根据权利要求2所述的质子交换膜燃料电池双极板的制备方法,其特征在于,步骤S3中所述基板模压粉末的粒径为55-125nm。
5.根据权利要求2所述的质子交换膜燃料电池双极板的制备方法,其特征在于,步骤S5中所述导电膜溶液的浓度为11-15g/L。
6.根据权利要求2所述的质子交换膜燃料电池双极板的制备方法,其特征在于,步骤S6中所述电涂层的厚度为10-15μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710797491.0A CN107611458B (zh) | 2017-09-06 | 2017-09-06 | 一种质子交换膜燃料电池双极板及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710797491.0A CN107611458B (zh) | 2017-09-06 | 2017-09-06 | 一种质子交换膜燃料电池双极板及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107611458A true CN107611458A (zh) | 2018-01-19 |
CN107611458B CN107611458B (zh) | 2020-07-24 |
Family
ID=61062269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710797491.0A Active CN107611458B (zh) | 2017-09-06 | 2017-09-06 | 一种质子交换膜燃料电池双极板及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107611458B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111668508A (zh) * | 2020-06-16 | 2020-09-15 | 氢源科技(赣州)有限公司 | 一种氢燃料电池双极板流道结构 |
CN113036171A (zh) * | 2021-03-26 | 2021-06-25 | 赵冬冬 | 一种燃料电池双极板及其成型工艺 |
CN113690456A (zh) * | 2021-08-06 | 2021-11-23 | 米库玻璃纤维增强塑料泰州有限责任公司 | 用于燃料电池的高性能石墨烯双极板及其制备方法 |
CN114256476A (zh) * | 2022-03-01 | 2022-03-29 | 杭州德海艾科能源科技有限公司 | 一种液流电池用导电高分子双极板及其制备方法 |
CN119230862A (zh) * | 2024-12-03 | 2024-12-31 | 杭州德海艾科能源科技有限公司 | 一种钒电池用碳网格衍生的多层复合双极板及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1919015A1 (en) * | 2005-06-17 | 2008-05-07 | University of Yamanashi | Metal separator for fuel cell and manufacturing method thereof |
CN102244271A (zh) * | 2011-06-01 | 2011-11-16 | 南通大学 | 质子交换膜燃料电池复合材料双极板及生产方法 |
CN103456972A (zh) * | 2013-09-23 | 2013-12-18 | 上海大学 | 强磁场下制备磺化聚苯硫醚质子交换膜的方法 |
CN105322180A (zh) * | 2014-08-04 | 2016-02-10 | 赵坚强 | 一种新型、环保纯铅铅酸蓄电池 |
CN106025290A (zh) * | 2016-05-29 | 2016-10-12 | 合肥国轩高科动力能源有限公司 | 一种碳-陶瓷涂覆铝箔集流体及制备方法 |
-
2017
- 2017-09-06 CN CN201710797491.0A patent/CN107611458B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1919015A1 (en) * | 2005-06-17 | 2008-05-07 | University of Yamanashi | Metal separator for fuel cell and manufacturing method thereof |
CN102244271A (zh) * | 2011-06-01 | 2011-11-16 | 南通大学 | 质子交换膜燃料电池复合材料双极板及生产方法 |
CN103456972A (zh) * | 2013-09-23 | 2013-12-18 | 上海大学 | 强磁场下制备磺化聚苯硫醚质子交换膜的方法 |
CN105322180A (zh) * | 2014-08-04 | 2016-02-10 | 赵坚强 | 一种新型、环保纯铅铅酸蓄电池 |
CN106025290A (zh) * | 2016-05-29 | 2016-10-12 | 合肥国轩高科动力能源有限公司 | 一种碳-陶瓷涂覆铝箔集流体及制备方法 |
Non-Patent Citations (2)
Title |
---|
H. ZAMORA, J 等: "SiCTiC as catalyst support for HT-PEMFCs. Influence of Ti content", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 * |
JUSTO LOBATO 等: "Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111668508A (zh) * | 2020-06-16 | 2020-09-15 | 氢源科技(赣州)有限公司 | 一种氢燃料电池双极板流道结构 |
CN113036171A (zh) * | 2021-03-26 | 2021-06-25 | 赵冬冬 | 一种燃料电池双极板及其成型工艺 |
CN113690456A (zh) * | 2021-08-06 | 2021-11-23 | 米库玻璃纤维增强塑料泰州有限责任公司 | 用于燃料电池的高性能石墨烯双极板及其制备方法 |
CN113690456B (zh) * | 2021-08-06 | 2022-07-22 | 米库玻璃纤维增强塑料泰州有限责任公司 | 用于燃料电池的高性能石墨烯双极板及其制备方法 |
CN114256476A (zh) * | 2022-03-01 | 2022-03-29 | 杭州德海艾科能源科技有限公司 | 一种液流电池用导电高分子双极板及其制备方法 |
CN119230862A (zh) * | 2024-12-03 | 2024-12-31 | 杭州德海艾科能源科技有限公司 | 一种钒电池用碳网格衍生的多层复合双极板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107611458B (zh) | 2020-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107611458A (zh) | 一种质子交换膜燃料电池双极板及其制备方法 | |
CN109810435B (zh) | 一种磷酸掺杂氧化石墨烯及聚偏氟乙烯复合膜的制备方法 | |
CN105521804B (zh) | 一种蜂窝状石墨烯/碳化钨/铂金复合电催化剂的制备方法与应用 | |
CN102775705B (zh) | 一种聚合物基复合材料及其制备方法 | |
CN103682379B (zh) | 一种燃料电池用金属掺杂的含氮炭基催化剂及其应用 | |
CN102773114B (zh) | 石墨纳米薄片上负载氮化物的方法及其用途 | |
CN109273732B (zh) | 一种具有质子传输功能的钴包覆碳载铂催化剂及其制备方法 | |
CN107680832A (zh) | 氮掺杂碳材料的制备方法及氮掺杂碳材料及其制备得到的锂离子电容器 | |
CN114784307B (zh) | 一种石墨烯增强膨胀石墨/聚酰亚胺-聚醚醚酮复合双极板及其制备方法 | |
CN103531826B (zh) | 一种基于牺牲模板法构建直接甲醇燃料电池纳米多孔结构膜电极的方法 | |
CN108598507A (zh) | 一种复合纳米材料的制备方法 | |
CN107959027A (zh) | 一种锂离子电池硅基负极粘结剂及含有该粘结剂的负极片的制备方法 | |
CN109023416A (zh) | NiCoP@石墨烯气凝胶高效析氢复合材料的制备方法 | |
CN102064328B (zh) | 质子交换膜燃料电池用的复合材料双极板及其制作方法 | |
CN102324529A (zh) | 一种钒电池用导电塑料双极板的制备方法 | |
CN106430209A (zh) | 介孔纳米碳化钨的制备方法及产品 | |
CN104043453A (zh) | 一种负载型四氧化三钴纳米复合催化剂及应用 | |
CN103490075B (zh) | 全钒氧化还原液流电池及其端、双电极以及制备方法 | |
CN102437334A (zh) | 一种碳纳米管/LiFePO4锂离子电池正极材料的微波水热合成方法 | |
Zhu et al. | Carboxylic carbon nanotube: Catalyst support material and oxygen reduction reaction of microbial fuel cells | |
CN1677730A (zh) | 一种质子交换膜燃料电池用复合双极板的制备方法 | |
CN101974207B (zh) | 一种基于纳米石墨片的高导电率复合材料及其制备方法 | |
FENG et al. | Research progress in carbon-based composite molded bipolar plates | |
CN104733710A (zh) | 一种钛酸锂负极材料及其制备方法 | |
CN108511721A (zh) | 钠离子电池负极用vc0.75@npc复合材料、制备及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200630 Address after: No.53 Baofu Road, Ganzhou economic and Technological Development Zone, Ganzhou City, Jiangxi Province Applicant after: Hydrogen source technology (Ganzhou) Co., Ltd Address before: 410205 Hunan city high tech Development Zone Changsha Changsha Lulong Road No. 199 A Lugu business center building 307 room Applicant before: CHANGSHA XIAOXIN NEW ENERGY TECHNOLOGY Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |