CN107604003A - One kind knocks out kit and its application based on linearisation CRISPR CAS9 lentiviral vector genomes - Google Patents
One kind knocks out kit and its application based on linearisation CRISPR CAS9 lentiviral vector genomes Download PDFInfo
- Publication number
- CN107604003A CN107604003A CN201710935589.8A CN201710935589A CN107604003A CN 107604003 A CN107604003 A CN 107604003A CN 201710935589 A CN201710935589 A CN 201710935589A CN 107604003 A CN107604003 A CN 107604003A
- Authority
- CN
- China
- Prior art keywords
- crispr
- cas9
- ligase
- vector
- competent cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013598 vector Substances 0.000 title claims abstract description 63
- 108091033409 CRISPR Proteins 0.000 title description 3
- 102000003960 Ligases Human genes 0.000 claims abstract description 44
- 108090000364 Ligases Proteins 0.000 claims abstract description 44
- 230000006798 recombination Effects 0.000 claims abstract description 21
- 238000005215 recombination Methods 0.000 claims abstract description 19
- 230000000692 anti-sense effect Effects 0.000 claims description 29
- 108091081021 Sense strand Proteins 0.000 claims description 22
- 108090000623 proteins and genes Proteins 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 15
- 102000004190 Enzymes Human genes 0.000 claims description 12
- 108090000790 Enzymes Proteins 0.000 claims description 12
- 239000013612 plasmid Substances 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 108091027544 Subgenomic mRNA Proteins 0.000 claims description 9
- 108091034117 Oligonucleotide Proteins 0.000 claims description 7
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 4
- 239000001110 calcium chloride Substances 0.000 claims description 4
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 4
- 239000011543 agarose gel Substances 0.000 claims description 3
- 239000001963 growth medium Substances 0.000 claims description 2
- 238000000137 annealing Methods 0.000 claims 1
- 238000003209 gene knockout Methods 0.000 abstract description 15
- 108010042407 Endonucleases Proteins 0.000 abstract description 8
- 102000004533 Endonucleases Human genes 0.000 abstract description 8
- 238000010276 construction Methods 0.000 abstract description 4
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 24
- 108020004414 DNA Proteins 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 19
- 238000005516 engineering process Methods 0.000 description 15
- 239000008367 deionised water Substances 0.000 description 13
- 229910021641 deionized water Inorganic materials 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 229950010131 puromycin Drugs 0.000 description 12
- 238000010362 genome editing Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 238000012163 sequencing technique Methods 0.000 description 8
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 7
- 108020005004 Guide RNA Proteins 0.000 description 7
- 238000010367 cloning Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 239000001888 Peptone Substances 0.000 description 6
- 108010080698 Peptones Proteins 0.000 description 6
- 230000003115 biocidal effect Effects 0.000 description 6
- 229940041514 candida albicans extract Drugs 0.000 description 6
- 239000013599 cloning vector Substances 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 235000019319 peptone Nutrition 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000012138 yeast extract Substances 0.000 description 6
- 230000004568 DNA-binding Effects 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 238000010459 TALEN Methods 0.000 description 4
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 4
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 4
- 229960000723 ampicillin Drugs 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 229920001817 Agar Polymers 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 101150019359 HSF1 gene Proteins 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 101150044014 Snx10 gene Proteins 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 101000709520 Chlamydia trachomatis serovar L2 (strain 434/Bu / ATCC VR-902B) Atypical response regulator protein ChxR Proteins 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101100124876 Homo sapiens HSF1 gene Proteins 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 101100042914 Mus musculus Snx10 gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 101000658568 Planomicrobium okeanokoites Type II restriction enzyme FokI Proteins 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005782 double-strand break Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000006780 non-homologous end joining Effects 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000010809 targeting technique Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了一种基于CRISPR‑CAS9慢病毒载体的基因敲除试剂盒,该试剂盒包括线性化的CRISPR‑CAS9慢病毒载体和对应的T4连接酶及感受态细胞,其特征在于所述的线性化的CRISPR‑CAS9慢病毒载体由核酸内切酶处理的环状载体构成,所述的T4连接酶是优化的T4连接酶,所述的感受态细胞是具有抑制重组特性的Stbl3感受态。该试剂盒能直接进行CRISPR‑CAS9慢病毒载体的构建,其比国内外商品化试剂盒操作方便、且构建重组得速度快,可有效提高目前基于CRISPR‑CAS9慢病毒载体的构建效率,降低基因敲除的费用。
The invention discloses a gene knockout kit based on a CRISPR-CAS9 lentiviral vector, which includes a linearized CRISPR-CAS9 lentiviral vector, corresponding T4 ligase and competent cells, and is characterized in that the The linearized CRISPR-CAS9 lentiviral vector is composed of an endonuclease-treated circular vector, the T4 ligase is an optimized T4 ligase, and the competent cells are Stbl3 competent with the property of inhibiting recombination. The kit can directly construct the CRISPR‑CAS9 lentiviral vector, which is more convenient to operate than domestic and foreign commercial kits, and has a faster construction and recombination speed, which can effectively improve the construction efficiency of the current CRISPR‑CAS9-based lentiviral vector and reduce gene Knockout fee.
Description
技术领域technical field
本发明涉及生物领域,具体涉及一种研究用配制品,特别是用于基于CRISPR-CAS9慢病毒载体的基因敲除试剂盒。The invention relates to the field of biology, in particular to a preparation for research, in particular to a gene knockout kit based on a CRISPR-CAS9 lentiviral vector.
背景技术Background technique
基因修饰是目前生物领域的重要问题,近年来,基因组编辑技术的快速发展为生物学研究带来了新纪元。与传统的基因克隆技术不同,基因组编辑技术可直接在基因组上进行DNA序列的敲除、插人、定点突变以及组合编辑等,实现基因功能与调控元件的系统研究,在工业生物工程等方面具有广阔的应用前景。早期,基因组编辑技术主要利用同源重组介导的打靶技术,但由于效率较低,极大地限制了其应用。为解决这一难题,一系列人工核酸内切酶介导的基因组编辑技术被开发,可通过在基因组特定位置上形成DNA双链断裂,借助于细胞自身的修复系统如非同源末端连接或同源重组,从而实现在不同生物与细胞类型中有效的定点基因组编辑。目前,主要有4种不同的人工核酸内切酶已应用于基因组编辑:巨核酶技术、锌指核酸内切酶(ZFN)、类转录激活因子效应物核酸酶(TALEN)。与RNA靶向DNA内切酶Cas9、ZFN与TALEN均可通过蛋白一DNA相互作用识别基因组上的特定DNA序列。巨核酶技术具有核酸内切酶结构域与DNA结合域,而ZFN与TALEN分别具有可识别3个与1个核苷酸的DNA结合域,需与核酸内切酶FokI的内切酶结构域形成融合蛋白后,完成基因组特定位点的切割。但这些技术各有不足,如巨核酶技术的氨基酸残基与DNA靶序列之间无明确特异性;ZFN的DNA结合域则会受DNA靶序列上下游的影响,需通过构建不同的融合蛋白来定位到不同的DNA序列,构建操作较为繁琐,成本较高,脱靶风险较高。RNA靶向内切酶CRISPR—Cas9介导的基因组编辑技术则通过一段短的引导RNA(guideRNA)来识别特定的DNA序列,只需通过改变这段引导RNA序列即可使Cas9定位到新的DNA序列。该技术已被应用于多种生物,包括人、小鼠、大鼠、斑马鱼、秀丽隐杆线虫、植物及细菌。其技术也不断被拓展,如利用多个引导RNA序列可同时进行基因组上多个不同位点的编辑;将其DNA结合域与不同转录调控蛋白相融合,可实现对特定基因的转录激活或抑制;将对特定序列的调控蛋白模块与基因组或表观基因组的修饰酶相融合,则可实现对基因组的动态控制。Gene modification is an important issue in the current biological field. In recent years, the rapid development of genome editing technology has brought a new era to biological research. Different from traditional gene cloning technology, genome editing technology can directly perform DNA sequence knockout, insertion, site-directed mutation, and combined editing on the genome to realize systematic research on gene function and regulatory elements, and has great potential in industrial bioengineering. Broad application prospects. In the early days, genome editing technology mainly used targeting technology mediated by homologous recombination, but its application was greatly limited due to its low efficiency. To solve this problem, a series of artificial endonuclease-mediated genome editing technologies have been developed, which can form DNA double-strand breaks at specific positions in the genome, with the help of the cell's own repair system such as non-homologous end joining or homologous end-joining. source recombination, enabling efficient site-directed genome editing in different organisms and cell types. Currently, four different artificial endonucleases have been applied to genome editing: meganuclease technology, zinc finger endonucleases (ZFNs), and transcription activator-like effector nucleases (TALENs). Cas9, ZFN and TALEN can recognize specific DNA sequences on the genome through protein-DNA interactions with RNA-targeting DNA endonucleases. Megakaryozyme technology has an endonuclease domain and a DNA binding domain, while ZFN and TALEN have DNA binding domains that can recognize 3 and 1 nucleotides respectively, and need to be formed with the endonuclease domain of the endonuclease FokI After the fusion protein, cleavage at a specific site in the genome is accomplished. However, these technologies have their own shortcomings. For example, there is no clear specificity between the amino acid residues of meganuclease technology and the DNA target sequence; the DNA binding domain of ZFN will be affected by the upstream and downstream of the DNA target sequence, and different fusion proteins need to be constructed. To target different DNA sequences, the construction operation is cumbersome, the cost is high, and the risk of off-target is high. RNA-targeting endonuclease CRISPR—Cas9-mediated genome editing technology uses a short guide RNA (guideRNA) to identify a specific DNA sequence, and Cas9 can be positioned to a new DNA only by changing the guide RNA sequence sequence. This technique has been applied to a variety of organisms, including humans, mice, rats, zebrafish, C. elegans, plants, and bacteria. Its technology has also been continuously expanded. For example, multiple guide RNA sequences can be used to edit multiple different sites on the genome at the same time; its DNA binding domain can be fused with different transcriptional regulatory proteins to achieve transcriptional activation or inhibition of specific genes. ; The dynamic control of the genome can be achieved by fusing the regulatory protein module for a specific sequence with the modification enzyme of the genome or epigenome.
慢病毒是目前转染领域运用最多的一种技术,通过构建慢病毒包装质粒可以高效的将目的基因整合到细胞的染色体上,实现难转染细胞的高效转染和达到降低昂贵转染试剂的效果。Lentivirus is currently the most widely used technology in the field of transfection. By constructing a lentiviral packaging plasmid, the target gene can be efficiently integrated into the chromosome of the cell, achieving efficient transfection of difficult-to-transfect cells and reducing the cost of expensive transfection reagents. Effect.
CRISPR—Cas9介导的基因组编辑技术以其操作简单、特异性高的特点成为研究热点,而目前仍缺少商业化的试剂盒用于基因编辑技术的操作,因此研发准确可靠、简单实用、适合各种研究者操作的CRISPR-CAS9慢病毒载体基因敲除试剂盒为当前迫切之需,本发明结合慢病毒载体的高效转染特性和CRISPR-CAS9技术的高效基因编辑特征,将解决该领域的重要难题。CRISPR-Cas9-mediated genome editing technology has become a research hotspot due to its simple operation and high specificity, but there is still a lack of commercialized kits for the operation of gene editing technology. Therefore, the research and development is accurate, reliable, simple and practical, suitable for various The CRISPR-CAS9 lentiviral vector gene knockout kit operated by researchers is an urgent need at present. The present invention combines the high-efficiency transfection characteristics of lentiviral vectors and the high-efficiency gene editing characteristics of CRISPR-CAS9 technology to solve important problems in this field. problem.
发明内容Contents of the invention
本发明要解决的技术问题是控制慢病毒载体的基因敲除的效率,缩小基因敲除的差异性。The technical problem to be solved by the present invention is to control the gene knockout efficiency of the lentiviral vector and reduce the difference of gene knockout.
本发明解决上述问题的技术方案是:The technical scheme that the present invention solves the above problems is:
一种基于CRISPR-CAS9慢病毒载体基因敲除试剂盒,该试剂盒包括线性化CRISPR-CAS9慢病毒载体、T4连接酶和T4连接酶的缓冲液、高转化性Stbl3感受态细胞,其特征在于:A gene knockout kit based on CRISPR-CAS9 lentiviral vector, the kit includes linearized CRISPR-CAS9 lentiviral vector, T4 ligase and T4 ligase buffer, highly transformable Stbl3 competent cells, characterized in that :
1.所述的线性化CRISPR-CAS9慢病毒载体由CRISPR-CAS9慢病毒载体经核酸内切酶得到;1. The linearized CRISPR-CAS9 lentiviral vector is obtained by the CRISPR-CAS9 lentiviral vector through an endonuclease;
2.所述的连接酶是T4连接酶;2. The ligase is T4 ligase;
3.所述的感受态细胞为氯化钙法制备的高转化性Stbl3感受态细胞。3. The competent cells are highly transformable Stbl3 competent cells prepared by the calcium chloride method.
本发明试剂盒中,线性化的CRISPR-CAS9慢病毒载体包括但不仅限于慢病毒载体,也可以用于普通CRISPR-CAS9载体;T4连接酶为常用的或商业化的T4连接酶;Stbl3感受态细胞是通过氯化钙法制备而成。In the kit of the present invention, the linearized CRISPR-CAS9 lentiviral vectors include but not limited to lentiviral vectors, and can also be used for common CRISPR-CAS9 vectors; T4 ligase is commonly used or commercial T4 ligase; Stbl3 competent Cells were prepared by the calcium chloride method.
本发明试剂盒制备基于CRISPR-CAS9慢病毒载体的敲除质粒是通过分子克隆的方式实现的,即通过构建目的基因的引导RNA序列,重组进入线性化CRISPR-CAS9慢病毒载体而成,具体过程如下:The kit of the present invention prepares the knockout plasmid based on the CRISPR-CAS9 lentiviral vector by means of molecular cloning, that is, by constructing the guide RNA sequence of the target gene and recombining it into the linearized CRISPR-CAS9 lentiviral vector. The specific process as follows:
1.CRISPR-CAS9慢病毒载体的线性化过程中,总体积最好为50μl,其中CRISPR-CAS9慢病毒载体为2μg,BsmBI酶2μl,BsmBI酶缓冲液5μl,剩余用灭菌去离子水补足至50μl。然后在37℃放置1小时,然后进行切胶回收,具体的酶切步骤如下:1. During the linearization process of the CRISPR-CAS9 lentiviral vector, the total volume should preferably be 50 μl, of which the CRISPR-CAS9 lentiviral vector is 2 μg, the BsmBI enzyme is 2 μl, the BsmBI enzyme buffer is 5 μl, and the rest is supplemented with sterilized deionized water to 50 μl. Then place it at 37°C for 1 hour, and then perform gel cutting and recovery. The specific enzyme cutting steps are as follows:
2μg CRISPR-CAS9慢病毒环状载体2 μg CRISPR-Cas9 lentiviral circular vector
2μl BsmBI酶2 μl BsmBI enzyme
5μl BsmBI酶缓冲液(10U/μl)5μl BsmBI enzyme buffer (10U/μl)
41μl灭菌去离子水41 μl sterile deionized water
50μl总体积50μl total volume
酶切后载体在1%的琼脂糖凝胶进行电泳后,核酸染料染色后在紫外灯下进行观察,切取不超过400mg的1%的琼脂糖凝胶,55℃溶解后进行载体回收,回收后的载体进行浓度测定。After digestion, the carrier is subjected to electrophoresis on 1% agarose gel, stained with nucleic acid dye and observed under ultraviolet light. Cut out no more than 400 mg of 1% agarose gel, dissolve it at 55°C and recover the carrier. Carrier concentration determination.
发明人通过调节载体量和BsmBI酶的用量,以酶切效率进行评价,筛选出了酶切效率最高的配比。The inventors adjusted the amount of the carrier and the amount of BsmBI enzyme, evaluated the enzyme cutting efficiency, and screened out the ratio with the highest enzyme cutting efficiency.
线性化CRISPR-CAS9慢病毒载体的制备过程中条件的筛选Screening of conditions during the preparation of linearized CRISPR-CAS9 lentiviral vector
2.构建目的基因的引导RNA序列,gRNA靶点选择及其寡核苷酸链合(http://crispr-mit.edu/网站)sgRNA靶点选择及其寡核苷酸链合成:应用设计标准如下:正义链模板的5’端添加CACC;反义链模板的5’端添加AAAC。2. Construction of the guide RNA sequence of the target gene, gRNA target selection and oligonucleotide chaining (http://crispr-mit.edu/ website) sgRNA target selection and oligonucleotide chain synthesis: application design The standard is as follows: add CACC to the 5' end of the sense strand template; add AAAC to the 5' end of the antisense strand template.
将sgRNA寡核苷酸单链退火形成双链:取等量的正义链和反义链混合(终浓度为10μl)。程序如下:37℃,30分钟;95℃,5分钟;94℃,12sec,-l℃/循环,70个循环;最终为24℃,具体反应的样品体积和浓度如下。Anneal the single strand of sgRNA oligonucleotides to form double strands: take equal amounts of sense strand and antisense strand and mix (final concentration is 10 μl). The program is as follows: 37°C, 30 minutes; 95°C, 5 minutes; 94°C, 12sec, -1°C/cycle, 70 cycles; finally 24°C, the specific reaction sample volume and concentration are as follows.
1μl正义链模板(100mM)1 μl sense strand template (100mM)
1μl反义链模板(100mM)1 μl antisense strand template (100mM)
1μl T4连接酶缓冲液1 μl T4 ligase buffer
7.5μl灭菌去离子水7.5 μl sterile deionized water
10μl总体积10 μl total volume
3.目的基因和线性化CRISPR-CAS9慢病毒载体的重组,将上述得到的正义链和反义链稀释至0.5μmoL/L。加入(1)中得到的线性化CRISPR-CAS9载体10ng,加入T4连接酶连接20分钟。转化高转化性Stbl3感受态,挑取单克隆,具体流程为:3. For the recombination of the target gene and the linearized CRISPR-CAS9 lentiviral vector, dilute the sense and antisense strands obtained above to 0.5 μmoL/L. Add 10 ng of the linearized CRISPR-CAS9 vector obtained in (1), and add T4 ligase for ligation for 20 minutes. Transform highly transformable Stbl3 competent cells and pick single clones. The specific process is as follows:
1μl线性化CRISPR-CAS9载体10ng1 μl linearized CRISPR-Cas9 vector 10ng
1μl正义链和反义链混合物1 μl sense and antisense strand mix
1μl T4连接酶缓冲液1 μl T4 ligase buffer
1μl T4连接酶(20U/μl)1 μl T4 ligase (20U/μl)
加入灭菌去离子水至总体积10μl。Add sterile deionized water to a total volume of 10 μl.
发明人改变T4连接酶体积,并通过连接效率来确定T4连接酶用量。连接效率的检测方法为进行连接反应后转化细菌,跟同样含量的对照质粒比较长出来多少细菌斑点。The inventors changed the volume of T4 ligase and determined the amount of T4 ligase by ligation efficiency. The detection method of the ligation efficiency is to transform the bacteria after the ligation reaction, and compare the number of bacterial spots grown with the same content of the control plasmid.
T4连接酶和缓冲液组合的筛选Screening of T4 ligase and buffer combinations
4.慢病毒载体测序4. Lentiviral Vector Sequencing
将挑取得到的单克隆在Stbl3细菌培养基中进行扩大培养,同时加入氨苄青霉素进行抗性筛选,将收集得到的Stbl3细菌进行裂解,抽提其中的重组质粒进行测序。测序成功的载体显示重组克隆构建成功。The selected single clones were expanded and cultured in the Stbl3 bacterial culture medium, and ampicillin was added for resistance screening, the collected Stbl3 bacteria were lysed, and the recombinant plasmids were extracted for sequencing. The vectors that were successfully sequenced showed that the recombinant clones were constructed successfully.
Stbl3感受态与DH5感受态细胞对比实验Comparison experiment of Stbl3 competent and DH5 competent cells
本发明试剂盒基于线性化CRISPR-CAS9慢病毒载体构建基因敲除的试剂盒具有以下优点:The kit of the present invention is based on the linearized CRISPR-CAS9 lentiviral vector to construct a gene knockout kit with the following advantages:
(1)线性化CRISPR-CAS9慢病毒载体消除了不同实验者对载体的不一致现象,减少了不同反应的干扰,节省了载体处理的时间,提高了实验效率;(1) The linearized CRISPR-CAS9 lentiviral vector eliminates the inconsistency of different experimenters on the vector, reduces the interference of different reactions, saves the time of vector processing, and improves the experimental efficiency;
(2)本发明中提供的T4连接酶和缓冲液是经过多种测试得到的最优的一种组合,避免了不同品牌之间连接效率的不同,提高了实验的一致性;(2) The T4 ligase and buffer provided in the present invention are the optimal combination obtained through various tests, which avoids the difference in connection efficiency between different brands and improves the consistency of the experiment;
(3)用本发明氯化钙法构建的高感染性Stbl3感受态,相比于传统的DH5感受态细胞减少了重组的发生。(3) The highly infectious Stbl3 competent cell constructed by the calcium chloride method of the present invention reduces the occurrence of recombination compared with the traditional DH5 competent cell.
4.采用本发明,使用者只需要合成目的基因的正、反链引物就可以立即进行基因敲除载体的构建,具有省时,省力,减低成本的效果。4. With the present invention, the user only needs to synthesize the forward and reverse strand primers of the target gene to immediately construct the gene knockout vector, which has the effect of saving time, labor and cost.
附图说明Description of drawings
图1是线性化CRISPR-CAS9慢病毒载体的琼脂糖凝胶电泳图,其中显示的是线性化的载体,及经过BsmBI核酸酶酶切后的片段。由于载体里面有一段2000bp的插入序列,酶切后该序列被切割下来,通过该被切割下来的2000bp的序列可以证明得到线性化的CRISPR-CAS9慢病毒载体,方便回收。Figure 1 is an agarose gel electrophoresis image of the linearized CRISPR-CAS9 lentiviral vector, which shows the linearized vector and the fragments digested with BsmBI nuclease. Since there is a 2000bp insert sequence in the vector, the sequence is cut off after enzyme digestion, and the cut-off 2000bp sequence can prove to obtain a linearized CRISPR-CAS9 lentiviral vector, which is convenient for recovery.
图2是成功转化Stbl3后的重组质粒涂板后情况。Fig. 2 is the situation after the recombinant plasmid is plated after successfully transforming Stbl3.
图3为转化到细胞中的情况,带有绿色荧光的显示出转染成功,方便后续实验。Figure 3 shows the situation of transformation into cells, with green fluorescence showing successful transfection, which is convenient for subsequent experiments.
具体实施方式detailed description
下述实施例1所述的普通克隆重组法为采用常用的基因所建立的CRISPR-CAS9慢病毒载体构建的基因敲除,该载体上带有绿色荧光标记的CRISPR-CAS9载体构建的基因敲除方法。The general cloning and recombination method described in the following example 1 is a gene knockout constructed by using a commonly used gene-established CRISPR-CAS9 lentiviral vector, and the gene knockout constructed by a CRISPR-CAS9 vector with a green fluorescent label on the carrier method.
实施例1(普通克隆重组法构建的具有嘌呤霉素抗性的CRISPR-CAS9慢病毒载体基因敲除,以SNX10基因为例)Example 1 (CRISPR-CAS9 lentiviral vector gene knockout with puromycin resistance constructed by common cloning and recombination method, taking SNX10 gene as an example)
1、小鼠SNX10基因sgRNA设计:1. Mouse SNX10 gene sgRNA design:
(1)设计获得SNX10基因的正、反义链引物序列:(1) Design the positive and antisense strand primer sequences of the SNX10 gene:
sgRNA1F:AAACGCAACGCATTACTTTGGAGTC SEQ ID No.1sgRNA1F: AAACGCAACGCATTACTTTGGAGTC SEQ ID No.1
sgRNA1R:CACCGCACGTGGATCAGCGTCGCCA SEQ ID No.2sgRNA1R: CACCGCACGTGGATCAGCGTCGCCA SEQ ID No. 2
sgRNA2F:CACCGCACGTGGATCAGCGTCGCCA SEQ ID No.3sgRNA2F: CACCGCACGTGGATCAGCGTCGCCA SEQ ID No.3
sgRNA2R:AAACTGGCGACGCTGATCCACGTGC SEQ ID No.4sgRNA2R: AAACTGGCGACGCTGATCCACGTGC SEQ ID No.4
(2)试剂盒所述的线性化具有嘌呤霉素抗性的CRISPR-CAS9慢病毒载体;(2) The linearized CRISPR-CAS9 lentiviral vector with puromycin resistance described in the kit;
(3)T4连接酶和T4连接酶缓冲液;(3) T4 ligase and T4 ligase buffer;
(4)高转化活性Stbl3感受态;(4) High transformation activity Stbl3 competent;
2、具有嘌呤霉素抗性的CRISPR-CAS9慢病毒克隆载体的重组2. Recombination of CRISPR-CAS9 lentiviral cloning vector with puromycin resistance
(1)将正义链和反义链退火形成双链:取等量的正义链和反义链混合(终浓度为10μM)。程序如下:37℃30分钟;95℃,5分钟;94℃,12sec,-l℃/循环,70个循环;最终为24℃,具体反应的样品体积和浓度如下。(1) Anneal the sense strand and the antisense strand to form double strands: take equal amounts of the sense strand and the antisense strand and mix (final concentration is 10 μM). The program is as follows: 37°C for 30 minutes; 95°C for 5 minutes; 94°C for 12sec, -1°C/cycle, 70 cycles; the final temperature is 24°C. The specific reaction sample volume and concentration are as follows.
1μl正义链模板(100mM)1 μl sense strand template (100mM)
1μl反义链模板(100mM)1 μl antisense strand template (100mM)
1μl T4连接酶缓冲液1 μl T4 ligase buffer
加入灭菌去离子水至总体积10μl。Add sterile deionized water to a total volume of 10 μl.
反应完成后,在10μl中加入2ml灭菌去离子水。After the reaction is complete, add 2 ml of sterilized deionized water to 10 μl.
(2)将上述得到的正义链和反义链混合物和试剂盒中的线性化CRISPR-CAS9载体加入试剂盒中的T4连接酶连接,连接20分钟。具体方法是:(2) Add the sense strand and antisense strand mixture obtained above and the linearized CRISPR-CAS9 vector in the kit to the T4 ligase in the kit for ligation, and ligate for 20 minutes. The specific method is:
1μl线性化的具有嘌呤霉素抗性的CRISPR-CAS9载体1 μl linearized puromycin-resistant CRISPR-Cas9 vector
1μl正义链和反义链混合物1 μl sense and antisense strand mix
1μl T4连接酶缓冲液1 μl T4 ligase buffer
1μl T4连接酶1 μl T4 ligase
加入灭菌去离子水至总体积10μl。Add sterile deionized water to a total volume of 10 μl.
(3)将本试剂盒中高转化活性的Stbl3感受态在冰上解冻,将上述11μl的正义链和反义链混合物加入感受态细胞并摇匀,冰上放置约30分钟。水浴42℃热激90秒后,加入1毫升LB培养基(氯化钠10g,蛋白胨10g;酵母提取物5g,加水1升灭菌后使用),于37℃下170转/分钟摇床中培养1小时后,5000转/分钟离心1分钟。将沉淀涂在含有抗生素活性的LB琼脂糖(氯化钠10g,蛋白胨10g;酵母提取物5g,琼脂粉3g,加水1升灭菌后使用)板上,待生长16小时后取出,挑单克隆菌落。(3) Thaw the Stbl3 competent cells with high transformation activity in this kit on ice, add the above 11 μl sense strand and antisense strand mixture into the competent cells, shake well, and place on ice for about 30 minutes. After heat-shocking in a water bath at 42°C for 90 seconds, add 1 ml of LB medium (sodium chloride 10g, peptone 10g; yeast extract 5g, add 1 liter of water to sterilize before use), and culture in a shaker at 37°C at 170 rpm After 1 hour, centrifuge at 5000 rpm for 1 minute. Spread the precipitate on an LB agarose (sodium chloride 10g, peptone 10g; yeast extract 5g, agar powder 3g, add 1 liter of water after sterilization) plate containing antibiotic activity, take it out after 16 hours of growth, and pick a single clone colony.
3、CRISPR-CAS9慢病毒克隆载体测序,将上述挑选的单克隆菌落加入LB培养基中进行进行扩大培养,同时加入氨苄青霉素抗生素(100g/ml)进行抗性筛选,37℃下220转/分钟摇床中培养12小时后,抽提质粒测序。3. Sequencing of the CRISPR-CAS9 lentiviral cloning vector, adding the above-selected monoclonal colonies to LB medium for expansion culture, and adding ampicillin antibiotic (100g/ml) for resistance screening, 220 rpm at 37°C After culturing in a shaker for 12 hours, the plasmids were extracted and sequenced.
测序结果显示重组克隆质粒中,以上两个正义链模板已经插入到载体中:Sequencing results show that in the recombinant cloning plasmid, the above two positive-sense strand templates have been inserted into the vector:
重组克隆构建成功。The recombinant clone was constructed successfully.
实施例2(普通克隆重组法构建的具有嘌呤霉素抗性的CRISPR-CAS9慢病毒载体基因敲除,以HSF1基因为例)Example 2 (CRISPR-CAS9 lentiviral vector gene knockout with puromycin resistance constructed by common cloning and recombination method, taking HSF1 gene as an example)
1、人HSF1基因sgRNA设计:1. Human HSF1 gene sgRNA design:
(1)设计获得HSF1基因的正、反义链引物序列:(1) Design the positive and antisense strand primer sequences of the HSF1 gene:
sgRNA1F:TCGTGAGCGACCCGGACACCGTTTT SEQ ID No.5sgRNA1F: TCGTGAGCGACCCGGACACCGTTTT SEQ ID No.5
sgRNA1R:GGTGTCCGGGTCGCTCACGACGGTG SEQ ID No.6sgRNA1R: GGTGTCCGGGTCGCTCACGACGGTG SEQ ID No. 6
sgRNA2F:CAGCTTCCACGTGTTCGACCGTTTT SEQ ID No.7sgRNA2F: CAGCTTCCACGTGTTCGACCGTTTT SEQ ID No. 7
sgRNA2R:GGTCGAACACGTGGAAGCTGCGGTG SEQ ID No.8sgRNA2R: GGTCGAACACGTGGAAGCTGCGGTG SEQ ID No.8
sgRNA3F:GGAGTCAATGAGGGCGGTCGGTTTT SEQ ID No.9sgRNA3F: GGAGTCAATGAGGGCGGTCGGTTTT SEQ ID No. 9
sgRNA3R:CGACCGCCCTCATTGACTCCCGGTG SEQ ID No.10sgRNA3R: CGACCGCCCTCATTGACTCCCGGTG SEQ ID No.10
(2)试剂盒所述的线性化具有嘌呤霉素抗性的CRISPR-CAS9慢病毒载体;(2) The linearized CRISPR-CAS9 lentiviral vector with puromycin resistance described in the kit;
(3)T4连接酶和T4连接酶缓冲液;(3) T4 ligase and T4 ligase buffer;
(4)高转化活性Stbl3感受态;(4) High transformation activity Stbl3 competent;
2、具有嘌呤霉素抗性的CRISPR-CAS9慢病毒克隆载体的重组2. Recombination of CRISPR-CAS9 lentiviral cloning vector with puromycin resistance
(1)将正义链和反义链退火形成双链:取等量的正义链和反义链混合(终浓度为10μM)。程序如下:37℃,30分钟;95℃,5分钟;94℃,12sec,-l℃/循环,70个循环;最终为24℃,具体反应的样品体积和浓度如下。(1) Anneal the sense strand and the antisense strand to form double strands: take equal amounts of the sense strand and the antisense strand and mix (final concentration is 10 μM). The program is as follows: 37°C, 30 minutes; 95°C, 5 minutes; 94°C, 12sec, -1°C/cycle, 70 cycles; finally 24°C, the specific reaction sample volume and concentration are as follows.
1μl正义链模板(100mM)1 μl sense strand template (100mM)
1μl反义链模板(100mM)1 μl antisense strand template (100mM)
1μl T4连接酶缓冲液1 μl T4 ligase buffer
加入灭菌去离子水至总体积10μl。Add sterile deionized water to a total volume of 10 μl.
反应完成后,在10μl中加入2ml灭菌去离子水。After the reaction is complete, add 2 ml of sterilized deionized water to 10 μl.
(2)将上述得到的正义链和反义链混合物和试剂盒中的线性化CRISPR-CAS9载体加入试剂盒中的T4连接酶连接,连接20分钟。具体方法是:(2) Add the sense strand and antisense strand mixture obtained above and the linearized CRISPR-CAS9 vector in the kit to the T4 ligase in the kit for ligation, and ligate for 20 minutes. The specific method is:
1μl线性化的具有嘌呤霉素抗性的CRISPR-CAS9载体1 μl linearized puromycin-resistant CRISPR-Cas9 vector
1μl正义链和反义链混合物1 μl sense and antisense strand mix
1μl T4连接酶缓冲液1 μl T4 ligase buffer
1μl T4连接酶1 μl T4 ligase
加入灭菌去离子水至总体积10μl。Add sterile deionized water to a total volume of 10 μl.
(3)将本试剂盒中高转化活性的Stbl3感受态在冰上解冻,将上述11μl的正义链和反义链混合物加入感受态细胞并摇匀,冰上放置约30分钟。水浴42℃热激90秒后,加入1毫升LB培养基(氯化钠10g,蛋白胨10g;酵母提取物5g,加水1升灭菌后使用),于37℃下170转/分钟摇床中培养1小时后,5000转/分钟离心1分钟。将沉淀涂在含有抗生素活性的LB琼脂糖(氯化钠10g,蛋白胨10g;酵母提取物5g,琼脂粉3g,加水1升灭菌后使用)板上,待生长16小时后取出,挑单克隆菌落。(3) Thaw the Stbl3 competent cells with high transformation activity in this kit on ice, add the above 11 μl sense strand and antisense strand mixture into the competent cells, shake well, and place on ice for about 30 minutes. After heat-shocking in a water bath at 42°C for 90 seconds, add 1 ml of LB medium (sodium chloride 10g, peptone 10g; yeast extract 5g, add 1 liter of water to sterilize before use), and culture in a shaker at 37°C at 170 rpm After 1 hour, centrifuge at 5000 rpm for 1 minute. Spread the precipitate on an LB agarose (sodium chloride 10g, peptone 10g; yeast extract 5g, agar powder 3g, add 1 liter of water after sterilization) plate containing antibiotic activity, take it out after 16 hours of growth, and pick a single clone colony.
3、CRISPR-CAS9慢病毒克隆载体测序,将上述挑选的单克隆菌落加入LB培养基中进行进行扩大培养,同时加入氨苄青霉素抗生素(100g/ml)进行抗性筛选,37℃下220转/分钟摇床中培养12小时后,抽提质粒测序。3. Sequencing of the CRISPR-CAS9 lentiviral cloning vector, adding the above-selected monoclonal colonies to LB medium for expansion culture, and adding ampicillin antibiotic (100g/ml) for resistance screening, 220 rpm at 37°C After culturing in a shaker for 12 hours, the plasmids were extracted and sequenced.
测序结果显示重组克隆质粒中,以上两个正义链模板已经插入到载体中:Sequencing results show that in the recombinant cloning plasmid, the above two positive-sense strand templates have been inserted into the vector:
重组克隆构建成功。The recombinant clone was constructed successfully.
实施例3(普通克隆重组法构建的具有嘌呤霉素抗性的CRISPR-CAS9慢病毒载体基因敲除,以PKA基因为例)Example 3 (CRISPR-CAS9 lentiviral vector gene knockout with puromycin resistance constructed by common cloning and recombination method, taking PKA gene as an example)
1、大鼠PKA基因sgRNA设计:1. Rat PKA gene sgRNA design:
(1)设计获得PKA基因的正、反义链引物序列:(1) Design and obtain the positive and antisense strand primer sequences of the PKA gene:
sgRNA1F:AACGCCGCCGCCGCCAAGAAGTTTT SEQ ID No.11sgRNA1F: AACGCCGCCGCCGCCAAGAAGTTTT SEQ ID No.11
sgRNA1R:TTCTTGGCGGCGGCGGCGTTCGGTG SEQ ID No.12sgRNA1R: TTCTTGGCGGCGGCGGCGTTCGGTG SEQ ID No.12
sgRNA2F:CCTCCCAATCCGCCGTAAGTGTTTT SEQ ID No.13sgRNA2F: CCTCCCAATCCGCCGTAAGTGTTTT SEQ ID No. 13
sgRNA2R:ACTTACGGCGGATTGGGAGGCGGTG SEQ ID No.14sgRNA2R: ACTTACGGCGGATTGGGAGGCGGTG SEQ ID No.14
sgRNA3F:CGATCTGCGCCGCGTAGAAAGTTTT SEQ ID No.15sgRNA3F: CGATCTGCGCCGCGTAGAAAGTTTT SEQ ID No. 15
sgRNA3R:TTTCTACGCGGCGCAGATCGCGGTG SEQ ID No.16sgRNA3R: TTTCTACGCGGCGCAGATCGCGGTG SEQ ID No. 16
(2)试剂盒所述的线性化具有嘌呤霉素抗性的CRISPR-CAS9慢病毒载体;(2) The linearized CRISPR-CAS9 lentiviral vector with puromycin resistance described in the kit;
(3)T4连接酶和T4连接酶缓冲液;(3) T4 ligase and T4 ligase buffer;
(4)高转化活性Stbl3感受态;(4) High transformation activity Stbl3 competent;
2、具有嘌呤霉素抗性的CRISPR-CAS9慢病毒克隆载体的重组2. Recombination of CRISPR-CAS9 lentiviral cloning vector with puromycin resistance
(1)将正义链和反义链退火形成双链:取等量的正义链和反义链混合(终浓度为10μM)。程序如下:37℃,30分钟;95℃,5分钟;94℃,12sec,-l℃/循环,70个循环;最终为24℃,具体反应的样品体积和浓度如下。(1) Anneal the sense strand and the antisense strand to form double strands: take equal amounts of the sense strand and the antisense strand and mix (final concentration is 10 μM). The program is as follows: 37°C, 30 minutes; 95°C, 5 minutes; 94°C, 12sec, -1°C/cycle, 70 cycles; finally 24°C, the specific reaction sample volume and concentration are as follows.
1μl正义链模板(100mM)1 μl sense strand template (100mM)
1μl反义链模板(100mM)1 μl antisense strand template (100mM)
1μl T4连接酶缓冲液1 μl T4 ligase buffer
加入灭菌去离子水至总体积10μl。Add sterile deionized water to a total volume of 10 μl.
反应完成后,在10μl中加入2ml灭菌去离子水。After the reaction is complete, add 2 ml of sterilized deionized water to 10 μl.
(2)将上述得到的正义链和反义链混合物和试剂盒中的线性化CRISPR-CAS9载体加入试剂盒中的T4连接酶连接,连接20分钟。具体方法是:(2) Add the sense strand and antisense strand mixture obtained above and the linearized CRISPR-CAS9 vector in the kit to the T4 ligase in the kit for ligation, and ligate for 20 minutes. The specific method is:
1μl线性化的具有嘌呤霉素抗性的CRISPR-CAS9载体1 μl linearized puromycin-resistant CRISPR-Cas9 vector
1μl正义链和反义链混合物1 μl sense and antisense strand mix
1μl T4连接酶缓冲液1 μl T4 ligase buffer
1μl T4连接酶1 μl T4 ligase
加入灭菌去离子水至总体积10μl。Add sterile deionized water to a total volume of 10 μl.
(3)将本试剂盒中高转化活性的Stbl3感受态在冰上解冻,将上述11μl的正义链和反义链混合物加入感受态细胞并摇匀,冰上放置约30分钟。水浴42℃热激90秒后,加入1毫升LB培养基(氯化钠10g,蛋白胨10g;酵母提取物5g,加水1升灭菌后使用),于37℃下170转/分钟摇床中培养1小时后,5000转/分钟离心1分钟。将沉淀涂在含有抗生素活性的LB琼脂糖(氯化钠10g,蛋白胨10g;酵母提取物5g,琼脂粉3g,加水1升灭菌后使用)板上,待生长16小时后取出,挑单克隆菌落。(3) Thaw the Stbl3 competent cells with high transformation activity in this kit on ice, add the above 11 μl sense strand and antisense strand mixture into the competent cells, shake well, and place on ice for about 30 minutes. After heat-shocking in a water bath at 42°C for 90 seconds, add 1 ml of LB medium (sodium chloride 10g, peptone 10g; yeast extract 5g, add 1 liter of water to sterilize before use), and culture in a shaker at 37°C at 170 rpm After 1 hour, centrifuge at 5000 rpm for 1 minute. Spread the precipitate on an LB agarose (sodium chloride 10g, peptone 10g; yeast extract 5g, agar powder 3g, add 1 liter of water after sterilization) plate containing antibiotic activity, take it out after 16 hours of growth, and pick a single clone colony.
3、CRISPR-CAS9慢病毒克隆载体测序,将上述挑选的单克隆菌落加入LB培养基中进行进行扩大培养,同时加入氨苄青霉素抗生素(100g/ml)进行抗性筛选,37℃下220转/分钟摇床中培养12小时后,抽提质粒测序。3. Sequencing of the CRISPR-CAS9 lentiviral cloning vector, adding the above-selected monoclonal colonies to LB medium for expansion culture, and adding ampicillin antibiotic (100g/ml) for resistance screening, 220 rpm at 37°C After culturing in a shaker for 12 hours, the plasmids were extracted and sequenced.
测序结果显示重组克隆质粒中,以上两个正义链模板已经插入到载体中:Sequencing results show that in the recombinant cloning plasmid, the above two positive-sense strand templates have been inserted into the vector:
重组克隆1:AAACGCAACGCATTACTTTGGAGTC SEQ ID No.17Recombinant clone 1: AAACGCAACGCATTACTTTGGAGTC SEQ ID No.17
重组克隆2:CACCGCACGTGGATCAGCGTCGCCA SEQ ID No.18Recombinant clone 2: CACCGCACGTGGATCAGCGTCGCCA SEQ ID No.18
重组克隆构建成功。The recombinant clone was constructed successfully.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 南方医科大学<110> Southern Medical University
<120> 一种基于线性化CRISPR-CAS9慢病毒载体基因敲除试剂盒及其应用<120> A linearized CRISPR-CAS9 lentiviral vector gene knockout kit and its application
<160> 18<160> 18
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA1F<213> sgRNA1F
<400> 1<400> 1
aaacgcaacg cattactttg gagtc 25aaacgcaacg cattactttg gagtc 25
<210> 2<210> 2
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA1R<213> sgRNA1R
<400> 2<400> 2
caccgcacgt ggatcagcgt cgcca 25caccgcacgt ggatcagcgt cgcca 25
<210> 3<210> 3
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA2F<213> sgRNA2F
<400> 3<400> 3
caccgcacgt ggatcagcgt cgcca 25caccgcacgt ggatcagcgt cgcca 25
<210> 4<210> 4
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA2R<213> sgRNA2R
<400> 4<400> 4
aaactggcga cgctgatcca cgtgc 25aaactggcga cgctgatcca cgtgc 25
<210> 5<210> 5
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA1F<213> sgRNA1F
<400> 5<400> 5
tcgtgagcga cccggacacc gtttt 25tcgtgagcga cccggacacc gtttt 25
<210> 6<210> 6
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA1R<213> sgRNA1R
<400> 6<400> 6
ggtgtccggg tcgctcacga cggtg 25ggtgtccggg tcgctcacga cggtg 25
<210> 7<210> 7
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA2F<213> sgRNA2F
<400> 7<400> 7
cagcttccac gtgttcgacc gtttt 25cagcttccac gtgttcgacc gtttt 25
<210> 8<210> 8
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA2R<213> sgRNA2R
<400> 8<400> 8
ggtcgaacac gtggaagctg cggtg 25ggtcgaacac gtggaagctg cggtg 25
<210> 9<210> 9
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA3F<213> sgRNA3F
<400> 9<400> 9
ggagtcaatg agggcggtcg gtttt 25ggagtcaatg agggcggtcg gtttt 25
<210> 10<210> 10
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA3R<213> sgRNA3R
<400> 10<400> 10
cgaccgccct cattgactcc cggtg 25cgaccgccct cattgactcc cggtg 25
<210> 11<210> 11
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA1F<213> sgRNA1F
<400> 11<400> 11
aacgccgccg ccgccaagaa gtttt 25aacgccgccg ccgccaagaa gtttt 25
<210> 12<210> 12
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA1R<213> sgRNA1R
<400> 12<400> 12
ttcttggcgg cggcggcgtt cggtg 25ttcttggcgg cggcggcgtt cggtg 25
<210> 13<210> 13
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA2F<213> sgRNA2F
<400> 13<400> 13
cctcccaatc cgccgtaagt gtttt 25cctcccaatc cgccgtaagt gtttt 25
<210> 14<210> 14
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA2R<213> sgRNA2R
<400> 14<400> 14
acttacggcg gattgggagg cggtg 25acttacggcg gattgggagg cggtg 25
<210> 15<210> 15
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA3F<213> sgRNA3F
<400> 15<400> 15
cgatctgcgc cgcgtagaaa gtttt 25cgatctgcgc cgcgtagaaa gtttt 25
<210> 16<210> 16
<211> 25<211> 25
<212> DNA<212>DNA
<213> sgRNA3R<213> sgRNA3R
<400> 16<400> 16
tttctacgcg gcgcagatcg cggtg 25tttctacgcg gcgcagatcg cggtg 25
<210> 17<210> 17
<211> 25<211> 25
<212> DNA<212>DNA
<213> 重组克隆1<213> recombinant clone 1
<400> 17<400> 17
aaacgcaacg cattactttg gagtc 25aaacgcaacg cattactttg gagtc 25
<210> 18<210> 18
<211> 25<211> 25
<212> DNA<212>DNA
<213> 重组克隆2<213> recombinant clone 2
<400> 18<400> 18
caccgcacgt ggatcagcgt cgcca 25caccgcacgt ggatcagcgt cgcca 25
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710935589.8A CN107604003A (en) | 2017-10-10 | 2017-10-10 | One kind knocks out kit and its application based on linearisation CRISPR CAS9 lentiviral vector genomes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710935589.8A CN107604003A (en) | 2017-10-10 | 2017-10-10 | One kind knocks out kit and its application based on linearisation CRISPR CAS9 lentiviral vector genomes |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107604003A true CN107604003A (en) | 2018-01-19 |
Family
ID=61067643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710935589.8A Pending CN107604003A (en) | 2017-10-10 | 2017-10-10 | One kind knocks out kit and its application based on linearisation CRISPR CAS9 lentiviral vector genomes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107604003A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105316324A (en) * | 2015-10-20 | 2016-02-10 | 芜湖医诺生物技术有限公司 | Streptococcus thermophilus derived human CXCR3 gene target sequence recognizable by CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR associated 9) system and sgRNA (single guide ribonucleic acid) and application thereof |
-
2017
- 2017-10-10 CN CN201710935589.8A patent/CN107604003A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105316324A (en) * | 2015-10-20 | 2016-02-10 | 芜湖医诺生物技术有限公司 | Streptococcus thermophilus derived human CXCR3 gene target sequence recognizable by CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR associated 9) system and sgRNA (single guide ribonucleic acid) and application thereof |
Non-Patent Citations (2)
Title |
---|
DAVID P. SANTOS ET AL.: "Comprehensive protocols for CRISPR/Cas9-based gene editing in human pluripotent stem cells", 《CURR PROTOC STEM CELL BIOL》 * |
SHALEM O ET AL.: "Genome-scale CRISPR-Cas9 knockout screening in human cells", 《SCIENCE》 * |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US12215365B2 (en) | 2013-12-12 | 2025-02-04 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12344869B2 (en) | 2015-10-23 | 2025-07-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US12359218B2 (en) | 2017-07-28 | 2025-07-15 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US12281303B2 (en) | 2019-03-19 | 2025-04-22 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107604003A (en) | One kind knocks out kit and its application based on linearisation CRISPR CAS9 lentiviral vector genomes | |
JP7502537B2 (en) | Enzymes with RUVC domains | |
CN107922931B (en) | Thermostable Cas9 Nuclease | |
JP7223377B2 (en) | Thermostable CAS9 nuclease | |
Jinek et al. | RNA-programmed genome editing in human cells | |
CN110358767B (en) | Zymomonas mobilis genome editing method based on CRISPR-Cas12a system and application thereof | |
RU2707911C2 (en) | Nuclease-mediated dna assembly | |
CN116096876A (en) | Class II V-type CRISPR system | |
CN104805078A (en) | Design, synthesis and use of RNA molecule for high-efficiency genome editing | |
CN107002292A (en) | The construction method and reagent in a kind of twin adapter single stranded circle library of nucleic acid | |
CA3192224A1 (en) | Base editing enzymes | |
JP2024535672A (en) | Class II, Type V CRISPR system | |
CN108699101A (en) | The preparative electrophoresis method of targeting purifying for genomic DNA fragment | |
EP4159853A1 (en) | Genome editing system and method | |
US20200131504A1 (en) | Plasmid library comprising two random markers and use thereof in high throughput sequencing | |
CN105567718A (en) | Building method of carrier for expressing multiple sgRNAs simultaneously | |
CN107245493A (en) | A vector expressing an aptamer ribozyme-modified sgRNA regulated by theophylline and its application | |
CN102876677A (en) | Double-stranded RNA (ribonucleic acid) preparation method | |
CN110499334A (en) | CRISPR/SlugCas9 gene editing system and its application | |
CN110577969A (en) | CRISPR/Sa-SlugCas9 gene editing system and its application | |
EP4200422A1 (en) | Systems and methods for transposing cargo nucleotide sequences | |
CN116004716A (en) | A method for high-efficiency gene editing by a replicative dCas9-FokI system | |
CN116836300A (en) | A base editing molecule and its use | |
WO2018086512A1 (en) | Plant genome site-specific knock-in method | |
CN101139586A (en) | A rapid and high-throughput gene site-directed mutagenesis method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180119 |